
Finding Cores of Limited LengthStephen Alstrup� Peter W. Lauridsen�Peer Sommerlund� Mikkel Thorup�AbstractIn this paper we consider the problem of �nding a core of limited length in a tree. A core is a path,which minimizes the sum of the distances to all nodes in the tree. This problem has been examinedunder di�erent constraints on the tree and on the set of paths, from which the core can be chosen. Forall cases, we present linear or almost linear time algorithms, which improves the previous results. AsMinieka and Patel observes (J. Algorithms, Vol. 4, 1983), the problem of �nding a core of limited lengthwould be simpli�ed, if the core always contained the median, m. They conclude their paper by writing"we do not know if a core of length l will contain m. Unfortunately, this situation remains unexploredand as this question remains open, the development of an e�cient algorithm for locating a core of aspeci�ed length remains a di�cult problem." We show that the median is not necessarily included in thecore and give an O(nminflog n�(n; n); lg) algorithm for the problem, which improves the former bestresult O(nminfn2; l log ng) (Lo and Peng, J. Algorithms Vol. 20, 1996 and Minieka, Networks Vol. 15,1985).1 IntroductionIn 1971 Goldman [2] gave a linear time algorithm for determining a node in a tree, called amedian, minimizingthe sum of the distances to all other nodes. Later, in 1982, Slater [13] proposed to determine the path whichminimizes this sum, called a core. More speci�cly, a core is path for which the total sum of distances from allnodes to the path is minimum among all paths. In 1980 Morgan and Slater [11] gave a linear time algorithmfor determining a core in a tree in which all edges have length one. This algorithm is easily extended to atree in which edge lengths are arbitrary nonnegative. A simpler linear time algorithm for �nding a core ina tree with arbitrary nonnegative edge lengths was given in 1993 by Peng, Stephens and Yesha [12].In 1983 Minieka and Patel [10] proposed the problem of �nding a path of length l that minimizes thedistance sum over all paths of length l. Such a path is called a core of length l. Since we cannot be certainthat a path of length l exist in a tree, partial edges are usually allowed in cores of length l. Minieka and Pateldo not give an algorithm for determining a core of speci�ed length, but list a number of problems in givingsuch an algorithm. For instance the core of length l can have distance sum larger than a core of length < l.In 1985, Minieka showed that a core of a speci�ed length can be found in O(n3) time [9]. In 1996, Lo andPeng [7] gave an O(n logn) algorithm for �nding a core of a speci�ed length in the case where all edges havelength one. Furthermore they claim that their algorithm is easily extended to cases where partial edges areallowed and the edges have arbitrary nonnegative length. This is true, but if the edge weights are arbitrarynonnegative integers the complexity increases to O(nl logn), which for constant l is still O(n logn).In 1993 Hakimi, Labb�e and Schmeichel [3] examined the problem of �nding a core with length � l usingeither full or partial edges. This is a natural extension of the core problem since in both cases paths withlength < l can exist which have cost less than any path of length = l [10]. For the case allowing partial edgesthey show that the O(n3) algorithm [9] can be used. For full edges they show the existence of a polynomialtime algorithm for the problem. However it is also shown that for locating the core in an arbitrary networkthe problem becomes NP-hard. Finding cores in trees using parallel algorithms have also been examined, seee.g. [6, 7]. Finally we note that Minieka's O(n3) algorithm is easily modi�ed to all cases mentioned above.To summarize : Placing a core in a tree has been investigated for partial/full edges, core length = l/� land uniform/arbitrary edge weights. For the cases of uniform edge weights an O(n logn) algorithm has been�E-mail : (stephen,waern,peso,mthorup)@diku.dk. Department of Computer Science, University of Copenhagen.1

