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Abstract. We study the problem of streaming regular expression pars-
ing: Given a regular expression and an input stream of symbols, how to
output a serialized syntax tree representation as an output stream during
input stream processing.
We show that optimally streaming regular expression parsing, outputting
bits of the output as early as is semantically possible for any regular
expression of size m and any input string of length n, can be performed
in time O(2m logm +mn) on a unit-cost random-access machine. This is
for the wide-spread greedy disambiguation strategy for choosing parse
trees of grammatically ambiguous regular expressions. In particular, for a
fixed regular expression, the algorithm’s run-time scales linearly with the
input string length. The exponential is due to the need for preprocessing
the regular expression to analyze state coverage of its associated NFA,
a PSPACE-hard problem, and tabulating all reachable ordered sets of
NFA-states.
Previous regular expression parsing algorithms operate in multiple phases,
always requiring processing or storing the whole input string before out-
putting the first bit of output, not only for those regular expressions and
input prefixes where reading to the end of the input is strictly necessary.

1 Introduction

In programming, regular expressions are often used to extract information from
an input, which requires an intensional interpretation of regular expressions as
denoting parse trees, and not just their ordinary language-theoretic interpretation
as denoting strings.

This is a nontrivial change of perspective. We need to deal with grammatical
ambiguity—which parse tree to return, not just that it has one—and memory
requirements become a critical factor: Deciding whether a string belongs to
the language denoted by (ab)? + (a + b)? can be done in constant space, but
outputting the first bit, whether the string matches the first alternative or only
the second, may require buffering the whole input string. This is an instructive
case of deliberate grammatical ambiguity to be resolved by the prefer-the-left-
alternative policy of greedy disambiguation: Try to match the left alternative;
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if that fails, return a match according to the right alternative as a fallback.
Straight-forward application of automata-theoretic techniques does not help:
(ab)? + (a + b)? denotes the same language as (a + b)?, which is unambiguous
and corresponds to a small DFA, but is also useless: it doesn’t represent any
more when a string consists of a sequence of ab-groups.

Previous parsing algorithms [9,3,5,10,13,6] require at least one full pass over
the input string before outputting any output bits representing the parse tree.
This is the case even for regular expressions requiring only bounded lookahead
such as one-unambiguous regular expressions [1].

In this paper we study the problem of optimally streaming parsing. Consider
(ab)? + (a + b)?, which is ambiguous and in general requires unbounded input
buffering, and consider the particular input string ab . . . abaababababab . . .. An
optimally streaming parsing algorithm needs to buffer the prefix ab . . . ab in some
form because the complete parse might match either of the two alternatives in
the regular expression, but once encountering aa, only the right alternative is
possible. At this point it outputs this information and the output representation
for the buffered string as parsed by the second alternative. After this, it outputs
a bit for each input symbol read, with no internal buffering: input symbols are
discarded before reading the next symbol. Optimality means that output bits
representing the eventual parse tree must be produced earliest possible: as soon
as they are semantically determined by the input processed so far under the
assumption that the parse will succeed.

Outline. In Section 2 we recall the type interpretation of regular expressions,
where a regular expression denotes parse trees, along with the bit-coding of parse
trees.

In Section 3 we introduce a class of Thompson-style augmented nondeter-
ministic finite automata (aNFAs). Paths in such an aNFA naturally represent
complete parse trees, and paths to intermediate states represent partial parse
trees for prefixes of an input string.

We recall the greedy disambiguation strategy in Section 4, which specifies a
deterministic mapping of accepted strings to NFA-paths.

Section 5 contains a definition of what it means to be an optimally streaming
implementation of a parsing function.

We define what it means for a set of aNFA-states to cover another state
in Section 6, which constitutes the computationally hardest part needed in our
algorithm.

Section 7 contains the main results. We present path trees as a way of or-
ganizing partial parse trees, and based on these we present our algorithm for
an optimally streaming parsing function and analyze its asymptotic run-time
complexity.

Finally, in Section 8, the algorithm is demonstrated by illustrative examples
alluding to its expressive power and practical utility.



2 Preliminaries

In the following section, we recall definitions of regular expressions and their
interpretation as types [10].

