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Abstract

In this paper we consider the problem of finding a core of limited length in a tree. A core is a path,
which minimizes the sum of the distances to all nodes in the tree. This problem has been examined
under different constraints on the tree and on the set of paths, from which the core can be chosen. For
all cases, we present linear or almost linear time algorithms, which improves the previous results. As
Minieka and Patel observes (J. Algorithms, Vol. 4, 1983), the problem of finding a core of limited length
would be simplified, if the core always contained the median, m. They conclude their paper by writing
”we do not know if a core of length [ will contain m. Unfortunately, this situation remains unexplored
and as this question remains open, the development of an efficient algorithm for locating a core of a
specified length remains a difficult problem.” We show that the median is not necessarily included in the
core and give an O(n min{logna(n,n),l}) algorithm for the problem, which improves the former best
result O(nmin{n?,llogn}) (Lo and Peng, J. Algorithms Vol. 20, 1996 and Minieka, Networks Vol. 15,
1985).

1 Introduction

In 1971 Goldman [2] gave a linear time algorithm for determining a node in a tree, called a median, minimizing
the sum of the distances to all other nodes. Later, in 1982, Slater [13] proposed to determine the path which
minimizes this sum, called a core. More specificly, a core is path for which the total sum of distances from all
nodes to the path is minimum among all paths. In 1980 Morgan and Slater [11] gave a linear time algorithm
for determining a core in a tree in which all edges have length one. This algorithm is easily extended to a
tree in which edge lengths are arbitrary nonnegative. A simpler linear time algorithm for finding a core in
a tree with arbitrary nonnegative edge lengths was given in 1993 by Peng, Stephens and Yesha [12].

In 1983 Minieka and Patel [10] proposed the problem of finding a path of length [ that minimizes the
distance sum over all paths of length [. Such a path is called a core of length [. Since we cannot be certain
that a path of length [ exist in a tree, partial edges are usually allowed in cores of length [. Minieka and Patel
do not give an algorithm for determining a core of specified length, but list a number of problems in giving
such an algorithm. For instance the core of length I can have distance sum larger than a core of length < [.
In 1985, Minieka showed that a core of a specified length can be found in O(n?) time [9]. In 1996, Lo and
Peng [7] gave an O(nlogn) algorithm for finding a core of a specified length in the case where all edges have
length one. Furthermore they claim that their algorithm is easily extended to cases where partial edges are
allowed and the edges have arbitrary nonnegative length. This is true, but if the edge weights are arbitrary
nonnegative integers the complexity increases to O(nllogn), which for constant [ is still O(nlogn).

In 1993 Hakimi, Labbé and Schmeichel [3] examined the problem of finding a core with length < using
either full or partial edges. This is a natural extension of the core problem since in both cases paths with
length < I can exist which have cost less than any path of length = [ [10]. For the case allowing partial edges
they show that the O(n?) algorithm [9] can be used. For full edges they show the existence of a polynomial
time algorithm for the problem. However it is also shown that for locating the core in an arbitrary network
the problem becomes NP-hard. Finding cores in trees using parallel algorithms have also been examined, see
e.g. [6, 7]. Finally we note that Minieka’s O(n?) algorithm is easily modified to all cases mentioned above.

To summarize : Placing a core in a tree has been investigated for partial /full edges, core length =1/<1
and uniform/arbitrary edge weights. For the cases of uniform edge weights an O(nlogn) algorithm has been

*E-mail : (stephen,waern,peso,mthorup)@diku.dk. Department of Computer Science, University of Copenhagen.



given [7]. For this case we present an O(n) algorithm. For arbitrary edge weights the algorithms given
so far have complexities O(nllogn) and O(n?) [7, 9]. In this paper we give two algorithms for all cases.
The first determines the core in O(nl) time and the second uses O(nlogna(n,n)) time. If only full edges
are allowed the complexity of the second algorithm is O(nlogn). The factor a(n,n) comes in because of a
strong relation between the core problem and Davenport-Schinzel sequences [1]. A strong relation between
algorithmic geometry and Davenport-Schinzel sequences has previously been established.

In [10], Minieka and Patel studied conditions under which there is a core containing a median. If their
conditions are not satisfied, they write that “we do not know if a core of length ! will contain [the median]
m. Unfortunately, this situation remains unexplored and as this question remains open, the development of
an efficient algorithm for locating a core of a specified length remains a difficult problem.” We solve Minieka
and Patel’s question in Figure 1, presenting a tree with 35 nodes in which the core of length 10 does not
contain the median. Examples can also be given for ternery trees, essentially replacing the high degree node
with a balanced binary tree, but such ternery constructions needs more than 100 nodes.

median

17 leaves

8 nodes

Vv

Figure 1: A sample tree, in which all edges have length one. An optimal core of length 10 through the median goes
from v to w, and has cost (8-9)/2 + 16 = 52. An optimal core of length 10 that is not required to go through the
median goes from z to y, and has cost 2-6 +17 -2+ 1 = 47.

2 Preliminaries

Let T be a tree with node set V(T') and edge set E(T') and let T be rooted at an arbitrary node. For a node
v € V(T), T, is the subtree in T rooted at v, hence T, is the tree induced by v and descendants of v. With
each edge (v,w) € E(T) a nonnegative integer length length(v,w) is associated. The path from a node u to
anode v in T is denoted P, , and the length of a path P is denoted |P|.

For a path @ in T we use dist(v, @) to denote the distance from a node v € V(T') to @, thus dist(v,Q) =
Minyeq|Py,u|- In the following we will allow endpoints of paths to be points on edges, thus the “u” in this
definition should denote a point on Q. More precisely if (v,w) € E(T), length(v,w) = x and P is a path of
length y < z starting at v towards w, then dist(w,P) = & —y. The case where points on edges are allowed
is called partial and the case where only full edges are allowed is called discrete. Since we are considering
distances between points we will also use the notation dist(z,y) to denote the distance between the points
x and y in T, hence dist(z,y) = | Py yl-

For a path P we define costr(P) = X, cy(r)dist(v, P). Let P be a set of paths. We say € P is a core
with respect to P, if costr(Q) = min{costr(P)|P € P}. We will use the name Core(P) to denote a core
with respect to P. The sets P considered as possible core candidates in this paper satisfies the following
conditions:

(a) The paths have length =1 or length <[, where [ is a nonnegative integer.



(b) The paths are partial or discrete.

The problems can furthermore be divided into whether edge lengths are uniform (i.e. have length one)
or arbitrary nonnegative integers. We thus consider eight problem instances, however in the case of uniform
edge lengths, the partial and discrete problems are the same. Analogous to other path problems (e.g. shortest
path) the actual problem in finding a core is not so much finding a path, but finding the cost. We will thus
concentrate on finding costr(Core(P)) in this paper. The algorithms described are easily extended to finding
a path attaining the cost of the core.

As mentioned in the introduction the core problem is a generalization of the problem of finding a median.
In the median problem it is common that nodes have costs associated. Thus, in order to get the full
generalization, this should also be the case for the core problem. More specifically this would mean that for
a path P, costr(P) = S,y (r)dist(v, P) * cost(v). For reasons of clarity we will assume that cost(v) = 1 for
all v € V unless anything else is stated. The formulas and lemmas deriven are easily extended to the case
where costs of nodes are arbitrarily nonnegative.

3 An O(nl) algorithm for all cases

In this section we give an O(nl) algorithm for finding the core of a tree in all cases. To simplify the description
of the algorithm we assume that partial edges are allowed and the length of the core should be = [. With
minor changes the algorithm will, within the same complexity, also solve the problem in the other cases.
These changes are briefly discussed at the end of the section.

For each subtree we will compute a core containing the root of the subtree. We define MinCost(v) as
the cost of a core containing v in T,,. By considering MinCost(v) for all v we can compute the cost of the
core of T. In order to compute MinCost(v) we will need the values defined as follows.

Definition 1 We define Sizeqouwn(v) to be the number of nodes in T,. Furthermore Sumgpwn(v) is de-
fined as E,cv(r,)|Puw|- Analogously Size,,(v) is the number of nodes in V(T)\V(T,) and Sumyy,(v) =
Ywev(m\v (1) | Pw,w|. Finally we define the extended Sum, Sumj,, . (v) as Yycv(7,)|Puw parent(v)], hence
Sum, (V) = Sumgown(v) + length(parent(v),v) * Sizeqown (V).

Using recursion formulas the Size and Sum values can be found in linear time by traversing 7" in bottom-
up and top-down fashions. Below we give the recursion formula for Sum.

Let v be a node in T" and let wy,...,w; be the children of v.
Sumdown(v) =0, if v is a leaf.
Sumdown(v) = Bi<i<j(length(v, w;) * Sizedown(wi) + Sumdown(w;)), otherwise.
Sum.y(v) =0, if v is the root.
Sum.y,(v) = length(v, parent(v)) * Sizey,(v) + Sumy,(parent(v))

+(Sumgown (parent(v)) — Sumdown(v)), otherwise.

MinCost(v) can be found by combining the cost of two paths that start at v and propagates towards
two different children of v. The cost of such paths will be denoted as DownCost(v, k). More precisely we
have

Definition 2 DownCost(v, k) is the cost of the minimum cost path in T, of length k, which starts at the
root of T,, hence DownCost(v,k) = min{costr,(P,.) | ® is a point in T,,|P, .| = k}. The extended
Downcost, DownCost* (v, k), is the cost of the minimum cost path of length k, which starts at the root of
T, U {(parent(v),v)}.

In order to compute MinCost(v) we will compute DownCost*(w, k), for k = 0..1 for all children w of v.
Note that since the largest distance from a leaf to v could be < I, we can only compute DownCost values
for k = 0..min{l, maz{|P, .| | = € T, }}. In order to make formulas more simple we will w.l.o.g. ignore this
in the following. The lemma below shows how the DownCost values can be computed bottom-up.

Lemma 38 Let v € V(T) and let ¢ denote the length of the edge from v to its parent in T. We have the
following:



DouwnCost*(v, k) = Sumgown(v) + (¢ — k) * Sizeqouwn(v), if ¢ > k
DownCost*(v, k) = DownCost(v,k — c), otherwise.

DownCost(v, k) =0, if v is a leaf.

DownCost(v, k) = Sumdown(v) — maz{Sumy,,,,(w) — DownCost*(w,k) | w is a child of v}, otherwise.O

If we traverse T in a bottom-up fashion and apply the formulas in lemma 3, we can compute DownCost
values for a node v with j children in O(j *[) time. We can therefore compute DownCost values for all
nodes in V(T') in O(nl) time.

We will now show how to compute MinCost(v). If v has only one child MinCost(v) = DownCost(v,l).
Assume that v has only two children, w; and w2. We then have values DownCost* (w1, k) and DownCost* (w2, k)
for k =0..I. We can thus in O(l) time compute MinCost(v) using the formula

MinCost(v) = min{DownCost* (w1, k) + DownCost* (wz,l — k) | k =0..l} (1)

In the general case where v has more than two children we do the following. Assume that w;,...,w; are
the children of v. We cannot use formula 1 directly, since the best core involving nodes from two subtrees,
say T, and T,, is min{DownCost* (w1, k) + DownCost*(wz,l — k) | k = 0..1} + Za<;<jSum},,, . (w;). In
order to get a simple formula we will instead compare how much is saved by using a path in any subtree
T.,- To be more specific we could express formula 1 as

MinCost(v) = Sumgown(v) — maz{Save* (w1, k) + Save*(ws,l — k) | k = 0..1} (2)
where
Save*(w, k) = Sum},,,,,(w) — DownCost*(w, k)

We now proceed as follows. First we compute a core candidate for the first two children by applying
formula 2. We have thus computed a list of Save(-, k) values for both w; and wy. These lists are now merged
into one, by taking min{Save* (w1, k), Save* (ws, k) } for each k = 0..]. By using the merged list of Save values
together with Save* (w3, k) values in formula 2, we can compute MinCost in the tree Ty, U Ty, U Ty, U{v}.
By continuing this process we find MinCost(v).

Before we state the main theorem of this section we look at the case, in which a core should have length
< I. In order to find MinCost(v) in this case we only need to ensure that the DownCost values are correct.
More precisely we should have DownCost* (v, k) = min{DownCost*(v,j) | 0 < j < k} for any node v. By
using the DownCost values computed using lemma 3 as a basis, this is however easily obtained in O(l) time.
Finally we can modify the algorithm to handle the discrete case, by changing the first part of the formula
for DownCost* (v, k) in lemma 3 to: DownCost* (v, k) = oo, if length(parent(v),v) > k.

Theorem 4 Given a tree T' and a nonnegative integerl, let P be a set of discrete or partial paths with length
=1 or < 1. We can compute cost(Core(P)) in O(nl) time.

Proof. The computation of the Size and Sum values are done in O(n) time using bottom-up and top-
down traversals. The computation of DownCost and MinCost values is done by traversing 7" bottom-up.
In this traversal we use O(l) time for each child in 7. This computation thus takes O(nl) time. Since the
cost of a core in T is MinCost(v) + Sumy,(v) for some v, we compute cost(Core(P)) in linear time.O

4 An almost linear algorithm for all cases

In this section we give an O(nlogny(n)) for finding a core in all cases listed in section 2. The function
v(n) depends on whether paths are partial, in which case y(n) = O(a(n,n)), or discrete, in which case
v(n) = O(1). We first present an algorithm with complexity O(n x h % vy(n)), where h is the height of the
tree, measured in the number of edges. Secondly we show how to compress the tree so that h = O(logn),
which establishes the promised complexity.

In this section we will assume that 7" is binary. If this is not the case we do the following: Pick any node
v with more than two children and let wy,ws and w3 be children of v. We insert a new node u as the parent



of wy and wy and insert u as a child of v. We repeat this process until no node can be found with more
than two children. This process gives a binary tree with at most twice the number of nodes as T'. In order
to ensure that the binary tree has the same properties relating to cores as the original, we have to look at
the generalized problem in which nodes have costs associated. We set the cost of a node to be 1 if it is an
original nodes and 0 otherwise. Furthermore we set the length of all inserted edges, that is the edges from
an inserted node to its parent, to be 0. This will ensure the preservation of properties relating to cores. In
the following subsections, we will restrict our attention to looking for a core should of length = [ allowing
for partial edges. At the end of the section, we will outline how to deal with the other cases.

4.1 The structure of DownCost

In the following, we will discuss how to represent DownCost so as to facilitate an efficient computation of
MinCost. )

For a given node v, we can draw DownCost(v,) in a coordinate system as follows. First, for every point
a in T,, where a may be on the middle of an edge, insert the point (dist(v,a), costr, (P,,)). Clearly, the
points on an edge form a straight line. DownCost(v,-) is now the lower envelope of the inserted points, i.e.
DownCost(v, k) is the minimum inserted y-value for z = k. Now

Lemma 5 ([5, 14]) The lower envelope of q straight line segments jumps at most O(qa(q)) times between
the segments.0]

Thus DownCost(v, ) is a piecewise linear function, dividing into m = O(|T,|a(|T,|)) pieces. Such a function
could, say, be represented as a sequence of point pairs:

((3707:[/1)’ (wlazl))a ((mlva)a (anZQ)) ) ((wm—lvym)a (mmazm))

where (z;_1,y;) and (z;, 2;) are the boundary points of the ith piece. Thus DownCost(v, z;) = min{z;, y;+1}
and if z;—1 < z < z;, DownCost(v,z) = y; + %
DownCost(v,xz) = co. We refer to the z; as break points. In the following we will think of any piecewise

linear function f, as being of the above form, and by |f| we then denote the number of break points.

(r —wi—1). Iz < mog or * > T, we define

Observation 6 In the following, let f and g be piecewise linear functions and let §, A, a,b € R.
e Define fi:x— f(x+ )+ A. Then |f1| = |f| and f1 can be constructed in time O(|f]).

e Define fo : x — min{f(z),g(x)}. Then |fo| < 2(|f] + |g]) — 1, and fo can be constructed in time
O(f1+1gl)-

o Define f3: x> f(x)+ g(z). Then |fs| < |f| + |g|, and f3 can be constructed in time O(|f| + |g]).
o p=ming<,<p f(x) is found in time O(|f]).

Proof. Concerning f;, note that we just need to subtract ¢ from all the z;, and add A to all the y; and z;.
To prove |fa] < 2(|f| + |g]) — 1, consider any break point p of fo which is neither a break point of f nor
of g. Then p is the intersection of two straight-line segments of f and g, but then f, cannot break again
until either f or g has broken. Similarly, the breakpoint before p in fy must be from f or g.
Now f5 is constructed by a merge style procedure, where in each step, we either identify a new piece of fs,
or finish the processing of a piece from f or g. The time of this procedure is O(|f2| +|f| +19]) = O(|f] + |gl)-
To prove |f3| < |f| + |g| — 1, we simply observe that any break point in f; must be a breakpoint in f or
in g. The construction of f3 is done in a merge style procedure in time O(|f| + |g|). O

4.2 An O(nha(n)) algorithm

In this subsection, we are so far still restricting our attention to cores of a length = [, on which partial edges
are allowed. In particular, this means that we are working with piecewise linear functions



Lemma 7 Let v be a node with children wy and wy. Given (representations of) DownCost(wy,-) and
DownCost(wy, ), we can construct DownCost*(wy, -), DownCost* (w2, -), DownCost(v,-), and MinCost(v)
in time O(|DownCost(wi,-)| + |[DownCost(ws,-)|) = O(|T,|a(|Ts]])-

Proof. We find DownCost* (w1, z) as the concatenation of ((0, Sum?,,.,.(w1))), (length(v,w1), Sumpown(w1))
and DownCost(w,z — length(v,w1)). DownCost* (ws,-) is constructed symmetrically.
Now DownCost(v,z) is found as

min{DownCost* (wy,x) + Sump . (w2), DownCost* (wa, ) + Sumip ., (w1)}-

Finally
MinCost(v) = 0@1&21 DownCost*(wy, k) + DownCost* (wa,l — k)

Thus, by Observation 6, all the desired values are found in time O (| DownCost(w1, +)|+|DownCost(wa, -)|).
By Lemma 5,

O(|DownCost(wy, )| + | DownCost(ws, )]) = O(|Tu |(|Tuy ) + [ Tug (| Tus])) = O(Tola((T,))
O
Theorem 8 The core of a tree can be computed in O(na(n)h), where h is the height of the tree.

Proof. We apply Lemma 7 bottom-up on all vertices v. For a given vertex v, the computation time is
O(|T,|a(|Ty])). Since no vertex w participates in more than h trees Ty, the result follows. O

4.3 An almost linear algorithm

In the above algorithms, whenever we visit a node v, we look for an optimal core with v as the top-most
node. As a result, a node is involved in a computation every time we visit one of its ancestors, and hence
our complexity has the height h of the tree as a multiplicative factor.

In this section, we will replace the h-factor by a (logn)-factor. When visiting a node v, we will still look
for a core containing v, but the “subtree” it is restricted to, will no longer just be descending from v. Based
on balancing techniques, we will assign subtrees to nodes, so that each node is involved in only O(logn)
subtrees. The previous algorithms are then modified to work with these new subtrees.

4.3.1 Flattening a tree

Consider a tree T' with n nodes. We will now construct a flattened version F(T) of T of height O(logn).
The tree F(T) for T will only be used to describe in which subtree we look for a core. Thus, cost, length
etc. of additional nodes/edges in F(T') have no meaning, since the additional nodes are only used to explain
in which the subtree computation is done.

In order to obtain a tree with height limited to O(logn) we use heavy path division, as described by
Harel and Tarjan [4]. First for each internal v € T, let heavy(v) denote the child of v with the maximum
number of descending nodes. In case of a tie, we pick heavy(v) as the left child. The other child of v is
called light. We say that the edge from a light child to its parent is a light edge. Edges which are not light
are called heavy. The heavy edges partition the nodes in 7" on heavy paths, such that each node belongs to
exactly one heavy path (a leaf, which is not a heavy child, is a heavy path with one node). To compress the
heavy path we will not follow the standard by Harel and Tarjan, but instead use the following lemma.

Lemma 9 ([8]) Given a sequence dy ---dn, of positive real weights, in time O(m), we can construct an
ordered binary tree, such that the depth of the ith leaf is O([log D —logd;]) where D =" d;.0

F(T) is constructed by taking each heavy path, and replace it by the weight balanced tree described in
the above lemma. More specifically, let P = vy -+ -v,, be a heavy path in T and let d; denote the number
of descendants of the light child of v;, below denoted as w(v;). We then construct an ordered binary tree as
described in the above lemma and let the ¢’th leaf be v;.



Lemma 10 F(T') has height O(logn).

Proof. Let vy, ..., v be the nodes from T that we meet on a path from a leaf v; to the root in F(T'). For
each heavy path on this path we meet one node v;, thus k£ < logyn. To get from v; to v;11 we generally
traverse an edge from one balanced tree to another, and O([logw(v;y1) —logw(v;)]) balance edges, that is,
O(2 +log w(vit1) — logw(v;)) edges. Thus a total of

k
Z O(2 +logw(vit1) — logw(v;)) = O(logn + logw(vy)) = O(logn)
=1
O
We note that F(T') only is an abstraction we will use to explain the complexity of finding a core in T'.
In Figure 2 the construction of F(T) is illustrated.

edgein F

- = = heavy edgein T

light edgein T

Figure 2: The weight balanced tree replacing a heavy path.

4.3.2 Flattened core computation

Consider the weight balanced tree t over some heavy path P = v; ---v,, where vy is the node nearest the
root. Let  be a node in ¢, and let P(xz) = v;---v;, i < j, be the segment of P descending from z. Let
tree(x) be the subtree in T' descending from v; excluding the subtree rooted at the heavy child of v;, that
is, tree(x) consists of P(x) as well as all light subtrees of nodes on P(z). For a node z let v; and v; be as
above, lower(xz) = v; and upper(z) = v;. Let T” be the subtree obtain by deleting the heavy child of v and
its descendant from 7. If v is a leaf TV = T. Thus, tree(z) = Tlower(z) N Tupper(z)- Note that if z € T,
P(z) = z.

We say that a path @ in T belongs to z if it is contained in tree(z) and there is no child y of z in the
flattened tree such that @ is contained in tree(y). Clearly, for any path @ in T' we have a unique node z that
@ belongs to. Thus, we identify the core, if for each node z in the flattened tree, we find the path belonging
to it, minimizing the cost in all of T'. In order to facilitate a bottom-up computation of cores in the flattened
tree, we need some functions analogous to the function DownCost from the previous section.

For any node z in F', define the restricted upcost, RestrUpCost(z, k) as the minimum cost in Ttower(z) of g
path of length k in tree(z) starting in lower(z). Similarly, define the restricted DownCost, Restr DownCost(z, k),

as the minimum cost in Typper(z) Of a path of length k in tree(z) starting in upper(z). The realization



that both cost functions are needed is a main point in deriving an efficient algorithm. Observe that both
RestrUpCost and RestrDownCost are the lower envelopes of a set of straight line segments, one for each
edge in tree(z). Hence both of them have O(|tree(z)|a(|tree(x)|) break points.

We are now ready to describe the bottom-up computation of optimal cores. The vertices x of F(T) are
visited in bottom-up order. For each x, we make a series of computations, each taking O(|tree(z)|a(|tree(z)|)
time. In the computation, it is important whether x is a node in T'. Note that the computation will determine
DownCost(v, ) for each root of a heavy path in T.

e Let 2 be aleaf in T. For k = 0, RestrDownCost(x,k) = 0 and RestrUpCost(z,k) = Sumyy(x). For
k > 0, each of the above values become co.

e If z is in T but not a leaf and w is the light child of z, Restr DownCost(z,k) = DownCost*(w, k) +
Sum,_ . (heavychild(z)) and RestUpCost(z, k) = DownCost*(w, k) + Sum.,(z). If £ does not have
a light child, replace DownCost*(w, k) by 0 in the above formulas.

e If z is the root of the balanced tree over some heavy path, DownCost(upper(x), k) = Restr DownCost(z, k).
DownCost* (upper(z),-) is computed from DownCost(upper(z),-) as described in the previous section.

e If x is not in T and = has children y; and y» where P(y;) is above P(y2),
Restr DownCost(x, k) = min{Restr DownCost(yi, k), Restr DownCost(ya, k — 0) + A, f(z)}.
Here § = dist(upper(y1), upper(y=2)) and

A= Z{Sumgown(wﬂw is a light child of a node on path(y1)}.

Finally f is the function corresponding to the edge (lower(y; ), upper(y2)) which has boundary points
(dist(upper(y1),lower(yy)), A+Sum’, ... (lower(yy))) and (dist(upper(y1), upper(yz)), A4+Sum pown(lower(yy))).

The function Restr DownCost(x,-) is computed symmetrically.

Assuming that we are not in the (trivial) case, where the core is contained in the edge (lower(y1 ), upper(y2)),
we can finally compute MinCost(z) as

mkin{RestrDownC’O.st(m, k) + RestUpCost(y1,l — k — length(upper(y=), lower(y1))) }.

The above computation takes time |tree(x)|a(|tree(z)|, |tree(z)|). Since each node participates in O(logn)
tree(x)-values, we conclude

Theorem 11 For a tree T with n nodes, lengths on the edges, and weights on the nodes, we can solve the
discrete core problem in O(nlogn) time and the partial core problem in O(nlogna(n)) time.O

We will now briefly consider the other cases of cores. For the case where cores should have length <[,
for each leaf w in T, for all k > dist(v,w), we have to insert the point (k,c), where ¢ is the cost in T,
of the path from v to w. That is, each leaf gives rise to an extra horizontal line in our coordinate system.
Asymptotically, this does not affect any of the above bounds, so again we get that DownCost(v,-) is a
piecewise linear function, dividing into O(|T,|a(|T,|)) pieces.

In the discrete case, we only need to store the at most |T,| points (k,c) where k is the distance from v
to some node in T and c is the least cost of a path to such a node. Thus, we derive the same complexity for
these cases.

5 A linear time algorithm for the uniform cases

In this section we assume that all edges have length one. This means that the discrete and partial cases are
the same. We present a linear time algorithm for finding a core of length =1 or < I. As an intermediate
step we first present an algorithm which speeds up the algorithm from section 3 in case T has few leaves.



5.1 A faster algorithm for trees with few leaves

In this subsection we show how to speed up the algorithm from section 3 if the number of leaves of T is
small. We will do this by processing simple paths in the tree differently.

Before we describe the algorithm we note the differences in the deriven formulas of section 3 for the
uniform case: The Sum formulas remain unchanged except length(e) = 1 for all e € E(T). The for-
mula for DownCost* in lemma 3 is simplified to: DownCost*(v,k) = DownCost(v,k — 1) for k > 0 and
DownCost*(v,0) = Sumdewn(parent(v)).

Let v be a node with exactly one child w. Since w is the only child of v we have DownCost(v,k) =
DownCost(w,k — 1) for k > 0 and DownCost(v,0) = Sumdewn(v). We can thus get the DownCost(v, k)
values for k¥ = 1..I by copying the DownCost(w,k — 1) values. In the following we give a more detailed
description of this process.

As before, let v be a node with exactly one child w. First assume that w has more than one child. By
using lemma 3 we can compute DownCost(w, k) for k = 0...I. These values are inserted in a cost-list for
w ordered by increasing k. According to the relation between DownCost(v, k) and DownCost(w, k) stated
above, we can remove the last element from this list and insert Sumgewn(v) at the start and obtain a list
containing the values DownCost(v, k) for k = 0..I. Now assume that w has only one child. We then have
a cost-list containing the values DownCost(w, k) for k = 0..I. By repeating the described process - deleting
the last element from the list and adding the element Sumgown(v) as the first element - we obtain a list
containing the values DownCost(v, k) for k = 0..1.

For the case where the length of the core is < I, DownCost(v, k) is the lowest cost of a path of length
< k. Since Sum joun(v) > DownCost(v, k) for all k, the method described above also holds in this case.

For any node v with only one child we will use the processing described above. We compute MinCost(v)
as DownCost(v,1).

Lemma 12 Given a tree T in which edges have length one, let P be the set of paths with length <1 or =1
in T. We can compute cost(Core(P)) in O(bl + n) time, where b is the number of leaves in T

Proof. For each node v with at most one child we use O(1) time and for any other node we use O(l) time
for each of its children. Since the number of children of nodes with more than one child is O(b), we use
O(bl 4+ n) time all together.O

5.2 A linear time algorithm

In this section we show how the O(bl + n) algorithm from section 5.1 can be modified to a linear time
algorithm. Generally speaking, this is done by ignoring subtrees of size < (1/2) — 1.

We define a leaf tree as a subtree in T', in which all nodes has less than (1/2) — 1 descendants. Let R be
the tree from which all leaf trees has been removed.

Lemma 13 The tree R has O(n/l) leaves. O
By lemma 12 and 13 we have the following:
Corollary 14 We can compute MinCost(v) for each node v € R in O(n) time.O

By corollary 14 we can obtain a linear time algorithm if we can process the leaf trees in linear time and
at the same time combine these with R. We first observe that any path in a leaf tree has length < I. We can
therefore compute the best core of length <[ in any leaf tree by using the linear time algorithm for finding a
core of unlimited length [11]. It thus only remains to find the core candidates, which contain nodes from both
R and leaf trees. In order to do this, we should compute DownCost(r,-) for any root, r, of a leaf tree. This is
done in a time linear to the size of the tree in the following way: For each node w at level k, i.e. | P, .,| = k, we
compute costr, (Pr.) top-down using the formula costr, (Pr ) = costr, (Pr parent(w)) — Si2€down(w). Then
we compute DownCost(v, k) as min{costr, (Prw) | |Prw| = k}-

Let v be a node which has a removed child r. The child r has been removed because it is the root of a leaf
tree t. Furthermore let s denote the size of ¢, thus s = Sizeg,un(r). As stated in the discussion above we can



compute DownCost*(r, k), k = 0..height(r), values in O(s) time. We compute MinCost(v), in which we
also consider leaf trees, by using the same approach as in section 3. However in order to keep the complexity
at O(s) we only consider Save(r, k) for k = 0..height(r) when including ¢ in the set of possible locations of
a core. Finally we note that the merging of Save* values described in section 3 is also done in O(s) time for
each leaf tree. The inclusion of leaf trees in the MinCost computations in R is thus done in a time linear to
the combined size of the leaf trees.

The discussion above yields the following;:

Theorem 15 In the case where all edges have length one, we can compute cost(Core(P)) in O(n) time.0
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