given [7]. For this case we present an O(n) algorithm. For arbitrary edge weights the algorithms givenso far have complexities O(nl logn) and O(n3) [7, 9]. In this paper we give two algorithms for all cases.The �rst determines the core in O(nl) time and the second uses O(n logn�(n; n)) time. If only full edgesare allowed the complexity of the second algorithm is O(n logn). The factor �(n; n) comes in because of astrong relation between the core problem and Davenport-Schinzel sequences [1]. A strong relation betweenalgorithmic geometry and Davenport-Schinzel sequences has previously been established.In [10], Minieka and Patel studied conditions under which there is a core containing a median. If theirconditions are not satis�ed, they write that \we do not know if a core of length l will contain [the median]m. Unfortunately, this situation remains unexplored and as this question remains open, the development ofan e�cient algorithm for locating a core of a speci�ed length remains a di�cult problem." We solve Miniekaand Patel's question in Figure 1, presenting a tree with 35 nodes in which the core of length 10 does notcontain the median. Examples can also be given for ternery trees, essentially replacing the high degree nodewith a balanced binary tree, but such ternery constructions needs more than 100 nodes.
17 leaves

median

x y

v

w

8 nodes

Figure 1: A sample tree, in which all edges have length one. An optimal core of length 10 through the median goesfrom v to w, and has cost (8 � 9)=2 + 16 = 52. An optimal core of length 10 that is not required to go through themedian goes from x to y, and has cost 2 � 6 + 17 � 2 + 1 = 47.2 PreliminariesLet T be a tree with node set V (T) and edge set E(T) and let T be rooted at an arbitrary node. For a nodev 2 V (T), Tv is the subtree in T rooted at v, hence Tv is the tree induced by v and descendants of v. Witheach edge (v; w) 2 E(T) a nonnegative integer length length(v; w) is associated. The path from a node u toa node v in T is denoted Pu;v and the length of a path P is denoted jP j.For a path Q in T we use dist(v;Q) to denote the distance from a node v 2 V (T) to Q, thus dist(v;Q) =minu2QjPv;uj. In the following we will allow endpoints of paths to be points on edges, thus the \u" in thisde�nition should denote a point on Q. More precisely if (v; w) 2 E(T), length(v; w) = x and P is a path oflength y < x starting at v towards w, then dist(w;P) = x� y. The case where points on edges are allowedis called partial and the case where only full edges are allowed is called discrete. Since we are consideringdistances between points we will also use the notation dist(x; y) to denote the distance between the pointsx and y in T , hence dist(x; y) = jPx;yj.For a path P we de�ne costT (P) = �v2V (T)dist(v; P). Let P be a set of paths. We say Q 2 P is a corewith respect to P , if costT (Q) = minfcostT (P)jP 2 Pg. We will use the name Core(P) to denote a corewith respect to P . The sets P considered as possible core candidates in this paper satis�es the followingconditions:(a) The paths have length = l or length � l, where l is a nonnegative integer.2

