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Abstract

Particle-based variational inference (ParVI) methods are a powerful
class of Bayesian inferences algorithms due to their flexible and accurate
approximations. ParVI can interpolate between Markov chain Monte
Carlo (MCMC) and variational inference (VI) methods, and, as such,
ParVI is a suitable candidate for a universal black box inference engine.
Bayesian statistical inference is a cornerstone of the empirical sciences.
However, correctly realizing the algorithms for Bayesian inference is
notoriously tricky and should be left to experts.

Universal black box inference engines (and their associated proba-
bilistic programming language (PPL)) enable the separation of model
specification from statistical inference (data conditioning). This separa-
tion allows scientists to formulate statistical hypotheses (probabilistic
graphical models) as stochastic (probabilistic) computer programs without
implementing the inference algorithm. The black-box nature of the infer-
ence algorithm ensures the PPL can condition the probabilistic program
on experimental observations automatically.

Modern PPLs are generally designed for either MCMC or VI infer-
ence, requiring translation to another PPL for an unbiased comparison.
Tranlation introduces unnecessary overhead and the potential for code
drift–something we can wholly avoid with a generalizing framework like
ParVI.

An auspicious ParVI method is Stein variational gradient descent (Liu and
Wang, 2016a) (SVGD) due to its direct connection with Stein’s method,
gradient flows and reproducing kernels. These connections make SVGD
versatile and well-suited for theoretical analysis, yielding significant re-
sults regarding SVGDs convergence, kernel choice, and convergence rates.
However, the adoption of SVGD by practitioners could be more extensive.
This is partly due to insufficient tooling and a lack of a mature set of
best practices for hyper-parameter choice.

In the first part of this thesis, we extend Stein mixture (SM) (an SVGD
variate) to a whole class of approximate inference algorithms indexed by a
scalar. We recommend the best choice of indexing scalar and demonstrate
why by analyzing the gradient noise. We also present a ready-to-use
library for inference with SM as an extension to the NumPyro PPL. We
call the library EinStein, which includes the black box SM inference
engine, automatic guide generation, many studied kernels, and copiable
examples of Bayesian neural network (Neal, 2012) (BNN)s and Deep
Markov model (Wu et al., 2018) (DMM)s.

In the second part of the thesis, we study the protein structure pre-
diction problem as a showcase for applying PPLs in the natural sciences.
The protein prediction problem aims to predict the (ensemble of) confor-
mation(s) a particular protein may adopt(s) given its sequence of amino
acids (and potentially known protein homologs). A high-fidelity solution
to the problem could have a massive impact on treatment for misfolding
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diseases such as cancer, Alzheimer’s, Huntington’s, and Parkinson’s. A
canonical representation of a protein conformation is its internal (toroidal)
coordinates. Internal coordinates allow efficient updates to the protein’s
three-dimensional structure without violating physiochemical properties.
To infer statistical models over internal coordinate representations, we
introduce a variate of the bivariate von Mises distribution (a 2-torus
distribution) in the (Num)Pyro PPLs. The distribution (known as the
sine distribution) enables us to specify a hierarchical model over the two
high-variance backbone torsion angles. Our model captures probable
angle pairs for each amino acid order of magnitude faster than preexisting
methods.

Finally, we present our preliminary results on inferring a distribution
over protein folding forcefields. Current technologies for protein structure
prediction are excellent at the single-structure forecast. However, these
methods are black box deep models and yield no insights into physio-
chemical properties–sometimes even violating them. Our formulation of
the folding force as a probabilistic program allows us to automate the
other tedious process of tuning protein folding forcefields using our SM
inference engine. We can incorporate the existing (known) hyperparam-
eters by choice of prior. SM ability to capture rich correlations in the
parameter space makes it a suitable statistical inference algorithm for
these forcefields, which tend to be highly sensitive to parameterization.
Presuming our forcefield can fold (small to medium size proteins) proteins,
the parameter distributions will yield insights into the importance (and
sensitivity) of the different (potential) energy terms of the forcefield and
a high-resolution view of the aggregate folding trajectory of the protein.
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Abstrakt

Partikelbaserede variationsinferens (ParVI) metoder er en kraftfuld
klasse af Bayesianske inferensalgoritmer på grund af deres fleksible og
nøjagtige tilnærmelser. ParVI kan interpolere mellem MCMC og VI
metoder, og som sådan er ParVI en passende kandidat til en universel
sort boks-inferensmotor. Bayesiansk statistisk inferens er en hjørnesten i
de empiriske videnskaber. Det er imidlertid notorisk vanskeligt at realisere
algoritmerne for Bayesiansk inferens korrekt og bør overlades til eksperter.
Universal black box-inferensmotorer (og deres tilhørende PPL) muliggør
adskillelse af modelspecifikation fra statistisk inferens (datakonditioner-
ing). Denne adskillelse gør det muligt for videnskabsmænd at formulere
en stor klasse af statistiske hypoteser (sandsynlighed grafiske modeller)
som stokastiske (sandsynlighedsmæssige) computerprogrammer, hvilket
er væsentligt mere ligetil. Konditionering af modellen på eksperimentelle
observationer udføres automatisk af inferensmotoren. Moderne PPL’er
er generelt designet til enten MCMC eller VI inferens, hvilket kræver
oversættelse til en anden PPL for en upartisk sammenligning. Translation
introducerer unødvendig overhead og potentialet for kodedrift - noget vi
helt kan undgå med en generaliserende ramme som ParVI.

En lovende ParVI-metode er en variant af SVGD på grund af dens
direkte forbindelse med Steins metode, gradientflow og reproducerende
kerner. Disse forbindelser gør SVGD alsidig og velegnet til teoretisk
analyse, hvilket giver betydelige resultater vedrørende SVGDs konver-
gens, kernevalg og konvergenshastigheder. Imidlertid kunne vedtagelsen
af SVGD af praktiserende læger være mere omfattende. Dette skyldes
delvist et behov for mere nyttigt værktøj og et modent sæt af bedste
praksis for valg af hyperparametre. I den første del af denne afhandling
udvider vi SM (en SVGD-variat) til en hel klasse af tilnærmede infer-
ensalgoritmer indekseret af en skalar. Vi anbefaler det bedste valg af
indekseringsskalar og demonstrer hvorfor ved at analysere gradientstøjen.
Vi kapitler også et klar-til-brug-bibliotek til inferens med SM som en ud-
videlse til NumPyro PPL. Vi kalder biblioteket EinStein, som inkluderer
den sorte boks SM-inferensmotor, automatisk guidegenerering, mange
studerede kerner og kopierbare eksempler på BNN’er og DMM’er.

I anden del af afhandlingen studerer vi problemet med forudsigelse af
proteinstruktur som et udstillingsvindue for anvendelse af PPLs i naturv-
idenskaberne. Proteinforudsigelsesproblemet har til formål at forudsige
(ensemblet) af konformation(er), et bestemt protein kan antage givet dets
sekvens af aminosyrer (og potentielt kendte homologer). En high-fidelity-
løsning på problemet kan have en massiv indvirkning på behandlingen af
fejlfoldende sygdomme som kræft, Alzheimers, Huntingtons og Parkin-
sons. En kanonisk repræsentation af en proteinkonformation er dens
indre (toroidale) koordinater. Interne koordinater tillader effektive op-
dateringer af proteinets tredimensionelle struktur uden at krænke de
fysisk-kemiske egenskaber. For at udlede statistiske modeller over interne
koordinatrepræsentationer introducerer vi en variant af den bivariate von
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Mises-fordeling (en 2-torus-fordeling) i (Num)Pyro PPL’erne. Fordelin-
gen (kendt som sinusfordelingen) gør det muligt for os at specificere en
hierarkisk model over de to torsionsvinkler i rygraden med høj varians.
Vores model fanger sandsynlige vinkelpar for hver aminosyrestørrelsesor-
den hurtigere end allerede eksisterende metoder. Til sidst præsenterer
vi vores foreløbige resultater om at udlede en fordeling over proteinfold-
ningskraftfelter. Nuværende teknologier til forudsigelse af proteinstruktur
er fremragende til at producere en enkeltstrukturprognose. Disse metoder
er dog sorte boks-dybe modeller og giver ingen indsigt i fysisk-kemiske
egenskaber - nogle gange endda krænker dem. Vores formulering af
foldningskraften som et probabilistisk program giver os mulighed for
at automatisere den anden kedelige proces med tuning af proteinfold-
ningskraftfelter ved hjælp af vores SM-inferensmotor. Vi kan inkorporere
de eksisterende (kendte) hyperparametre ved valg af tidligere. SM evne
til at fange rige korrelationer i parameterrummet gør det til en passende
statistisk inferensalgoritme for disse kraftfelter, som har tendens til at
være meget følsomme over for parameterisering. Forudsat at vores kraft-
felt kan folde (små til mellemstore proteiner) proteiner, vil parameter-
fordelingerne give indsigt i vigtigheden (og følsomheden) af kraftfeltets
forskellige (potentielle) energitermer og et højopløsningsbillede af den
samlede foldningsbane af proteinet.





Statement of intend

The following dissertation is a monograph written during my Ph.D. fellowship
(2020-2023) at the Department of Computer Science, University of Copenhagen.
For coherence, the dissertation focuses on probabilistic programming with
applications in the protein structure prediction problem. In doing so, the
monograph will center only on a selection of the manuscripts I have (co-
)authored during my fellowship.

The following pages contain unaltered text from the selected manuscripts I
originally authored.

Page 9-10 Text from Rønning et al., 2021b and Ola Rønning, Christophe Ley, Ahmad
Salim Al-Sibahi and Thomas Hamelryck, 2023,

Page 19-20 Text from Ola Rønning, Christophe Ley, Ahmad Salim Al-Sibahi and
Thomas Hamelryck, 2023,

Page 43 Text from Rønning et al., 2021a,

Page 59-62 Text from Rønning et al., 2021a,

Page 56 Text from Rønning et al., 2021a,

Page 63-80 Text from Rønning et al., 2021b,

Page 93 Text from Ola Rønning, Christophe Ley, Ahmad Salim Al-Sibahi and
Thomas Hamelryck, 2023 and Rønning et al., 2021b,

Page 95 Text from Ola Rønning, Christophe Ley, Ahmad Salim Al-Sibahi and
Thomas Hamelryck, 2023 and Rønning et al., 2021b.

vii





Acknowledgements

I have enjoyed my time a KU and look forward to continuing my research over
the next year. Many people deserve a special mention for their contribution
to my authoring this thesis. First, I’d like to thank my supervisor Thomas
Hamelryck for guidance and sparring. Second, my co-supervisor Christophe Ley
whose keen eye (and outstanding skill) has fixed several manuscripts. I would
also like to acknowledge the Danish National Research Foundation-FTP (2020)
project: Deep probabilistic programming for protein structure prediction, for
funding my research.

A special mention goes to my loving family, my wife, Marie, whose advice
and support are paramount to any enterprise I endeavor. My children, Sonja
and Konrad–both of whom are growing up faster than I would allow. To my
parents, Kristin and Kjell Bjørn, for letting their youngest son back in their
house once a week and Anne-Dorte Johansen for hosting me and watching
Sonja so I could finish manuscripts.

To my senior colleagues, Fritz Henglein, for saga advice and perspective,
and Eugene Cosmin, whose energy and drive can lift one from the drudgery
that is often modern research. Finally, my office mates, Robert Schenck, Mikkel
Mathiesen, Lys Mareta, and Christian Thygesen, for walking their parallel
paths and sharing their insights.

ix





List of Abbreviations and
Symbols

BNN Bayesian neural network (Neal, 2012). ii, iv, 11, 29, 54, 55

CPU central processing unit. 10, 68, 70, 71

D The finite set of observations D = {xi}i∈I⊆N such that all pairs of distinct
elements xi,xj ∈ X are IID according to (potentially unknown) generating
process p (X). xi, 15–17, 19, 21–23, 25, 26, 35–37, 39–41, 43, 45–47, 83

DMM Deep Markov model (Wu et al., 2018). ii, iv, 56, 58

DPP deep probabilistic programming. 4, 81, 82, 96

EL Expected likelihood kernel. 22

ELBO For distributions p and q such q ≪ p we have that log p(D) ≥
Elog q(z|D)

[(
p(z,D)
q(z|D)

)]
. The inequality is known as the evidence lower

bound. 16, 17, 19, 21, 23, 27, 41, 44, 47, 48, 58

EwS ELBO-within-Stein. 10, 11, 23, 26, 29, 31, 33, 34, 44, 95

FNN feedforward neural network. 56

GPU graphical processing unit. 10, 68, 70

IID Two random variables x and y are independently and identically dis-
tributed if p(x) = p(z) a.e. and p(x,y) = p(x,y). xi

DKL Let p and q be probability measures on a measure space X such that
p ≪ q (p is absolutely continuous wrt. q) then the Kullback-Leibler
(DKL) divergence is given by DKL [p ∥ q] =

∫
X dx log (

p/q) p. 8, 19, 21, 22

KSD kernelized Stein discrepancy (Anastasiou et al., 2021; Liu, Lee, and
Jordan, 2016). 5

xi



xii LIST OF TERMS

MCMC Markov chain Monte Carlo. ii, iv, 4, 5, 8, 9, 16, 43, 95

PDF probability density function. 65, 66

PPL probabilistic programming language. ii–v, 4, 6, 9, 10, 44, 64, 93, 95

RBF Radial basis function kernel k : x,y 7→ exp
(
− 1
h ∥ x− y ∥

2
2

)
for x,y ∈

Rd with d ∈ N and h ∈ R.. 20, 22, 29, 45, 55, 59, 60

RNN recurrent neural network. 7

z We use z as a pronoun for the collection latent (meaning unobserved), the
random variable of a given non-hierarchical statistical model p. The space
of z is given by context. By construction, z flattens all latent parameters
to a tuple.. xi, 8, 15–17, 19–23, 25, 26, 30, 31, 35–37, 39–41, 43, 45–48,
51, 52

SM Stein mixture. ii–v, 11, 16, 17, 21–23, 25, 33, 41, 54, 55

SteinVI Stein based variational inference. 4–6, 8, 9, 11, 43, 44, 49, 61, 93

SVGD Stein variational gradient descent (Liu and Wang, 2016a). ii, iv, 4, 5,
9, 11, 15–17, 19, 20, 22, 29, 43, 45–47, 54–57, 93, 95

SVI stochastic variational inference (Hoffman et al., 2013). 41, 54, 55

TPU tensor processing unit. 10

VAE variational autoencoder (Kingma and Welling, 2013). 11, 29, 30, 33, 41

VI variational inference. ii, iv, 4, 5, 8, 10, 43



Author’s Contributions

[1] Lys Sanz Moreta, Ola Rønning, Ahmad Salim Al-Sibahi, Jotun Hein,
Douglas Theobald, and Thomas Hamelryck. “Ancestral Protein Sequence
Reconstruction using a Tree-Structured Ornstein-Uhlenbeck Variational
Autoencoder”. International Conference on Learning Representations.
2021.

[2] Johan-Frederik Nielsen, Thomas Hamelryck, and Ola Rønning. “General-
ising Stein Variational Gradient Descent Through Rényi’s α-divergence”.
Unpublished (2023).

[3] Ola Røinning, Christophe Ley and Thomas Hamelryck. “Probabilistic
Differential Molecular Simluation”. Unpublished (2023).

[4] Ola Rønning, Christophe Ley, Ahmad Salim Al-Sibahi and Thomas
Hamelryck. “ELBO-ing Stein Mixtures”. Unpublished (2023).

[5] Ola Rønning, Ahmad Salim Al-Sibahi, Christophe Ley, and Thomas
Hamelryck. “EinSteinVI: General and Integrated Stein Variational Infer-
ence”. Unplublished (2021).

[6] Ola Rønning and Thomas Hamelryck. “Variational Energy Conserving
Subsampling”. ProbProg Workshop (2021).

[7] Ola Rønning, Christophe Ley, Kanti V. Mardia, and Thomas Hamelryck.
“Time-efficient Bayesian Inference for a (Skewed) Von Mises Distribution
on the Torus in a Deep Probabilistic Programming Language”. 2021
IEEE International Conference on Multisensor Fusion and Integration
for Intelligent Systems (MFI). 2021, pp. 1–8. doi: 10.1109/MFI52462.
2021.9591184.

[8] Ola Rønning, Yijie Zhang, and Eric Nalisnick. “On the Inconsistency
of Bayesian Inference with Misspecified Bayesian Neural Networks”.
Unpublished (2023).