Definition 1 (Regular expression). A regular expression (RE) over a finite
alphabet Σ is an expression E generated by the grammar

E ::= 0 | 1 | a | E1E2 | E1 + E2 | E?1

where a ∈ Σ.

Concatenation (juxtaposition) and alternation (+) associates to the right; paren-
theses may be inserted to override associativity. Kleene star (?) binds tightest,
followed by concatenation and alternation.

The standard interpretation of regular expressions is as descriptions of regular
languages.

Definition 2 (Language interpretation). Every RE E denotes a language
LJEK ⊆ Σ? given as follows:

LJ0K = ∅ LJE1E2K = LJE1KLJE2K LJaK = {a}
LJ1K = {ε} LJE1 + E2K = LJE1K ∪ LJE2K LJE?1K =

⋃
n≥0 LJE1Kn

where we have A1A2 = {w1w2 | w1 ∈ A1, w2 ∈ A2}, and A0 = {ε} and An+1 =
AAn.

Proviso: Henceforth we shall restrict ourselves to REs E such that LJEK 6= ∅.
For regular expression parsing, we consider an alternative interpretation of

regular expressions as types.

Definition 3 (Type interpretation). Let the syntax of values be given by

v ::= () | inl v1 | inr v1 | 〈v1, v2〉 | [v1, v2, ..., vn]

Every RE E can be seen as a type describing a set T JEK of well-typed values:

T J0K = ∅ T JE1E2K = {〈v1, v2〉 | v1 ∈ T JE1K, v2 ∈ T JE2K}
T J1K = {()} T JE1 + E2K = {inl v | v ∈ T JE1K} ∪ {inr v | v ∈ T JE2K}
T JaK = {a} T JE?1K = {[v1, . . . , vn] | n ≥ 0 ∧ ∀1 ≤ i ≤ n.vi ∈ T JE1K}

We write |v| for the flattening of a value, defined as the word obtained by doing
an in-order traversal of v and writing down all the symbols in the order they
are visited. We write TwJEK for the restricted set {v ∈ T JEK | |v| = w}. Regular
expression parsing is a generalization of the acceptance problem of determining
whether a word w belongs to the language of some RE E, where additionally we
produce a parse tree from TwJEK. We say that an RE E is ambiguous iff there
exists a w such that |TwJEK| > 1.

Any well-typed value can be serialized into a sequence of bits.



Definition 4 (Bit-coding). Given a value v ∈ T JEK, we denote its bit-code
by pvq ⊆ {0, 1}?, defined as follows:

p()q = ε paq = ε pinl vq = 0 pvq
p〈v1, v2〉q = pv1q pv2q p[v1, ..., vn]q = 0 pv1q ... 0 pvnq 1 pinr vq = 1 pvq

We write BJEK for the set {pvq | v ∈ T JEK} and BwJEK for the set restricted to
bit-codes for values with a flattening w. Note that for any RE E, bit-coding is
an isomorphism when seen as a function p·qE : T JEK→ BJEK.

3 Augmented Automata

In this section we recall from [6] the construction of finite automata from regular
expressions. Our construction is similar to that of Thompson [15], but aug-
mented with extra annotations on non-deterministic ε-transitions. The resulting
automata can be seen as non-deterministic transducers which for each accepted
input string in the language of the underlying regular expression outputs the
bit-codes for the corresponding parse trees.

Definition 5 (Augmented non-deterministic finite automaton). An aug-
mented non-deterministic finite automaton (aNFA) is a tuple (State, δ, qin, qfin),
where State is a finite set of states, qin, qfin ∈ State are initial and final states,
respectively, and δ ⊆ State× Γ × State is a labeled transition relation with labels
Γ = Σ ] {0, 1, ε}.

Transition labels are divided into the disjoint sets Σ (symbol labels); {0, 1}
(bit-labels); and {ε} (ε-labels). Σ-transitions can be seen as input actions, and
bit-transitions as output actions.

Definition 6 (aNFA construction). Let E be an RE and define an aNFA
ME = (StateE , δE , q

in
E , q

fin
E ) by induction on E. We give the definition diagram-

matically by cases:

E ME

0 qin qfin

1 qin (qin = qfin)

a qin qfina

E1E2 qin q′ qfin
ME1

ME2

E ME

E1 + E2 qin

q1

q2

q′1

q′2

qfin

0

1

ε

ε

ME1

ME2

E?1
qin q′ qfin

q1 q′1
ME1

ε 1

0 ε

In the above, the notation q1 q2M means that q1, q2 are initial and final

states, respectively, in some (sub-)automaton M .

