
KAT + B!

Niels Bjørn Bugge Grathwohl
University of Copenhagen

bugge@diku.dk

Dexter Kozen Konstantinos Mamouras
Cornell University

{kozen,mamouras}@cs.cornell.edu

Abstract
It is known that certain program transformations require a small
amount of mutable state, a feature not explicitly provided by
Kleene algebra with tests (KAT). In this paper we show how to
axiomatically extend KAT with this extra feature in the form of
mutable tests. The extension is conservative and is formulated as
a general commutative coproduct construction. We give several re-
sults on deductive completeness and complexity of the system, as
well as some examples of its use.

Categories and Subject Descriptors F.3.3 [Logics and Meanings
of Programs]: Studies of Program Constructs—Program and recur-
sion schemes

General Terms Theory, Verification, Languages

Keywords Kleene algebra, Kleene algebra with tests, verification

1. Introduction
Kleene algebra with tests (KAT) is a propositional equational sys-
tem that combines Kleene algebra (KA) with Boolean algebra. It
has been shown to be an effective tool for many low-level program
analysis and verification tasks involving communication protocols,
safety analysis, source-to-source program transformation, concur-
rency control, and compiler optimization [2, 5, 7–9, 17, 22]. A no-
table recent success is its adoption as a basis for NetKAT, a foun-
dation for software-defined networks (SDN) [1].

One advantage of KAT is that it allows a clean separation of
the theory of the domain of computation from the program restruc-
turing operations. The former typically involves first-order reason-
ing, whereas the latter is typically propositional. It is often advan-
tageous to separate the two, because the theory of the domain of
computation may be highly undecidable. With KAT, one typically
isolates the needed properties of the domain as premises in a Horn
formula

s1 = t1 ∧ · · · ∧ sn = tn → s = t,

where the conclusion s = t expresses a more complicated equiv-
alence between (say) an unoptimized or unannotated version of a
program and its optimized or annotated version. The premises are
verified once and for all using the properties of the domain, and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CSL-LICS 2014, July 14–18, 2014, Vienna, Austria.
Copyright c© 2014 ACM 978-1-4503-2886-9. . . $15.00.
http://dx.doi.org/10.1145/2603088.2603095

the conclusion is then verified propositionally in KAT under those
assumptions.

Certain premises that arise frequently in practice can be incor-
porated as part of the theory using a technique known as elimina-
tion of hypotheses, in which Horn formulas with premises of a cer-
tain form can be reduced to the equational theory without loss of
efficiency [7, 12, 23]. However, there are a few useful ones that
cannot. In particular, it is known that there are certain program
transformations that cannot be effected in pure KAT, but require
extra structure. Two paradigmatic examples are the Böhm–Jacopini
theorem [6] (see also [3, 26–28, 30]) and the folklore result that
all while programs can be transformed to a program with a single
while loop [13, 25].

The Böhm–Jacopini theorem states that every deterministic
flowchart can be written as a while program. The construction is
normally done at the first-order level and introduces auxiliary vari-
ables to remember values across computations. It has been shown
that the construction is not possible without some kind of auxiliary
structure of this type [3, 15, 24].

Akin to the Böhm–Jacopini theorem, and often erroneously
conflated with it, is the folklore theorem that every while program
can be written with a single while loop. Like the proof of the
Böhm–Jacopini theorem, the proofs of [14, 25], as reported in
[13], are normally done at the first-order level and use auxiliary
variables. It was a commonly held belief that this result had no
purely propositional proof [13], but a partial refutation of this
view was given in [17] using a construction that foreshadows the
construction of this paper.

One can carry out these constructions in an uninterpreted first-
order version of KAT called schematic KAT (SKAT) [2, 20], but
as SKAT is undecidable in general [18], one would prefer a less
radical extension.

In this paper we investigate the minimal amount of structure
that suffices to perform these transformations and show how to
incorporate it in KAT without sacrificing deductive completeness
or decidability. Our main results are:

• We show how to extend KAT with a set of independent mutable
tests. The construction is done axiomatically with generators
and additional equational axioms. We formulate the construc-
tion as a general commutative coproduct construction that sat-
isfies a certain universality property. The generators are abstract
setters of the form b! and b̄! and testers b? and b̄? for a test sym-
bol b. We can think of these intuitively as operations that set
and test the value of a Boolean variable, although we do not
introduce any explicit notion of storage or variable assignment.
• We prove a representation theorem (Theorem 2) for the com-

mutative coproduct of an arbitrary KATK and a KAT of binary
relations on a finite set, namely that it is isomorphic to a certain
matrix algebra over K.
• As a corollary to the representation theorem, we show that

the extension is conservative; that is, an arbitrary KAT K can

be augmented with mutable tests without affecting the theory
of K. This is captured formally by a general property of the
commutative coproduct, namely injectivity. It is not known
whether the coproduct of KATs is injective in general, but we
show that it is injective if at least one of the two cofactors is a
finite relational KAT, which is the case in our application.
• We show that the free mutable test algebra on generators bi,

1 ≤ i ≤ n, is isomorphic to the KAT of all binary relations on
a set of 2n states. We also characterize the primitive operations
in terms of a tensor product of n copies of a 2-state system.
We show that the equational theory of this algebra is PSPACE-
complete, thus no easier or harder to decide than KAT.
• We show that the equational theory of an arbitrary KATK aug-

mented with mutable tests is axiomatically reducible to the the-
ory of K. In particular, the free KAT, augmented with mutable
tests, is completely axiomatized by the KAT axioms plus the
axioms for mutable tests.
• We show that the equational theory of KAT with mutable tests

is EXPSPACE-complete.
• We demonstrate that the program transformations mentioned

above, namely the Böhm–Jacopini theorem and the folklore
result about while programs, can be carried out in KAT with
mutable tests.

Balbiani et al. [4] present a related system DL-PA, a variant
of propositional dynamic logic (PDL) with mutable tests only.
Their system corresponds most closely to our free mutable test
algebra, which is PSPACE-complete. The semantics of DL-PA is
restricted to relational models, and they show that model checking
and satisfiability are EXPTIME-complete. The added complexity
is partly due to the presence of the modal operators in PDL, which
are absent in KAT.

This paper is organized as follows. In §2 we briefly review KA
and KAT and introduce the theory of mutable tests, and prove that
the free mutable test algebra on n generators is isomorphic to the
KAT of all binary relations on a set of size 2n. We also introduce the
commutative coproduct construction and prove our representation
theorem for the commutative coproduct of an arbitrary KATK and
a finite relational KAT. In §3 we prove our main completeness and
complexity results. In §4 we apply the theory to give an axiomatic
treatment of two applications involving program transformations.
In §5 we present conclusions and open problems.

Omitted proofs can be found in the appendix.

2. KAT and Mutable Tests
2.1 KA and KAT
A Kleene algebra (K,+, ·,∗ , 0, 1) is an idempotent semiring with
an iteration operator ∗ satisfying

1 + pp∗ = p∗ q + pr ≤ r → p∗q ≤ r
1 + p∗p = p∗ q + rp ≤ r → qp∗ ≤ r

where ≤ refers to the natural partial order on K. Standard models
include the family of regular sets over a finite alphabet, the family
of binary relations on a set, and the family of n × n matrices over
another Kleene algebra, as well as other more unusual interpreta-
tions used in shortest path algorithms and computational geometry.

The following are some typical KA identities:

(p∗q)∗p∗ = (p+ q)∗ (1)

p(qp)∗ = (pq)∗p (2)

p∗ = (pn)∗(1 + p+ · · ·+ pn−1). (3)

All KA operations are monotone with respect to ≤.

A Kleene algebra with tests (KAT) is a Kleene algebra with an
embedded Boolean subalgebra. That is, it is a two-sorted structure
(K,B,+, ·,∗ ,¯, 0, 1) such that

• (K,+, ·,∗ , 0, 1) is a Kleene algebra,
• (B,+, ·,¯, 0, 1) is a Boolean algebra, and
• B as a semiring is a subalgebra of K.

The Boolean complementation operator ¯ is defined only on B.
Elements ofB are called tests. The letters p, q, r, s denote arbitrary
elements ofK and a, b, c denote tests. The operators +, ·, 0, 1 each
play two roles: applied to arbitrary elements of K, they refer to
nondeterministic choice, composition, fail, and skip, respectively;
and applied to tests, they take on the additional meaning of Boolean
disjunction, conjunction, falsity, and truth, respectively. These two
usages do not conflict; for example, sequential testing of b and c is
the same as testing their conjunction.

Conventional imperative programming constructs and Hoare
partial correctness assertions can be encoded, and propositional
Hoare logic is subsumed. The deductive completeness and com-
plexity results for KA and KAT [10, 16, 23] say that the axioms
are complete for the equational theory of standard language and
relational models and that the equational theory is decidable in
PSPACE.

See [17] for a more thorough introduction.

2.2 Mutable Tests
Let Tn = {t1, . . . , tn} be a set of primitive test symbols. Consider
a set of primitive actions {t!, t̄! | t ∈ Tn} (note that ¯̄t! = t!). We
write t? for the test t to emphasize the distinction between t? and
t!. Let Fn be the free KAT over primitive actions {t!, t̄! | t ∈ Tn}
and primitive tests Tn modulo the following equations:

(i) t!t? = t!

(ii) t?t! = t?

(iii) t!t̄! = t̄!

(iv) s!t! = t!s!, provided s 6= t̄.

(v) s!t? = t?s!, provided s 6∈ {t, t̄}.

Intuitively, axiom (i) says that the action t! makes a subsequent
test t? true, (ii) says that if t? is already true, then the action t! is
redundant, (iii) says that setting a value overrides a previous such
action on the same value, and (iv) and (v) say that actions and tests
on different values are independent.

The theory B! refers to the equational consequences of (i)–(v)
along with the axioms of KAT on terms over Tn. Two immediate
such consequences are

(vi) t!t! = t!

(vii) t!t̄? = 0.

An atom of Tn is a sequence s1s2 · · · sn, where each si is either
ti or t̄i. Atoms are denoted α, β, The set of atoms is denoted
At. We write α ≤ t if t appears in α. Let α[t] denote the atom α if
α ≤ t and αwith t̄ replaced by t if α ≤ t̄. Each atom α = s1 · · · sn
determines a complete test α? = s1?s2? · · · sn? ∈ Fn and a
complete assignment α! = s1!s2! · · · sn! ∈ Fn. The following are
elementary consequences of B!:

t? =
∑
α≤t

α?α! t! =
∑
α

α?α[t]! (4)

α!α? = α! α?α! = α? α!β! = β! α?β? = 0 if α 6= β. (5)

2.3 Mutable Tests and Binary Relations
The following theorem characterizes the free B! algebra Fn. The
theorem shows that B! is sound in the sense that the free model
does not trivialize to the one-element algebra.

THEOREM 1. The algebra Fn is isomorphic to the KAT of all
binary relations on a set of size 2n.

Proof. The set At is of size 2n. Consider the KAT of binary
relations on At. This algebra is isomorphic to Mat(At,2), the KAT
of At × At matrices over the two-element KAT with the usual
Boolean matrix operations. We will construct an isomorphism hn :
Fn → Mat(At,2).

For the generators, let hn(t?) and hn(t!) be At × At matrices
with components

hn(t?)αβ =

{
1 if β = α ≤ t
0 otherwise,

hn(t!)αβ =

{
1 if β = α[t]

0 otherwise.

One can show without difficulty that the axioms (i)–(v) of B! are
satisfied under the interpretation hn. For example, for (ii),

(hn(t?)hn(t!))αβ =
∑
γ

hn(t?)αγhn(t!)γβ = hn(t?)ααhn(t!)αβ

=

{
1 if α ≤ t and β = α[t]

0 otherwise

=

{
1 if α ≤ t and β = α

0 otherwise

= hn(t?)αβ .

Since Fn is the free B! algebra on generators Tn, hn extends
uniquely to a KAT homomorphism hn : Fn → Mat(At,2).
Under this extension, hn(α?β!) is the matrix with 1 in location
αβ and 0 elsewhere. As every matrix in Mat(At,2) is a sum of
such matrices, hn is surjective.

We wish also to show that hn is injective. To do this, we show
that every element of Fn is a sum of elements of the form α?β!.
This is true for primitive tests t? and primitive actions t! by (4).
The constants 1 and 0 are equivalent to

∑
α α?α! and the empty

sum, respectively.
For sums, the conclusion is trivial. For products, we observe

using (5) that α?β!γ?δ! = 0 if β 6= γ and α?β!β?δ! = α?δ!. By
distributivity, this allows the product of two sums of elements of
the form α?β! to be reduced to a sum of the same form. For ∗, any
element of the form e∗ where e is a sum of elements of the form
α?β! is equivalent to 1 + e+ e2 + · · ·+ em for some m, since At
is finite.

Now if A ⊆ At2, then hn(
∑
αβ∈A α?β!) is the matrix with 1

in locations αβ ∈ A and 0 elsewhere. Thus if A,B ⊆ At2 and
hn(
∑
αβ∈A α?β!) = hn(

∑
αβ∈B α?β!), then A = B, therefore∑

αβ∈A α?β! =
∑
αβ∈B α?β!. 2

There are some interesting facts about Fn that are worth observ-
ing, although we will not need them in the sequel. We can express
the state set At as the tensor product of n copies of 2, one copy for
each t ∈ Tn. The structure F1 is the algebra Mat(2,2) of 2 × 2
matrices. The matrices hn(t?) and hn(t!) are Kronecker products

h1(t?)⊗
⊗
s6=t

I h1(t!)⊗
⊗
s6=t

I

where h1(t?) and h1(t!) are the matrices[
1 0
0 0

] [
1 0
1 0

]

respectively, where the first row and column correspond to index t
and the second to index t̄, and I is the 2×2 identity matrix. Matrix
multiplication in Fn satisfies

(A1 ⊗ · · · ⊗An)(B1 ⊗ · · · ⊗Bn) = A1B1 ⊗ · · · ⊗AnBn,

which can be regarded as an independence condition on the n
components. Every matrix in Fn can be expressed as a sum of
Kronecker products of 2 × 2 matrices with exactly one nonzero
entry corresponding to expressions of the form α?β!.

2.4 The Commutative Coproduct
Let K and F be KATs. The commutative coproduct of K and F is
the coproduct (direct sum) ofK and F modulo extra commutativity
conditions {ps = sp | p ∈ K, s ∈ F} that say that elements of
K and F commute multiplicatively. The commutativity conditions
model the idea that operations in K and F are independent of each
other. We will give an explicit construction below.

The usual coproduct K ⊕ F comes equipped with canonical
coprojections iK : K → K ⊕ F and iF : F → K ⊕ F . The
coprojections are often called injections, although they need not be
injective.1 The coproduct is said to be injective if iK and iF are
injective.

Injectivity is important because it means the extension of an
algebra K with extra features F is conservative in the sense that it
does not introduce any new equations. The coproduct of KATs is
not known to be injective in general; however, we shall show that
if F is a finite relational KAT, then the coproduct and commutative
coproduct are injective.

Our proof relies on an explicit coproduct construction from uni-
versal algebra that holds for any variety or quasivariety V (class of
algebras defined by universally quantified equations or equational
implications) over any signature Σ. We briefly review the construc-
tion here.

Let TK be the set of Σ-terms over K. The identity function
K → K extends uniquely to a canonical homomorphism TK →
K. The diagram of K, denoted ∆K , is the kernel of this homo-
morphism; this is the set of equations between Σ-terms over K
that hold in K. It follows from general considerations of univer-
sal algebra that TK/∆K

∼= K, where T/E denotes the quotient
of T modulo the V -congruence generated by equations E; that is,
the smallest Σ-congruence on T containingE and closed under the
equations and equational implications defining V .

Now let TK,F denote the set of mixed Σ-terms over the disjoint
union of the carriers of K and F . The coproduct is

K ⊕ F = TK,F /(∆K ∪∆F).

The canonical injection iK : K → K ⊕ F is obtained from the
identity embedding TK → TK,F reduced modulo ∆K on the left
and ∆K ∪∆F on the right; the map is well-defined on ∆K -classes
since ∆K refines ∆K ∪ ∆F . This construction satisfies the usual
universality property for coproducts, namely that for any pair of
homomorphisms k : K → H and f : F → H , there is a unique
homomorphism 〈k, f〉 : K ⊕ F → H such that k = 〈k, f〉 ◦ iK
and f = 〈k, f〉 ◦ iF .

Now let K and F be KATs, and let D be the set of commuta-
tivity conditions

D = {ps = sp | p ∈ K, s ∈ F}

on K ⊕ F . (This is actually an abuse of notation; it would be more
accurate to say

D = {iK(p)iF (s) = iF (s)iK(p) | p ∈ K, s ∈ F}.)

1 For example, Zm ⊕ Zn ∼= Zgcd(m,n) in the category of commutative
rings.

The commutative coproduct is the quotient (K⊕F)/D. Composed
with the canonical map [·] : K ⊕ F → (K ⊕ F)/D, iK and
iF inject K and F , respectively, into (K ⊕ F)/D. The following
universality property is satisfied:

LEMMA 1. For any pair of homomorphisms k : K → H and
f : F → H such that

∀p ∈ K ∀s ∈ F k(p)f(s) = f(s)k(p), (6)

there is a unique universal arrow 〈k, f〉D : (K ⊕ F)/D → H
such that k = 〈k, f〉D ◦ [·] ◦ iK and f = 〈k, f〉D ◦ [·] ◦ iF .

K ⊕ FK F

(K ⊕ F)/D

H

iK

k

iF

f

[·]
〈k, f〉

〈k, f〉D

Figure 1. Universality property of the commutative coproduct

Proof. Property (6) implies that D refines the kernel of 〈k, f〉 :
K ⊕ F → H , therefore 〈k, f〉 factors uniquely as 〈k, f〉D ◦ [·],
as shown in Fig. 1. 2

Our main results depend on the following key lemma.

LEMMA 2. LetK and F be KATs. If F is finite, then every element
of (K ⊕ F)/D can be expressed as a finite sum

∑
s∈F pss, where

ps ∈ K.

Remark. The lemma is not true in general without the assump-
tion of finiteness. For example, it can be shown that the commuta-
tive coproduct of two copies of the free KA on one generator does
not satisfy the lemma.

Proof. The lemma is certainly true of individual elements of K
and F . We show that the property is preserved under the KAT op-
erations. The cases of + and · are quite easy, using commutativity
and distributivity.

The only difficult case is that of ∗. We wish to show that
(
∑
s∈F pss)

∗ is equivalent to a finite sum of the form
∑
t∈F qtt.

Let Σ = {as | s ∈ F} be a finite alphabet with one letter for
each element of F , and let RegΣ be the free KA on generators Σ.
Consider the following homomorphisms generated by the indicated
actions on Σ:

f : Σ∗ → F g : RegΣ → K ⊕ F h : RegΣ → K

f(as) = s g(as) = pss h(as) = ps.

For each t ∈ F , the set f−1(t) = {x ∈ Σ∗ | f(x) = t} is
a regular set, as it is the set accepted by the deterministic finite
automaton with states F , start state 1, accept state t, and transitions
δ(s, a) = s · f(a). It is easily shown by induction that for all
x ∈ Σ∗, δ(s, x) = s · f(x). Thus the automaton accepts x exactly
when t = δ(1, x) = f(x), that is, when x ∈ f−1(t).

Let A be the F × F transition matrix of this automaton: Ast =∑
sr=t ar . Then (A∗)st represents the set of strings x such that

s · f(x) = t. Moreover,

(
∑
s∈F

as)
∗ =

∑
t∈F

(A∗)1t (7)

since every string is accepted at some state t.

Let M be the F × F diagonal matrix with diagonal elements
Mss = s and off-diagonal elements Mst = 0 for s 6= t. The
homomorphisms g and h lift to F × F matrices over RegΣ with

g(A)st =
∑
sr=t

prr h(A)st =
∑
sr=t

pr.

Then for any s, t ∈ F ,

(M · g(A))st =
∑
r

Msrg(A)rt = Mssg(A)st = s
∑
sr=t

prr

=
∑
sr=t

prsr =
∑
sr=t

prt = h(A)stMtt

=
∑
r

h(A)srMrt = (h(A) ·M)st.

Since s, twere arbitrary,M ·g(A) = h(A)·M . By the bisimulation
rule of KA [16, Proposition 4],

M · g(A∗) = M · g(A)∗ = h(A)∗ ·M = h(A∗) ·M,

thus for all s, t ∈ F ,

sg(A∗)st = Mssg(A∗)st =
∑
r∈F

Msrg(A∗)rt = (M · g(A∗))st

= (h(A∗) ·M)st =
∑
r∈F

h(A∗)srMrt

= h(A∗)stMtt = h(A∗)stt.

In particular, setting s = 1 and summing over t ∈ F ,∑
t∈F

g(A∗)1t =
∑
t∈F

h(A∗)1tt. (8)

Using (7) and (8),

(
∑
s∈F

pss)
∗ = (

∑
s∈F

g(as))
∗ = g((

∑
s∈F

as)
∗) = g(

∑
t∈F

(A∗)1t)

=
∑
t∈F

g(A∗)1t =
∑
t∈F

h(A∗)1tt.

Setting qt = h(A∗)1t, we have expressed (
∑
s∈F pss)

∗ in the
desired form. 2

THEOREM 2. If K is a KAT and F is the KAT of all binary rela-
tions on a finite set S, then (K ⊕ F)/D ∼= Mat(S,K).

Proof. For p ∈ K, let k(p) ∈ Mat(S,K) be the S×S diagonal
matrix with p on the main diagonal and 0 elsewhere. For s ∈ F ,
let f(s) be the standard representation of the binary relation s
as an S × S Boolean matrix. The maps k : K → Mat(S,K)
and f : F → Mat(S,K) are injective KAT homomorphisms
and embed K and F isomorphically in Mat(S,K). The image
of F under f is Mat(S,2), a subalgebra of Mat(S,K). By the
universality property for coproducts, we have that

〈k, f〉 : K ⊕ F → Mat(S,K)

and k and f factor as k = 〈k, f〉 ◦ iK and f = 〈k, f〉 ◦ iF .
Moreover, because k(p) is a diagonal matrix for p ∈ K and

f(s) is a Boolean matrix for s ∈ F , the commutativity conditions
D are satisfied in the sense that k(p)f(s) = f(s)k(p), thus Lemma
1 applies and we have a KAT homomorphism

〈k, f〉D : (K ⊕ F)/D → Mat(S,K).

That this homomorphism is an isomorphism follows from Lemma
2 by an argument similar to that of Theorem 1. For α, β ∈ S, let
nαβ ∈ F such that h(nαβ)αβ = 1 and all other entries are 0. Then

for all s ∈ F ,

nααsnββ =

{
nαβ if h(s)αβ = 1

0 if h(s)αβ = 0

∑
α

nαα = 1.

We have

h(
∑
s

pss)αβ =
∑
s

psh(s)αβ =
∑

h(s)αβ=1

ps (9)

∑
s

pss =
∑
s

ps(
∑
α

nαα)s(
∑
β

nββ)

=
∑
α,β

∑
s

psnααsnββ =
∑
α,β

∑
h(s)αβ=1

psnαβ (10)

If h(
∑
s pss) = h(

∑
s qss), then for allα, β ∈ S, h(

∑
s pss)αβ =

h(
∑
s qss)αβ . By (9) and (10),∑

s

pss =
∑
α,β

∑
h(s)αβ=1

psnαβ =
∑
α,β

∑
h(s)αβ=1

qsnαβ =
∑
s

qss.

The construction is illustrated in Fig. 2. 2

K ⊕ FK F

(K ⊕ F)/D

∼= Mat(S,K)

iK

k

iF

f

〈k, f〉

Figure 2. Matrix representation of the commutative coproduct

COROLLARY 1. If K is a KAT and F is any KAT of binary rela-
tions on a finite set S, then (K ⊕ F)/D is isomorphic to a subal-
gebra of Mat(S,K).

Proof. Compose an embedding of F into the KAT of all binary
relations on S with the map f of Theorem 2. 2

The following corollary says that the extension of an arbitrary
KAT with mutable tests is conservative.

COROLLARY 2. If K is a KAT and F is any KAT of binary rela-
tions on a finite set S, then the commutative coproduct (K⊕F)/D
is injective.

Proof. The maps k = 〈k, f〉 ◦ iK : K → Mat(S,K) and f =
〈k, f〉 ◦ iF : F → Mat(S,K) are injective. By Theorem 2, (K ⊕
F)/D ∼= Mat(S,K), and k and f compose with this isomorphism
to give the canonical injections from K and F , respectively, to
(K ⊕ F)/D. 2

3. Completeness and Complexity
In §2, we showed that an arbitrary KAT K can be conservatively
extended with a small amount of state in the form of a finite set of
mutable tests and their corresponding mutation actions. As shown
in Theorem 2, the resulting algebra is isomorphic to Mat(At,K),
where At is the set of atoms of the free Boolean algebra generated
by the mutable tests.

In this section we prove three results. First, the KAT axioms
along with the axioms B! for mutable tests and the commutativity
conditions D are complete for the equational theory of (K ⊕
Fn)/D relative to the equational theory ofK. This is quite a strong
result in the sense that it holds for an arbitrary KAT K, regardless

of its nature. In particular, for the special case in which K is the
free KAT on some set of generators, the model (K ⊕Fn)/D is the
free KAT with mutable tests Tn. Most of the work for this result
has already been done in §2.

The second result is that the equational theory B! is complete
for PSPACE. This complexity class is characterized by alternating
polynomial-time Turing machines; see [21].

The third result is that the equational theory of a free KAT aug-
mented with mutable tests is complete for EXPSPACE, determin-
istic exponential space. This result is quite surprising, as both KAT
and B! separately are complete for PSPACE, yet their combination
is exponentially more complex in the worst case.

3.1 Completeness
Let K be an arbitrary KAT. Let KAT+B! denote the deductive
system consisting of the axioms of KAT, the axioms for mutable
tests B!, and the commutativity conditions D over a language of
KAT terms with primitive action and test symbols interpreted in K
as well as a set of mutable tests Tn. Let ∆K be the diagram of K.

THEOREM 3. The axioms KAT+B!+∆K are complete for the
equational theory of (K ⊕ Fn)/D. In other words, the axioms
KAT+B! are complete for the equational theory of (K ⊕ Fn)/D
relative to the equational theory of K.

Proof. Let e1 and e2 be expressions denoting elements of (K ⊕
Fn)/D. By Theorem 1 and Lemma 2, we have

KAT+B!+∆K ` e1 =
∑
α,β∈At

pαβα?β!

KAT+B!+∆K ` e2 =
∑
α,β∈At

qαβα?β!.

If (K⊕Fn)/D � e1 = e2, we have under the canonical interpreta-
tion 〈k, i〉 that the matrices 〈k, i〉(e1) and 〈k, i〉(e2) are equal, thus
for all α, β ∈ At,

pαβ = 〈k, i〉(e1)αβ = 〈k, i〉(e2)αβ = qαβ ,

and conversely. 2

COROLLARY 3. The axioms KAT+B! are complete for the equa-
tional theory of (K ⊕ Fn)/D, where K is the free KAT on some
set of generators.

3.2 Complexity
THEOREM 4. The equational theory B! is PSPACE-complete.

Remark. We note that neither the upper nor the lower bound
follows from previous results. The upper bound does not follow
from results on elimination of hypotheses [7, 12, 23], as axioms (i)
and (ii) can be eliminated by these results, but not the others.

Proof. We first show that the problem of deciding α?β! ≤
e, where α, β ∈ At, is in PSPACE. We give an alternating
polynomial-time algorithm that operates inductively on the struc-
ture of e.

To decide α?β! ≤ t? or α?β! ≤ t!, using (4) we can ask
whether α = β ≤ t or β = α[t], respectively.

For addition, we have α?β! ≤ e1 +e2 iff α?β! ≤ e1 or α?β! ≤
e2. We nondeterministically choose one of these alternatives and
check it recursively.

For multiplication, we have α?β! ≤ e1e2 iff there exists γ such
that α?γ! ≤ e1 and γ?β! ≤ e2. We guess γ nondeterministically
using existential branching and check both conditions recursively
using universal branching.

Finally, to check α?β! ≤ e∗, by Theorem 1 it suffices to check
that α?β! ≤ ek for some 0 ≤ k < 2n. We guess k nondeter-
ministically using existential branching. To check α?β! ≤ ek, we

guess γ nondeterministically using existential branching, and for
each such γ, we check recursively using universal branching that
α?γ! ≤ ebk/2c and γ?β! ≤ edk/2e.

To decide the equational theory in PSPACE, we note that e1 ≤
e2 if for all α, β ∈ At, if α?β! ≤ e1, then α?β! ≤ e2. The α
and β can be chosen universally and the implication α?β! ≤ e1 ⇒
α?β! ≤ e2 checked in PSPACE.

To show PSPACE-hardness, we encode the membership prob-
lem for deterministic linear-bounded automata, a well known
PSPACE-complete problem. Let M be a deterministic linear-
bounded automaton with states Q and tape alphabet Γ. Let x =
x1 · · ·xn be an input string of length n over M ’s input alphabet.
For a ∈ Γ, q ∈ Q, and 0 ≤ i ≤ n+ 1, introduce mutable tests P ai
and Qqi with the following intuitive meanings:

P ai = the symbol currently occupying tape cell i is a,
Qqi = M is currently in state q scanning tape cell i.

The operation of the machine is governed by a transition function
δ : Q × Γ → Q × Γ × {+1,−1}. Intuitively, the transition
δ(p, a) = (q, b, d) means, “When in state p scanning symbol a,
print b on that cell, move the head in direction d, and enter state q.”
For each such transition, consider the expressions

P ai ?Qpi ?P̄
a
i !Q̄pi !P

b
i !Qqi+d! (11)

for all i. The part P ai ?Qpi ? tests whether the machine is currently
scanning a on cell i in state p. If so, P̄ ai !Q̄pi !P

b
i !Qqi+d! effects the

transition to the new configuration as dictated by the transition
function δ. The truth values of variables not mentioned do not
change.

Assume that the input is delimited by left and right endmarkers
` and a, thatM starts in its start state s scanning the left endmarker
`, that M never overwrites the endmarkers, and that before accept-
ing, M erases its tape by writing a blank symbol xy on all tape cells
except for the endmarkers, moves its head all the way to the left,
and enters state t. The start and accept configurations are atoms

start = Qs0 P
`
0 P

x1
1 P x22 · · ·P xnn Pan+1 U

accept = Qt0 P
`
0 P

xy
1 P

xy
2 · · ·P xy

n P
a
n+1 V

where U and V are the negations of the remaining variables. Let e
be the sum of all expressions (11). Then M accepts x if and only if
start?accept! ≤ e∗. 2

Let K be the free KAT on some set of generators. As shown in
Corollary 3, the equational theory of (K ⊕ Fn)/D is completely
axiomatized by KAT+B!.

THEOREM 5. The set of equational consequences of KAT+B! (that
is, the equational theory of a free KAT augmented with mutable
tests) is EXPSPACE-complete.

Proof. Let K be the free KAT on generators Σ and B. The
atomic tests B are ordinary KAT tests and are not mutable. The set
of equational consequences of KAT+B! coincides with the equa-
tional theory of the structure (K ⊕ Fn)/D (Corollary 3). This
structure is isomorphic to the matrix algebra Mat(At,K) (Theo-
rem 2), where At is the set of 2n atoms generated by the muta-
ble tests Tn. Every element of Mat(At,K) is an At × At matrix,
each entry of which is a regular set of guarded strings over Σ, B.
Regular sets of guarded strings are recognized by nondeterminis-
tic automata on guarded strings [19]. Such an automaton is a tuple
M = (Q,∆, start, final), where Q is the set of states, start ⊆ Q
are the start states, final ⊆ Q is the set of final or accepting states,
and ∆ ⊆ Q× (Σ∪B)×Q is the transition relation, where B is the
set of composite tests built from the atomic tests B. A transition of
the form (s, p, t) with p ∈ Σ is called an action transition, and one

of the form (s, b, t) with b ∈ B is called a test transition. In partic-
ular, a test transition of the form (s, 1, t) is called an ε-transition.
We refer the reader to [19] for a definition of how these automata
compute on guarded strings. Let L(s, t) be the set of the guarded
strings x so that there is some computation on x starting from state
s that ends in state t. The automaton M recognizes the language
of guarded strings

⋃
s∈start

⋃
t∈final L(s, t). We extend this automa-

ton model so that it recognizes matrices of regular sets of guarded
strings. A matrix automaton is a tuple

M = (Q× At,∆, start, final),

where start, final : At → ℘Q and ∆ ⊆ (Q × At) × (Σ ∪ B) ×
(Q×At). We write ℘Q to denote the powerset ofQ. The automaton
recognizes the At × At matrix L, each entry of which is a regular
language of guarded strings:

L(α, β) =
⋃
s∈start(α)

⋃
t∈final(β) L(〈s, α〉, 〈t, β〉).

We will describe now a construction similar to Kleene’s theorem.
Given a KAT+B! expression e over Σ, B, Tn we will give a matrix
automaton that recognizes the matrix of languages denoted by e
under its standard interpretation in the structure Mat(At,K). For
all base cases p, b, t?, t! we define the set Q = {s1, s2}, the start
states start(α) = {s1}, and the accepting states final(α) = {s2},
for every α ∈ At. We give the set ∆ of transitions separately for
each of these base cases:
• Case: action letter p in Σ. For every atom α, we put a transition
〈s1, α〉

p→ 〈s2, α〉.
• Case: arbitrary test b in B. For every atom α, we have a transi-

tion 〈s1, α〉
b→ 〈s2, α〉.

• Case: mutable test t?. We put the transitions 〈s1, α〉
1→ 〈s2, α〉

for every α ≤ t.
• Case: primitive action t!. The automaton has the transitions
〈s1, α〉

1→ 〈s2, α[t]〉 for every α. Recall that α[t] is the modifi-
cation of α so that t holds.

The remaining base cases are for 1 and 0. We define the corre-
sponding automata as follows:
• For the case of 1, we have the trivial automaton with Q = {s},

start(α) = {s}, final(α) = {s}, and ∆ = ∅.
• The automaton for 0 is defined as Q = {s}, start(α) = {s},

final(α) = ∅, and ∆ = ∅.
Suppose thatM1 = (Q1×At,∆1, start1, final1) andM2 = (Q2×
At,∆2, start2, final2) are the matrix automata for the expressions
e1 and e2 respectively. W.l.o.g. the sets Q1 and Q2 are disjoint.
• For the expression e1 + e2 we define the automaton M =

(Q× At,∆, start, final) by Q = Q1 ∪Q2,

start(α) = start1(α) ∪ start2(α)

final(α) = final1(α) ∪ final2(α)

and ∆ = ∆1 ∪∆2.
• For the expression e1 · e2 define M = (Q×At,∆, start, final)

by Q = Q1 ∪Q2, start(α) = start1(α), final(α) = final2(α),
and ∆ = ∆1 ∪∆2 ∪∆′, where

∆′ = {〈s, α〉 1→ 〈t, α〉 | s ∈ final1(α), t ∈ start2(α)}.
Now, suppose that M = (Q × At,∆, start, final) is the matrix
automaton for the expression e. The automaton for e · e∗ results
from M by adding ε-transitions from the final states back to the
start states: 〈s, α〉 1→ 〈t, α〉, where s ∈ final(α), t ∈ start(α), and
α ∈ At. Finally, the automaton for e∗ = 1 + e · e∗ can be obtained
using the constructions for 1 and + that we have already described.

Consider now two KAT+B! expressions e1, e2 and the problem
of checking whether they denote the same matrix in the structure
Mat(At,K). We can construct effectively the corresponding ma-
trix automata M1 and M2, as described in the previous paragraph.

We can have an explicit representation of these automata, since ex-
ponential space suffices for this. Let L1 and L2 be the matrices
of languages accepted by M1 and M2 respectively. For every pair
of atoms α, β we have to check whether L1(α, β) = L2(α, β).
This problem amounts to checking the equivalence of automata on
guarded strings, which can be done in space polynomial in the size
of the automata [19]. It follows that we can decide whether e1 = e2

in exponential space.
For the corresponding lower bound, we encode the membership

problem for exponential-space bounded Turing machines. Given
such a machine M and an input x of length n, we use n mutable
tests to construct an integer counter that can count up to 2n − 1,
as illustrated in Fig. 3. We use the counter as a “yardstick” to

t̄0!; t̄1!; · · · ; t̄n−1!;
while t̄0? + t̄1? + · · ·+ t̄n−1? {

if t̄0? then t0!;
else if t̄1? then t̄0!; t1!;
else if t̄2? then t̄0!; t̄1!; t2!;
else . . .
else if t̄n−1? then t̄0!; t̄1!; · · · ; t̄n−2!; tn−1!;
else skip;

}

Figure 3. A counter

construct an expression e simulating a nondeterministic automaton
that accepts all strings that are not valid computation histories of
M on input x. The automaton decides nondeterministically where
to look for an incorrect move of M . It remembers a few symbols
of the input string, then starts the counter. With each iteration of
the counter, it skips over an input symbol (not shown in Fig. 3).
In this way it can compare symbols a distance 2n apart to check
whether the transition rules of M are followed. The expression e
generates all strings iff M does not accept x. This construction is
quite standard (see for example [11, 21, 29]), so we omit further
details. 2

4. Applications
4.1 The Böhm-Jacopini Theorem
A well-studied problem in program schematology is that of trans-
forming unstructured flowgraphs to structured form. An early sem-
inal result is the Böhm–Jacopini theorem [6], which states that
any deterministic flowchart program is equivalent to a determin-
istic while program. This theorem has reappeared in many contexts
and has been reproved by many different methods[3, 26–28, 30].

Like most early work in program schematology, the Böhm–
Jacopini theorem is usually formulated at the first-order level. This
allows auxiliary individual or Boolean variables to be introduced
to preserve information across computations. This is an essen-
tial ingredient of the Böhm–Jacopini construction, and they asked
whether it was strictly necessary. This question was answered affir-
matively by Ashcroft and Manna [3] and Kosaraju [15].

In [24], a purely propositional account of this negative result
was given. A class of automata called strictly deterministic au-
tomata was presented, an abstraction of deterministic flowchart
schemes. The three-state strictly deterministic automaton of Fig. 4
was shown not to be equivalent to any deterministic while program,
where theαi are mutually exclusive and exhaustive tests and the pij
are primitive actions.

With strictly deterministic automata, Boolean values are pro-
vided by the environment in the form of an input string consisting
of an infinite sequence of atoms, and the program responds with ac-
tions, including halting or failing. This is the correct propositional
semantics: it allows all possible interpretations of the actions that

halt

0

1 2

α
1
p 0

1

α2p02
α0

α2p12

α0p10

α1
α

0 p
2
0

α1p21

α2

Figure 4. A strictly deterministic automaton not equivalent to any
while program

could cause tests to become true or false. Two strictly deterministic
automata are considered equivalent if they generate the same set of
finite guarded strings (see [24] for formal definitions and details).

The Böhm–Jacopini theorem is true in the presence of mutable
tests. The technique is well known, so rather than give a general
account, we illustrate with the strictly deterministic automaton of
Fig. 4. We introduce mutable tests t0, t1, and t2, which serve as
program counters. An equivalent deterministic while program with
mutable tests is shown in Fig. 5. The major difference here is that

t0!; t̄1!; t̄2!; //start state is 0
while true {

if t0? then
t̄0!; if α1 then p01; t1!; else if α2 then p02; t2!; else halt;

else if t1? then
t̄1!; if α2 then p12; t2!; else if α0 then p10; t0!; else halt;

else //must be t2
t̄2!; if α0 then p20; t0!; else if α1 then p21; t1!; else halt;

}

Figure 5. A while program with mutable tests equivalent to Fig. 4

the mutable tests are under the control of the program instead of the
environment.

We have not given the formal definition of the set of guarded
strings generated by a strictly deterministic automaton with mu-
table tests, but under the appropriate definition, it can be shown
that this while program and the strictly deterministic automaton of
Fig. 4 generate the same set of guarded strings.

4.2 A Folk Theorem
In this section we illustrate how KAT+B! can be used in practice.
We will show, reasoning equationally in KAT+B!, a classical result
of program schematology: Every while program can be simulated
by a while program with at most one while loop, assuming that
we allow extra Boolean variables. Many of the proofs are long se-
quences of simple equational inferences and are not very interesting
in themselves, so we relegate them to an appendix.

We work with a programming language that has atomic pro-
grams (written a, b, . . .), the constant programs skip and fail,
atomic tests, as well as the constructs: sequential composition f ; g,
conditional test if p then f else g, and iteration while p do f . These
constructs are modeled in KAT as follows:

skip = 1 fail = 0 f ; g = fg

if e then f else g = ef + ēg while e do f = (ef)∗ē

There is a semantic justification for these translations, using the
standard relation-theoretic semantics for the input-output behavior
of while programs. Intuitively, to show the result we introduce
extra Boolean variables that encode the control structure of the
program. These variables are modeled in KAT+B! using mutable
tests t1, t2, . . ., which are taken to be disjoint from any mutable
tests that might already appear in the program.

Commutativity axioms: KAT+B! has axioms that say that prim-
itive actions commute with the mutable test symbols, that is, t?a =
at? and t!a = at!. Moreover, t!p = pt! and t!p̄ = p̄t! for ev-
ery atomic KAT test p, since tests commute. The following claims
establish that using the axioms of KAT+B! more commutativity
equations can be shown.

CLAIM 1. If the mutable test symbols t, t̄ do not appear in the
KAT+B! test term p, then we have that t!p = pt! and t!p̄ = p̄t!.

CLAIM 2. If the mutable test symbols t, t̄ do not appear in the
KAT+B! term f , then t?f = ft? and t!f = ft!.

The theorem that follows is a normal form theorem, from which
the result we want to show follows immediately. Working in a
bottom-up fashion, every while program term is brought in the
normal form. That the transformed program in normal form is
equivalent to the original one is shown in KAT+B!.

THEOREM 6. For any while program f , there are while-free u, p, ϕ
and a finite collection t1, . . . , tk of extra mutable tests such that
f ; z = u; while p doϕ; z, where z = t̄1!; . . . ; t̄k!.

Proof. In the normal form given above, the pre-computation u,
the while-guard p, and the while-body ϕ may involve the extra
mutable test symbols t1, . . . , tk, t̄1, . . . , t̄k. These symbols do not
appear in f . The post-computation z = t̄1!; . . . ; t̄k “zeroes out”
all the extra mutable Boolean variables. Its rôle is in some sense
to simply project out this extra finite state. The proof proceeds by
induction on the structure of the while program term f .

Base case: Suppose that f is a while-free program term, and
let t be a fresh mutable test symbol. Intuitively, t? holds if f has
not been executed yet, and t̄? holds when f has been executed.
Reasoning in KAT+B!:

CLAIM 3. f ; z = t!; while t? do (f ; t̄!); z, where z = t̄!.

Induction step: From the induction hypothesis, we can bring the
programs f and g in normal form so that f ; z = u; while p doϕ; z
and g; z = v; while q doψ; z, where z sets to zero all the mutable
tests that appear in the transformations of f and g. For the cases
of a conditional test if e then f else g and composition f ; g, we
introduce a fresh mutable test symbol t.

Conditional: We handle the case if e then f else g. Intuitively,
the Boolean variable corresponding to the symbol t records the
branch to be taken. So, t? holds when f should be executed, and t̄?
holds when g should be executed. Reasoning in KAT+B!:

CLAIM 4. The program (if e then f else g); z; t̄! is equal to

if e then (t!;u) else (t̄!; v);

while ((t? ∧ p) ∨ (t̄? ∧ q)) do (if t? thenϕ elseψ);

z; t̄!.

Sequential composition: We handle the case f ; g. Intuitively, the
Boolean variable t records the current position of execution. So, t?
holds when we are executing f , and t̄? when we are executing g.

CLAIM 5. The program f ; g; z; t̄! is provably equal to

t!;u;

while (t? ∨ (t̄? ∧ q)) do

if t? then (if p thenϕ else (z; t̄!; v)) elseψ;

z; t̄!.

Loop: It remains to handle the case of the while loop while e do f .
First, we observe that

CLAIM 6. while e do f ; z = while e do (f ; z); z.

Using the above claim, we can bring the program in a more conve-
nient form:

CLAIM 7. The program (while e do f); z is provably equal to

if e then
(
u; while (e+ p) do if p thenϕ else (z;u)

)
; z.

But we already know how to transform conditional statements, so
we apply that transformation to bring the term in the desired normal
form. 2

5. Conclusion
We have shown how to axiomatically extend Kleene algebra with
tests with a finite amount of mutable state. This extra feature allows
certain program transformations to be effected at the propositional
level without passing to a full first-order system. The extension is
conservative and deductively complete relative to the theory of the
underlying algebra. The full theory is decidable and complete for
EXPSPACE. We have given a representation theorem of the free
models in terms of matrices.

An intriguing open problem is whether the coproduct of two
KATs is injective. We have shown that it is if one of the two
cofactors is a KAT of binary relations on a finite set.

6. Acknowledgments
Thanks to Bob Constable, Nate Foster, Fritz Henglein, Mark Re-
itblatt, Ross Tate, and Laure Thompson for valuable conversa-
tions and insights. This work was funded by the National Secu-
rity Agency. The DIKU-affiliated author expresses his thanks to the
Department of Computer Science at Cornell University for hosting
him in the Fall 2013 and to the Danish Council for Independent Re-
search for financial support for this work under Project 11-106278,
“Kleene Meets Church (KMC): Regular Expressions and Types.”

References
[1] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen,

C. Schlesinger, and D. Walker. NetKAT: Semantic foundations for
networks. In Proc. 41st ACM SIGPLAN-SIGACT Symp. Principles
of Programming Languages (POPL’14), pages 113–126, San Diego,
California, USA, January 2014. ACM.

[2] A. Angus and D. Kozen. Kleene algebra with tests and program
schematology. Technical Report TR2001-1844, Computer Science
Department, Cornell University, July 2001.

[3] E. Ashcroft and Z. Manna. The translation of goto programs into
while programs. In C. Freiman, J. Griffith, and J. Rosenfeld, editors,
Proceedings of IFIP Congress 71, volume 1, pages 250–255. North-
Holland, 1972.

[4] P. Balbiani, A. Herzig, and N. Troquard. Dynamic logic of propo-
sitional assignments: A well-behaved variant of PDL. In Proc.
28th Symp. Logic in Computer Science (LICS’13), pages 143–152.
ACM/IEEE, 2013.

[5] A. Barth and D. Kozen. Equational verification of cache blocking
in LU decomposition using Kleene algebra with tests. Technical Re-
port TR2002-1865, Computer Science Department, Cornell Univer-
sity, June 2002.

[6] C. Böhm and G. Jacopini. Flow diagrams, Turing machines and
languages with only two formation rules. Communications of the
ACM, pages 366–371, May 1966.

[7] E. Cohen. Hypotheses in Kleene algebra. Tech-
nical Report TM-ARH-023814, Bellcore, 1993.
http://citeseer.nj.nec.com/1688.html.

[8] E. Cohen. Lazy caching in Kleene algebra, 1994.
http://citeseer.nj.nec.com/22581.html.

[9] E. Cohen. Using Kleene algebra to reason about concurrency control.
Technical report, Telcordia, Morristown, N.J., 1994.

[10] E. Cohen, D. Kozen, and F. Smith. The complexity of Kleene algebra
with tests. Technical Report TR96-1598, Computer Science Depart-
ment, Cornell University, July 1996.

[11] J. Ferrante and C. Rackoff. The computational complexity of logical
theories, volume 718 of Lecture Notes in Mathematics. Springer-
Verlag, 1979.

[12] C. Hardin and D. Kozen. On the elimination of hypotheses in Kleene
algebra with tests. Technical Report TR2002-1879, Computer Science
Department, Cornell University, October 2002.

[13] D. Harel. On folk theorems. Comm. Assoc. Comput. Mach., 23(7):
379–389, July 1980.

[14] K. Hirose and M. Oya. General theory of flowcharts. Comment. Math.
Univ. St. Pauli, 21(2):55–71, 1972.

[15] S. R. Kosaraju. Analysis of structured programs. In Proc. 5th ACM
Symp. Theory of Computing (STOC’73), pages 240–252, New York,
NY, USA, 1973. ACM. .

[16] D. Kozen. A completeness theorem for Kleene algebras and the
algebra of regular events. Infor. and Comput., 110(2):366–390, May
1994.

[17] D. Kozen. Kleene algebra with tests. Transactions on Programming
Languages and Systems, 19(3):427–443, May 1997.

[18] D. Kozen. Halting and equivalence of schemes over recursive theo-
ries. Technical Report TR2002-1881, Computer Science Department,
Cornell University, October 2002.

[19] D. Kozen. Automata on guarded strings and applications. Matématica
Contemporânea, 24:117–139, 2003.

[20] D. Kozen. Some results in dynamic model theory. Science of Com-
puter Programming, 51(1–2):3–22, May 2004. Special issue: Mathe-
matics of Program Construction (MPC 2002). Eerke Boiten and Bern-
hard Möller (eds.).

[21] D. Kozen. Theory of Computation. Springer, New York, 2006. ISBN
10: 1-84628-297-7.

[22] D. Kozen and M.-C. Patron. Certification of compiler optimizations
using Kleene algebra with tests. In J. Lloyd, V. Dahl, U. Furbach,
M. Kerber, K.-K. Lau, C. Palamidessi, L. M. Pereira, Y. Sagiv, and P. J.
Stuckey, editors, Proc. 1st Int. Conf. Computational Logic (CL2000),
volume 1861 of Lecture Notes in Artificial Intelligence, pages 568–
582, London, July 2000. Springer-Verlag.

[23] D. Kozen and F. Smith. Kleene algebra with tests: Completeness and
decidability. In D. van Dalen and M. Bezem, editors, Proc. 10th Int.
Workshop Computer Science Logic (CSL’96), volume 1258 of Lecture
Notes in Computer Science, pages 244–259, Utrecht, The Netherlands,
September 1996. Springer-Verlag.

[24] D. Kozen and W.-L. D. Tseng. The Böhm-Jacopini theorem is false,
propositionally. In P. Audebaud and C. Paulin-Mohring, editors, Proc.
9th Int. Conf. Mathematics of Program Construction (MPC’08), vol-
ume 5133 of Lecture Notes in Computer Science, pages 177–192.
Springer, July 2008.

[25] G. Mirkowska. Algorithmic Logic and its Applications. PhD thesis,
University of Warsaw, 1972. in Polish.

[26] G. Oulsnam. Unraveling unstructured programs. The Computer
Journal, 25(3):379–387, 1982.

[27] W. Peterson, T. Kasami, and N. Tokura. On the capabilities of while,
repeat, and exit statements. Comm. Assoc. Comput. Mach., 16(8):503–
512, 1973.

[28] L. Ramshaw. Eliminating goto’s while preserving program structure.
Journal of the ACM, 35(4):893–920, 1988.

[29] L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponen-
tial time. In Proc. 5th Symp. Theory of Computing, pages 1–9, New
York, 1973. ACM.

[30] M. Williams and H. Ossher. Conversion of unstructured flow diagrams
into structured form. The Computer Journal, 21(2):161–167, 1978.

A. Appendix
Proof of Claim 1. By induction on p. If p is an atomic KAT

test, then the claim follows directly from axioms. The cases of the
constants 0 and 1 are trivial. If p is a mutable test s?, then by our
assumption we have that s 6= t, t̄ and therefore t!s? = s?t! and
t!s̄? = s̄?t! are axioms of B!. For the induction step, consider the
case p+ q:

t!(p+ q) = t!p+ t!q = pt! + qt! = (p+ q)t!

t!(p+ q) = t!p̄q̄ = p̄t!q̄ = p̄q̄t! = (p+ q)t!

The case pq is similar. For the case of p̄, the equation t!p̄ = p̄t!
follows from the induction hypothesis for p. Similarly, t! ¯̄p = t!p =
pt! = ¯̄pt!. 2

Proof of Claim 2. We only show the part involving t!, for t?
the proof is essentially the same. We argue by induction on the
structure of f . If f is a test, then the result follows from Claim 1.
If f is an atomic program a, then from the stipulated axioms we
have that t!a = at!. For composition and choice we have using the
induction hypothesis: t!fg = ft!g = fgt!, and

t!(f + g) = t!f + t!g = ft! + gt! = (f + g)t!.

It remains to show that t!f∗ = f∗t!. By virtue of the bisimulation
rule, it suffices to see that t!f = ft!, which is the induction
hypothesis. 2

Proof of Claim 3. First, we unravel the expression (f?f t̄!)∗

twice and observe that

(t?f t̄!)∗ = 1 + t?f t̄!(t?f t̄!)∗

= 1 + t?f t̄!(1 + t?f t̄!(t?f t̄!)∗)

= 1 + t?f t̄! + t?f t̄!t?f t̄!(t?f t̄!)∗

= 1 + t?f t̄!,

because t̄!t? = t̄!t̄?t? = 0. So, we conclude that

RHS = t!(t?f t̄!)∗t̄?t̄!

= t!(1 + t?f t̄!)t̄?

= t!t̄? + t!t?f t̄!t̄?,

which is equal to t!f t̄! = ft!t̄! = f t̄! = f ; z, since t was chosen
to be fresh (Claim 2). 2

Proof of Claim 4. The while-free pre-computation in the normal
form translation is equal to et!u+ ēt̄!v. The guard of the while loop
is t?p+ t̄?q, and the body is t?ϕ+ t̄?ψ. So,

((t? ∧ p) ∨ (t̄? ∧ q)); (if t? thenϕ elseψ) =

(t?p+ t̄?q)(t?ϕ+ t̄?ψ) =

t?pϕ+ t̄?qψ.

The negation of the guard of the loop is ¬(t?p + t̄?q) = (t̄? +
p̄)(t? + q̄) = t̄?q̄ + t?p̄+ p̄q̄.

First, we claim that t?(t?pϕ)∗ = t?(pϕ)∗. Since t? ≤ 1
and ∗ is monotone, we have that (t?pϕ)∗ ≤ (pϕ)∗, and there-
fore t?(t?pϕ)∗ ≤ t?(pϕ)∗. In order to show that t?(pϕ)∗ ≤

t?(t?pϕ)∗, it suffices to see that t? ≤ t?(t?pϕ)∗, and that

t?(t?pϕ)∗pϕ = t?(1 + (t?pϕ)∗t?pϕ)pϕ

= t?pϕ+ t?(t?pϕ)∗t?pϕpϕ

= t?t?pϕ+ t?(t?pϕ)∗t?t?pϕpϕ

= t?t?pϕ+ t?(t?pϕ)∗t?pϕt?pϕ

= t?(1 + (t?pϕ)∗t?pϕ)t?pϕ

= t?(t?pϕ)∗t?pϕ ≤ t?(t?pϕ)∗.

Now, we want to show that t?(t?pϕ+ t̄?qψ)∗ = t?(t?pϕ)∗. By
monotonicity of ∗, the right-hand side is less than or equal to the
left-hand side. For the other part, we need to show that

t?(t?pϕ)∗(t?pϕ+ t̄?qψ) =

t?t?(t?pϕ)∗(t?pϕ+ t̄?qψ) = [prev. claim]

t?t?(pϕ)∗(t?pϕ+ t̄?qψ) = [t not in p, ϕ]

t?(pϕ)∗t?(t?pϕ+ t̄?qψ) =

t?(pϕ)∗t?pϕ = [prev. claim]

t?(t?pϕ)∗t?pϕ,

which is ≤ t?(t?pϕ)∗.
Let W abbreviate the entire while loop of the normal form

translation. We have already seen that

W = (t?pϕ+ t̄?qψ)∗(t̄?q̄ + t?p̄+ p̄q̄)

and therefore

t?W = t?(t?pϕ)∗(t̄?q̄ + t?p̄+ p̄q̄)

= t?(pϕ)∗(t̄?q̄ + t?p̄+ p̄q̄)

= (pϕ)∗t?(t̄?q̄ + t?p̄+ p̄q̄)

= (pϕ)∗(t?p̄+ t?p̄q̄)

= (pϕ)∗t?p̄,

because t?p̄q̄ ≤ t?p̄. So, we have

eRHS = e(et!u+ ēt̄!v)Wzt̄! = et!uWzt̄!

= et!t?uWzt̄! = et!ut?Wzt̄!

= et!u(pϕ)∗t?p̄zt̄! = eu(pϕ)∗p̄zt̄!,

which is equal to efzt̄! by the induction hypothesis. Similarly, it
can be shown ēRHS = ēgzt̄!. We thus conclude that

RHS = (e+ ē)RHS = eRHS + ēRHS
= efzt̄! + ēgzt̄! = (ef + ēg)zt̄!,

which is equal to (if e then f else g); z; t̄!, namely the left-hand size
of the equation we wanted to show. 2

Proof of Claim 5. The negation of the guard of the while loop is
¬(t? + t̄?q) = t̄?(t? + q̄) = t̄?q̄. The body of the loop is equal to
t?(pϕ + p̄zt̄!v) + t̄?ψ = t?pϕ + t?p̄zt̄!v + t̄?ψ. So, the Fisher-
Ladner encoding of the while loop is

[(t? + t̄?q)(t?pϕ+ t?p̄zt̄!v + t̄?ψ)]∗t̄?q̄

= [t?pϕ+ t?p̄zt̄!v + t̄?qψ]∗t̄?q̄

= (A+ t̄?qψ)∗t̄?q̄

= A∗(t̄?qψA∗)∗t̄?q̄,

where we put A = t?pϕ+ t?p̄zt̄!v.
From t̄?A = t̄?(t?pϕ + t?p̄zt̄!v) = 0 ≤ t̄? we obtain that

t̄?A∗ ≤ t̄?. Moreover, t̄? ≤ t̄?A and hence t̄?A∗ = t̄?. It
follows that t̄?qψA∗ = qψt̄?A∗ = qψt̄?. Now, we claim that
(qψt̄?)∗t̄? = t̄?(qψ)∗. The inequality (qψt̄?)∗t̄? ≤ t̄?(qψ)∗

follows from monotonicity of ∗. For the inequality t̄?(qψ)∗ ≤

(qψt̄?)∗t̄? we need to show that

(qψt̄?)∗t̄?qψ = (qψt̄?)∗qψt̄? = (qψt̄?)∗qψt̄?t̄?,

which is ≤ (qψt̄?)∗t̄?. We have thus shown that the while loop is
equal to A∗(qψt̄?)∗t̄?q = A∗t̄?(qψ)∗q̄.

Now, we focus on simplifying the expression t?A∗t̄? =
t?(t?pϕ+t?p̄zt̄!v)∗t̄?. First, we observe that unfolding (t?p̄zt̄!v)∗

twice gives us the equation

(t?p̄zt̄!v)∗ = 1 + t?p̄zt̄!v.

Moreover, t̄?(t?pϕ)∗ = t̄?(1 + t?pϕ(t?pϕ)∗) = t̄?. Therefore,
using the denesting rule, we obtain that t?A∗t̄? is provably equal
to

t?(t?pϕ)∗(t?p̄zt̄!v(t?pϕ)∗)∗t̄? =

t?(t?pϕ)∗(t?p̄zt̄!vt̄?(t?pϕ)∗)∗t̄? =

t?(t?pϕ)∗(t?p̄zt̄!vt̄?)∗t̄? =

t?(t?pϕ)∗(t?p̄zt̄!v)∗t̄? =

t?(t?pϕ)∗(1 + t?p̄zt̄!v)t̄? =

t?(t?pϕ)∗t̄? + t?(t?pϕ)∗t?p̄zt̄!vt̄? =

t?(t?pϕ)∗t?p̄zt̄!vt̄? =

t?(pϕ)∗p̄zt̄!v.

Finally, we can work on the right-hand side of the equation we want
to establish:

RHS = t!uA∗t̄?(qψ)∗q̄zt̄! = t!ut?A∗t̄?(qψ)∗q̄zt̄!

= t!ut?(pϕ)∗p̄zt̄!v(qψ)∗q̄zt̄! = u(pϕ)∗p̄zv(qψ)∗q̄zt̄!,

which is equal by the induction hypothesis to fzgzt̄! = fgzzt̄! =
f ; g; z; t̄!. 2

Proof of Claim 6. The left-hand side is equal to (ef)∗ēz, and
the right-hand side equal to (efz)∗ēz. It suffices to show that
(ef)∗z = (efz)∗z.

(efz)∗z ≤ (ef)∗z ⇐= efz(ef)∗z ≤ (ef)∗z,

which holds because efz(ef)∗z = ef(ef)∗zz ≤ (ef)∗z. Now,
we observe that (efz)∗z = z(efz)∗ by the bisimulation rule,
because efzz = zefz (both are equal to efz). So,

(ef)∗z ≤ (efz)∗z ⇐= ef(efz)∗z ≤ (efz)∗z,

which holds because ef(efz)∗z = ef(efz)∗zz = efz(efz)∗z ≤
(efz)∗z. 2

Proof of Claim 7. The above program is equal to

ēz + eu[(e+ p)(pϕ+ p̄zu)]∗(e+ p)z =

ēz + eu[epϕ+ ep̄zu+ pϕ]∗ēp̄z =

ēz + eu(pϕ+ ep̄zu)∗ēp̄z,

because epϕ ≤ pϕ. Using the denesting rule (1) and then the
sliding rule (2), we see that this is equal to

ēz + eu(pϕ)∗(ep̄zu(pϕ)∗)∗ēp̄z =

ēz + eu(pϕ)∗(p̄zeu(pϕ)∗)∗ēp̄z =

ēz + (eu(pϕ)∗p̄z)∗eu(pϕ)∗ēp̄zz =

ēz + (efz)∗eu(pϕ)∗p̄zēz =

ēz + (efz)∗(efz)ēz =

(1 + (efz)∗(efz))ēz,

which is equal to (efz)∗ēz = while e do (f ; z); z = (while e do f); z.
2