[9] Robert Schenck, Ola Rønning, Troels Henriksen, and Cosmin E. Oancea.
“AD for an Array Language with Nested Parallelism”. Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis. SC ’22. Dallas, Texas: IEEE Press, 2022. isbn:
9784665454445.

xiii

https://doi.org/10.1109/MFI52462.2021.9591184
https://doi.org/10.1109/MFI52462.2021.9591184


xiv AUTHOR’S CONTRIBUTIONS

[10] Christian B. Thygesen, Ola Rønning, Christian Skjødt Steenmans, An-
ders Bundgård Sørensen, Kanti V. Mardia, John T. Kent, and Thomas
Hamelryck. “A Multiscale Deep Generative Model of Protein Structure
Using a Directional and a Procrustes Likelihood”. Unpublished (2023).



Contents

Statement of intend vii

Acknowledgements ix

Author’s Contributions xiii

Contents xv

I Foundations 1

1 Introduction 3
1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Description of the research project in the context of international

state-of-the-art . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Scientific Contributions . . . . . . . . . . . . . . . . . . . . . . 11

II Description of Select Research Carried Out 13

2 ELBOing Stein Mixtures 15
Ola Rønning1, Christophe Ley2, Ahmad Salim Al-Sibah1and Thomas Hamelryck13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Variational inference . . . . . . . . . . . . . . . . . . . . . . . . 19
Rényi divergence and the variational Rényi bound . . . . . . . 20
The signal-to-noise ratio . . . . . . . . . . . . . . . . . . . . . . 21
The Stein mixture . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 α-indexed SM inference and EwS . . . . . . . . . . . . . . . . . 23
Investigating the signal-to-noise ratio . . . . . . . . . . . . . . . 23
Black-box inference for EwS . . . . . . . . . . . . . . . . . . . . 26

1Department of Computer Science, University of Copenhagen, Denmark
2Département Mathématiques, Université du Luxembourg, Luxembourg
3Department of Biology, University of Copenhagen, Denmark

xv



xvi CONTENTS

2.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.7 Variational Rényi bound . . . . . . . . . . . . . . . . . . . . . . 35
2.8 Characterizing two particle fixed points . . . . . . . . . . . . . 37
2.9 Conditional evidence as Rényi divergence between posteriors . . 39
2.10 Alternative ELBO-within-Stein derivation . . . . . . . . . . . . 40
2.11 Illustrating stein mixtures . . . . . . . . . . . . . . . . . . . . . 41

3 EinStein: General and Integrated SteinVI 43
Ola Rønning4, Christophe Ley5, Ahmad Salim Al-Sibah4and Thomas Hamelryck46

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Stein Variational Gradient Descent . . . . . . . . . . . . . . . . 45
3.3 Stein Mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4 Compositional Implementation using NumPyro . . . . . . . . . 49

Re-initializable Guides . . . . . . . . . . . . . . . . . . . . . . . 49
SteinVI in NumPyro . . . . . . . . . . . . . . . . . . . . . . . . 49
Kernel interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 The (Skewed) Sine Distribution in NumPyro 63
Ola Rønning4, Christophe Ley5, Kanti V. Mardia78and Thomas Hamelryck46

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Toroidal distribution . . . . . . . . . . . . . . . . . . . . . . . . 65

Sine Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Sine Skewing Procedure . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Batch Sampling the Sine Distribution . . . . . . . . . . . . . . 68
Sine Skewing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Mixture Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4Department of Computer Science, University of Copenhagen, Denmark
5Département Mathématiques, Université du Luxembourg, Luxembourg
6Department of Biology, University of Copenhagen, Denmark
7School of Mathematics, University of Leeds, United Kingdom
8Department of Statistics, University of Oxford, United Kingdom



CONTENTS xvii

4.6 Pyro PPL automatic MCMC summary statistics . . . . . . . . 80

5 Probabilistic Differentiable Molecular Simluation 81
Ola Rønning9, Christophe Ley10, and Thomas Hamelryck911

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2 Statistical model . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.3 ProFasi potential . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.4 Pairwise fixed atoms . . . . . . . . . . . . . . . . . . . . . . . . 90

Epilogue 91

Discussion of results 93

Conclusions and perspectives for further research 95

Bibliography 97

9Department of Computer Science, University of Copenhagen, Denmark
10Département Mathématiques, Université du Luxembourg, Luxembourg
11Department of Biology, University of Copenhagen, Denmark





Part I

Foundations

1





Chapter 1

Introduction

One of the great current scientific challenges is the problem of protein structure
prediction. The problem calls for a robust methodology to determine the
3-dimensional structures of proteins. The challenge exists is many variates–
some of which were resolved within the last few years. The scientific interest
stems from falsifying the following hypothesis (known as Anfinsen’s dogma
(Anfinsen, 1973)): the native conformation, the structure of the protein adopts
in a standard environment–is solely determined by the sequence of amino acids
for small globular proteins. Using available tools, efficient methods exist to
compute single structures’ native conformations (Jumper et al., 2021). Yet,
the problem is not solved. Distributions of conformations are the new frontier
(future) of protein structure prediction (Lane, 2023). To logically reason about
uncertainty (quantified as distributions) we must use probability theory and
if we want to be constructive (hence applied), probabilistic programs are the
suitable formalism. Knowing these distributions could lead to tremendous
breakthroughs with regard to understanding and healing diseases such as
cancer, Alzheimer’s, Huntington’s, and Parkinson’s. It could also help more
efficient iteration and development of vaccines, which is timely given the recent
COVID-19 pandemic.

Recent breakthroughs in single structure prediction should be attributed to
advances in deep neural networks (Krizhevsky, Sutskever, and Hinton, 2017;
Hochreiter and Schmidhuber, 1997; Goodfellow et al., 2020; Vaswani et al.,
2017). However, these techniques do not provide insights into the folding
dynamics. Further, like many state-of-the-art prediction methods in machine
learning (ML) and artificial intelligence (AI), they are overly confident in their
predictions (Nguyen, Yosinski, and Clune, 2015; Szegedy et al., 2013) and thus
should not be trusted.

In protein science, deep methods such as AlphaFold(2) fail to account for
the separation of uncertainty due to protein dynamics and uncertainty due to
experimental noise (Thygesen et al., 2021) of observed structures. So while deep
methods, such as AlphaFold (Jumper et al., 2021; Tunyasuvunakool et al., 2021)
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and OmegaFold (Wu et al., 2022), have massively improved structure prediction
of proteins, they remain challenged for highly disordered regions (Wilson, Choy,
and Karttunen, 2022) and proteins with multimodal stable conformation states
(Lane, 2023). The deep techniques further do not adequately account for chemo-
physical constraints. To overcome this lack simulation using experimental force
fields (like the Amber force field (Wang et al., 2004)) are aPPLied post-hoc of
prediction.

Deep probabilistic programming (DPP) is a new paradigm in machine
learning, addressing the problem of uncertainty representation in deep neural
models. DPP is usually embedded domain-specific languages that provide
operators for computing conditional probability distributions (Devroye, 2006;
Ackerman, Freer, and Roy, 2011; Kolmogoroff, 1933). The central construc-
tion of a probabilistic programming language is conditional probability. The
challenge in developing DPPs is twofold. First, the Kolmogorov construction
of conditional distributions (Kolmogoroff, 1933) describes properties that the
conditional probability distribution satisfies rather than a recipe for its compu-
tation. Second, we now know that no general algorithm exists to compute all
conditional distributions (Ackerman, Freer, and Roy, 2011). The upshot of a
DPP is that it combines the scope of deep learning with a statistically sound
treatment of uncertainty (Klenke, 2013).

Given a scientific hypothesis formalized as a statistical model and realized as
a (computable) stochastic program, we generally have two methods for deriving
conclusions (inferring) from data. Variational inference is computationally
efficient but approximate. MCMC is exact, but only the asymptotic regime
(Brooks et al., 2011), so if the chain mixes poorly, it will be burdensome to
explore the entire state space of the model and data. The nomenclature clashes
with that of randomized algorithms (another class of programs well suited for
probabilistic programming) as both VI and MCMC are Monte Carlo algorithms.
That is, they are incorrect with a (sometimes known) probability. In this
thesis, we will explore Stein based variational inference (SteinVI) methods,
which interpolate between VI and MCMC by extending the known SVGD
to restricted mixtures. We will use this novel inference algorithm to capture
distributions of conformations. This will require distributions over protein
structures, a computational framework for inference, and statistical models of
proteins–the three contributions of this thesis.
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1.1 Objectives

Machine learning and uncertainty Statistical inference is a cornerstone
of empirical science (Fisher, 1992; Gelman et al., 1995) and machine learning
(Bishop and Nasrabadi, 2006). Bayesian inference is a general and powerful
formulation of statistical inference but is often computationally burdensome
for complex (e.g., deep) models. Generally speaking, there are two contrasting
approaches to inference. First, variational inference (VI) is an approximate
variant of Bayesian inference (Jordan et al., 1999; Blei, Kucukelbir, and
McAuliffe, 2017) that scales to tall (i.e., many datapoints) and wide (i.e., high-
dimensional) models. VI uses a simple model (called a guide) to approximate
the desired model. SteinVI (Objective 1) realizes the particle method Stein
Variational Gradient Descent (SVGD) (Liu and Wang, 2018a) as a VI method.
Second, Markov chain Monte Carlo (MCMC) is an exact variant of Bayesian
inference (Brooks et al., 2011) with theoretical guarantees about (asymptotic)
convergence, detailed balance (Green, 1995), and ergodicity (Brooks et al.,
2011). However, inference with tall and wide datasets for complex models
requires Google-scale data-centers (Izmailov et al., 2021). Fundamentally Stein
VI operators on the kernel Stein discrepancy kernelized Stein discrepancy
(Anastasiou et al., 2021; Liu, Lee, and Jordan, 2016) (KSD). Minimizing the
discrepancy with respect to a guide for a single particle recovers VI. Minimizing
KSD with respect to a sequence of particles (Chen et al., 2019) is an MCMC
method with properties akin to quasirandom number sequences (see O’neill,
2014 for an overview). This unifying property of SteinVI makes it an attractive
candidate as a best-of-both-worlds universal inference engine for Bayesian
inference.

Generalizing Stein Variational Inference Even though the theory of
SVGD is well-developed, and the implementation in general frameworks like
Pyro (Bingham et al., 2019) are still rudimentary. It is not possible to use
a custom guide (inference program, including deep neural networks) and so
the inference is limited to particles over point masses. We generalize the
implementation in NumPyro (Phan, Pradhan, and Jankowiak, 2019a) to work
with custom guides and integrate techniques such as message passing Stein VI
and higher-order Stein VI for efficiency. This requires proving the interaction
between Stein mixtures and traditional parametric VI methods. We prove this
relation by the Rényi divergence. We use the algorithm to demonstrate we
can model with fewer particles to uncertainty than SVGD while allowing much
more flexible models than now.

Statistical model of protein folding The approach we like to take on
protein folding is close to Nemo (Ingraham et al., 2019), where we rely on a
combination of deep probabilistic programming and differentiable simulation.
We will, however, separate the simulation (model) from the inference of param-
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eters (heuristic) to provide an interpretable model that can guide the scientific
understanding of the protein folding process. Our model will be realized as
a probabilistic program that infers parameterized forces using experimentally
obtained structures and our SteinVI framework. We believe the flexibility of
the SteinVI framework will allow us to conduct efficient data exploration and
give a high-fidelity approximation of the probable energy surfaces capable of
folding proteins.

To realize a new frontier of protein structure prediction, we investigate an
underdeveloped form of variational inference. We develop a computational
framework for inference proving the connection to traditional variational infer-
ence (Objective 1), introduce distributions over torus to PPLs, demonstrating
the inference and the massive computational advantages of modern frameworks
(Objective 2), and develop a physically interpretable hypothesis of protein
folding (Objective 3).
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1.2 Description of the research project in the
context of international state-of-the-art

The classical approach to protein folding is based on minimizing physical
energy functions (Simons et al., 1997), which model the thermodynamics of
the water-protein system. The search space is large and complex, so a naive
search would likely not find structures of the target protein. The traditional
software for physical protein folding, Rosetta (Simons et al., 1997) therefore
relies on a method that assembles proteins from known fragments and then uses
simulated annealing (Henderson, Jacobson, and Johnson, 2006) to randomly
replace fragments and refold until an optimal solution is found. The general
technique often produces excellent results, but the search is computationally
inefficient.

The recent deep-learning revolution has brought renewed interest to solv-
ing the protein folding problem using these recently developed techniques.
DeepMind–a daughter company of Alphabet and world-leading in deep learning–
has developed AlphaFold (Senior et al., 2019; Jumper et al., 2021), a tool for
folding proteins using a deep residual convolutional neural network. Their net-
work beat existing approaches in the latest CASP13 competition (Kryshtafovych
et al., 2019). Their neural network relies on co-evolutionary techniques where
a database of sequences of existing similar proteins provides additional infor-
mation about the input protein and predicts discrete distributions over the
pairwise distances between amino acids and the torsion angles. These predicted
distributions are then combined with a van der Waals smoothing term to
construct a potential function over torsion angles, which is then minimized
using an algorithm that combines evolutionary search and Newton’s method for
predicting the final structure. AlphaFold is inspired engineering and performs
well in practice, but it is not the solution. The main backbone of the model,
the neural network, is deep and impossible to interpret, and the folding process
afterward is not physically relatable. The model only works for proteins where
co-evolutionary information is available. Experimentally obtaining the structure
of proteins is expensive and time-consuming. The chosen features seem ad-hoc
and driven by empirical performance rather than understanding. Furthermore,
no path specifies how to generalize their architecture beyond protein structure
prediction to other similarly complex problems exist. An alternative approach
to deep learning for protein structure prediction is recurrent geometric net-
works (AlQuraishi, 2019). The approach relies on a recurrent neural network
(RNN) that predicts torsion angles and constructs the 3-dimensional structure
on the fly. The architecture is more general than AlphaFold, since it does
not require co-evolutionary information but does not seem to come close in
empirical performance. The RGN architecture is fully black-box but simpler
than AlphaFold.

A hybrid approach to protein folding is Nemo (Ingraham et al., 2019) which
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performs folding using differentiable simulation with an unknown (and learned)
energy function. The simulator acts in physical simulators where an energy
function is minimized to fold the protein. Still, the energy is a deep neural
network rather than chemo-physical properties, and the discretization of the
dynamic is crude. Typically molecular dynamic simulations run for billions
or trillions of steps (Irbäck and Mohanty, 2006), whereas Nemo runs for one
hundred (Ingraham et al., 2019). In particular, the neural network as a vector
field–the change to the structure is computed as a function of the current struc-
ture and its amino acid sequence. A loss function is backpropagated through
the simulation to update the network’s parameterization. The architecture is
fully differentiable, which allows learning and performs well on a large family
of proteins without requiring co-evolutionary information. The folding process,
however, still involves the black-box neural energy function, and so the process
is not necessarily representative of a realistic physically-understandable process.

For complex problems like protein folding, it is, in general, not possible to
perform exact Bayesian inference due to the need to calculate a normalization
constant. There are, however, several techniques to approximate the posterior
distribution. Sampling-based techniques like MCMC (Chib and Greenberg,
1995; Hoffman, Gelman, et al., 2014; Neal et al., 2011; Duane et al., 1987)
approximate the posterior distribution using a set of particles that are drawn
by moving around the parameter space in a way that is driven towards high-
probability regions of the conditioned probabilistic model (representing prior
and likelihood). The approach can capture powerful correlations amongst pa-
rameter values and is guaranteed to converge to the target posterior distribution
is given enough samples. However, MCMC techniques are computationally
expensive and hard to use with mini-batches, making them infeasible for large
and/or complex data sets. An alternative technique to MCMC techniques is
VI (Hoffman et al., 2013; Ranganath, Gerrish, and Blei, 2014). The core idea
of variational inference is to approximate the posterior p(z|x) ∝ p(x, z) using
a tractable distribution q(z) drawn from a family of distributions Q in a way
that minimizes the Kullback-Leibler divergence

q∗ = argmin
q∗∈Q

DKL [q ∥ p]

∝ Ez∼q [log q(z)− log p(x, z)] .

Variational inference scales to massive data sets using mini-batch training,
and can be integrated with deep neural networks for richer models (Kingma and
Welling, 2013; Ritchie, Horsfall, and Goodman, 2016). Traditional parametric
techniques to variational inference, however, assume conditional independencies
for tractability, which result in a lack of correlations between parameters
and over- confidence with regard to uncertainty. Recently, SteinVI (Han
and Liu, 2018; Liu and Wang, 2018a; Liu, Lee, and Jordan, 2016; Liu and
Wang, 2016a; Zhuo et al., 2018) has been developed as a technique that
combines the flexibility of non-parametric (particle-based) methods with the
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scalability of mini-batch-based training available with variation inference. The
technique relies on Stein’s discrepancy (Anastasiou et al., 2021) to guide
particles toward high-probability values while building a repulsive force that
avoids modal collapse. It has been shown to have better mode covering
properties than parametric variational inference, capture correlations, and
MCMC methods, and has excellent per-particle efficiency. It has well-explained
mathematical interpretations as particles following the gradient flow of the
differential geometry and as a technique for matching moments (mean, variance)
of the target posterior. However, SVGD underestimates variance for high
dimensional distributions (Ba et al., 2021) requiring a growing number of
particles to adequately represent the target distribution.

Recently, Stein variational techniques relying on Newton’s method (Detom-
maso et al., 2018) have been shown to solve complex problems with faster
convergence than SVGD accurately. In particular, Stein variational newton
descent works well with inferring parameters of the problem based on the
Langevin equations (Gillespie, 2000), the same fundamental dynamic driving
the simulation we use for protein folding. The protein folding simulator works
with high-dimensional data and sparsity-based dimensionality–reduction tech-
niques may be needed to explore the parameter space effectively. One could
use several approaches to employ SteinVI to learn the simulator’s parameters.
The most straightforward approach would be to divide the protein dataset into
related families, learn a posterior distribution for each family and combine
the result using Bayesian meta-analysis (Blomstedt et al., 2019). The setup is
straightforward and can be a good starting point for inference. More refined
approaches would rely on including deep neural networks in the inference. The
idea is to use amortized Stein inference (Feng, Wang, and Liu, 2017) or rely on
fully Bayesian neural networks with Stein particles representing the weights.

PPL is at the interface between statistics and the theory of programming
languages. PPLs formulate statistical models as stochastic programs that enable
automatic inference algorithms and optimization. Pyro Bingham et al., 2019
and its sibling NumPyro Phan, Pradhan, and Jankowiak, 2019a are PPLs built
on top of the deep learning frameworks PyTorch Paszke et al., 2019, and Jax
Bradbury et al., 2018, respectively. Both PPLs provide simple, highly similar
interfaces for inference using efficient implementations of Hamiltonian Monte
Carlo (HMC), the No-U-Turn Sampler (NUTS), and stochastic variational
inference. They generate variational distributions from a model, automatically
enumerate discrete variables, and support formulating deep probabilistic models
such as variational autoencoders and deep Markov models.

The Sine von Mises distribution and its skewed variant are toroidal dis-
tributions relevant to protein bioinformatics. They provide a natural way to
model the dihedral angles of protein structures, which is important in protein
structure prediction, simulation, and analysis. We present efficient implementa-
tions of the Sine von Mises distribution and its skewing in Pyro and NumPyro
and devise a simulation method that increases efficiency by several orders of
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magnitude when using parallel hardware (i.e., modern central processing unit
(CPU)s, graphical processing unit (GPU)s, and tensor processing unit (TPU)s).
We demonstrate the use of the skewed Sine von Mises distribution by modeling
dihedral angles of proteins using a Bayesian mixture model inferred using
NUTS, exploiting NumPyro’s facilities for automatic enumeration (Obermeyer
et al., 2020).

Stein variational inference is a technique for approximate Bayesian inference
that has recently gained popularity because it combines the scalability of VI
with the flexibility of non-parametric inference methods. While there has been
considerable progress in developing algorithms for Stein VI, integration in
existing PPLs with an easy-to-use interface is currently lacking. EinStein is a
lightweight composable library that integrates the latest Stein VI methods with
the PPL NumPyro (Phan, Pradhan, and Jankowiak, 2019b). EinStein also
provides our novel algorithm ELBO-within-Stein (EwS) to support the use of
custom inference programs (guides), in addition to implementations of a wide
range of kernels, non-linear scaling of the repulsion force (Wang and Liu, 2019a)
and second-order gradient updates using matrix-valued kernels (Wang et al.,
2019a). We illustrate EinStein using toy examples and show results on par
with or better than existing state-of-the-art methods for real-world problems.
These include Bayesian neural networks for regression and a Stein-mixture deep
Markov model, which also shows EinStein scales to large models with more
than 125,000 parameters.
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1.3 Scientific Contributions

In Chapter 2 we make the following concrete contributions;

• We demonstrate that inaccurate gradient estimates can lead to issues
with convergence for SMs.

• We introduce a new family of inference algorithms for SMs indexed by the
parameter α. The family results from connecting inference with SMs to
the Rényi α-divergence and includes the inference algorithm by Nalisnick
and Smyth, 2017 as a special case for α = 0.

• Unlike previous work, our algorithm allows for investigating a range of
values for α for a model of interest. This allows us to investigate the
convergence stability for different α’s by measuring the SN-ratio. We
find that α = 1 is optimal for models with a latent variable for each data
point (local latent variables), resulting in better SN ratios than all other
α values. For models where all datapoints share a latent variable (global
latent variables), using α = 0.5 (corresponding to the Hellinger distance)
is on par with Nalisnick and Smyth, 2017’s algorithm (which corresponds
to α = 0). Other values for α result in worse SN ratios.

• We evaluate our inference algorithm for different values of α on BNN
and variational autoencoder (Kingma and Welling, 2013) (VAE), showing
that the α that results in the highest performance varies depending on
both model and data set.

Chapter 3 is dedicate to the software library EwS detailing its design and
implementation. The contributions of the chapter are;

• We introduce a novel family of algorithms, called EwS, for inferring SMs
based on connecting inference with Stein mixtures to the Rényi divergence.
EwS includes the inference algorithm by Nalisnick and Smyth, 2017 as a
particular case.

• We analyze the signal-to-noise ratio (SNR) of the gradient estimator in
the SVGD update of SM, demonstrating the order of the Rényi divergence
affects SNR.

• We detail our black-box inference library of EwS in NumPyro, which we
call the library SteinVI. SteinVI allows SMs to work with custom guide
programs based on EwS optimization. The library is compositional with
NumPyro features, including support for deep learning, loss functions
(ELBO, Rényi ELBO (Li and Turner, 2016)), and optimization methods,
thus making it possible for SteinVI to grow organically with NumPyro
development.
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In Chapter 4, we look at statistical models of inner coordinate representations
of protein structure. In this chapter, the following are the contributions;

• An efficient implementation of the (2-torus) sine distribution (Singh,
Hnizdo, and Demchuk, 2002) in Pyro and NumPyro.

• An efficient implementation of the sine-skewing procedure (Ameijeiras-
Alonso and Ley, 2021) in Pyro and NumPyro.

• The sine-skewing procedure (Ameijeiras-Alonso and Ley, 2021)

• A Bayesian mixture of sine skewed sine distributions for modeling dihedral
angles in amino acids.

Finally, in Chapter 5, we outline the status of our differential simulator. We do
not have results to share yet. However, we believe results are eminent and the
setting constitutes a largely underdeveloped approach to the folding problem.
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Chapter 2

ELBOing Stein Mixtures
Ola Rønning1, Christophe Ley2, Ahmad Salim Al-Sibah1and
Thomas Hamelryck13

2.1 Introduction

The ability of Bayesian deep learning to quantify the uncertainty of predictions
by deep models is causing a surge of interest in using these techniques (Izmailov
et al., 2021). Bayesian inference aims to describe i.i.d. data D = {xi}ni=1 using
a model with latent a variable z. Bayesian inference does this by computing a
posterior distribution p(z|D) over the latent variable given a model describing
the joint distribution p(z,D) = p(D|z)p(z). We obtain the posterior by following
Bayes’ theorem,

p(z|D) =
∏n
i=1 p(xi|z)p(z)/p(D),

where p(D) =
∫
Z
∏n
i=1 p(xi|dz)p(dz) is the normalization constant. For most

practical models, the normalization constant lacks an analytic solution or poses
a computability problem, complicating the Bayesian inference problem.

SVGD is a recent technique for Bayesian inference that uses a set of particles
Z = {zi}Ni=1 to approximate the posterior p(z|D). The idea behind SVGD is
to iteratively transport Z according to a force field SZ , called the Stein force.
The Stein force is given by

SZ(zi) = Ezj∼qZ [k(zi, zj)∇zj log p(zj |D) +∇zjk(zi, zj)], (2.1)

where k(·, ·) is a reproducing kernel (Berlinet and Thomas-Agnan, 2011),
qZ = N−1

∑
i δzi is the empirical measure on the set of particles Z, δx(y)

represents the Dirac delta measure, which is equal to 1 if x = y and 0 otherwise,
and ∇zj log p(zj |D) is the gradient of the posterior with respect to the j-th

1Department of Computer Science, University of Copenhagen, Denmark
2Département Mathématiques, Université du Luxembourg, Luxembourg
3Department of Biology, University of Copenhagen, Denmark
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particle. The technique is scalable to tall data (i.e. datasets with many data
points) and offers the flexibility and scope of techniques such as MCMC. SVGD
is good at capturing multi-modality (Liu and Wang, 2016b; Wang and Liu,
2019b), and has theoretical interpretations such as a set of particles following
a gradient flow (Liu, 2017) or in terms of the properties of kernels (Liu and
Wang, 2018b).

The main problem is that SVGD suffers from the curse of dimensionality:
variance estimation scales inversely with dimensionality (Ba et al., 2021).
Nalisnick and Smyth, 2017 suggest resolving this by using a Stein mixture (SM).
SMs lift each particle to the parameters of a variational distribution q, also
called a guide. The idea is that each guide in the Stein mixture represents the
density of multiple particles in SVGD, thereby reducing the number of particles
needed to represent a posterior. The Nalisnick and Smyth algorithm introduces
guides by replacing each posterior gradient ∇zj log p(zj |D) in Equation (2.1)
with the corresponding gradient of the marginal log-variational likelihood given
by

log p(D|ϕϕϕj) = logEq(z|D,ϕϕϕj)
[
p(D, z)
q(z|D,ϕϕϕj)

]
. (2.2)

Here, we denote the particles by Φ = {ϕϕϕj}Ni=1 instead of Z = {zi}Ni=1 to empha-
size they parameterize guide components q(z|ϕϕϕi,D). The change in gradient cor-
responds to minimizing DKL[qΦ(ϕϕϕ) ∥ p(ϕϕϕ|D)] rather than DKL[qZ(z) ∥ p(z|D)],
as in SVGD. Note that the line between the model p and guide q becomes
blurred, as p(D|ϕϕϕ) is random in both data (D), as is usually the case, but also
in the guide hyper-parameters ϕϕϕ (Ranganath, Tran, and Blei, 2016; Nalisnick
and Smyth, 2017). To distinguish the two we subsequently refer to p(D) as the
evidence and p(D|ϕϕϕ) as the hierarchical likelihood.

The Stein force using the log hierarchical likelihood, which we call the
hierarchical Stein force SH

Φ , becomes

SH
Φ (ϕϕϕi) = Eϕϕϕj∼qΦ

[
k(ϕϕϕi,ϕϕϕj)∇ϕϕϕj logEq(z|D,ϕϕϕj)

[
p(D, z)
q(z|D,ϕϕϕj)

]
+∇ϕϕϕjk(ϕϕϕi,ϕϕϕj)

]
,

(2.3)
where qΦ is an empirical measure analogous to qZ .

Inference converges (i.e. reaches a fixed point) when SH
Φ (ϕϕϕi) = 0 for all

particles, meaning all gradients in SH
Φ must cancel (i.e. sum to zero). However,

computing the gradient of the log-variational likelihood requires numerical
estimation as analytical solutions do not exist for most models. Hence, we
cannot expect the inference converges with noisy gradient estimations as the
Stein force will compensate for the error in the gradient by a counterforce
in the next iteration. Therefore, SM require good (i.e. low relative variance)
gradient approximations; otherwise, the particles will fluctuate around a fixed
point without reaching it. We demonstrate that replacing the log hierarchical
likelihood with the ELBO can provide better (lower relative variance) gradient
approximations. We call the new algorithm ELBO-within-Stein (EoS). We
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connect EoS with the algorithm proposed by Nalisnick and Smyth, 2017 in
terms of computing the gradient of different orders of the variational Rényi
(VR) bound (Van Erven and Harremos, 2014). Similarly to the ELBO, the VR
bound is a lower bound of the evidence, p(D), also called the normalization
constant, and is given by

p(D) ≥ 1

1− α
logEq(z|D,ϕϕϕ)

[(
p(D, z)
q(z|D,ϕϕϕ)

)1−α
]
, (2.4)

where α ≥ 0 is known as its order4. Understanding the inference of SM in
terms of the VR bound yields insight into the behavior of the two algorithms,
as we can now understand α as controlling the variance of each component of
the guide. Furthermore, presuming accurate gradient approximation for all
(viable) values of α, the connection leads to a family of inference algorithms
indexed by the VR bound order.

After reviewing SVGD, the Rényi divergence, and the signal-to-noise ratio
(SN-ratio) that is used to estimate the relative variance in Section 2.2, we make
the following contributions:

• We demonstrate that inaccurate gradient estimates can lead to issues
with convergence for SM.

• We introduce a new family of inference algorithms for SM indexed by the
parameter α. The family results from connecting inference with SM to
the Rényi α-divergence and includes the inference algorithm by Nalisnick
and Smyth, 2017 as a special case for α = 0.

• Unlike previous work, our algorithm allows for investigating a range of
values for α for a model of interest. This allows us to investigate the
convergence stability for different α’s by measuring the SN-ratio. We
find that α = 1 is optimal for models with a latent variable for each data
point (local latent variables), resulting in better SN-ratios than all other
α values. For models where all datapoints share a latent variable (global
latent variables), using α = 0.5 (corresponding to the Hellinger distance)
is on par with Nalisnick and Smyth, 2017’s algorithm (which corresponds
to α = 0). Other values for α result in worse SN-ratios.

• We evaluate our inference algorithm for different values of α on Bayesian
neural networks (BNNs) and variational autoencoders (VAEs), showing
that the α that results in the highest performance varies depending on
both model and data set.

4The VR bound can be extended to α ∈ R. We presume α is finite, but we allow α to be
less than or equal to zero (Van Erven and Harremos, 2014)
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• We describe a black-box inference algorithm for our proposed family of
inference algorithms and provide a software library, called EinSteinVI,
in NumPyro.

In Section 2.4 we discuss related work. We benchmark our algorithm in
Section 2.5. Finally, we summarize our results in Section 2.6.
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2.2 Background

Variational inference

Let z be a latent variable of interest-taking values in a space Z ⊆ Rd (up to a
diffeomorphism) and D = {xi}n∈I⊆N be a set of i.i.d. observations. For many
models, exact Bayesian inference is computationally impracticable due to the
cost of evaluating the evidence p(D). Therefore, practitioners turn to tractable
approximate variational inference (VI).

VI aims to bring a computationally cheap variational distribution q(z|D)
close to the model posterior. Typically, we measure closeness by the Kullback-
Leibler divergence (DKL), i.e. DKL [q(z|D) ∥ p(z|D)]. However, we generally
avoid directly evaluating DKL [q(z|D) ∥ p(z|D)] as this requires evaluating the
evidence, p(D). We will concern ourselves with two types of VI.

The first type of VI searches for a parameterization ψ∗ of q in a family
of distributions Q that minimizes the divergence to the posterior. When the
divergence is measured by DKL, this type of VI is made tractable by maximizing
the evidence lower bound (ELBO), that is

ψ∗ = argmax
ψ

(log p(D)−DKLq(z|D;ψ) ∥ p(z|D))

= argmax
ψ

Eq(z|D)

[
log

p(D, z)
q(z|D;ψ)

]
.

The second type of VI we consider is particle-based methods and is the focus
of this article. This type of VI relies on transporting a finite set of particles
such that their empirical measure is close to the posterior. We will discuss this
method in detail below.

Stein variational gradient descent (SVGD) The core idea of SVGD
is to perform inference by approximating the target posterior distribution
p(z|D) by an empirical distribution qZ(z) = N−1

∑
i δzi(z) based on a set

of particles Z, where Z = {zi}Ni=1. One could thus see the approximating
distribution qZ(z) as a (uniform) mixture of point estimates, each represented
by a particle zi ∈ Z. The SVGD algorithm minimizes the Kullback-Leibler
divergence DKLqZ(z) ∥ p(z|D) between the approximated and the true posterior
by iteratively updating the particles using the following expression:

zi+1 ← zi + ϵSZ(zi)

where ϵ is the learning rate and SZ denotes the Stein force.

The two forces of SVGD The Stein force SZ consists of two underlying
forces that work additively, with SZ = S+

Z + S−
Z . The attractive force is given

by
S+
Z (zi) = Ezj∼qZ [k(zi, zj)∇zj log p(zj |D)]
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and the repulsive force by

S−
Z (zi) = Ezj∼qZ [∇zjk(zi, zj)]. (2.5)

Here k : Rd × Rd → R is a kernel. The attractive force can be seen as
pushing the particles towards the modes of the true posterior distribution,
smoothed by some kernel. The repulsive force stops particles with high kernel
values from collapsing onto each other.

For an example of a kernel, consider the radial basis function kernel (RBF)
k(zi, zj) = exp

(
− 1
h ∥ zi − zj ∥22

)
with bandwidth parameter h, chosen as

1
logNmed(Z), where med is the median operator.

The repulsive force moves particles away from each other, ensuring that
they do not collapse onto the same mode. For the RBF kernel, the repulsive
force becomes

Ezj∼qZ
[
∇zjk(zi, zj)

]
=
∑
j

−2

h
k(zi, zj) (zi − zj) · 1d,

where · is the (euclidean) inner product and 1d is a d-dimensional one vector. It
follows that zi is pushed away from zj when k(zi, zj) is large. The computational
cost of SZ is quadratic in the size of Z, i.e. O(N2), which makes SVGD
computationally burdensome for high-dimensional posteriors. For a particle
method such as SVGD, the number of particles required to represent a posterior
distribution adequately is inversely proportional to the dimensionality.

SVGD suffers from the curse of dimensionality (Ba et al., 2021), which
results in variance collapse (i.e. variance is underestimated). Wang, Zeng,
and Liu, 2018a demonstrates the problem with a simple factorized Gaussian,
suggesting the (RBF) kernel introduces global statistical dependence driving the
need for particles up for accurate representation. Ba et al., 2021 demonstrate
that the collapse is due to the deterministic update of the attractive force. They
do this by showing that re-sampling the particles at each iteration eliminates
the underestimation of variance. Note that their particle re-sampling scheme
by Ba et al., 2021 is not generally tractable; hence, it is not a practical solution.

Rényi divergence and the variational Rényi bound

The Rényi divergence (Rényi, 1961) is a family of divergences between distri-
butions p and q indexed by the order parameter {α|α ∈ R+/{0, 1}, |Dα| <∞}.
The divergence is given by

Dα [p ∥ q] =
1

α− 1
log

∫
p(z)αq(z)1−αdz.

The Rényi divergence can be extended to α ∈ {0, 1,∞} by continuity. In
addition, if we allow for Dα[p ∥ q] ≤ 0, the order can be further extended to
α ∈ R (Van Erven and Harremos, 2014). Several orders correspond to known
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divergences (see (Van Erven and Harremos, 2014) and (Li and Turner, 2016)
for an overview). In particular, α = 1 corresponds to DKL.

Analogous to the use of the DKL in the ELBO, Dα leads to a variational
Rényi bound (Li and Turner, 2016) which, when formulated as used with SMs,
is given by

log p(D)−Dα [q(z|D,ϕϕϕ) ∥ p(z|D)] = (2.6)

1

1− α
logEq(z|ϕϕϕ)

[(
p(z,D)
q(z|D,ϕϕϕ)

)1−α
]
. (2.7)

Note that model hyper-parameters (ϕ) in the variational posterior, q(z|D,ϕϕϕ),
are lifted to random variables when doing inference with SMs. See Section 2.7
for the derivation of Equation (2.6). Assuming reparameterization of z is
possible, we can approximate the gradient Λ(ϕϕϕ) of Equation (2.6) using Monte
Carlo integration by

ΛK(ϕϕϕ) =
K∑
k=1

ωαk (Z,D)∇ϕϕϕ log
(
p(Zk,D)
q(Zk|D,ϕϕϕ)

)
, with Zk ∼ q(z|D,ϕϕϕ), (2.8)

where K ∈ N number of draws used to compute the VR bound and

ωαk (z,D) =
1

C

(
p(D, zk)
q(zk|D,ϕϕϕ)

)1−α
, with C =

K∑
i=1

(
p(D, zi)
q(zi|D,ϕϕϕ)

)1−α
. (2.9)

We provide the derivation in Section 2.7.

The signal-to-noise ratio

The signal-to-noise (SN) ratio was introduced by Rainforth et al., 2018 to study
the effect of tighter variational bounds on gradient estimation. The SNR is
given by

SNRM,K(ϕϕϕ) =

∣∣∣∣∣∣
E
[
∆α
M,K(ϕϕϕ)

]
σ
[
∆α
M,K(ϕϕϕ)

]
∣∣∣∣∣∣ , (2.10)

where σ[·] is the standard deviation, M,K ∈ N are the number of Monte Carlo
draws, and ∆α

M,K(ϕϕϕ) derives from rewriting Equation (2.8) in the form

∆α
M,K(ϕϕϕ) =

1

1− α
1

M

M∑
m

∇ϕϕϕ log

[
1

K

K∑
k=1

(
p(Zm,k,D)
q(Zm,k|D,ϕϕϕ)

)1−α
]
. (2.11)

Here, we separate tightening the bound (by increasing K) from reducing the
noise in the gradient estimation (by increasing M). If the rate at which the
expected gradient decreases is faster than the rate of decrease of the variance,
the gradient estimates worsen as K increases. The counter-intuitive implication
is that a tighter bound can worsen the gradient estimation.
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The Stein mixture

Variational inference with SMs (Nalisnick and Smyth, 2017) approximates the
target posterior distribution p(z|D) by letting the Stein particles Φ = {ϕϕϕi}Ni=1

parameterize guide programs, q(z|ϕϕϕi,D). A SM yields a mixture marginal
variational posterior, p(z|D) ≈ 1/|Φ|

∑
ϕϕϕ∈Φ q(z|ϕϕϕ,D), from which it takes its

name. Formally, SM is a hierarchical variational model (HVM) (Ranganath,
Tran, and Blei, 2016) with an empirical measure of particles qΦ (defined
in the same way as qZ) as its variational posterior, a uniform variational
prior, and variational likelihood Eq(z|D,ϕϕϕ) [p(D,z|ϕϕϕ)/q(z|D,ϕϕϕ)]. Similarly to SVGD,
SM minimizes DKL(q(ϕϕϕ) ∥ p(ϕϕϕ|D)) by iteratively transporting the particles
according to the following expression

ϕϕϕi+1 ← ϕϕϕi + ϵSH
Φ (ϕϕϕi)

where ϵ ≥ 0 is the learning rate and SH
Φ is the hierarchical Stein force.

The attractive force of SM Like SVGD, SM also makes use of two additive
forces, SH

Φ = SH+
Φ + S−

Φ . The repulsive force S−
Φ is the same as in SVGD, given

by Equation (2.5). The attractive force is given by

SH+
Φ (ϕϕϕi) = Eϕϕϕ∼qΦ

[
k(ϕϕϕi,ϕϕϕ)∇ϕϕϕ logEq(z|ϕϕϕ)

[
p(D, z)
q(z|D,ϕϕϕ)

]]
,

where k : Rd×Rd → R is a kernel. From the construction of SVGD, we require
that the kernel has the reproducing property, so the kernel is dense in the space
of continuous functions. If we choose Gaussian guides, the expected likelihood
(EL) kernel (Jebara, Kondor, and Howard, 2004) is a natural choice because
it accounts for the geometry of q(z|D,ϕϕϕj) and reduces to the RBF kernel for
fixed variance, which is a reproducing kernel. The EL kernel is given by

k(ϕϕϕi,ϕϕϕj) =

∫
q(z|D,ϕϕϕi)q(z|D,ϕϕϕj)dz = ⟨q(z|D,ϕϕϕi), q(z|D,ϕϕϕj)⟩L2 ,

where L2 is an inner product and k is a positive definite kernel.
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2.3 α-indexed SM inference and EwS

To see the connection between the hierarchical Stein force given in Equation (2.3)
and the Rényi divergence, consider the gradient of the log hierarchical likelihood
(that occurs in SH+

Φ ) and the VR bound given in Equation (2.6) for α = 0.
Presuming the support of the variational likelihood q(z|ϕϕϕ) is a subset of the
support of the prior of p, supp(q(z|ϕϕϕ)) ⊆ supp(p(z)), the gradient of the log
hierarchical likelihood is given by

∇ϕϕϕ log p(D|ϕϕϕ) = ∇ϕϕϕ logEq
[
p(D, z)
q(z|D,ϕϕϕ)

]
(α = 0,Equation (2.6))

= ∇ϕϕϕ (log p(D)−Dα=0[q(z|D,ϕϕϕ) ∥ p(z|D)])
= −∇ϕϕϕDα=0[q(z|D,ϕϕϕ) ∥ p(z|D)]. (2.12)

From Equation (2.12), we see that the gradient of the log marginal likeli-
hood is exactly the gradient of the difference between the score log p(D), on
the one hand, and the Rényi divergence (at α = 0) between the variational
posterior q(z|ϕϕϕ) and the model posterior p(z∥D), on the other hand. Thus,
Equation (2.12) shows that the attractive hierarchical force (SH+

Φ ) pushes the
components of the variational posterior, q(z|D,ϕϕϕ), towards the model posterior,
p(z|D), see Section 2.9 for details. The equivalence in Equation (2.12) suggests
a whole class of hierarchical attractive forces indexed by the order α of the
VR bound. Note that choosing α ̸= 0 means we lose the interpretation of
the attractive force as moving the particles towards the nearest peak of the
conditional evidence. Assuming our marginal variational posterior q(z|ϕϕϕ) is
reparameterizable, we can approximate the attractive force for any α ≥ 0 as

Sα+Φ (ϕϕϕi) = Eϕϕϕ∼qΦ [k(ϕϕϕi,ϕϕϕ)ΛK(ϕϕϕ)] , (2.13)

where ΛK(ϕ) is given by Equation (2.8). We call inference with Equation (2.13)
α-indexed SM inference. There are two special cases of α that are worth
highlighting. The first is α = 1/2, for which the Rényi divergence corresponds
to the Hellinger divergence (Van Erven and Harremos, 2014; Li and Turner,
2016). The second is α = 1, corresponding to the DKL-divergence. The VR
bound recovers the ELBO in this case. We call this instance of our α-indexed
SM inference algorithm EwS. In Section 2.10, we show that we can recover the
α = 1 case directly by applying Jensen’s inequality to the conditional evidence.

Investigating the signal-to-noise ratio

Estimation of a SM converges when SHΦ = 0, meaning that the repulsive and
attractive forces must be equal and opposite to cancel. Hence, convergence
requires ∆α

M,K(ϕϕϕ) and ∇ϕϕϕ1k(ϕϕϕ1,ϕϕϕ2) to be accurate. In Figure 2.1, we demon-
strate the effect of inaccurate gradient approximations. To study the sensitivity
of gradient approximations to the choice of α, we measure the SN-ratio (see
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(a) Low accuracy gradient approximation

(b) High accuracy gradient approximation

Figure 2.1: Two particle system at a theoretical fixed point. The blue arrows
indicate the magnitude and direction of the attractive force, the red arrows
show the repulsive force, and the black arrows the Stein force. Note that
Figure 2.1b has no Stein force as expected for a converged system.
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Equation (2.10)) of the VR bound gradients (see Equation (2.6)). We simulate
data {xi}ni=1 from a simple latent variable model given by N (D|z, Id)N (z|µµµ, Id),
where µµµ ∈ Rd is unknown and Id is the d-dimensional identity matrix. To
approximate its posterior, we use a SM of the form

1/2 (N (ϕϕϕ1, 3/2Id) +N (ϕϕϕ2, 3/2Id)) ,

and an expected likelihood kernel. We choose a (computationally convenient)
fixed variance such that the SM cannot exactly recover the posterior. We can
see this as the posterior is unimodal, which is only the case for the SM if
|ϕϕϕ1 −ϕϕϕ2| < 3 (Behboodian, 1970), but in this interval, the variance of the SM
will be greater than or equal to 3/2. With the expected likelihood kernel, we
can analytically characterize all fixed points for the Stein particles as

−∇ϕϕϕ1
1

1− α
logEq(z|ϕϕϕ1)

[(
p(z,D)
q(z|ϕϕϕ1)

)1−α
]
=

∇ϕϕϕ2
1

1− α
logEq(z|ϕϕϕ2)

[(
p(z,D)
q(z|ϕϕϕ2)

)1−α
]
.

See Section 2.8 for the derivation. To measure the effect of gradient approxi-
mation on the system, we use Equation (2.11) to estimate the gradients.

To conduct our experiment, we sample the location µµµ from a 20-dimensional
standard Gaussian and use this µµµ to simulate n = 64 data points D. We then
approximate the gradients at a random point close to a fixed point

(ϕϕϕ1,ϕϕϕ2) =

(
µµµ+ nD
n+ 1

+∇ϕϕϕ1∆
α
M,K(ϕϕϕ1) + ϵ,

µ+ nD
n+ 1

+∇ϕϕϕ2∆
α
M,K(ϕϕϕ2)

)
,

where D is the data average, µ+nD/n+1 is the posterior mean and ϵ offsets each
dimension by a Gaussian with mean zero and variance 0.01.

Figure 2.2a illustrates the experimental setup in two dimensions. For
legibility in Figure 2.2a, we do not include the perturbation (i.e., added ϵ noise)
on ϕϕϕ1 to the visualization. The contours correspond to the exact posterior. As
the particles are placed equidistant from the posterior mean (marked with a
blue cross), the Stein forces are zero in this setting. As we would expect (see
blue arrows in Figure 2.2a), the gradient estimations of ∇ϕϕϕ∆α

M,K are equal and
opposite for the two particles.

For α ̸= 1 we fix M = 1 and vary K, while for α = 1 we fix K = 1 and vary
M . We do not need to consider α ̸= 1 when K = 1 as the associated gradient
scaling (1− α) cancels in the SN-ratio. We empirically estimate the SN-ratio
by estimating the expectation and standard deviation from 10, 000 gradient
samples. In Figure 2.2b we show a local variate of the model where there is
a latent variable zi for each xi ∈ D. We see that for α ≠ 1 the SN-ratio does
not depend on the particular choice of α and that that of α = 1 supersedes
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the growth in SN-ratio. This means there is little to no benefit in increasing
K beyond K = 1, for which we recover the ELBO gradient when the guide is
reparameterizable (see Section 2.2). In Figure 2.2c we evaluate a global latent
variable variate of the model so that there are one z for all datapoints in D. As
with the local version, we fix either M or K. For this model, we see that α = 0
and α = 1/2 achieve the highest SN-ratio. The result aligns with the BNN
example, where α = 1 is not dominating in performance over the α ∈ {0, 1/2}
on all datasets.

High precision is desirable to avoid fluctuation at convergence. The above
results show that α = 0 is not necessarily the best choice for precise (high
SN-ratio) gradient estimation. In particular, for local latent variable models,
α = 1 is a better choice, and for that, for global latent models, α = 1/2 is on
par with α = 0 in our experiment.

Black-box inference for EwS

We provide a mini-batch version of EwS, called EinStein, in NumPyro. Com-
puting the VR bound requires all the data points; that is, we cannot represent
the bound as a point-wise expectation, except for α = 1. Therefore, to make
EinStein scalable to tall data, we provide an approximation of the VR bound
which replaces the likelihood by pI(D|z,ϕϕϕ) =

∏
i∈I p(xi|z,ϕϕϕ)

|D|/|I|, where I is a
subset of a permutation of the data indices. The approximate attractive force
Sα+Φ (ϕϕϕ) used in EinStein is given by

Sα+Φ (ϕϕϕi) =

Eϕϕϕ∼qΦ

[
k(ϕϕϕ,ϕϕϕi)∇ϕϕϕ

1

1− α
logEqI(z|D)

[(
pI(D|z,ϕϕϕ)p(z)
qI(z|D,ϕϕϕ)

)1−α
]]

, (2.14)

which recovers the exact VR bound when |I| = |D|. We describe the NumPyro
integration and provide example programs in Chapter 3.
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(a) Experimental setup.

(b) SN-ratio convergence with a local latent
variable.

(c) SN-ratio convergence with a global la-
tent variable.

Figure 2.2b and Figure 2.2c show the convergence of the SN-ratio (see Equa-
tion (2.10)) as we tighten the VR bound by increasing either K or M . We
only show the SN-ratio for the first particle (ϕϕϕ1) as the behaviour for the
second particle is the same. For the ELBO (α = 1), we fix K = 1 and in-
crease M to reduce the gradient approximation variance, while for the rest
(α ∈ {0, 0.5, 2, 10}), we fix M = 1 and increase K to tighten the VR bound.
In Figure 2.2b, there is a latent variable for each data point. Note how the
SN-ratio only improves with tightness for α = 1 (green line). In Figure 2.2c all
data points share a latent variable.
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2.4 Related Work

Nalisnick and Smyth, 2017 first suggested Stein mixtures as an alternative to
HVMs (Ranganath, Tran, and Blei, 2016). Using SVGD allows Stein mixtures
to side-step the need of HVMs for an auxiliary distribution to keep the bound
(learning objective) tight. This is an improvement as the effect of the auxiliary
distribution on the approximation is implicit and therefore hard to understand,
whereas with Stein mixtures the choice of kernel controls the tightness and we
have theoretical understanding of kernels (Wang et al., 2019b; Gorham and
Mackey, 2017; Liu and Wang, 2018b).

Mixture approximations have a long history of work (Jaakkola and Jordan,
1998; Bishop et al., 1997; Gershman, Hoffman, and Blei, 2012; Miller, Foti, and
Adams, 2017) focusing on approximating or lower-bounding the intractable
mixture ELBO.

Van Erven and Harremos, 2014 unifies a number of variational techniques
by considering them as optimizing different orders of the VR bound. They
further demonstrate that two different variants of mini-batch training with the
VR bound recover Stochastic EP (Li, Hernández-Lobato, and Turner, 2015)
and Black-box α (Hernandez-Lobato et al., 2016), respectively.

The Rényi divergence has been studied in other forms under the name
α-divergence (Amari, 2012; Tsallis, 1988). Hernandez-Lobato et al., 2016 intro-
duced a black-box algorithm for variational inference based on the α-divergence
using automatic differentiation. Unlike our algorithm, their algorithm is not
for HVMs. Rainforth et al., 2018 demonstrated that for VAEs the gradient
estimation degrades for multi-sample approximations when using the impor-
tance weighted variational autoencoder (IWAE) bound (Burda, Grosse, and
Salakhutdinov, 2015). Furthermore, Rainforth et al., 2018 showed that this is
not the case when using the ELBO. Rainforth et al., 2018 differs from our work
in that the VAEs estimated are with a point mass guide, as their inference
algorithm is not for HVMs.

Le et al., 2020 investigates the deterioration experimentally, providing
evidence for it on several real world tasks. Tucker et al., 2018 show that
by double reparameterizing the gradient estimator, they can eliminate the
degrading SN-ratio for multi-sample estimation of the IWAE gradient, among
others.
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Table 2.1: Average RMSE (lower is better) test results for BNNs on UCI
benchmark. EoS (ours) corresponds α = 1, Hell (ours) to α = 0.5, and SM
(Nalisnick and Smyth, 2017) to α = 0. Parentheses mean we use Dirac delta
guides. EoS and Hell gives the best results.

Average Root Mean Squared Deviation (RMSE)
Dataset EoS Hell SM SVGD MFVI Laplace

Boston 3.5± 0.82
(2.8± 0.4)

3.92± 1.3
(2.71± 0.26)

3.9± 1.29
(2.715± 0.263) 2.86± 0.23 3.28± 0.1 3.68± 0.33

Concrete 5.76± 0.55
(4.61± 0.34)

6.55± 0.63
(5.2± 0.3)

6.51± 0.59
(5.23± 0.32) 5.54± 0.33 5.6± 0.3 5.22± 0.43

Energy 0.53± 0.05
(0.45± 0.03)

0.94± 0.15
(0.67± 0.03)

0.81± 0.16
(0.74± 0.05) 1.30± 0.08 1.75± 0.15 0.46± 0.03

Naval 0.04± 0.04
(0.00± 0.00)

0.004± 0.001
(0.001± 0.00)

0.004± 0.002
0.001± 0.000

0.007± 0.000 0.000± 0.00 0.00± 0.00

Wine 0.6± 0.038
(0.07± 0.00)

0.61± 0.03
(0.08± 0.00)

0.61± 0.03
0.08± 0.00

0.62± 0.04 0.59± 0.04 0.61± 0.01

Yacht 1.76± 0.41
(0.45± 0.03)

1.66± 0.65
(0.67± 0.03)

1.61± 0.5
(0.74± 0.05) 1.11± 0.3 4.09± 0.34 2.16± 0.37

Power 4.04± 0.16
(3.91± 0.18)

4.15± 0.21
(3.98± 0.19)

4.16± 0.21
(3.97± 0.2) 4.06± 0.17 3.94± 0.18 3.99± 0.17

Table 2.2: Summary statistics of datasets from the UCI regression benchmark.

Dataset Data points Feature count

Boston (Harrison Jr and Rubinfeld, 1978) 506 13
Concrete (Yeh, 1998) 1030 8
Energy (Tsanas and Xifara, 2012) 768 8
Power (Tüfekci, 2014) 9568 4
Protein (Rana, 2013) 45730 9
Year (Bertin-Mahieux et al., 2011) 515345 90

2.5 Examples

We evaluate α-indexed Stein mixture inference by inferring BNNs and VAE
on standard datasets. We use the BNNs for regression on the UCI regression
benchmark (the same as Hernández-Lobato and Adams, 2015) and VAE for
unsupervised learning on MNIST (Salakhutdinov and Murray, 2008; LeCun
et al., 1998) and OMNIGLOT (Lake, Salakhutdinov, and Tenenbaum, 2013).

Bayesian neural networks For brevity, we present BNNs for the subset of
the UCI regression benchmark

We compare ELBO-within-Stein for α ∈ {0, 0.5, 1} on BNNs regression
point mass (Dirac delta) guide and a RBF kernel. With EwS we recover a
variant of SVGD with a VR gradient rather than the score function. Like Liu
and Wang, 2016b, we use a BNN with one hidden layer of size fifty and a RELU
activation. We put a Gamma(1, 0.1) prior on the precision of the neurons and
the likelihood. For both versions we use 5 particles and update Year for 40
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epochs, Protein for 100 epochs and 500 epochs for the rest. We use Adagrad
(Duchi, Hazan, and Singer, 2011) with a step size of 0.05 and a subsample size
of 100. All measurements are repeated five times and obtained on a GPU5.

All datasets use real-valued features. We use a 90-10 split for training and
test datasets. We compare α-indexed SM inference for α ∈ {0, 0.5, 1} on BNN
regression. We test with two guides: factorized Gaussian guides with an EL
kernel and point mass (Dirac delta) guides with an RBF kernel. Like Liu and
Wang, 2016b, we use a BNN with one hidden layer of size fifty and a RELU
activation. We put a Gamma(1, 0.1) prior on the precision of the neurons and
the likelihood. We use five particles for all experiments. We run all datasets
for 35,000 epochs with a subsample size of 32, the Adam optimizer (Kingma
and Ba, 2014) and a step size of 0.002. All measurements are repeated three
times and obtained on a GPU6.

We compare against the SVGD implantation from Liu, Lee, and Jordan,
2016 with 20 particles, mean field variational Bayes (MFVI) with a factorized
Gaussian guide (Hoffman et al., 2013) and Laplace approximation. For the
latter two we inference engines from NumPyro (Phan, Pradhan, and Jankowiak,
2019b).

Table 2.1 shows the root mean squared error (RMSE) on test sets. EoS
with delta Guides out performance baselines and other α-orders, except on
Boston. SM and Hell perform similarly with factorized Gaussian guides, which
aligns with our SN-ratio experiment that shows the gradient approximations
are similar for these two cases. Note the Stein mixtures use only five particles,
whereas SVGD uses twenty. Table 2.3 gives the log-likelihood on the same test
sets. EoS achieves better average log-likelihood for all datasets with factorized
Gaussian guides than other α-orders. We see that α = 0 and α = .5 performs
similarly with a factorized Gaussian prior, which aligns with our SN-ratio
experiment in that the quality of gradient approximations is similar.

Variational autoencoder We evaluate Stein mixtures and SVGD for VAEs
on two datasets with α ∈ {0, 0.5, 1}. We use binarized MNIST (Salakhutdinov
and Murray, 2008; LeCun et al., 1998), a dataset of 28 × 28 pixel images
of handwritten single digit numbers, and a variate of OMNIGLOT (Lake,
Salakhutdinov, and Tenenbaum, 2013), which contains 28× 28 pixel images of
characters from fifty different alphabets. We use the same VAE architecture as
Burda, Grosse, and Salakhutdinov, 2015.

Following Li and Turner, 2016; Burda, Grosse, and Salakhutdinov, 2015;
Rainforth et al., 2018, we use VAEs with multiple stochastic layers. The idea
is to define the model through ancestral sampling as

p(x|θθθ) =
∑

z1,...,zL

p(zL)p(zL−1|fθθθL−1
(zL)) . . . p(x|fθθθ0(z1)),

5Quadro RTX 6000 with Cuda V11.4.120
6Quadro RTX 6000 with Cuda V11.4.120
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where x is a data-point (which we will also denote z0), z1, . . . , zL are the L
stochastic layers, and θθθl parameterizes a neural network fl which takes zl+1 to
the parameters of the distribution pl, i.e. p(zl|fl(zl+1). We then let the guide
factor in the opposite direction, resulting in

q(z|ϕϕϕ,x) = q(z1|fϕϕϕ1(x))q(z2|fϕϕϕ2(z1)) . . . p(zL|fϕϕϕL(zL−1)).

We use the same network architecture as Rainforth et al., 2018 (summarized
in Table 2.4). In Table 2.4, s denotes a stochastic layer and d denotes a
deterministic layer (affine transforms). We use tanh as the activation functions
on deterministic layers. Stochastic layers distribute according to a factorized
Gaussian distribution, and for the likelihood, we use the Bernoulli distribution
(hence the binarization of the datasets).

For both datasets we optimize using the Adam optimizer and learning
rate of 5 · 10−4. We optimize with a batch size of 20 and use 20 draws to
approximate the gradients. For OMNIGLOT we use 20 epochs and for MNIST
we use 50. Table 2.5 show the performance of EwS for α ∈ {0.0, 0.5, 1.0}. We
find that EwS with α = 1 achieves better log-likelihoods on MNIST datasets.
On OMNIGLOT α = 0.5 and α = 0 achieve comparable log-likelihood with α0
the slightly outperforming α = 0.5.



32 CHAPTER 2. ELBOING STEIN MIXTURES

Table 2.3: Average log likelihood (higher is better) test results for BNNs on
UCI benchmark. EoS (ours) corresponds α = 1, Hell (ours) to α = 0.5, and
SM (Nalisnick and Smyth, 2017) to α = 0. Parentheses mean we use Dirac
delta guides. EoS generally outperforms Hell and SM.
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Table 2.4: Variational autoencoder architecture for MNIST and OMNIGLOT.
s denotes a stochastic layer and d denotes a deterministic layer. Read the net-
works left-to-right for guide description and right-to-left for model description.

Dataset Architecture Activation

MNIST d200-d200-s50 tanh
OMNIGLOT d200-d200-s100-d100-d100-s50 tanh

Table 2.5: Log likelihood (higher is better) test results for VAE. EwS (ours)
corresponds α = 1, Hell (ours) to α = 0.5, and SM (Nalisnick and Smyth, 2017)
to α = 0.

Dataset SM Hell EwS
MNIST −101.874 −100.541 −77.400
OMNIGLOT −146.241 −146.257 −148.428
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2.6 Summary

We introduce a new algorithm called EwS based on a new connection be-
tween the inference of Stein mixtures and the Rényi variational bound. We
demonstrate that EwS provides better gradient approximations than alterna-
tive algorithms, which results in better performance for standard benchmark
problems. EwS is integrated as a black box library in the NumPyro PPL which
is distributed freely. We detail this library in Chapter 3.
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2.7 Variational Rényi bound

For convenience, we derive the variational Rényi bound (Li and Turner, 2016)
in the context of inference with our algorithm below. Recall that Stein mixtures
lift the guide hyper-parameters ϕ (optimized in VI) to a random variable ϕϕϕ.
Let D be a finite set of observations, z ∈ Rd be a latent variable, Dα [q||p] the
Rényi α-divergence (Rényi, 1961) between distributions p and q, and ϕϕϕ ∈ Rd a
set of guide hyper-parameters lifted to a random variable. Then we have

log p(D)−Dα [q(z|D,ϕϕϕ)||p(z|D)] =

1

1− α
logEq(z|ϕϕϕ)

[(
p(z,D)
q(z|D,ϕϕϕ)

)1−α
]
. (2.15)

To see this, consider,

Dα [q(z|D,ϕϕϕ)||p(z|D)] =
1

α− 1
log

∫
q(z|D,ϕϕϕ)αp(z|D)1−αdz

=
1

α− 1
log

∫
q(z|D,ϕϕϕ)α

(
p(z,D)
p(D)

)1−α
dz

=
1

α− 1
log

∫
q(z|D,ϕϕϕ)αp(z,D)1−αdz · p(D)α−1

=
1

α− 1
log

∫
q(z|D,ϕϕϕ)αp(z,D)1−αdz+ α− 1

α− 1
log p(D)

=
1

α− 1
log

∫
q(z|D,ϕϕϕ)q(z|D,ϕϕϕ)−(1−α)p(z,D)1−α + log p(D)

=
1

α− 1
logEq(z|D,ϕϕϕ)

[(
p(z,D)
q(z|D,ϕϕϕ)

)1−α
]
+ log p(D),

from which we recover the desired equality by rearranging and multiplying
both sides by negative one,

log p(D)−Dα(q(z|ϕϕϕ)||p(z|D)) =
1

1− α
logEq(z|D,ϕϕϕ)

[(
p(z,D)
q(z|ϕϕϕ)

)1−α
]
.

To shorten notation, we let Cα(D,ϕϕϕ) = E
[
(p(z,D)/q(z|D,ϕϕϕ))1−α

]
where the

expectation is with respect to q(z|D,ϕϕϕ). The gradient of the variational Rényi
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bound with respect to ϕϕϕ is

∇ϕϕϕ
1

1− α
logE

[(
p(z,D)
q(z|D,ϕϕϕ)

)1−α
]
=

1

1− α
Cα(D,ϕϕϕ)−1E

[
∇ϕϕϕ
(
p(z,D)
q(z|D,ϕϕϕ)

)1−α
]

= Cα(D,ϕϕϕ)−1E

[(
p(z,D)
q(z|D,ϕϕϕ)

)1−α
∇ϕϕϕ log

(
p(z,D)
q(z|D,ϕϕϕ)

)]

= E


(

p(z,D)
q(z|D,ϕϕϕ)

)1−α
Cα(D,ϕϕϕ)−1

∇ϕϕϕ log
(
p(z,D)
q(z|D,ϕϕϕ)

)
= E

[
ωα(z,D)∇ϕϕϕ log

(
p(z,D)
q(z|D,ϕϕϕ)

)]
,

where

ωα(z,D) = (p(z,D)/q(z|D,ϕϕϕ))1−α

E
[
(p(z,D)/q(z|D,ϕϕϕ))1−α

] .
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2.8 Characterizing two particle fixed points

We give the full derivation of stationary points for the Stein mixture in Sec-
tion 2.3. Recall that Section 2.3 investigated the SN-ratio for a Stein mixture
given by

1

2
(N (ϕϕϕ1, 3/2Id) +N (ϕϕϕ2, 3/2Id)) ,

where ϕϕϕ1,ϕϕϕ2 ∈ Rd are two d-dimensional particles. We use the kernel given by

k(ϕϕϕ1,ϕϕϕ2) = exp

(
−1

h
||ϕϕϕ1 −ϕϕϕ2||22

)
, (2.16)

where h ∈ R+ is the bandwidth. The kernel has the following properties:

∇ϕϕϕ1k(ϕϕϕ1,ϕϕϕ2) = −∇ϕϕϕ2k(ϕϕϕ1,ϕϕϕ2),
k(·, ·) = 1,

k(ϕϕϕ1,ϕϕϕ2) = k(ϕϕϕ2,ϕϕϕ1),

∇ϕϕϕk(·, ·) = 0,

which we will use in the derivation. Finally, we introduce

ξα(ϕϕϕ) =
1

1− α
logEq(z|ϕϕϕ)

[(
p(z,D)
q(z|ϕϕϕ)

)1−α
]

as notation short-hand.
Our two-particle configuration reaches a fixed point when

(ϕϕϕ1 + ϵSHΦ (ϕϕϕ1),ϕϕϕ2 + ϵSHΦ (ϕϕϕ2)) = (ϕϕϕ1,ϕϕϕ2),

where ϵ ≥ 0 is the step size. Therefore, SHΦ (ϕϕϕ1) = 0 and SHΦ (ϕϕϕ2) = 0 at any
fixed point. SHΦ (ϕϕϕ1) is given by

SHΦ (ϕϕϕ1) =

1︷ ︸︸ ︷
k(ϕϕϕ1,ϕϕϕ1)∇ϕϕϕ1ξα(ϕϕϕ1) +

0︷ ︸︸ ︷
∇ϕϕϕ1k(ϕϕϕ1,ϕϕϕ1)+k(ϕϕϕ1,ϕϕϕ2)∇ϕϕϕ2ξα(ϕϕϕ2) +∇ϕϕϕ2k(ϕϕϕ1,ϕϕϕ2)

= ∇ϕϕϕ1ξα(ϕϕϕ1) + k(ϕϕϕ1,ϕϕϕ2)∇ϕϕϕ2ξα(ϕϕϕ2) +∇ϕϕϕ2k(ϕϕϕ1,ϕϕϕ2) = 0.