See Figure 1 for an example.
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Fig. 1: Example automaton for the RE (a + b)?b

Definition 7 (Path). A path in an aNFA is a finite non-empty sequence
α ∈ State? of the form α = p0 p1 ... pn−1 such that for each i < n, we have
(pi, γi, pi+1) ∈ δE for some γi. As a shorthand for this fact we might write

p0
α
 pn−1 (note that a single state is a path to itself).

Each path α is associated with a (possibly empty) sequence of labels lab(α): we let
read(α) and write(α) refer to the corresponding subsequences of lab(α) filtered by

Σ and {0, 1}, respectively. An automaton accepts a word w iff qin α
 qfin for some

α where read(α) = w. There is a one-to-one correspondence between bit-codes
and accepting paths:

Proposition 1. For any RE E with aNFA ME, we have for each w ∈ LJEK
that

{write(α) | qin α
 qfin, read(α) = w} = BwJEK.

Determinization. Given a state set Q, define its closure as the set closure(Q) =

{q′ | q ∈ Q ∧ ∃α.read(α) = ε ∧ q α
 q′}. For any aNFA M = (State, δ, qin, qfin),

let D(M) = (DStateM , IM , FM , ∆M ) be the deterministic automaton obtained
by applying the standard subset sum construction: Here, IM = closure({qin})
is the initial state, and DStateM ⊆ 2State is the set of states, defined to be the
smallest set containing IM and closed under the transition function ∆M (Q, a) =
closure({q′ | (q, a, q′) ∈ δ, q ∈ Q}). The set of final states FM is the set {Q ∈
DStateM | qfin ∈ Q}.

4 Disambiguation

A regular expression parsing algorithm has to produce a parse tree for an input
word whenever the word is in the language for the underlying RE. In the case of
ambiguous REs, the algorithm has to choose one of several candidates. We do not
want the choice to be arbitrary, but rather a parse tree which is uniquely identified
by a disambiguation policy. Since there is a one-to-one correspondence between
words in the language of an RE E and accepting paths in ME , a disambiguation
policy can be seen as a deterministic choice between aNFA paths recognizing the
same string.

We will focus on greedy disambiguation, which corresponds to choosing the
first result that would have been found by a backtracking regular expression



parsing algorithm such as the one found in the Perl programming language [16].
The greedy strategy has successfully been implemented in previous work [5,6],
and is simpler to define and implement than other strategies such as POSIX [8,4]
whose known parsing algorithms are technically more complicated [11,13,14].

Greedy disambiguation can be seen as picking the accepting path with the
lexicographically least bitcode. A well-known problem with backtracking parsing
is non-termination in the case of regular expressions with nullable subexpressions
under Kleene star, which means that the lexicographically least path is not
always well-defined. This problem can easily be solved by not considering paths
with non-productive loops, as in [5].

5 Optimal Streaming

In this section we specify what it means to be an optimally streaming implemen-
tation of a function from sequences to sequences.

We write w v w′′ if w is a prefix of w′′, that is ww′ = w′′ for some w′. Note
that v is a partial order with greatest lower bounds for nonempty sets:

d
L = w

if w v w′′ for all w′′ ∈ L and ∀w′.(∀w′′ ∈ S.w′ v w′′) ⇒ w′ v w.
d
L is the

longest common prefix of all words in L.

Definition 8 (Completions). The set of completions CE(w) of w in E is the
set of all words in LJEK that have w as a prefix:

CE(w) = {w′′ | w v w′′ ∧ w′′ ∈ LJEK}.

Note that CE(w) may be empty.

Definition 9 (Extension). For nonempty CE(w) the unique extension ŵE of
w under E is the longest extension of w with a suffix such that all successful
extensions of w to an element of LJEK are also extensions of ŵ:

ŵE =
l
CE(w).

Word w is extended under E if w = ŵ; otherwise it is unextended.

Extension is a closure operation: ˆ̂w = ŵ; in particular, extensions are extended.