(b) The paths are partial or discrete.The problems can furthermore be divided into whether edge lengths are uniform (i.e. have length one)or arbitrary nonnegative integers. We thus consider eight problem instances, however in the case of uniformedge lengths, the partial and discrete problems are the same. Analogous to other path problems (e.g. shortestpath) the actual problem in �nding a core is not so much �nding a path, but �nding the cost. We will thusconcentrate on �nding costT (Core(P)) in this paper. The algorithms described are easily extended to �ndinga path attaining the cost of the core.As mentioned in the introduction the core problem is a generalization of the problem of �nding a median.In the median problem it is common that nodes have costs associated. Thus, in order to get the fullgeneralization, this should also be the case for the core problem. More speci�cally this would mean that fora path P , costT (P) = �v2V (T)dist(v; P) � cost(v). For reasons of clarity we will assume that cost(v) = 1 forall v 2 V unless anything else is stated. The formulas and lemmas deriven are easily extended to the casewhere costs of nodes are arbitrarily nonnegative.3 An O(nl) algorithm for all casesIn this section we give an O(nl) algorithm for �nding the core of a tree in all cases. To simplify the descriptionof the algorithm we assume that partial edges are allowed and the length of the core should be = l. Withminor changes the algorithm will, within the same complexity, also solve the problem in the other cases.These changes are brie
y discussed at the end of the section.For each subtree we will compute a core containing the root of the subtree. We de�ne MinCost(v) asthe cost of a core containing v in Tv. By considering MinCost(v) for all v we can compute the cost of thecore of T . In order to compute MinCost(v) we will need the values de�ned as follows.De�nition 1 We de�ne Sizedown(v) to be the number of nodes in Tv. Furthermore Sumdown(v) is de-�ned as �w2V (Tv)jPw;vj. Analogously Sizeup(v) is the number of nodes in V (T)nV (Tv) and Sumup(v) =�w2V (T)nV (Tv)jPw;vj. Finally we de�ne the extended Sum, Sum�down(v) as �w2V (Tv)jPw;parent(v)j, henceSum�down(v) = Sumdown(v) + length(parent(v); v) � Sizedown(v).Using recursion formulas the Size and Sum values can be found in linear time by traversing T in bottom-up and top-down fashions. Below we give the recursion formula for Sum.Let v be a node in T and let w1; : : : ; wj be the children of v.Sumdown(v) = 0, if v is a leaf.Sumdown(v) = �1�i�j(length(v; wi) � Sizedown(wi) + Sumdown(wi)), otherwise.Sumup(v) = 0, if v is the root.Sumup(v) = length(v; parent(v)) � Sizeup(v) + Sumup(parent(v))+(Sumdown(parent(v))� Sumdown(v)), otherwise.MinCost(v) can be found by combining the cost of two paths that start at v and propagates towardstwo di�erent children of v. The cost of such paths will be denoted as DownCost(v; k). More precisely wehaveDe�nition 2 DownCost(v; k) is the cost of the minimum cost path in Tv of length k, which starts at theroot of Tv, hence DownCost(v; k) = minfcostTv(Pv;x) j x is a point in Tv; jPv;xj = kg. The extendedDowncost, DownCost�(v; k), is the cost of the minimum cost path of length k, which starts at the root ofTv [f(parent(v); v)g.In order to compute MinCost(v) we will compute DownCost�(w; k), for k = 0::l for all children w of v.Note that since the largest distance from a leaf to v could be < l, we can only compute DownCost valuesfor k = 0::minfl;maxfjPv;xj j x 2 Tvgg. In order to make formulas more simple we will w.l.o.g. ignore thisin the following. The lemma below shows how the DownCost values can be computed bottom-up.Lemma 3 Let v 2 V (T) and let c denote the length of the edge from v to its parent in T . We have thefollowing: 3

DownCost�(v; k) = Sumdown(v) + (c� k) � Sizedown(v), if c � kDownCost�(v; k) = DownCost(v; k � c), otherwise.DownCost(v; k) = 0, if v is a leaf.DownCost(v; k) = Sumdown(v)�maxfSum�down(w) �DownCost�(w; k) j w is a child of vg, otherwise.2If we traverse T in a bottom-up fashion and apply the formulas in lemma 3, we can compute DownCostvalues for a node v with j children in O(j � l) time. We can therefore compute DownCost values for allnodes in V (T) in O(nl) time.We will now show how to compute MinCost(v). If v has only one child MinCost(v) = DownCost(v; l).Assume that v has only two children, w1 and w2. We then have valuesDownCost�(w1; k) andDownCost�(w2; k)for k = 0::l. We can thus in O(l) time compute MinCost(v) using the formulaMinCost(v) = minfDownCost�(w1; k) +DownCost�(w2; l � k) j k = 0::lg (1)In the general case where v has more than two children we do the following. Assume that w1; :::; wj arethe children of v. We cannot use formula 1 directly, since the best core involving nodes from two subtrees,say Tw1 and Tw2 , is minfDownCost�(w1; k) +DownCost�(w2; l � k) j k = 0::lg+ �3�i�jSum�down(wi). Inorder to get a simple formula we will instead compare how much is saved by using a path in any subtreeTwi . To be more speci�c we could express formula 1 asMinCost(v) = Sumdown(v)�maxfSave�(w1; k) + Save�(w2; l � k) j k = 0::lg (2)where Save�(w; k) = Sum�down(w)�DownCost�(w; k)We now proceed as follows. First we compute a core candidate for the �rst two children by applyingformula 2. We have thus computed a list of Save(�; k) values for both w1 and w2. These lists are now mergedinto one, by takingminfSave�(w1; k); Save�(w2; k)g for each k = 0::l. By using the merged list of Save valuestogether with Save�(w3; k) values in formula 2, we can compute MinCost in the tree Tw1 [Tw2 [Tw3 [fvg.By continuing this process we �nd MinCost(v).Before we state the main theorem of this section we look at the case, in which a core should have length� l. In order to �nd MinCost(v) in this case we only need to ensure that the DownCost values are correct.More precisely we should have DownCost�(v; k) = minfDownCost�(v; j) j 0 � j � kg for any node v. Byusing the DownCost values computed using lemma 3 as a basis, this is however easily obtained in O(l) time.Finally we can modify the algorithm to handle the discrete case, by changing the �rst part of the formulafor DownCost�(v; k) in lemma 3 to: DownCost�(v; k) =1, if length(parent(v); v) � k.Theorem 4 Given a tree T and a nonnegative integer l, let P be a set of discrete or partial paths with length= l or � l. We can compute cost(Core(P)) in O(nl) time.Proof. The computation of the Size and Sum values are done in O(n) time using bottom-up and top-down traversals. The computation of DownCost and MinCost values is done by traversing T bottom-up.In this traversal we use O(l) time for each child in T . This computation thus takes O(nl) time. Since thecost of a core in T is MinCost(v) + Sumup(v) for some v, we compute cost(Core(P)) in linear time.24 An almost linear algorithm for all casesIn this section we give an O(n logn
(n)) for �nding a core in all cases listed in section 2. The function
(n) depends on whether paths are partial, in which case
(n) = O(�(n; n)), or discrete, in which case
(n) = O(1). We �rst present an algorithm with complexity O(n � h �
(n)), where h is the height of thetree, measured in the number of edges. Secondly we show how to compress the tree so that h = O(log n),which establishes the promised complexity.In this section we will assume that T is binary. If this is not the case we do the following: Pick any nodev with more than two children and let w1; w2 and w3 be children of v. We insert a new node u as the parent4

of w1 and w2 and insert u as a child of v. We repeat this process until no node can be found with morethan two children. This process gives a binary tree with at most twice the number of nodes as T . In orderto ensure that the binary tree has the same properties relating to cores as the original, we have to look atthe generalized problem in which nodes have costs associated. We set the cost of a node to be 1 if it is anoriginal nodes and 0 otherwise. Furthermore we set the length of all inserted edges, that is the edges froman inserted node to its parent, to be 0. This will ensure the preservation of properties relating to cores. Inthe following subsections, we will restrict our attention to looking for a core should of length = l allowingfor partial edges. At the end of the section, we will outline how to deal with the other cases.4.1 The structure of DownCostIn the following, we will discuss how to represent DownCost so as to facilitate an e�cient computation ofMinCost.For a given node v, we can draw DownCost(v; _) in a coordinate system as follows. First, for every pointa in Tv, where a may be on the middle of an edge, insert the point (dist(v; a); costTv (Pv;a)). Clearly, thepoints on an edge form a straight line. DownCost(v; �) is now the lower envelope of the inserted points, i.e.DownCost(v; k) is the minimum inserted y-value for x = k. NowLemma 5 ([5, 14]) The lower envelope of q straight line segments jumps at most �(q�(q)) times betweenthe segments.2Thus DownCost(v; �) is a piecewise linear function, dividing into m = O(jTv j�(jTv j)) pieces. Such a functioncould, say, be represented as a sequence of point pairs:((x0; y1); (x1; z1)); ((x1; y2); (x2; z2)) � � � ; ((xm�1; ym); (xm; zm))where (xi�1; yi) and (xi; zi) are the boundary points of the ith piece. Thus DownCost(v; xi) = minfzi; yi+1gand if xi�1 < x < xi, DownCost(v; x) = yi + (zi�yi)(xi�xi�1) (x � xi�1). If x < x0 or x > xm, we de�neDownCost(v; x) = 1. We refer to the xi as break points. In the following we will think of any piecewiselinear function f , as being of the above form, and by jf j we then denote the number of break points.Observation 6 In the following, let f and g be piecewise linear functions and let �;�; a; b 2 <.� De�ne f1 : x 7! f(x+ �) + �. Then jf1j = jf j and f1 can be constructed in time O(jf j).� De�ne f2 : x 7! minff(x); g(x)g. Then jf2j � 2(jf j + jgj) � 1, and f2 can be constructed in timeO(jf j+ jgj).� De�ne f3 : x 7! f(x) + g(x). Then jf3j � jf j+ jgj, and f3 can be constructed in time O(jf j+ jgj).� � = mina�x�b f(x) is found in time O(jf j).Proof. Concerning f1, note that we just need to subtract � from all the xi, and add � to all the yi and zi.To prove jf2j � 2(jf j+ jgj)� 1, consider any break point p of f2 which is neither a break point of f norof g. Then p is the intersection of two straight-line segments of f and g, but then f2 cannot break againuntil either f or g has broken. Similarly, the breakpoint before p in f2 must be from f or g.Now f2 is constructed by a merge style procedure, where in each step, we either identify a new piece of f2,or �nish the processing of a piece from f or g. The time of this procedure is O(jf2j+ jf j+ jgj) = O(jf j+ jgj).To prove jf3j � jf j+ jgj � 1, we simply observe that any break point in f3 must be a breakpoint in f orin g. The construction of f3 is done in a merge style procedure in time O(jf j+ jgj). 24.2 An O(nh�(n)) algorithmIn this subsection, we are so far still restricting our attention to cores of a length = l, on which partial edgesare allowed. In particular, this means that we are working with piecewise linear functions5

Lemma 7 Let v be a node with children w1 and w2. Given (representations of) DownCost(w1; �) andDownCost(w1; �), we can constructDownCost�(w1; �), DownCost�(w2; �), DownCost(v; �), andMinCost(v)in time O(jDownCost(w1 ; �)j+ jDownCost(w2; �)j) = O(jTv j�(jTv jj).Proof. We �ndDownCost�(w1; x) as the concatenation of ((0; Sum�Down(w1))); (length(v; w1); SumDown(w1))and DownCost(w1 ; x� length(v; w1)). DownCost�(w2; �) is constructed symmetrically.Now DownCost(v; x) is found asminfDownCost�(w1; x) + Sum�Down(w2); DownCost�(w2; x) + Sum�Down(w1)g:Finally MinCost(v) = min0�k�lDownCost�(w1; k) +DownCost�(w2; l � k)Thus, by Observation 6, all the desired values are found in time O(jDownCost(w1 ; �)j+jDownCost(w2; �)j).By Lemma 5,O(jDownCost(w1 ; �)j+ jDownCost(w2 ; �)j) = O(jTw1 j�(jTw1 j) + jTw2 j�(jTw2 j)) = O(jTv j�(jTv j))2Theorem 8 The core of a tree can be computed in O(n�(n)h), where h is the height of the tree.Proof. We apply Lemma 7 bottom-up on all vertices v. For a given vertex v, the computation time isO(jTv j�(jTv j)). Since no vertex w participates in more than h trees Tv, the result follows. 24.3 An almost linear algorithmIn the above algorithms, whenever we visit a node v, we look for an optimal core with v as the top-mostnode. As a result, a node is involved in a computation every time we visit one of its ancestors, and henceour complexity has the height h of the tree as a multiplicative factor.In this section, we will replace the h-factor by a (log n)-factor. When visiting a node v, we will still lookfor a core containing v, but the \subtree" it is restricted to, will no longer just be descending from v. Basedon balancing techniques, we will assign subtrees to nodes, so that each node is involved in only O(log n)subtrees. The previous algorithms are then modi�ed to work with these new subtrees.4.3.1 Flattening a treeConsider a tree T with n nodes. We will now construct a
attened version F (T) of T of height O(log n).The tree F (T) for T will only be used to describe in which subtree we look for a core. Thus, cost, lengthetc. of additional nodes/edges in F (T) have no meaning, since the additional nodes are only used to explainin which the subtree computation is done.In order to obtain a tree with height limited to O(log n) we use heavy path division, as described byHarel and Tarjan [4]. First for each internal v 2 T , let heavy(v) denote the child of v with the maximumnumber of descending nodes. In case of a tie, we pick heavy(v) as the left child. The other child of v iscalled light. We say that the edge from a light child to its parent is a light edge. Edges which are not lightare called heavy. The heavy edges partition the nodes in T on heavy paths, such that each node belongs toexactly one heavy path (a leaf, which is not a heavy child, is a heavy path with one node). To compress theheavy path we will not follow the standard by Harel and Tarjan, but instead use the following lemma.Lemma 9 ([8]) Given a sequence d1 � � � dm of positive real weights, in time O(m), we can construct anordered binary tree, such that the depth of the ith leaf is O(dlogD � log die) where D =Pmi=1 di.2F (T) is constructed by taking each heavy path, and replace it by the weight balanced tree described inthe above lemma. More speci�cally, let P = v1 � � � vm be a heavy path in T and let di denote the numberof descendants of the light child of vi, below denoted as w(vi). We then construct an ordered binary tree asdescribed in the above lemma and let the i'th leaf be vi.6

Lemma 10 F (T) has height O(log n).Proof. Let v1; : : : ; vk be the nodes from T that we meet on a path from a leaf v1 to the root in F (T). Foreach heavy path on this path we meet one node vi, thus k � log2 n. To get from vi to vi+1 we generallytraverse an edge from one balanced tree to another, and O(dlogw(vi+1)� logw(vi)e) balance edges, that is,O(2 + logw(vi+1)� logw(vi)) edges. Thus a total ofkXi=1 O(2 + logw(vi+1)� logw(vi)) = O(log n+ logw(vk)) = O(log n)2 We note that F (T) only is an abstraction we will use to explain the complexity of �nding a core in T .In Figure 2 the construction of F (T) is illustrated.
light edge in T

edge in F

heavy edge in T

Figure 2: The weight balanced tree replacing a heavy path.4.3.2 Flattened core computationConsider the weight balanced tree t over some heavy path P = v1 � � � vm where v1 is the node nearest theroot. Let x be a node in t, and let P (x) = vi � � � vj , i � j, be the segment of P descending from x. Lettree(x) be the subtree in T descending from vi excluding the subtree rooted at the heavy child of vj , thatis, tree(x) consists of P (x) as well as all light subtrees of nodes on P (x). For a node x let vi and vj be asabove, lower(x) = vj and upper(x) = vi. Let T v be the subtree obtain by deleting the heavy child of v andits descendant from T . If v is a leaf T v = T . Thus, tree(x) = T lower(x) \ Tupper(x). Note that if x 2 T ,P (x) = x.We say that a path Q in T belongs to x if it is contained in tree(x) and there is no child y of x in the
attened tree such that Q is contained in tree(y). Clearly, for any path Q in T we have a unique node x thatQ belongs to. Thus, we identify the core, if for each node x in the
attened tree, we �nd the path belongingto it, minimizing the cost in all of T . In order to facilitate a bottom-up computation of cores in the
attenedtree, we need some functions analogous to the function DownCost from the previous section.For any node x in F , de�ne the restricted upcost, RestrUpCost(x; k) as the minimum cost in T lower(x) of apath of length k in tree(x) starting in lower(x). Similarly, de�ne the restricted DownCost, RestrDownCost(x; k),as the minimum cost in Tupper(x) of a path of length k in tree(x) starting in upper(x). The realization7

that both cost functions are needed is a main point in deriving an e�cient algorithm. Observe that bothRestrUpCost and RestrDownCost are the lower envelopes of a set of straight line segments, one for eachedge in tree(x). Hence both of them have O(jtree(x)j�(jtree(x)j) break points.We are now ready to describe the bottom-up computation of optimal cores. The vertices x of F (T) arevisited in bottom-up order. For each x, we make a series of computations, each taking O(jtree(x)j�(jtree(x)j)time. In the computation, it is important whether x is a node in T . Note that the computation will determineDownCost(v; �) for each root of a heavy path in T .� Let x be a leaf in T . For k = 0, RestrDownCost(x; k) = 0 and RestrUpCost(x; k) = Sumup(x). Fork > 0, each of the above values become 1.� If x is in T but not a leaf and w is the light child of x, RestrDownCost(x; k) = DownCost�(w; k) +Sum�down(heavychild(x)) and RestUpCost(x; k) = DownCost�(w; k) + Sumup(x). If x does not havea light child, replace DownCost�(w; k) by 0 in the above formulas.� If x is the root of the balanced tree over some heavy path, DownCost(upper(x); k) = RestrDownCost(x; k).DownCost�(upper(x); �) is computed from DownCost(upper(x); �) as described in the previous section.� If x is not in T and x has children y1 and y2 where P (y1) is above P (y2),RestrDownCost(x; k) = minfRestrDownCost(y1; k); RestrDownCost(y2; k � �) + �; f(x)g:Here � = dist(upper(y1); upper(y2)) and� =XfSum�down(w)jw is a light child of a node on path(y1)g:Finally f is the function corresponding to the edge (lower(y1); upper(y2)) which has boundary points(dist(upper(y1); lower(y1));�+Sum�Down(lower(y1))) and (dist(upper(y1); upper(y2));�+SumDown(lower(y1))).The function RestrDownCost(x; �) is computed symmetrically.Assuming that we are not in the (trivial) case, where the core is contained in the edge (lower(y1); upper(y2)),we can �nally compute MinCost(x) asmink fRestrDownCost(y2; k) +RestUpCost(y1; l � k � length(upper(y2); lower(y1)))g:The above computation takes time jtree(x)j�(jtree(x)j; jtree(x)j). Since each node participates in O(log n)tree(x)-values, we concludeTheorem 11 For a tree T with n nodes, lengths on the edges, and weights on the nodes, we can solve thediscrete core problem in O(n logn) time and the partial core problem in O(n logn�(n)) time.2We will now brie
y consider the other cases of cores. For the case where cores should have length � l,for each leaf w in Tv, for all k � dist(v; w), we have to insert the point (k; c), where c is the cost in Tvof the path from v to w. That is, each leaf gives rise to an extra horizontal line in our coordinate system.Asymptotically, this does not a�ect any of the above bounds, so again we get that DownCost(v; �) is apiecewise linear function, dividing into O(jTv j�(jTv j)) pieces.In the discrete case, we only need to store the at most jTvj points (k; c) where k is the distance from vto some node in T and c is the least cost of a path to such a node. Thus, we derive the same complexity forthese cases.5 A linear time algorithm for the uniform casesIn this section we assume that all edges have length one. This means that the discrete and partial cases arethe same. We present a linear time algorithm for �nding a core of length = l or � l. As an intermediatestep we �rst present an algorithm which speeds up the algorithm from section 3 in case T has few leaves.8

5.1 A faster algorithm for trees with few leavesIn this subsection we show how to speed up the algorithm from section 3 if the number of leaves of T issmall. We will do this by processing simple paths in the tree di�erently.Before we describe the algorithm we note the di�erences in the deriven formulas of section 3 for theuniform case: The Sum formulas remain unchanged except length(e) = 1 for all e 2 E(T). The for-mula for DownCost� in lemma 3 is simpli�ed to: DownCost�(v; k) = DownCost(v; k � 1) for k > 0 andDownCost�(v; 0) = Sumdown(parent(v)).Let v be a node with exactly one child w. Since w is the only child of v we have DownCost(v; k) =DownCost(w; k � 1) for k > 0 and DownCost(v; 0) = Sumdown(v). We can thus get the DownCost(v; k)values for k = 1::l by copying the DownCost(w; k � 1) values. In the following we give a more detaileddescription of this process.As before, let v be a node with exactly one child w. First assume that w has more than one child. Byusing lemma 3 we can compute DownCost(w; k) for k = 0:::l. These values are inserted in a cost-list forw ordered by increasing k. According to the relation between DownCost(v; k) and DownCost(w; k) statedabove, we can remove the last element from this list and insert Sumdown(v) at the start and obtain a listcontaining the values DownCost(v; k) for k = 0::l. Now assume that w has only one child. We then havea cost-list containing the values DownCost(w; k) for k = 0::l. By repeating the described process - deletingthe last element from the list and adding the element Sumdown(v) as the �rst element - we obtain a listcontaining the values DownCost(v; k) for k = 0::l.For the case where the length of the core is � l, DownCost(v; k) is the lowest cost of a path of length� k. Since Sumdown(v) � DownCost(v; k) for all k, the method described above also holds in this case.For any node v with only one child we will use the processing described above. We compute MinCost(v)as DownCost(v; l).Lemma 12 Given a tree T in which edges have length one, let P be the set of paths with length � l or = lin T . We can compute cost(Core(P)) in O(bl + n) time, where b is the number of leaves in T .Proof. For each node v with at most one child we use O(1) time and for any other node we use O(l) timefor each of its children. Since the number of children of nodes with more than one child is O(b), we useO(bl + n) time all together.25.2 A linear time algorithmIn this section we show how the O(bl + n) algorithm from section 5.1 can be modi�ed to a linear timealgorithm. Generally speaking, this is done by ignoring subtrees of size < (l=2)� 1.We de�ne a leaf tree as a subtree in T , in which all nodes has less than (l=2)� 1 descendants. Let R bethe tree from which all leaf trees has been removed.Lemma 13 The tree R has O(n=l) leaves. 2By lemma 12 and 13 we have the following:Corollary 14 We can compute MinCost(v) for each node v 2 R in O(n) time.2By corollary 14 we can obtain a linear time algorithm if we can process the leaf trees in linear time andat the same time combine these with R. We �rst observe that any path in a leaf tree has length < l. We cantherefore compute the best core of length � l in any leaf tree by using the linear time algorithm for �nding acore of unlimited length [11]. It thus only remains to �nd the core candidates, which contain nodes from bothR and leaf trees. In order to do this, we should compute DownCost(r; �) for any root, r, of a leaf tree. This isdone in a time linear to the size of the tree in the following way: For each node w at level k, i.e. jPr;wj = k, wecompute costTr (Pr;w) top-down using the formula costTr (Pr;w) = costTr (Pr;parent(w)) � Sizedown(w). Thenwe compute DownCost(v; k) as minfcostTr(Pr;w) j jPr;wj = kg.Let v be a node which has a removed child r. The child r has been removed because it is the root of a leaftree t. Furthermore let s denote the size of t, thus s = Sizedown(r). As stated in the discussion above we can9

compute DownCost�(r; k), k = 0::height(r), values in O(s) time. We compute MinCost(v), in which wealso consider leaf trees, by using the same approach as in section 3. However in order to keep the complexityat O(s) we only consider Save(r; k) for k = 0::height(r) when including t in the set of possible locations ofa core. Finally we note that the merging of Save� values described in section 3 is also done in O(s) time foreach leaf tree. The inclusion of leaf trees in the MinCost computations in R is thus done in a time linear tothe combined size of the leaf trees.The discussion above yields the following:Theorem 15 In the case where all edges have length one, we can compute cost(Core(P)) in O(n) time.2References[1] H. Davenport and A. Schinzel. A combinatorial problem connected with di�erential equations. Amer.J. Math., 87:684{694, 1965.[2] A.J. Goldman. Optimal center location in simple networks. Transportation Sci., 5:212{221, 1971.[3] S.L. Hakimi, M. Labb�e, and E.F. Schmeichel. On locating path- or tree-shaped facilities on networks.Networks, 23:543{555, 1993.[4] D. Harel and R.E. Tarjan. Fast algorithms for �nding nearest common ancestors. Siam J. Comput,13(2):338{355, 1984.[5] S. Hart and M. Sharir. Nonlinearity of davenport-schinzel sequences and of general path compressionschemes. Combinatorica, 6:151{177, 1986.[6] W. Lo and S. Peng. An optimal parallel algorithm for a core of a tree. In International conference onParallel processing, pages 326{329, 1992.[7] W. Lo and S. Peng. E�cient algorithms for �nding a core of a tree with a speci�ed length. J. Algorithms,20:445{458, 1996.[8] K. Mehlhorn. Data Structures and Algorithms 1: Sorting and Searching. EATCS. Springer, 1 edition,1984.[9] E. Minieka. The optimal location of a path or tree in a tree network. Networks, 15:309{321, 1985.[10] E. Minieka and N.H. Patel. On �nding the core of a tree with a speci�ed length. J. Algorithms,4:345{352, 1983.[11] C.A. Morgan and P.J. Slater. A linear algorithm for a core of a tree. J. Algorithms, 1:247{258, 1980.[12] S. Peng, A.B. Stephens, and Y. Yesha. Algorithms for a core and k-tree core of a tree. J. Algorithms,15:143{159, 1993.[13] P.J. Slater. Locating central paths in a graph. Transportation Sci., 16:1{18, 1982.[14] A. Wiernik. Planar realizations of nonlinear davenport-schinzel sequences by segments. In Foundationsof Computer Science, pages 97{106, 1986.
10