Therefore,

−∇ϕϕϕ2k(ϕϕϕ1,ϕϕϕ2) = ∇ϕϕϕ1ξα(ϕϕϕ1) + k(ϕϕϕ1,ϕϕϕ2)∇ϕϕϕ2ξα(ϕϕϕ2) (2.17)

at a fixed point. By a similar argument for SHΦ (ϕϕϕ2), we have

∇ϕϕϕ1k(ϕϕϕ1,ϕϕϕ2) = −(∇ϕϕϕ2ξα(ϕϕϕ2) + k(ϕϕϕ1,ϕϕϕ2)∇ϕϕϕ1ξα(ϕϕϕ2)) (2.18)
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at a fixed point. As ∇ϕϕϕ1k(ϕϕϕ1,ϕϕϕ2) = −∇ϕϕϕ2k(ϕϕϕ1,ϕϕϕ2), it follows from Equa-
tions (2.17) and (2.18) that

∇ϕϕϕ1k(ϕϕϕ1,ϕϕϕ2) = −∇ϕϕϕ2k(ϕϕϕ1,ϕϕϕ2)
−(∇ϕϕϕ2ξα(ϕϕϕ2) + k(ϕϕϕ1,ϕϕϕ2)∇ϕϕϕ1ξα(ϕϕϕ2)) = ∇ϕϕϕ1ξα(ϕϕϕ1) + k(ϕϕϕ1,ϕϕϕ2)∇ϕϕϕ2ξα(ϕϕϕ2)

−∇ϕϕϕ2ξα(ϕϕϕ2)(1 + k(ϕϕϕ1,ϕϕϕ2)) = ∇ϕϕϕ1ξα(ϕϕϕ1)(1 + k(ϕϕϕ1,ϕϕϕ2))

−∇ϕϕϕ2ξα(ϕϕϕ2) = ∇ϕϕϕ1ξα(ϕϕϕ1).

Hence, we see that at any fixed point for our two particle configuration, the
gradients of the VR-bound are equal and opposite.
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2.9 Conditional evidence as Rényi divergence
between posteriors

That Equation (2.12) pushes posteriors towards each other follows from proper-
ties of Rényi divergence with α ∈ [0, 1] and the negative direction of the gradient
on the Rényi divergence. In particular, we have (i) that the divergence is a simi-
larity measure of distributions for α ≥ 0 so Dα=0[q||p] = 0 =⇒ q = p, (ii) that
Dα[q ∥ p] is everywhere positive, and (iii) the divergence is jointly convex (i.e.
convex in both distributions) (Van Erven and Harremos, 2014). Putting it all
together, we see from (ii) and (iii) that the extremum at Dα=0[q||p] = 0 is global
and from the (negative) gradient we are minimizing Dα=0[q ∥ p]. So, we have
that −∇ϕϕϕDα=0[q(z|D,ϕϕϕ) ∥ p(z|D)] = 0 =⇒ Dα=0[q(z|D,ϕϕϕ) ∥ p(z|D)] = 0
which from (i) means q(z|D,ϕϕϕ) = p(z|D).
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2.10 Alternative ELBO-within-Stein derivation

For α = 1 we can derive the attractive force of SHΦ directly by applying Jensen’s
inequality to the log conditional evidence, resulting in

∇ϕϕϕ logEq
[
p(D, z|ϕϕϕ)
q(z|D,ϕϕϕ)

]
≥ ∇ϕϕϕEq

[
log

p(D, z|ϕϕϕ)
q(z|D,ϕϕϕ)

]
. (2.19)

In ELBO-within-Stein, the attractive force takes the simple form

SELBO+
Φ (ϕϕϕi) =

Eϕϕϕ∼qΦ
[
k(ϕϕϕi,ϕϕϕ)∇ϕϕϕEq(z|ϕϕϕ) [log p(D, z|ϕϕϕ)]− k(ϕϕϕi,ϕϕϕ)∇ϕϕϕEq(z|ϕϕϕ) [q(z|D,ϕϕϕ)]

]
,

(2.20)

and the repulsive force is given by Equation (2.5).
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2.11 Illustrating stein mixtures

To illustrate the use of an SM, consider the VAE. The VAE simultaneously trains
a generative model p(D|gθ(z))p(z) and a variational approximation q(z|fψ(D))
of the posterior p(z|D). Here, θ and ψ are parameters of the generative neural
network gθ(·) and the inference network fψ(·), respectively. VAE training is
typically done by stochastic variational inference (Hoffman et al., 2013) (SVI)
which optimizes θθθ and ψψψ to minimize the ELBO. With a SM, the generative
model remains the same, that is, we obtain a point estimate of θ. However, the
marginal posterior approximation changes to 1/|Φ|

∑
ϕϕϕ∈Φ q(z|fϕϕϕ(D)). So with a

Stein mixture, each particle ϕϕϕ parameterizes a separate inference network, i.e.
fϕϕϕ(·), meaning the guide becomes amortized similar to Shu et al., 2018.





Chapter 3

EinStein: General and
Integrated SteinVI
Ola Rønning1, Christophe Ley2, Ahmad Salim Al-Sibah1and
Thomas Hamelryck13

3.1 Introduction

Interest in Bayesian deep learning has surged due to the need for quantifying the
uncertainty of predictions obtained from machine learning algorithms (Wilson
and Izmailov, 2020; Wilson, 2020). Bayesian inference aims to describe observed
data D using a model with latent variables z. The goal is to infer a posterior
distribution p(z|D) over the latent variables given a model describing the joint
distribution p(z,D) = p(D|z)p(z). We obtain the posterior by following the
rules of Bayesian inference:

p(D|x) = Z−1p(D|z)p(z)

where Z =
∫
Z p(D|z)p(z)dz is the normalization constant. For most practical

models, the normalization constant lacks an analytic solution or requires
an infeasible number of computations, complicating the Bayesian inference
problem.

SVGD is a recent SteinVI technique that uses a set of particles {zi}Ni=1 as the
approximating distribution q(z). SVGD is well suited for capturing correlations
between latent variables as a particle-based method. The technique preserves
the scalability of traditional VI approaches while offering the flexibility and
modeling scope of techniques such as MCMC. SVGD is good at capturing
multi-modality (Liu and Wang, 2016b; Wang and Liu, 2019b), and has useful

1Department of Computer Science, University of Copenhagen, Denmark
2Département Mathématiques, Université du Luxembourg, Luxembourg
3Department of Biology, University of Copenhagen, Denmark
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theoretical interpretations such as a set of particles following a gradient flow
(Liu, 2017) or in terms of the properties of kernels (Liu and Wang, 2018b).

This article details the SteinVI library called EinStein in the PPL NumPyro
(Bingham et al., 2019; Phan, Pradhan, and Jankowiak, 2019b). SteinVI uses
EwS described in Chapter 2 as its core inference algorithm.

NumPyro is a universal PPL (Meent et al., 2018) embedded in Python.
NumPyro provides specialized constructs for expressing probabilistic models
as python programs and allows executing arbitrary code in its model and
guide. The computational backend of NumPyro is Jax (Frostig, Johnson,
and Leary, 2018), which gives access to an accelerated linear algebra (Sabne,
2020) program transformations and automatic differentiation through the Jax
compiler in Python. As SteinVI works with arbitrary guides, NumPyro is
a well-suited language for embedding SteinVI. Further, we chose NumPyro
because:

• NumPyro is embedded in Python, the de-facto programming language for
data science;

• NumPyro includes the necessary data structures for tracking random
variables in both model and guide;

• NumPyro features stochastic variational inference with an API that is
highly suitable for SteinVI; and

• NumPyro benefits computationally from Jax.

After reviewing the SteinVI methods included in EinStein, we make the
following contributions:

• We detail our black-box inference library of ELBO-within-stein in NumPyro,
which we call the library SteinVI. SteinVI allows SMs to work with custom
guide programs based on EwS optimization. The library is compositional
with NumPyro features, including support for deep learning, loss func-
tions (ELBO, Rényi ELBO (Li and Turner, 2016)), and optimization
methods, thus making it possible for SteinVI to grow organically with
NumPyro development.

• In Section 3.6 we provide example programs for inference with regression
and time series data, and investigate SteinVI as a sampling method.

In Section 3.5, we discuss related work. Finally, we summarize our results and
discuss future work in Section 3.7.
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3.2 Stein Variational Gradient Descent

The core idea of SVGD is to perform inference by approximating the target pos-
terior distribution p(z|D) by an empirical distribution qZ(z) = N−1

∑
i δzi(z)

based on a set of particles Z = {zi}Ni=1. Here, δx(y) represents the Dirac delta
measure, which is equal to 1 if x = y and 0 otherwise. One could thus see
the approximating distribution qZ(z) as a mixture of point estimates, each
represented by a particle zi ∈ Z. The idea is to minimize the Kullback-Leibler
divergence DKL(qZ(z) ∥ p(z|D)) between the approximation and the true
posterior by iteratively updating the particles using the Stein forces:

zi ← zi + ϵSZ(zi)

where ϵ is the learning rate and SZ denotes the Stein forces.

The Two Forces of SVGD Stein VI consists of two forces that work
additively under the form SZ = S+

Z +S−
Z , where the attractive force is given by

S+
Z (zi) = Ezj∼qZ(z)[k(zi, zj)∇zj log p(zj |D)]

and the repulsive force by

S−
Z (zi) = Ezj∼qZ(z)[∇zjk(zi, zj)].

Here k : Rd × Rd → R is a kernel. The attractive force can be seen as pushing
the particles towards the modes of the true posterior distribution, smoothed
by some kernel. For an example of a kernel, consider the radial basis function
(RBF) kernel k(zi, zj) = exp

(
− 1
h ∥ zi − zj ∥22

)
with bandwidth parameter h,

chosen as 1
lognmed(z).

The repulsive force moves particles away from each other, ensuring that
they do not collapse to the same mode. For example, with the RBF kernel,
the repulsive force becomes Ezj∼qZ(z)[− exp

(
− 1
h ∥ zi − zj ∥22

)
2
h

∑
ℓ(ziℓ − zjℓ)],

which has high kernel values for particles far from each other, causing them to
stay apart.

SVGD works with unnormalized distributions p as the normalization con-
stant becomes additive in the log-posterior log p(zi|D) = − logZ + log p(D|z) +
log p(z) and is thus not required for the calculation of the gradient. This
property is desirable as normalizing p is often computationally expensive.

Non-linear Stein In non-linear Stein (Wang and Liu, 2019b), the repulsive
force can be scaled by a factor λ, resulting in SZ = S+

Z + λS−
Z . This approach

is useful when dealing with multi-modal distributions. It is also useful in cases
where the repulsive force vanishes compared to the likelihood, which happens
for large datasets (X ). Scaling the repulsive force by a constant λ = c(|X |)
proportional (e.g. c = 0.1 or c = 0.01) to the size of the dataset |X | addresses
this issue and can be chosen by cross-validation on a subset of the data.
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Matrix-valued kernels The choice of kernels can be extended to matrix-
valued ones (Wang et al., 2019b), K : Rd×Rd → Rd×d, in which case the Stein
forces become

S+
Z (zi) = Ezj∼qZ(z)[K(zi, zj)∇zj log p(zj |D)]

and
S−
Z (zi) = Ezj∼qZ(z)[K(zi, zj)∇zj ]

where the standalone del ∇zj in the repulsive force represents the vector(
∂

∂zj,1
, . . . , ∂

∂zj,d

)
. This results in

(K(zi, zj)∇zj )ℓ =
∑
k

∇kKℓ,k(zi, zj).

The advantage of matrix-valued kernels is that they allow preconditioning4 using
the Hessian or Fisher Information matrix, which can capture local curvature
and thus achieve better optima and convergence rate than standard SVGD.
Furthermore, it is easy to represent graphical kernels (Wang, Zeng, and Liu,
2018b) using matrix kernels, e.g. K = diag({K(ℓ)}ℓ) where the set of variables
are partitioned with each their own local kernel K(ℓ).

4Using preconditioner matrix Q, such that Q−1M has a lower condition number than M .
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3.3 Stein Mixtures

The Stein-mixture was proposed by Nalisnick and Smyth, 2017 to resolve
the representation issue for SVGD when the target distribution has high
dimensionality. For SVGD, the number of particles needed to represent a
distribution adequately grows exponentially with its dimensionality. As the
computational complexity for the update rule in SVGD is quadratic in the
number of particles, the exponential growth quickly becomes computationally
intractable.

Stein-mixtures are hierarchical variational models (Ranganath, Tran, and
Blei, 2016) such that the posterior of the second tier variational distribution
is q(z|D) = 1

N

∑N
k=1 δ(zk). The guide is the joint model q(θθθ, z) = q(θθθ|z)q(z),

with q(θθθ|z) the first tier distribution and q(z) its prior. The second tier
posterior q(z|D) is optimized using SVGD, so that the marginal posterior is
q(θθθ; z) = 1

N

∑N
k=1 q(θθθ|z), a restricted mixture.

Nalisnick and Smyth, 2017 showed that the Stein force for a mixture
approximation of the posterior p(z|D) is given by

SZ(zi) = Ezj∼qZ(z)

[
k(zi, zj)Eθθθl∼q(θ|zj) [p(D, θθθl)/q(θθθl|zj)]

]
+

+ Ezj∼qZ(z)

[
k(zi, zj)∇zj log q(zj)

]
+

+ S−
Z (zi),

where log∇zjq(zj) acts as a regularizer on the variational parameters which they
assume is sufficiently small to be dropped. To evaluate Ezj∼qZ(z) [p(D, θ)/q(θ|zj)],
Nalisnick and Smyth, 2017 use DNCP and importance weighted Monte Carlo
gradients to obtain the black-box update,

SZ(zi) = Ezj∼qZ(z)

[
k(zi, zj)

S∑
s=1

w̃s∇zj log

(
p(D, θ̂θθs)
q(θ̂θθs|zj)

)]
+ S−

Z (zi), (3.1)

where w̃s is an importance weight for sample θ̂θθs = q(zj , ξξξ), ξξξ ∼ p0 (i.e. the
guide).

ELBO-within-Stein In ELBO-within-Stein, we replace the weighted av-
erage over S samples in Equation (3.1) by a single loss (L). If we choose
L to be an f -divergence, such as the ELBO, we can reduce the loss bias
by averaging multiple samples. However, ELBO-within-Stein only computes
one gradient of L per particle regardless of the number of samples we use to
estimate L. This is different from Nalisnick and Smyth, 2017 who estimate
Eθθθl∼q(θ|zj) [p(D, θθθl)/q(θθθl|zj)] by averaging over gradients, therefore computes a
gradient and an importance weighting for each DNCP sample rather than per
particle. The difference makes ELBO-within-Stein computationally cheaper
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as the complexity of adding a gradient is O(n) whereas adding a sample to
estimate L is O(1). The Stein force in ELBO-within-Stein is given by

SZ(zi) = Ezj∼qZ(z)

[
k(zi, zj)∇zjL(zj)

]
+ S−

Z (zi) (3.2)

where L is the ELBO.
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3.4 Compositional Implementation using NumPyro

EinStein integrates with the existing NumPyro API by adding the Stein VI
interface, which closely mimicks NumPyro’s SVI interface. Mimicking the
SVI interface makes programs that use SVI in NumPyro trivial to convert to
EinStein (see Figure 3.1).

Below, we discuss the key features of EinStein, which include re-initializable
guides, EinStein’s core algorithm, and the new kernel interface.

Re-initializable Guides

The Stein VI interface requires that the initialization is different for each
parameter in an inference program. The reason is that different Stein particles
need to be initialized to different values in order for optimization to work
correctly and to avoid all particles collapsing into the posterior mode.

To support re-initializable guides, we provide the ReinitGuide interface,
which requires implementing a function find_params that accepts a list of
random number generator (RNG) keys in addition to the arguments for the
guide and returns a set of freshly initialized parameters for each RNG key.

The WrappedGuide class provides a guide written as a function. WrappedGuide
makes a callable guide re-initializable. It works by running the provided guide
multiple times and reinitializing the parameters using NumPyro’s interface as
follows:

• WrappedGuide runs the guide transforming each parameter to uncon-
strained space.

• It replaces the values of the parameters with values provided by a
NumPyro initialization strategy, e.g., init_to_uniform(r), which initial-
izes each parameter with a uniform random value in the range [−r; r].

• It saves the parameter values for each particle and the required inverse
transformations to constrained space to run the model correctly.

We also allow parameters without reinitialization in order to support neural
network libraries like stax 5 that have their own initializers.

The Stein VI interface will correctly wrap the guide during initialization,
so from a user perspective the syntax for guides follows the API of SVI.

SteinVI in NumPyro

The integration of SteinVI into NumPyro requires handling transformations
between the parameter representation of NumPyro6 and the vectorized Stein

5https://jax.readthedocs.io/en/latest/jax.experimental.stax.html
6A dictionary mapping parameters to their values, which can be arbitrary Python type

https://jax.readthedocs.io/en/latest/jax.experimental.stax.html
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particles that EinStein operates on. For this, we rely on Jax PyTrees7 which
converts back and forth between Python collections and a flattened vectorized
representation.

Algorithm 1 shows the core algorithm of EinStein. EinStein updates the
standard variational model parameters ϕϕϕ and guide parameters ψψψ by averaging
the loss over the Stein particles. For the Stein parameters, the process is more
elaborate. First, we convert the set of individual parameters to a monolithic
vector-encoded particle using Jax PyTrees. The monolithic particle represents
the particles as a flattened and stacked Jax array. Then we compute a kernel
value based on the vector-encoded Stein particle. Kernel computation is
delegated to the kernel interface (see Section 3.4 as the type is kernel-dependent.

We apply Jax’s vmap operator (Frostig, Johnson, and Leary, 2018; Phan,
Pradhan, and Jankowiak, 2019b) to compute the Stein forces for each particle
in a vectorized manner. This is done in unconstrained space so the Stein force
must the corrected by the Jacobian of the bijection between constrained and
unconstrained space. Doing this directly on the Jax on the monolithic particle
incurs a massive memory overhead in the adjoint. However, as NumPyro
registers a bijection for each distribution parameter we can eliminate the
overhead by computing the Jacobian on the Jax representations of the individual
parameters. The operation is embarrassingly parallel and so we again use a
vmap operator with a nested tree_map to compute the desired Jacobians. Note
that Algorithm 1 presents how EinStein works with scalar kernels and does
not account for the different features presented in Section 3.2.

Finally, we convert the monolithic Stein particle to their non-vectorized
dictionary-based form and return the expected changes for standard- and Stein-
parameters.

Kernel interface

The Kernel interface is straightforward. To extend the interface, users must
implement the compute function, which accepts as input the current set of
particles, the mapping between model parameters and particles, and the loss
function L and returns a differentiable kernel k. All kernels are currently static,
but the interface could be extended to stateful kernels, allowing conjugate
gradients or quasi-Newton optimization. Section 3.4 gives the complete list of
kernels in EinStein. We plan to extend EinStein with probability product kernels
Nalisnick and Smyth, 2017; Jebara, Kondor, and Howard, 2004, which take
into account the information geometry of the first-tier variational distributions
in Stein mixtures.

7https://jax.readthedocs.io/en/latest/pytrees.html

https://jax.readthedocs.io/en/latest/pytrees.html
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Procedure 1 EinStein
Input: Classical VI parameters ϕϕϕ and ψψψ, Stein parameters {θθθi}i, model
pϕϕϕ(z,x), guide qθθθ,ψψψ(z), loss L, kernel interface KI.

Output: Parameter changes based on classical VI (∆ϕϕϕ, ∆ψψψ) and Stein VI
forces ({∆θθθi}i).
procedure Einstein(ϕϕϕ, ψψψ, {θθθi}i, pϕϕϕ, qθθθ,ψψψ)

∆ϕϕϕ← Eθθθ[∇ϕϕϕL(pϕϕϕ, qθθθ,ψψψ)]
∆ψψψ ← Eθθθ[∇ψψψL(pϕϕϕ, qθθθ,ψψψ)]
{ai}i ← PyTreeFlatten({θθθi}i)
k ← KI({ai}i)

procedure EinsteinForces(ai) ▷
Calculate forces per particle for higher-
order vmap function.

θθθi ← PyTreeRestore(ai)
∆ai ←

∑
aj
k(aj ,ai)∇aiL(pϕϕϕ, qθθθi,ψψψ) +∇aik(aj ,ai)

return ∆ai
end procedure

{∆ai}i ← VMap({ai}i, EinsteinForces)
{∆θθθi}i ← PyTreeRestore({∆ai}i)
return ∆ϕϕϕ, ∆ψψψ, {∆θθθi}i

end procedure
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Table 3.1: Kernel included in the EinStein NumPyro module.

Kernel Definition Detail Type Reference

Radial Basis
Function (RBF)

exp( 1
h
∥ x− y ∥22) scalar Liu and Wang,

2016b

exp( 1
h
(x− y)) vector Pyro8

Inverse Multi-
Quadratic

(IMQ)
(c2+ ∥ x− y ∥22)β β ∈ (−1, 0) and c > 0 scalar Gorham and

Mackey, 2017

Random
Feature

Expansion
Ew[ϕ(x,w)ϕ(y,w)]

ϕ(x,w) =
√
2 cos( 1

h
w⊤

1 x+ w0)
where w0 ∼ Unif(0, 2π) and

w1 ∼ N (0, 1)
scalar Liu and Wang,

2018b

Linear x⊤y + 1 scalar Liu and Wang,
2018b

Mixture
∑
i wiki(x,y)

{ki}i individual kernels,
weights wi

scalar, vector,
matrix

Liu and Wang,
2018b

Scalar-based
Matrix k(x,y)I k scalar-valued kernel matrix Wang et al.,

2019b
Vector-based

Matrix diag(k(x,y)) k vector-valued kernel matrix Wang et al.,
2019b

Graphical diag({K(ℓ)(x,y)}ℓ)
{K(ℓ)}ℓ matrix-valued kernels,
each for a unique partition of

latent variables
matrix Wang et al.,

2019b

Constant
Preconditioned Q− 1

2K(Q
1
2 x,Q

1
2 y)Q− 1

2

K is an inner matrix-valued
kernel and Q is a

preconditioning matrix like the
Hessian −∇2

z̄ log p(z̄|x) or
Fischer information

−Ez∼qZ (z)[∇2
z log p(z|x)]

matrices

matrix Wang et al.,
2019b

Anchor Point
Preconditioned

∑m
ℓ=1KQℓ

(x,y)wℓ(x)wℓ(y)

{aℓ}mℓ=1 is a set of anchor
points, Qℓ = Q(aℓ) is a

preconditioning matrix for
each anchor point, KQℓ

is an
inner kernel conditioned using

Qℓ, and wℓ(x) =
softmaxℓ({N (x|aℓ′ ,Q−1

ℓ′ )}ℓ′ )

matrix Wang et al.,
2019b
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3.5 Related Work

There has been a proliferation of deep probabilistic programming languages
(Ge, Xu, and Ghahramani, 2018; Bingham et al., 2019; Salvatier, Wiecki, and
Fonnesbeck, 2016; Tran et al., 2016; Cusumano-Towner et al., 2019; Dillon
et al., 2017) based on tensor frameworks featuring automatic differentiation
and supporting various inference techniques. However, only PyMC3 (Salvatier,
Wiecki, and Fonnesbeck, 2016) includes inference using SteinVI.

In PyMC3 the inference techniques that use Stein’s method include SVGD
with a scalar RBF-kernel, amortized SVGD (Wang, Feng, and Liu, 2016; Feng,
Wang, and Liu, 2017), and Operator Variational Inference (OVI) (Ranganath
et al., 2016).

SVGD in PyMC3 manipulates particles to directly capture the target dis-
tribution (Liu and Wang, 2016b). In EinSteinVI, SVGD is a special case of
Stein mixtures where the guides are point mass distributions. Because we
have guide programs, EinSteinVI allows arbitrary computations to transform
random variables in the guide. This is not possible with SVGD in PyMC3.

Amortized SVGD (Feng, Wang, and Liu, 2017) trains a stochastic network
to draw samples from a target distribution. The network is iteratively adjusted
so that the output changes in the direction of the Stein variational gradient
(the same gradient as used in SVGD). In comparison, EinSteinVI transports a
fixed set of particles (each parameterizing a guide) to the target distribution.
Amortized SVGD is not in EinSteinVI as its extension to arbitrary guides is an
open problem.

OVI optimizes operator objectives, which take functions of functions to a
non-negative number. Ranganath et al., 2016 include an operator objective
based on the Langevin-Stein operator (Anastasiou et al., 2021). This is the
same operator used for the kernelized Stein discrepancy (Liu, Lee, and Jordan,
2016) which also underlies SVGD. Unlike EinSteinVI, Amortized SVDG and
SVGD, OPV is not a particle-based method.
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def model():
sample('x', NormalMixture(jnp.array([1 / 3, 2 / 3]),

jnp.array([-2.0, 2.0]),
jnp.array([1.0, 1.0])))

(a) 1D Gaussian mixture model
svi = SVI(

model,
AutoNormal(model),
Adagrad(step_size=1.0),
Trace_ELBO()

)

results = svi.run(rng_key,
num_iterations)

(b) SVI

stein = SteinVI(
model,
AutDelta(model),
Adagrad(step_size=1.0),
Trace_ELBO(),
RBFKernel(),

)
results = stein.run(rng_key,

num_iterations)

(c) SVGD with EinStein

Figure 3.1: 1D Gaussian mixture model in NumPyro.

3.6 Examples

We illustrate the features of EinStein on two toy examples, namely a 1D mixture
of Gaussians below, and 2D mixtures of Gaussian. We demonstrate EinStein
on real-world examples and show that EinStein tends to outperform alternative
methods. These examples include regression with a BNN and deep Markov
models. All example programs and notebooks are in the NumPyro python
module.

1D Gaussian mixture To demonstrate the two modes of VI with EinStein,
we consider the 1D Gaussian mixture 1/3N (−2, 1)+2/3N (2, 1) (see Figure 3.1
and Figure 3.2). The Gaussian target mixture is bi-modal and well-suited for
the non-parametric nature of SVGD and SMs. Figure 3.2 shows that both
SVGD and the SM naturally capture the bi-modality of the target distribution,
compared to SVI with a simple Gaussian guide. Note the reduction in particles
required to estimate the target when using SMs compared to SVGD. Also, note
that the SM overestimates the variance and slightly perpetuates the locations.

The error seen at the right mode for the SM with two particles is due
to the uniform weighting of the particles in SVGD (the target posterior is
approximated with an empirical distribution, see Section 3.2), and as such
is algorithmic. The SM will therefore not be able to exactly capture the
mixing components of a target mixture model with one particle per component.
However, with more particles, the mixture can be approximated better as
demonstrated using three particles.
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(a) SVI (b) SVGD (RBF kernel)

(c) Two particle SM (linear kernel) (d) Three particle SM (RBF kernel)

Figure 3.2: The blue dashed line is the target pdf, while the solid green line is
the density of the particles. We estimate the particle density for SVGD with
Gaussian kernel density estimation. We use 100 particles for SVGD, and two
or three particles for the SM. SVI uses a Gaussian guide.

Bayesian Neural Networks We compare SVGD and non-linear Stein in
EinStein with the implementation of SVGD by Liu and Wang, 2016b9 (without
model selection), and amortized SVGD (using the Theano backend10, Al-Rfou
et al., 2016) on BNN for regression. The PyMC3 documentation clearly states
that amortized SVGD (Feng, Wang, and Liu, 2017) is experimental and is not
suggested to be used. We include its experimental results for completeness
and note that our findings reflect the warning in the PyMC3 documentation.
We use an RBF kernel in EinStein for a fair comparison with Liu and Wang,
2016b and PyMC3. For non-linear Stein we determined the best repulsion factor
λ∗ by a grid search for λ ∈ {10−2, 10−1, 101, 102}. For SVGD PyMC3 we use
a temperature11 of ten. Like Liu and Wang, 2016b we use a BNN with one
hidden layer of size fifty and RELU activation. We put a Gamma(1, 0.1) prior

9https://github.com/dilinwang820/Stein-Variational-Gradient-Descent/blob/
master/python/bayesian_nn.pyy

10PyMC4, which uses Jax as its backend, omits SVGD at the time of writing.
11We found the performance to be very sensitive to the choice of temperature.

https://github.com/dilinwang820/Stein-Variational-Gradient-Descent/blob/master/python/bayesian_nn.pyy
https://github.com/dilinwang820/Stein-Variational-Gradient-Descent/blob/master/python/bayesian_nn.pyy
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on the precision of the neurons and the likelihood. For all versions, we use
100 particles and 2000 iterations. We use a mini-batch of 1000 for Year and
100 for the rest. All measurements are repeated ten times and obtained on a
GPU12 for EinStein and PyMC3, except for Year with PyMC3 which was only
run once. We do not report times for Liu and Wang, 2016b because only the
CPU version of their code could be executed without irresolvable issues.

Table 3.2 shows the performance in terms of the average root mean squared
error (RMSE) on the test set. We find that EinStein achieves significantly
better RMSE than Liu and Wang, 2016b and that both systems outperform
SVGD in PyMC3. The times in Table 3.2 measure how long it takes to infer
parameters. Table 3.2 excludes the first run for two reasons: i) that run will
fill the GPU caches, and ii) Jax will trace the programs. As a result, this run
is more costly than subsequent ones. The times for the first run are given in
Table 3.3.

By running EinStein for more iterations, we can amortize the initial cost.
The amortized SVGD in PyMC3 is an experimental implementation and the

documentation clearly discourages its use. For completeness we include the
performance here. The temperature and learning rate were determined by a
grid search on the Boston data set. All measurements are repeated five times.
In Table 3.4 we report test RMSE and time the the UCI regression benchmark.
We did not include the Year data set as it takes over 21 hours to run. The
RMSE for amortized SVGD is poor and highly variable across all data sets,
except Naval. However, even for Naval the RMSE is two orders of magnitude
greater than SVGD in EinSteinVI and Liu and Wang, 2016b.

Stein Mixture Deep Markov Model Music generation requires a model
to learn complex temporal dependencies to achieve local consistency between
notes. The Stein-mixture deep Markov model (SM-DMM) is a DMM that uses
a mixture of Stein particles to estimate distributions over model parameters.
We consider a vectorized version of the DMM (Jankowiak and Karaletsos, 2019)
to generate polyphonic music using the JSB chorales data set.

The SM-DMM model consists of two feedforward neural network (FNN)
networks. The Transition network handles the conditional dependencies between
subsequent latent states in the Markov chain. It consists of two layers with
hidden dimension 200 and ReLU activation on the first layer and sigmoid on
the second. The Emitter network is a three layers FNN which produces a
likelihood at each time step using the current latent state. The layers have
hidden dimensions 100, 100, and 88, respectively. The variational distribution
is of the form

∏N
n=1 q(z

n
1:Tn
|f(X1:Tn)) where the parametrized feature function

f1:Tn is a one layered gated recurrent unit (Chung et al., 2014), with hidden
dimension 150. The total number of parameters in the DMM is 128,654, so

12Quadro RTX 6000 with Cuda V11.4.120
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Table 3.2: Average test RMSE and time for inference for the UCI regression
benchmarks.
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Table 3.3: Time for first repetition with EinStein for UCI regression benchmarks.

Dataset Boston Concrete Energy Kin8nm Naval Power Protein Wine Yacht Year
Time 41.665s 41.642s 41.591s 43.592s 44.2570s 44.058s 47.87s 41.9s 41.409s 2m18.19s

Table 3.4: Average test RMSE and time for inference for the UCI regression
benchmarks with amortized SVGD.

RMSE Time
Boston 87230.469± 54219.534 5m46s± 3s
Concrete 2458.250± 754.653 6m3s± 2s
Energy 2458.250± 754.653 5m45s± 3s
Kin8nm 302.218± 43.818 19m54s± 5s
Naval 0.386± 0.128 28m39s± 3s
Power 3333.796± 517.241 21m38s± 6s
Protein 64.791± 12.181 1h32m28s± 1m1s
Wine 12.929± 6.202 7m21s± 3s
Yacht 2822.983± 944.449 5m35s± 4s

Table 3.5: Test negative log- likelihood (lower is better) on Polyphonic Music
Generation (JSB) dataset. Baseline results from Krishnan, Shalit, and Sontag,
2016. ISN-DMM and ISN-DMM-Aug (Krishnan, Shalit, and Sontag, 2016),
TSBN and HMSBN (Gan et al., 2015)

ISN-DMM ISN-DMM-Aug HMSBN TSBN SM-DMM
NLL (a) 6.926 6.773 8.0473 - -45.983
NLL (b) 6.856 6.692 7.9970 7.48 -46.066

with five particles, EinStein is optimizing 643,270 parameters for the SM-DMM
model.

We train the SM-DMM using the Adam optimizer (Kingma and Ba, 2014)
with a learning rate of 10−5, using an RBF kernel and five Stein particles for
four thousand epochs on the polyphonic music generation dataset JSB chorals
(Boulanger-Lewandowski, Bengio, and Vincent, 2012). We follow Krishnan,
Shalit, and Sontag, 2016 and report two version NLL of a)

∑N
i=1 −p(xi|θθθ)∑N

i=1 Ti
and b)

1
N

∑N
i=1

−p(xi|θθθ)
Ti

, where Ti is the length of the ith sequence. In Table 3.5, we
report NLL(a) and NLL(b) on a held-out test set of JSB. Compared to baseline
methods, SM-DMM achieves a significant improvement using Stein mixtures.
We see similar improvements in the test ELBO, Jankowiak and Karaletsos,
2019 reports a test ELBO of -6.82 nats on the JSB dataset for their approach,
SM-DMM with EinStein achieves a test ELBO of 45.10 (higher is better).
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Star Distribution To illustrate the kernels included in EinStein, we approx-
imate the star distribution, following Wang et al., 2019a (see Figure 3.3). The
star distribution is constructed as a 2D Gaussian mixture,

p(x) =
1

K

K∑
k=1

N (x|µk,Σk)

µ1 = [0, 1.5], µk = Ukµ1

Σ1 = diag([1, 1/100]),Σk = UkΣ1Uk

where Uk is a rotation matrix given by

Uk =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
, (k ∈ [1, ..,K]) θ = 2kπ/K.

We use fifty particles and Adagrad with the learning rate that yields the best
maximum mean discrepancy (MMD) (Gretton et al., 2012) and the RBF kernel.
To compute the MMD, we use 10,000 samples from the 2D Gaussian mixture.
Keeping these choices fixed, we vary the type of kernel, using a point mass
distribution as guide.

We consider the scalar (Rd → R) linear kernel, the inverse multi-quadric
(IMQ) kernel, the RBF kernel, and the random feature kernel; details are given
in section 3.4. In addition, we use a mixture kernel, which is a uniform mixture
of the linear and the random feature kernels. We also use the matrix version of
the RBF kernel with constant preconditioning, using the Hessian matrix for
preconditioning. We see that including curvature information by means of the
Hessian leads to faster convergence in EinStein and that the matrix RBF with
preconditioning yields the lowest MMD.
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Initial Linear IMQ RBF

Random Feature Mixture Matrix Const.
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Figure 3.3: Particle positions for EinStein with different kernels after 1000
iterations with a point mass guide, starting from particle positions given in the
upper left frame labeled Initial. The MMD, bottom right frame, is evaluated
using the RBF kernel.
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3.7 Summary

EinStein provides the latest techniques for glsSteinVI as an extension to
Numpyro. Our results indicate that the library is substantially faster and
more expressive than other available libraries for SteinVI. EinStein provides a
familiar and efficient interface for practitioners working with the Pyro/NumPyro
PPL and provides a unified code base to researchers for benchmarking new
developments in SteinVI.





Chapter 4

The (Skewed) Sine Distribution
in NumPyro
Ola Rønning1, Christophe Ley2, Kanti V. Mardia34and Thomas
Hamelryck15

4.1 Introduction

Until recently, protein structure prediction posed a long-standing challenge in
structural biology. At the fourteenth Critical Assessment of Techniques for
Protein Structure Prediction (CASP), (Moult et al., 1995) the deep learning-
based method AlphaFold2 (AlQuraishi, 2021; Senior et al., 2020) achieved levels
of accuracy that enticed the CASP committee to declare the protein structure
prediction problem solved. Despite this progress, contemporary methods
for protein structure prediction generally do not systematically account for
uncertainty. In particular, they fail to model aleatory uncertainty (due to
protein dynamics or disorder (Shea, Best, and Mittal, 2021)) and epistemic
uncertainty (caused by experimental error, limitations of the probabilistic model,
and limited amounts of data). As proteins are often parameterized in terms of
dihedral angles, directional statistics potentially provide a robust framework
for factoring in such uncertainties (Hamelryck, Mardia, and Ferkinghoff-Borg,
2012).

Distributions on the 2-torus are attractive for protein structure modeling
because a dihedral angle pair corresponding to a point on the 2-torus is often
used to represent the conformation of the backbone of a single amino acid.
(Hamelryck, Mardia, and Ferkinghoff-Borg, 2012). Despite their potential,

1Department of Computer Science, University of Copenhagen, Denmark
2Département Mathématiques, Université du Luxembourg, Luxembourg
3School of Mathematics, University of Leeds, United Kingdom
4Department of Statistics, University of Oxford, United Kingdom
5Department of Biology, University of Copenhagen, Denmark
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2-torus distributions are available in a few contemporary inference frameworks.
To address this, we introduce efficient implementations of a 2-torus distribution
in the PPLs Pyro (Bingham et al., 2019) and Numpyro (Phan, Pradhan, and
Jankowiak, 2019a). The distribution is a submodel of the Bivariate von Mises
(BvM) distribution (Mardia, 1975), known as the sine distribution (Singh,
Hnizdo, and Demchuk, 2002).

The sine distribution is pointwise symmetric. However, it is not immediately
evident that the probability distributions of dihedral angles observed in proteins
display symmetry. Ameijeiras-Alonso and Ley, 2021 suggests an efficient
procedure for skewing a toroidal distribution, which we call sine skewing. Sine
skewing works for any dimensionality gives rise to simple simulation procedures,
and is computationally efficient. In addition to the sine distribution, we also
provide implementations of the sine skewing procedure in Pyro and NumPyro.

Pyro and NumPyro are modern deep PPLs with nearly identical user
interfaces. However, the two PPLs differ in their computation backend and
main inference engine. Pyro uses PyTorch (Paszke et al., 2019) as its backend
and is mainly designed for inference with Stochastic Variational Inference
(Kingma and Welling, 2019). NumPyro is a daughter framework of Pyro that
uses Jax (Bradbury et al., 2018) as the backend. The main inference engine of
NumPyro is Hamiltonian Monte Carlo with Iterative NUTS (Phan, Pradhan,
and Jankowiak, 2019a), a variant of the No-U-Turn sampler (NUTS) (Hoffman,
Gelman, et al., 2014). Iterative NUTS leverages Jax’s tracing capabilities
for considerable computational gains. Both frameworks provide methods to
generate variational distributions called guides automatically, enumerate (i.e.,
sum out) discrete variables, and formulate deep probabilistic models. Tailoring
the simulation of the sine distribution (Kent, Ganeiber, and Mardia, 2018)
to use parallelism, we observe a 6000-fold increase in sampling time using a
GPU in Pyro over the R-based implementation provided by (Kent, Ganeiber,
and Mardia, 2018). These optimizations are impossible in NumPyro; our
implementation provides a more modest 3000-fold increase in this framework
over (Kent, Ganeiber, and Mardia, 2018).

To illustrate the sine distribution and sine skewing, we use both to formulate
mixture models of dihedral angles in proteins. We implement and infer the
mixture models using NumPyro, but the provided code snippets translate to
Pyro with minimal effort. We use iterative NUTS for inference and apply
NumPyro’s automatic enumeration to obtain differentiable models.

The paper proceeds as follows. In Section 4.2, we define the sine distribution
and the sine skewing procedure and highlight their most prominent features. We
provide implementation details in Section 4.3. In Section 4.4, we demonstrate
the sine skewed sine distribution in mixture models. Finally, in Section 4.5, we
summarize and point to future work.



4.2. TOROIDAL DISTRIBUTION 65

(a) ρ = 0 (b) ρ = 1.7

Figure 4.1: (Sine) distributions over angle pairs (ϕ, ψ) given by probability
density function (PDF) f(ϕ, ψ|µ,κϕ = 2,κψ = 2, ρ) projected onto a torus.
Here κϕ,κψ > 0 denote the concentration (anti-variance), and ρ ≥ 0 is the
correlation between the angles. The density is shaded in purple. The red dot
marks the location µµµ.

4.2 Toroidal distribution

The Bivariate von Mises (BvM) distribution (Mardia, 1975) is defined on the
unit torus and is point-wise symmetric around its location µ = (µϕ, µψ). That
is, the density of angle pairs (ϕ, ψ) given by f(ϕ, ψ;θ) satisfies f(µϕ−ϕ, ψ;θ) =
f(µϕ + ϕ, ψ;θ) and f(ϕ, µψ − ψ;θ) = f(ϕ, µψ + ψ;θ). We have collected all
the parameters of f in θ for conciseness. Figure 4.1 illustrates this type of
distribution. Because of its redundant number of parameters, various more
parsimonious submodels have been proposed in the literature. Here, we focus
on the sine distribution of (Singh, Hnizdo, and Demchuk, 2002), which we shall
describe below. Sine skewing is a general approach on a d-torus to skew a given
symmetric distribution (such as the BvM), and we have implemented it as such
in both Pyro and NumPyro. However, we are particularly interested in the 2-D
version (i.e., as a distribution over a toroid or 2-torus) for application purposes.

Sine Distribution

Mardia, 1975 introduced a circular analog to the bivariate normal distribution
with log PDF

log f(ϕ, ψ|µ,κ,A) ∝ κϕ cos(ϕ− µϕ) + κψ cos(ψ − µψ)
+ [cos(ϕ− µϕ), sin(ϕ− µϕ)]A[cos(ϕ− µϕ), sin(ψ − µψ)]T , (4.1)
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where κϕ, κψ ∈ R+ are concentration (anti-variation) parameters, µϕ,µψ ∈
[−π, π) are location parameters and AAA is a real 2-by-2 matrix that captures
the correlation between ϕ and ψ. (Rivest, 1988) introduces a submodel of the
above distribution with two fewer parameters and log PDF

log f(ϕ, ψ|µ,κ, α, β) ∝ κϕ cos(ϕ− µϕ)
+ κψ cos(ψ − µψ) + α cos(ϕ− µϕ) cos(ψ − µpsi)
+ β sin(ϕ− µϕ) sin(ψ − µψ),

(4.2)

where α ∈ R and β ∈ R. (Rivest, 1988) formulated the normalization constant
as a doubly infinite series. (Singh, Hnizdo, and Demchuk, 2002) resolved
the issue with over-parameterization by setting α = 0 and β = ρ ∈ R in
Equation (4.2), yielding the PDF

f(ϕ, ψ|µ,κ, ρ) = C−1 exp(κϕ cos(ϕ− µϕ) + κψ cos(ψ − µψ)
+ ρ sin(ϕ− µϕ) sin(ψ − µψ)).

(4.3)

The ρ parameters control statistical dependence between the angles ϕ and ψ,
with ρ = 0 meaning ϕ and ψ are independent and Equation (4.3) reducing
too two von Mises distributions. (Singh, Hnizdo, and Demchuk, 2002) also
formulated the calculation of the normalization constant C as the infinite series

1

C
= (2π)2

∞∑
i=0

(
2i

i

)(
ρ2

4κ1κ2

)2

Ii(κ1)Ii(κ2), (4.4)

where Ii is the ith order modified Bessel function of the first kind. (Mardia,
Taylor, and Subramaniam, 2007) considered another subclass of Equation (4.2)
by setting α = β = −κ3. To distinguish the two subclasses, (Mardia, Taylor,
and Subramaniam, 2007) named Equation (4.3) the sine model and their own
model, the cosine model. (Mardia, Taylor, and Subramaniam, 2007) further
proved that Equation (4.3) is unimodal if κϕκψ > ρ2 and bimodal if κϕκψ < ρ2,
with κϕ, κψ > 0 and ρ ∈ R.

Sine Skewing Procedure

The sine and cosine distributions are symmetric. However, for applications in
bioinformatics, symmetry is not necessarily desirable. To address the issue of
asymmetry, (Ameijeiras-Alonso and Ley, 2021) introduced a general way to
turn any symmetric density f(ϕ, ψ;µµµ,θθθ) into a skewed version

g(ϕ, ψ;µ,λ,θ) = f(ϕ, ψ;µ,θ)

× (1 + λϕ sin(ϕ− µϕ) + λψ sin(ψ − µψ)) ,
(4.5)

where λ = (λϕ, λψ)
T with |λi| ≤ 1 and |λϕ|+ |λψ| ≤ 1.
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The resulting asymmetric distribution is prefixed with sine-skewed, so skew-
ing the sine distribution yields the sine-skewed sine distribution. (Ameijeiras-
Alonso and Ley, 2021) shows that this results in several desirable properties.
Most notable is that the normalization constant remains the same. They also
show that the skewing procedure preserves the computability of any trigonomet-
ric moments of the underlying toroidal distribution. Finally, (Ameijeiras-Alonso
and Ley, 2021) provides a simple and efficient simulation scheme for the skewed
distributions.
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4.3 Implementation

In Pyro and NumPyro, the implementation of a distribution needs to provide
four attributes and two methods. The attributes are

1. the batch shape, which denotes the shape of a batch of conditionally
independent random variables;

2. the event shape, which denotes the shape of a single random variable;

3. the support (e.g., reals, positive, interval) and its dimensionality; and

4. the parameter types and their dimensionality.

The two methods implement i) calculating the log probability of a batch of
events and ii) simulation, which given a desired sample shape must adhere to
both the batch shape and the event shape of the distribution.

We can expand an instantiated distribution to an arbitrary batch shape
and declare a given number of these dimensions part of an event. We call a
distribution instantiated once its parameters are fixed. Computationally, an
instantiated distribution is represented as a single object on a hardware device
(i.e., GPU or CPU). It is common when running inference to use both devices
when a GPU is available. Pyro’s computational backend, PyTorch, provides
simple methods for checking the current device of an object and moving it to
another device. NumPyro’s backend, Jax, handles moving objects between
devices automatically, but provides manual intervention methods.

Batch Sampling the Sine Distribution

The support of the sine distribution is the 2-torus, and thus an event always
comprises two dependent angles. In Pyro and NumPyro, a Python tuple is
used to specify the event shape. Thus, the event shape of the sine distribution
is always (2,), using the syntax of a singleton Python tuple.

To sample from the distribution in Pyro, we extend the work of (Kent,
Ganeiber, and Mardia, 2018) to parallel sampling of the arbitrary batch- and
sample shapes. (Kent, Ganeiber, and Mardia, 2018) provides a bivariate
rejection-sampling for (among others) the sine distribution using an Angular
Central Gaussian (ACG) distribution (Tyler, 1987) as the envelope.

Our extension samples the marginal distribution over the first angle. This
requires the sampling method to track and sample missing samples in parallel
while avoiding branching and overusing pseudo-random numbers. To track
the missing samples, we flatten6 the sample- and batch-shape and allocate an
empty piece of memory MMM for storing the samples with the flattened shape.
Flattening has the advantages of simplifying indexing and providing a coalesced
memory layout for GPU computation, which is needed for high utilization.

6(2, 3, 4) becomes (2 ∗ 3 ∗ 4) = (24, )
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To minimize the number of pseudo-random numbers, we sample the smallest
number of missing samples from the batches that are not filled, which yields
proposals P . In order to place the accepted proposals correctly into M (where
samples are accumulated) we apply a n×m Boolean mask matrix B, where n
is the number of samplers and m total number of desired samples. The entries
of B are given by

B(i,j) =

0 ≤ j − j∑
j′=1

1M(i,j′) <
m∑
k=1

1M(i,k)


(i,j)

, (4.6)

where 1A(i,j)
is the indicator function for an accepted samples in M at i, j and

similarly 1P(i,j)
is the indicator for accepted proposals at i, j. Using a Boolean

mask to select where accepted proposals are placed, we avoid copying already
accepted samples and branching on the Boolean values in the mask. Pyro
avoids branching due to the tensor abstraction deployed in PyTorch, which
provides primitives for using sub-tensors as references.

Because in NumPyro all tensors are immutable with concrete shapes, the
shape of tensors cannot be a function of the state of execution. This means that
the optimizations possible in Pyro are not possible in NumPyro. Therefore, the
implementation in NumPyro is a straightforward translation of the R method
provided in (Kent, