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1 Introduction

Algebraic reasoning about programming language constructs has been a popular research topic for many
years. At the propositional level, the theory of flowchart programs and linear recursion are well handled
by such systems as Kleene algebra and iteration theories, systems that characterize the equational theory
of the regular sets. To handle more general forms of recursion including procedures with recursive calls,
one must extend to the context-free languages, and here the situation is less well understood. One reason
for this is that, unlike the equational theory of the regularsets, the equational theory of the context-
free languages is not recursively enumerable. This has led some researchers to declare its complete
axiomatization an insurmountable task [13].

Whereas linear recursion can be characterized with the staroperator⋆ of Kleene algebra or the dag-
ger operation† of iteration theories, the theory of context-free languages requires a more general fixpoint
operatorµ . The characterization of the context-free languages as least solutions of algebraic inequalities
involving µ goes back to a 1971 paper of Gruska [7]. More recently, several researchers have given equa-
tional axioms for semirings withµ and have developed fragments of the equational theory of context-free
languages [3, 5, 6, 8, 9, 13].

In this paper we consider another class of models satisfyinga condition calledµ-continuityanalogous
to the star-continuity condition of Kleene algebra:

a(µx.p)b= ∑
n≥0

a(nx.p)b,

where the summation symbol denotes supremum with respect tothe natural order in the semiring, and

0x.p= 0 (n+1)x.p= p[x/nx.p].

This infinitary axiom combines the assertions thatµx.p is the supremum of its finite approximantsnx.p
and that multiplication in the semiring is continuous with respect to these suprema. Analogous to a
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similar result for star-continuous Kleene algebra, we showthat all context-free languages over aµ-
continuous idempotent semiring have suprema. Our main result is that theµ-continuity condition, along
with the axioms of idempotent semirings, completely axiomatize the equational theory of the context-free
languages. This is the first completeness result for the equational theory of the context-free languages,
answering a question of Leiß [13].

1.1 Related Work

Courcelle [3] investigatesregular systems, finite systems of fixpoint equations over first-order terms over
a ranked alphabet with a designated symbol+ denoting set union, thereby restricting algebras to power
set algebras. He stages their interpretation by first interpreting recursion over first-order terms as infi-
nite trees, essentially as the final object in the corresponding coalgebra, then interpreting the signature
symbols inω-complete algebras. He provides soundness and completeness for transforming regular sys-
tems that preserve all solutions and soundness, but not completeness for preserving their least solutions.
Courcelle’s approach is syntactic since it employs unfolding of terms in fixpoint equations.

Leiß [13] investigates three classes of idempotent semirings with a syntactic least fixpoint operator
µ . The three classes are calledKAF, KAR, andKAG in increasing order of specificity. All these classes
are assumed to satisfy the fundamentalPark axioms

p[x/µx.p] ≤ µx.p p≤ x ⇒ µx.p≤ x,

which say thatµx.p is the least solution of the inequalityp ≤ x. The classesKAR andKAG further
assume

µx.(b+ax) = µx.(1+xa) ·b µx.(b+xa) = b·µx.(1+ax)

and

µx.(s+ rx) = µx.(µy.(1+yr) ·s) µx.(s+xr) = µx.(s·µy.(1+ ry)),

respectively. These axioms can be viewed as imposing continuity properties of the semiring operators
with respect toµ . All standard interpretations, including the context-free languages over an alphabet
X, are continuous and satisfy theKAG axioms. Ésik and Leiß [5, 6] show that conversion to Greibach
normal form can be performed purely algebraically under these assumptions.

Ésik and Kuich [4] introducecontinuous semirings, which are required to have suprema for all di-
rected sets, and they employ domain theory to solve polynomial fixpoint equations. Idempotent con-
tinuous semirings areµ-continuous Chomsky algebras as defined here, but not conversely. As we shall
prove, the family of context-free languages over any alphabet constitutes aµ-continuous Chomsky alge-
bra. It is not a continuous semiring, however, since the union of context-free languages is not necessarily
context-free.