Definition 10 (Reduction). For empty CE(w) the unique reduction w̄E of w
under E is the longest prefix w′ of w such that CE(w′) 6= ∅.

Given parse function PE(·) : LJEK→ BJEK for complete input strings, we can
now define what it means for an implementation of it to be optimally streaming:

Definition 11 (Optimally streaming). The optimally streaming function
corresponding to PE(·) is

OE(w) =

{d
{PE(w′′) | w′′ ∈ CE(w)} if CE(w) 6= ∅

(
d
OE(w̄))] if CE(w) = ∅.



The first condition expresses that after seeing prefix w the function must output
all bits that are a common prefix of all bit-coded parse trees of words in LJEK
that w can be extended to. The second condition expresses that as soon as it
is clear that a prefix has no extension to an element of LJEK, an indicator ] of
failure must be emitted, with no further output after that. In this sense OE is
optimally streaming: It produces output bits at the semantically earliest possible
time during input processing.

It is easy to check that OE is a streaming function:

w v w′ ⇒ OE(w) v OE(w′)

The definition has the, at first glance, surprising consequence that OE may
output bits for parts of the input it has not even read yet:

Proposition 2. OE(w) = OE(ŵ)

E.g. for E = (a + a)(a + a) we have OE(ε) = 00; that is, OE outputs 00 off
the bat, before reading any input symbols, in anticipation of aa being the only
possible successful extension. Assume the input is ab. After reading a it does not
output anything, and after reading b it outputs ] to indicate a failed parse, the
total output being 00].

6 Coverage

Our algorithm is based on simulating aNFAs in lock-step, maintaining a set of
partial paths reading the prefix w of the input that has been consumed so far.
In order to be optimally streaming, we have to identify partial paths which are
guaranteed not be a prefixes of a greedy parse for a word in CE(w).

In this section, we define a coverage relation which our parsing algorithm
relies on in order to detect the aforementioned situation. In the following, fix an
RE E and its aNFA ME = (StateE , δE , q

in
E , q

fin
E ).

Definition 12 (Coverage). Let p ∈ StateE be a state and Q ⊆ StateE a state
set. We say that Q covers p, written Q w p, iff

{read(α) | q α
 qfin, q ∈ Q} ⊇ {read(β) | p β

 qfin} (1)

Coverage can be seen as a slight generalization of language inclusion. That
is, if Q w p, then every word suffix read by a path from p to the final state can
also be read by a path from one of the states in Q to the final state.

Let Me refer to the automaton obtained by reversing the direction of all
transitions and swapping the initial and final states. It can easily be verified that
if (1) holds for some Q, p, then the following property also holds in the reverse
automaton ME :

{read(α) | qin α
 q, q ∈ Q} ⊇ {read(β) | qin α

 p} (2)



If we consider D(ME), the deterministic automaton generated from ME , then
we see that (2) is satisfied iff

∀S ∈ DStateME
. p ∈ S ⇒ Q ∩ S 6= ∅ (3)

This is true since a DFA state S is reachable by reading a word w in D(ME) iff
every q ∈ S is reachable by reading w in ME . Since a DFA accepts the same
language as the underlying aNFA, this implies that condition (2) must hold iff
Q has a non-empty intersection with all DFA states containing p.

The equivalence of (1) and (3) gives us a method to decide w in an aNFA M ,
provided that we have computed D(M) beforehand. Checking (3) for a particular
Q and p can be done by intersecting all states of DStateME

with Q, using time

O(|Q||DStateME
|) = O(|Q|2O(m)), where m is the size of the RE E.

The exponential cost appears to be unavoidable – the problem of deciding
coverage is inherently hard to compute:

Proposition 3. The problem of deciding coverage, that is the set {(E,Q, p) |
Q ⊆ StateE ∧Q w p}, is PSPACE-hard.

Proof. We can reduce regular expression equivalence to coverage: Given regular
expressions E and F , produce an aNFAME+F for E+F and observe thatME and

MF are subautomata. Now observe that there is a path qin
E+F

α
 qfin

E (respectively

qin
E+F

β
 qfin

F ) in ME+F iff there is a path qin
E

α′

 qfin
E with read(α) = read(α′) in

ME (respectively qin
F

β′

 qfin
F with read(β) = read(β′) in MF ). Hence, we have

{qin
F } w qin

E in ME+F iff LJEK ⊆ LJF K. Since regular expression containment is
PSPACE-complete [12] this shows that coverage is PSPACE-hard. ut

Even after having computed a determinized automaton, the decision version
of the coverage problem is still NP-complete, which we show by reduction to
and from Min-Cover, a well-known NP-complete problem. Let State-Cover
refer to the problem of deciding membership for the language {(M,D(M), p, k) |
∃Q. |Q| = k ∧ p 6∈ Q ∧Q w p in M}. Recall that Min-Cover is the problem of
deciding membership for the language {(X,F , k) | ∃C ⊆ F .|C| = k ∧X =

⋃
C}.

Proposition 4. State-Cover is NP-complete.

Proof. State-Cover⇒Min-Cover: Let (M,D(M), p, k) be given. Define X =
{S ∈ DStateM | p ∈ S} and F = {Rq | q ∈

⋃
X} where Rq = {S ∈ X | q ∈ S}.

Then any k-sized set cover C = {Rq1 , ..., Rqk} gives a state cover Q = {q1, ..., qk}
and vice-versa.

Min-Cover ⇒ State-Cover: Let (X,F , k) be given, where |X| = m and
|F| = n. Construct an aNFA MX,F over the alphabet Σ = X ] {$}. Define its
states to be the set {qin, qfin, p} ∪ {F1, ..., Fn}, and for each Fi, add transitions

Fi
$→ qfin and qin xij→ Fi for each xij ∈ Fi. Finally add transitions p

$→ qfin and

qin x→ p for each x ∈ X.
Observe that D(MX,F ) will have states {{qin}, {qfin}} ∪ {Sx | x ∈ X} where

Sx = {F ∈ F | x ∈ F} ∪ {p}, and ∆({qin}, x) = Sx. Also, the time to compute



D(MX,F ) is bounded byO(|X||F|). Then any k-sized state coverQ = {F1, ..., Fk}
is also a set cover. ut

7 Algorithm

Our parsing algorithm produces a bit-coded parse tree from an input string w
for a given RE E. We will simulate ME in lock-step, reading a symbol from w in
each step. The simulation maintains a set of all partial paths that read the prefix
of w that has been consumed so far; there are always only finitely many paths
to consider, since we restrict ourselves to paths without non-productive loops.
When a path reaches a non-deterministic choice, it will “fork” into two paths
with the same prefix. Thus, the path set can be represented as a tree of states,
where the root is the initial state, the edges are transitions between states, and
the leaves are the reachable states.

Definition 13 (Path trees). A path tree is a rooted, ordered, binary tree with
internal nodes of outdegrees 1 or 2. Nodes are labeled by aNFA-states and edges
by Γ = Σ ∪ {0, 1} ∪ {ε}. Binary nodes have a pair of 0- and 1-labeled edges (in
this order only), respectively.

We use the following notation:

– root(T ) is the root node of path tree T .
– path(n, c) is the path from n to c, where c is a descendant of n.
– init(T ) is the path from the root to the first binary node reachable or to the

unique leaf of T if it has no binary node.
– leaves(T ) is the ordered list of leaf nodes.
– Trempty is the empty tree.

As a notational convenience, the tree with a root node labeled q and no children
is written q〈·〉, where q is an aNFA-state. Similarly, a tree with a root labeled q
with children l and r is written q〈0 : l, 1 : r〉, where q is an aNFA-state and l and
r are path trees and the edges from q to l and r are labeled 0 and 1, respectively.
Unary nodes are labelled by Σ ∪ {ε} and are written q〈` : c〉, denoting a tree
rooted at q with only one `-labelled child c.

In the following we shall use Tw to refer to a path tree created after processing
input word w and T to refer to path trees in general, where the input string
giving rise to the tree is irrelevant.

Definition 14 (Path tree invariant). Let Tw be a path tree and w a word.
Define I(Tw) as the proposition that all of the following hold:

(i) The leaves(Tw) have pairwise distinct node labels; all labels are symbol
sources, that is states with a single symbol transition, or the accept state.

(ii) All paths from the root to a leaf read w:
∀n ∈ leaves(Tw). read(path(root(Tw), n)) = w.

(iii) For each leaf n ∈ leaves(Tw) there exists w′′ ∈ CE(w) such that the bit-coded
parse of w′′ starts with write(path(root(Tw), n)).



Algorithm 1 Optimally streaming greedy regular expression parsing algorithm.

Require: An aNFA M , a coverage relation w, and an input stream S.
Ensure: The greedy leftmost parse tree, emitted in an optimally-streaming fashion.
1: function Stream-Parse(M , w, S)
2: w ← ε
3: (Tε, )← closure(M, ∅, qin) . Initialize path tree as the output of closure
4: while S has another input symbol a do
5: if CE(wa) = ∅ then
6: return write(init(Tw)) followed by ] and exit.

7: Twa ← Establish-Invariant(Tw, a,w)
8: Output new bits on the path to the first binary node in Twa, if any.
9: w ← wa

10: if qfin ∈ leaves(Tw) then
11: return write(path(root(Tw), qfin))
12: else
13: return write(init(Tw)) followed by ]

Algorithm 2 Establishing invariant I(Twa)

Require: A path tree Tw satisfying invariant I(Tw), a character a, and a coverage
relation w.

Ensure: A path tree Twa satisfying invariant I(Twa).
1: function Establish-Invariant(Tw, a, w)
2: Remove leaves from Tw that do not have a transition on a.
3: Extend Tw to Twa by following all a-transitions.
4: for each leaf n in Twa do
5: (T ′, )← closure(M, ∅, n).
6: Replace the leaf n with the tree T ′ in Twa.

7: return prune(Twa,w)

(iv) For each w′′ ∈ CE(w) there exists n ∈ leaves(Tw) such that the bit-coded
parse of w′′ starts with write(path(root(Tw), n)).

The path tree invariant is maintained by Algorithm 2: line 2 establishes part i;
line 3 establishes part ii; and lines 4–7 establishes part iii and iv.

Theorem 1 (Optimal streaming property). Assume extended w, CE(w) 6=
∅. Consider the path tree Tw after reading w upon entry into the while-loop of
the algorithm in Algorithm 1. Then write(init(Tw)) = OE(w).

In other words, the initial path from the root of Tw to the first binary node
in Tw is the longest common prefix of all paths accepting an extension of w.
Operationally, whenever that path gets longer by pruning branches, we output
the bits on the extension.

Proof. Assume w extended, that is w = ŵ; assume CE(w) 6= ∅, that is there
exists w′′ such that w v w′′ and w′′ ∈ LJEK.



Algorithm 3 Pruning algorithm.

Require: A path tree T and a covering relation w.
Ensure: A pruned path tree T ′ where all leaves are alive.
1: function prune(T,w)
2: for each l in reverse(leaves(T )) do
3: S ← {n | n comes before l in leaves(T )}
4: if S w l then
5: p← parent(l)
6: Delete l from T
7: T ← cut(T, p)

8: return T
9: function cut(T, n) . Cuts a chain of 1-ary nodes.

10: if |children(n)| = 0 then
11: p← parent(n)
12: T ′ ← T with n removed
13: return cut(T ′, p)
14: else
15: return T

Claim: |leaves(Tw)| ≥ 2 or the unique node in leaves(Tw) is labeled by the
accept state. Proof of claim: Assume otherwise, that is |leaves(Tw)| = 1, but its
node is not the accept state. By i of I(Tw), this means the node must have a
symbol transition on some symbol a. In this case, all accepting paths CE(wa) =
CE(w) and thus ŵ = ŵa; in particular ŵ 6= w, which, however, is a contradiction
to the assumption that w is extended.

This means we have two cases. The case |leaves(Tw)| = 1 with the sole node
being labeled by the accept state is easy: It spells a single path from initial to
accept state. By ii and iii of I(Tw) we have that that path is correct for w. By iv
and since the accept state has no outgoing transitions, we have CE(w) = {w},
and the theorem follows for this case.

Let us consider the case |leaves(Tw)| ≥ 2 then. Recall that CE(w) 6= ∅ by
assumption. By iv of I(Tw) the accepting path of every w′′ ∈ CE(w) starts with
path(root(Tw), n) for some n ∈ leaves(Tw), and by iii each path from the root to
a leaf is the start of some accept path. Since |leaves(Tw)| ≥ 2 we know that there
exists a binary node in Tw. Consider the first on the path from the root to a
leaf. It has both 0- and 1-labeled out-edges. Thus the longest common prefix of
{write(p) | n ∈ leaves(Tw), p ∈ path(root(Tw), n)} is write(init(Tw)), the bits on
the initial path from the root of Tw to its first binary node. ut

The algorithm, as given, is only optimally streaming for extended prefixes. It
can be made to work for all prefixes by enclosing it in an outer loop that for each
prefix w computes ŵ and calls the given algorithm with ŵ. The outer loop then
checks that subsequent symbols match until ŵ is reached. By Proposition 2 the
resulting algorithm gives the right result for all input prefixes, not only extended
ones.



Algorithm 4 ε-closure with path tree construction.

Require: An aNFA M , a set of visited states V , and a state q
Ensure: A path tree T and a set of visited states V ′

1: function closure(M,V, q)

2: if q
0→ ql and q

1→ qr then
3: (T l, Vl)← closure(M,V ∪ {q} , ql) . Try left option first.
4: (T r, Vlr)← closure(M,Vl, qr) . Use Vl to skip already-visited nodes.
5: return (q〈T l : T r〉, Vlr)
6: if q

ε→ p then
7: if p ∈ V then . Stop loops.
8: return (Trempty, V )
9: else

10: (T ′, V ′)← closure(M,V ∪ {q} , p)
11: return (q〈ε : T ′〉, V ′)

12: else . q is a symbol source or the final state.
13: return (q〈·〉, V )

Theorem 2. The optimally streaming algorithm can be implemented to run in
time O(2m logm +mn), where m = |E| and n = |w|.

Proof (Sketch). As shown in Section 6, we can decide coverage in timeO(m2O(m)).
The set of ordered lists leaves(T ) for any T reachable from the initial state can
be precomputed and covered states marked in it. (This requires unit-cost random
access since there are O(2m logm) such lists.) The ε-closure can be computed in
time O(m) for each input symbol, and pruning can be amortized over ε-closure
computation by charging each edge removed to its addition to a tree path. ut

For fixed regular expression E this is linear time in n and thus asymptotically
optimal. An exponential in m as an additive preprocessing cost appears practi-
cally unavoidable since we require the coverage relation, which is inherently hard
to compute (Proposition 3).

8 Example

Consider the RE (aaa + aa)?. A simplified version of its symmetric position
automaton is shown in Figure 2. The following two observations are requirements
for an earliest parse of this expression:

– After one a has been read, the algorithm must output a 0 to indicate that
one iteration of the Kleene star has been made, but:

– five consecutive as determine that the leftmost possibility in the Kleene
star choice was taken, meaning that the first three as are consumed in that
branch.

The first point can be seen by noting that any parse of a non-zero number
of as must follow a path through the Kleene star. This guarantees that if a



successful parse is eventually performed, it must be the case that at least one
iteration was made.

The second point can be seen by considering the situation where only four
input as have been read: It is not known whether these are the only four or more
input symbols in the stream. In the former case, the correct (and only) parse is
two iterations with the right alternative, but in the latter case, the first three
symbols are consumed in the left branch instead.

These observations correspond intuitively to what “earliest” parsing is; as
soon as it is impossible that an iteration was not made, a bit indicating this fact
is emitted, and as soon as the first three symbols must have been parsed in the
left alternative, this fact is output. Furthermore, a 0-bit is emitted to indicate
that (at least) another iteration is performed.

Figure 2 shows the evolution of the path tree during execution with the RE
(aaa + aa)? on the input aaaaa.

By similar reasoning as above, after five as it is safe to commit to the left
alternative after every third a. Hence, for the inputs aaaaa(aaa)n, aaaaa(aaa)na,
and aaaaa(aaa)naa the “commit points” are placed as follows (· indicate end-of-
input):

a
0
| aaaa

00
|
(
aaa

00
| · · · | aaa

00

)
︸ ︷︷ ︸

n times

| ·
11

a
0
| aaaa

00
|
(
aaa

00
| · · · | aaa

00

)
︸ ︷︷ ︸

n times

| a·
01

a
0
| aaaa

00
|
(
aaa

00
| · · · | aaa

00

)
︸ ︷︷ ︸

n times

| aa·
1011

Complex coverage. The previous example does not exhibit any non-trivial cov-
erage, i.e., situations where a state n is covered by k > 1 other states. One
can construct an expression that contains non-trivial coverage relations by ob-
serving that if each symbol source s in the aNFA is associated with the RE
representing the language recognized from s, coverage can be expressed as a set
of (in)equations in Kleene algebra. Thus, the coverage {n0, n1} w n becomes
RE(n0) +RE(n1) ≥ RE(n) in KA, where RE(·) is the function that yields the
RE from a symbol source in an aNFA.

Any expression of the form x1zy1 +x2zy2 +x3z(y1 +y2) satisfies the property
that two subterms cover a third. If the coverage is to play a role in the algorithm,
however, the languages denoted by x1 and x2 must not subsume that of x3,
otherwise the part starting with x3 would never play a role due to greedy leftmost
disambiguation.

Choose x1 = x2 = (aa)?, x3 = a?, y1 = a, and y2 = b. Figure 3 shows the
expression

(aa)?za + aa?zb + a?za + b = (aa)?(za + zb) + a?z(a + b).

The earliest point where any bits can be output is when the z is reached. Then
it becomes known whether there was an even or odd number of as. Due to the
coverage {8, 13} w 20 state 20 is pruned away on the input aazb, thereby causing
the path tree to have a large trunk that can be output.
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Fig. 2: Example run of the algorithm on the regular expression E = (aaa + aa)?

and the input string aaaaa. The dashed edges represent the partial parse trees
that can be emitted: thus, after one a we can emit a 0, and after five as we can
emit 00 because the bottom “leg” of the tree has been removed in the pruning
step. The automaton for E and its associated minimal covering relation are
shown in the inset.
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Fig. 3: Example run of the algorithm on E = (aa)?(za + zb) + a?z(a + b). Note
that state 20 is covered by the combination of states 8 and 13. The earliest time
the algorithm can do a commit is when a z is encountered, which decides whether
there is an even or odd number of as. The topmost figure shows the evolution of
the path tree on the input aaazb. There is a long “trunk” from state 1 to state
21 after reading z, as the rest of the branches have been pruned (not shown).
The desired output, corresponding to taking the rightmost option in the sum,
can be read off the labels on the edges. Likewise in the second figure, we see
that if the z comes after an even number of as, a binary-node-free path from
1 to 7 emerges. Due to the cover {8, 13} w 20, the branch starting from 20 is
not expanded further, even though there could be a z-transition on it. This is
indicated with  . Overall, the resulting parse tree corresponds to the leftmost
option in the sum.



CSV files. The expression ((a+ b)?(;(a+ b)?)?n)? defines the format of a simple
semicolon-delimited data format, with data consisting of words over {a, b} and
rows separated by the newline character, n. Our algorithm emits the partial
parse trees after each letter has been parsed, as illustrated on the example input
below:

a;ba;a

b;;b
a

000
| ;

10
| b

01
| a

00
| ;

10
| a

00
| n

11
| b

001
| ;

10
| ;

10
| a

00
| n

11
| ·

1

Due to the star-height of three, many widespread implementations would
not be able to meaningfully handle this expression using only the RE engine.
Capturing groups under Kleene stars return either the first or last match, but
not a list of matches—and certainly not a list of lists of matches! Hence, if using
an implementation like Perl’s [16], one is forced to rewrite the expression by
removing the iteration in the outer Kleene star and reintroduce it as a looping
construct in Perl.

9 Related and Future Work

Parsing regular expressions is not new [6,5,3,10,14], and streaming parsing of
XML documents has been investigated for more than a decade in the context of
XQuery and XPath—see, e.g., [2,7,17]. However, streaming regular expression
parsing appears to be new.

In earlier work [6] we described a compact “lean log” format for storing in-
termediate information required for two-phase regular expression parsing. The
algorithm presented here may degenerate to two passes, but requires often just
one pass in the sense being effectively streaming, using only O(m) work space,
independent of n. The preprocessing of the regular expression and the interme-
diate data structure durig input string processing are more complex, however. It
may be possible to merge the two approaches using a tree of lean log frames with
associated counters, observing that edges in the path tree that are not labeled 0
or 1 are redundant. This is future work.
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