2 Chomsky Algebras

2.1 Polynomials

Let (C,+, ·, 0, 1) be an idempotent semiring andX a fixed set of variables. Apolynomial over indeter-
minates X with coefficients in Cis an element ofC[X], whereC[X] is the coproduct (direct sum) ofC and
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the free idempotent semiring on generatorsX in the category of idempotent semirings. For example, if
a,b,c∈C andx,y∈ X, then the following are polynomials:

0 a axbycx+1 ax2byx+by2xc 1+x+x2+x3

The elements ofC[X] are not purely syntactic, as they satisfy all the equations of idempotent semirings
and identities ofC. For example, ifa2 = b2 = 1 inC, then

(axa+byb)2 = ax2a+axabyb+bybaxa+by2b.

Every polynomial can be written as a finite sum of monomials ofthe form

a0x0a1x1 · · ·an−1xn−1an,

where eachai ∈C−{0} andxi ∈ X. The free variablesof such an expressionp are the elements ofX
appearing in it and are denotedFV(p). The representation is unique up to associativity of multiplication
and associativity, commutativity, and idempotence of addition.

2.2 Polynomial Functions and Evaluation

Let C[X] be the semiring of polynomials over indeterminatesX and letD be an idempotent semiring
containingC as a subalgebra. By general considerations of universal algebra, any valuationσ : X →
D extends uniquely to a semiring homomorphismσ̂ : C[X] → D preservingC pointwise. Formally,
the functorX 7→ C[X] is left adjoint to a forgetful functor that takes an idempotent semiringD to its
underlying set. Intuitively,̂σ is theevaluation morphismthat evaluates a polynomial at the pointσ ∈DX.
Thus each polynomialp∈C[X] determines apolynomial functionJpK : DX → D, whereJpK(σ) = σ̂(p).

The set of all functionsDX → D with the pointwise semiring operations is itself an idempotent
semiring withC as an embedded subalgebra under the embeddingc 7→ λσ .c. The mapJ·K : C[X] →
(DX → D) is actuallyτ̂, whereτ(x) = λ f . f (x).

For the remainder of the paper, we writeσ for σ̂ , as there is no longer any need to distinguish them.

2.3 Algebraic Closure and Chomsky Algebras

A system of polynomial inequalities over Cis a set

p1 ≤ x1, p2 ≤ x2, . . . , pn ≤ xn (1)

wherexi ∈ X and pi ∈ C[X], 1 ≤ i ≤ n. A solution of (1) in C is a valuationσ : X → C such that
σ(pi)≤ σ(xi), 1≤ i ≤ n. The solutionσ is a least solutionif σ ≤ τ pointwise for any other solutionτ .
If a least solution exists, then it is unique.

An idempotent semiringC is said to bealgebraically closedif every finite system of polynomial
inequalities overC has a least solution inC.

The category ofChomsky algebrasconsists of algebraically closed idempotent semirings along with
semiring homomorphisms that preserve least solutions of systems of polynomial inequalities.

The canonical example of a Chomsky algebra is the family of context-free languagesCFX over an
alphabetX. A system of polynomial inequalities (1) can be regarded as context-free grammar, and the
least solution of the system is the context-free language generated by the grammar. For example, the set
of strings in{a,b}⋆ with equally manya’s andb’s is generated by the grammar

S→ ε | aB | bA A→ aS| bAA B→ bS| aBB, (2)
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which corresponds to the system

1+aB+bA≤ S aS+bAA≤ A bS+aBB≤ B, (3)

where the symbolsa,b are interpreted as the singleton sets{a},{b}, the symbolsS,A,B are variables
ranging over sets of strings, and the semiring operations+, ·, 0, and 1 are interpreted as set union, set
productAB= {xy | x∈ A, y∈ B}, /0, and{ε}, respectively.

2.4 µ-Expressions

Let X be a set of indeterminates. Leiß [13] andÉsik and Leiß [5, 6] considerµ-expressionsdefined by
the grammar

t ::= x | t + t | t · t | 0 | 1 | µx.t

wherex ∈ X. These expressions provide a syntax with which least solutions of polynomial systems
can be named. Scope, bound and free occurrences of variables, α-conversion, and safe substitution are
defined as usual (see e.g. [1]). We denote byt[x/u] the result of substitutingu for all free occurrences of
x in t, renaming bound variables as necessary to avoid capture. Let TX denote the set ofµ-expressions
over indeterminatesX.

Let C be a Chomsky algebra andX a set of indeterminates. Aninterpretation over C is a map
σ : TX →C that is a homomorphism with respect to the semiring operations and such that

σ(µx.t) = the leasta∈C such thatσ [x/a](t) ≤ a, (4)

whereσ [x/a] denotesσ with x rebound toa. The elementa exists and is unique: Informally, eachµ-
expressiont can be associated with a system of polynomial inequalities such thatσ(t) is a designated
component of its least solution, which exists by algebraic closure.

Every set mapσ : X →C extends uniquely to such a homomorphism. An interpretationσ satisfies
the equations= t if σ(s) = σ(t) and satisfies the inequalitys≤ t if σ(s) ≤ σ(t). All interpretations
over Chomsky algebras satisfy the axioms of idempotent semirings, α-conversion (renaming of bound
variables), and thePark axioms

t[x/µx.t] ≤ µx.t t ≤ x ⇒ µx.t ≤ x. (5)

The Park axioms say intuitively thatµx.t is the least solution of the single inequalityt ≤ x. It follows
easily that

t[x/µx.t] = µx.t. (6)

Thus Chomsky algebras are essentially the ordered Parkµ-semirings of [6] with the additional re-
striction that+ is idempotent and the order is the natural orderx≤ y⇔ x+y= y.

2.5 Bekíc’s Theorem

It is well known that the ability to name least solutions of single inequalities withµ gives the ability
to name least solutions of all finite systems of inequalities. This is known as Bekić’s theorem [2]. The
construction is analogous to the definition ofM⋆ for a matrixM over a Kleene algebra.
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Bekić’s theorem can be proved by regarding a system of inequalities as a single inequality on a
Cartesian product, partitioning into two systems of smaller dimension, then applying the result for the
2×2 case inductively. The 2×2 system

p(x,y) ≤ x q(x,y) ≤ y

has least solutiona0,b0, where

a(y) = µx.p(x,y) b0 = µy.q(a(y),y) a0 = a(b0),

as can be shown using the Park axioms (5); see [14] or [6] for a comprehensive treatment.
For example, in the context-free languages, the set of strings in{a,b}⋆ with equally manya’s andb’s

is represented by the term

µS.(1+a·µB.(bS+aBB)+b·µA.(aS+bAA)) (7)

obtained from the system (2) by this construction.

2.6 µ-Continuity

Let nx.t be an abbreviation for then-fold composition oft applied to 0, defined inductively by

0x.t = 0 (n+1)x.t = t[x/nx.t].

A Chomsky algebra is calledµ-continuousif it satisfies theµ-continuity axiom:

a(µx.t)b= ∑
n≥0

a(nx.t)b, (8)

where the summation symbol denotes supremum with respect tothe natural orderx ≤ y ⇔ x+ y = y.
Note that the supremum ofa andb is a+b.

The familyCFX of context-free languages over an alphabetX forms aµ-continuous Chomsky alge-
bra. Thecanonical interpretationover this algebra isLX : TX → CFX, where

LX(x) = {x} LX(t +u) = LX(t)∪LX(u)

LX(0) = /0 LX(tu) = {xy | x∈ LX(t), y∈ LX(u)} (9)

LX(1) = {ε} LX(µx.t) =
⋃

n≥0

LX(nx.t).

UnderLX, every term inTX represents a context-free language over its free variables(note thatx is not
free innx.t). In the example (7) of§2.5, the free variables area,b and the bound variables areS,A,B,
corresponding to the terminal and nonterminal symbols, respectively, of the grammar (2) of§2.3.

2.7 Relation to Other Axiomatizations

In this section we show that the various axiomatizations considered in [5, 6, 13] are valid in allµ-
continuous Chomsky algebras.

A µ-semiring[6] is a semiring(A,+, ·,0,1) satisfying theµ-congruenceandsubstitutionproperties:

t = u⇒ µx.t = µx.u σ(t[y/u]) = σ [y/σ(u)](t).

Idempotence is not assumed.
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Lemma 2.1. Every Chomsky algebra is aµ-semiring.

Proof. The µ-congruence property is immediate from the definition of theµ operation (4). The substi-
tution property is a general property of systems with variable bindings; see [1, Lemma 5.1.5]. It can be
proved by induction. For the case ofµx.t, we assume without loss of generality thaty 6= x (otherwise
there is nothing to prove) and thatx is not free inu.

σ((µx.t)[y/u]) = σ(µx.(t[y/u]))

= leasta such thatσ [x/a](t[y/u]) ≤ a

= leasta such thatσ [x/a][y/σ(u)](t) ≤ a

= leasta such thatσ [y/σ(u)][x/a](t) ≤ a

= σ [y/σ(u)](µx.t).

We now consider various axioms proposed in [13].

Lemma 2.2. In all µ-continuous Chomsky algebras,

µx.(1+ax) = µx.(1+xa), x 6∈ FV(a).

Proof. By µ-continuity, it suffices to show thatnx.(1+ax) = nx.(1+xa) for all n. We show by induction
that for alln, nx.(1+ax) = nx.(1+xa) = ∑n

i=0 ai . The basisn= 0 is trivial. For the inductive case,

(n+1)x.(1+ax) = 1+a(nx.(1+ax)) = 1+a(∑n
i=0ai) = ∑n+1

i=0 ai ,

and this is equal to(n+1)x.(1+xa) by a symmetric argument.

Lemma 2.3. The following two equations hold in allµ-continuous Chomsky algebras:

a(µx.(1+xb)) = µx.(a+xb) (µx.(1+bx))a = µx.(a+bx).

Proof. We show the first equation only; the second follows from a symmetric argument. Byµ-continuity,
we need only show that the equation holds for anyn. The basisn= 0 is trivial. For the inductive case,

a((n+1)x.(1+xb)) = a+a(nx.(1+xb))b

= a+(nx.(a+xb))b

= (n+1)x.(a+xb),

where the induction hypothesis has been used in the second step.

These properties also show thatµ-continuous Chomsky algebras are algebraically complete semir-
ings in the sense of [5, 6].

Lemma 2.4. TheGreibach inequalities

µx.s(µy.(1+ ry)) ≤ µx.(s+xr) µx.(µy.(1+yr))s≤ µx.(s+ rx)

of KAG [13] hold in all µ-continuous Chomsky algebras.
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Proof. For the left-hand inequality, letu = µx.(s+ xr). By the Park axioms, it suffices to show that
s(µy.(1+ ry))[x/u] ≤ u. But

s(µy.(1+ ry))[x/u] = s[x/u](µy.(1+ r[x/u]y))

= s[x/u](µy.(1+yr[x/u]))

= µy.(s[x/u]+yr[x/u])

= µx.(s+xr),

where Lemmas 2.2 and 2.3 have been used.
The right-hand ineuuality can be proved by a symmetric argument.

Various other axioms of [5, 6, 13] follow from the Park axioms.
Theµ-continuity condition (8) implies the Park axioms (5), but we must defer the proof of this fact

until §3. For now we just observe a related property of the canonicalinterpretationLX.

Lemma 2.5. For any s, t ∈ TX and y∈ X,

LX(s[y/µy.t]) =
⋃

n≥0

LX(s[y/ny.t]).

Proof. We proceed by induction on the structure ofs. The cases for+ and · are quite easy, using the
facts that for chains of sets of stringsA0 ⊆ A1 ⊆ A2 ⊆ ·· · andB0 ⊆ B1 ⊆ B2 ⊆ ·· · ,

⋃

m

Am∪
⋃

n

Bn =
⋃

n

An∪Bn

⋃

m

Am ·
⋃

n

Bn =
⋃

n

AnBn.

The base cases are also straightforward. Forµx.s, assume without loss of generality thaty 6= x andx is
not free int.

LX((µx.s)[y/µy.t]) =
⋃

m

LX((mx.s)[y/µy.t])

=
⋃

m

⋃

n

LX((mx.s)[y/ny.t])

=
⋃

n

⋃

m

LX((mx.s)[y/ny.t])

=
⋃

n

LX((µx.s)[y/ny.t]).

3 Main Results

Our main result depends on an analog of a result of [10] (see [12]). It asserts that the supremum of
a context-free language over aµ-continuous Chomsky algebraK exists, interpreting strings overK as
products inK. Moreover, multiplication is continuous with respect to suprema of context-free languages.

Lemma 3.1. Let σ : TX → K be any interpretation over aµ-continuous Chomsky algebra K. Let
τ : TX → CFX be any interpretation over the context-free languagesCFX such that for all x∈ X and
s,u∈ TX,

σ(sxu) = ∑
y∈τ(x)

σ(syu).
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Then for any s, t,u∈ TX,

σ(stu) = ∑
y∈τ(t)

σ(syu).

In particular,

σ(stu) = ∑
y∈LX(t)

σ(syu), (10)

where LX is the canonical interpretation defined in§2.6.

Remark1. Note carefully that the lemma does not assumea priori knowledge of the existence of the
suprema. The equations should be interpreted as asserting that the supremum on the right-hand side
exists and is equal to the expression on the left-hand side.

Proof. The proof is by induction on the structure oft, that is by induction on the subexpression relation
t +u≻ t, t +u≻ u, t ·u≻ t, t ·u≻ u,µx.t ≻ nx.t, which is well-founded [11].

All cases are similar to the proof in [12, Lemma 7.1] for star-continuous Kleene algebra, with the
exception of the caset = µx.p.

For variablest = x∈ X, the desired property holds by assumption. For the constants t = 0 andt = 1,

σ(s0u) = 0= ∑ /0= ∑
y∈ /0

σ(syu) = ∑
y∈τ(0)

σ(syu)

σ(s1u) = σ(su) = ∑
y∈{ε}

σ(syu) = ∑
y∈τ(1)

σ(syu).

For sumst = p+q,

σ(s(p+q)u) = σ(spu)+σ(squ)

= ∑
x∈τ(p)

σ(sxu)+ ∑
y∈τ(q)

σ(syu) (11)

= ∑
z∈τ(p)∪τ(q)

σ(szu) (12)

= ∑
z∈τ(p+q)

σ(szu). (13)

Equation (11) is by two applications of the induction hypothesis. Equation (12) is by the properties of
supremum. Equation (13) is by the definition of sum inCFX.

For productst = pq,

σ(spqu) = ∑
x∈τ(p)

∑
y∈τ(q)

σ(sxyu) (14)

= ∑
z∈τ(p)·τ(q)

σ(szu) (15)

= ∑
z∈τ(pq)

σ(szu). (16)

Equation (14) is by two applications of the induction hypothesis. Equations (15) and (16) are by the
definition of product inCFX.
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Finally, for t = µx.p,

σ(s(µx.p)u) = ∑
n

σ(s(nx.p)u) (17)

= ∑
n

∑
y∈τ(nx.p)

σ(syu) (18)

= ∑
y∈
⋃

nτ(nx.p)

σ(syu) (19)

= ∑
y∈τ(µx.p)

σ(syu). (20)

Equation (17) is just theµ-continuity property (8). Equation (18) is by the inductionhypothesis, ob-
serving thatµx.p≻ nx.p. Equation (19) is a basic property of suprema. Finally, equation (20) is by the
definition ofτ(µx.p) in CFX.

The result (10) for the special case ofτ = LX is immediate, observing thatLX satisfies the assumption
of the lemma: forx∈ X,

σ(sxu) = ∑
y∈{x}

σ(syu) = ∑
y∈LX(x)

σ(syu).

At this point we can show that theµ-continuity condition implies the Park axioms.

Theorem 3.2. Theµ-continuity condition(8) implies the Park axioms(5).

Proof. We first showp≤ x⇒ µx.p≤ x in any idempotent semiring satisfying theµ-continuity condition.
Let σ be a valuation such thatσ(µx.p) = ∑n σ(nx.p). Suppose thatσ(p)≤ σ(x). We show by induction
that for alln≥ 0, σ(nx.p) ≤ σ(x). This is certainly true for 0x.p = 0. Now suppose it is true fornx.p.
Using monotonicity,

σ((n+1)x.p) = σ(p[x/nx.p]) ≤ σ(p[x/x]) = σ(p)≤ σ(x).

By µ-continuity,σ(µx.p) = ∑n σ(nx.p)≤ σ(x).
Now we show thatp[x/µx.p] ≤ µx.p. This requires the stronger property that aµ-expression is

chain-continuous with respect to suprema of context-free languages as a function of its free variables.
Using Lemmas 2.5 and 3.1,

σ(p[x/µx.p]) = ∑ {σ(y) | y∈ LX(p[x/µx.p])}

= ∑
{

σ(y) | y∈
⋃

n

LX(p[x/nx.p])

}

= ∑
n

∑ {σ(y) | y∈ LX(p[x/nx.p])}

= ∑
n

σ(p[x/nx.p])

= ∑
n

σ((n+1)x.p)

= σ(µx.p).
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The following is our main theorem.

Theorem 3.3. Let X be an arbitrary set and let s, t ∈ TX. The following are equivalent:

(i) The equation s= t holds in all µ-continuous Chomsky algebras; that is, s= t is a logical conse-
quence of the axioms of idempotent semirings and theµ-continuity condition

a(µx.t)b= ∑
n≥0

a(nx.t)b, (21)

or equivalently, the universal formulas

a(nx.t)b≤ a(µx.t)b, n≥ 0 (22)
(

∧

n≥0

(a(nx.t)b≤ w)

)

⇒ a(µx.t)b≤ w. (23)

(ii) The equation s= t holds in the semiring of context-free languagesCFY over any set Y .

(iii) LX(s) = LX(t), where LX : TX → CFX is the standard interpretation mapping aµ-expression to
a context-free language of strings over its free variables.

Thus the axioms of idempotent semirings andµ-continuity are sound and complete for the equational
theory of the context-free languages.

Proof. The implication (i)⇒ (ii) holds sinceCFY is a µ-continuous Chomsky algebra, and (iii) is a
special case of (ii). Finally, if (iii) holds, then by two applications of Lemma 3.1, for any interpretation
σ : TX → K over aµ-continuous Chomsky algebraK,

σ(s) = ∑
x∈LK (s)

σ(x) = ∑
x∈LK (t)

σ(x) = σ(t),

which proves (i).

Theorem 3.4. The context-free languages over the alphabet X form the freeµ-continuous Chomsky
algebra on generators X.

Proof. Let K be aµ-continuous Chomsky algebra. Any mapσ : X → K extends uniquely to an interpre-
tationσ : TX → K. By Lemma 3.1, this decomposes as

σ = ∑◦CFσ ◦LX,

whereLX : TX → CFX is the canonical interpretation in the context-free languages overX, CFσ :
CFX → CFK is the mapCFσ(A) = {σ(x) | x∈ A}, and∑ : CFK → K takes the supremum of a context-
free language overK, which is guaranteed to exist by Lemma 3.1. The unique morphism CFX → K
corresponding toσ is ∑ ◦CFσ . ThusCF is left adjoint to the forgetful functor fromµ-continuous
Chomsky algebras toSet. The mapsx 7→ {x} : X → CFX and∑ : CFK → K are the unit and counit,
respectively, of the adjunction.
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4 Conclusion

We have given a natural complete infinitary axiomatization of the equational theory of the context-free
languages. Leiß [13] states as an open problem:

Are there natural equations betweenµ-regular expressions that are valid in all continuous
models ofKAF, but go beyondKAG?

We have identified such a system in this paper, thereby answering Leiß’s question. He does not state
axiomatization as an open problem, but observes that the setof pairs of equivalent context-free grammars
is not recursively enumerable, then goes on to state:

Since there is an effective translation between context-free grammars andµ–regular expres-
sions . . . , the equational theory of context-free languagesin terms ofµ-regular expressions
is not axiomatizable at all.

Nevertheless, we have given an axiomatization. How do we reconcile these two views? Leiß is apparently
using “axiomatization” in the sense of “recursive axiomatization.” But observe that the axiom (23) is an
infinitary Horn formula. To use it as a rule of inference, one would need to establish infinitely many
premises of the formx(ny.p)z≤ w. But this in itself is aΠ0

1-complete problem. One can show that it is
Π0

1-complete to determine whether a given context-free grammar G over a two-letter alphabet generates
all strings. By codingG as aµ-expressionw, the problem becomesµx.(1+ax+bx) ≤ w, which by (21)
is equivalent to showing thatnx.(1+ax+bx) ≤ w for all n.
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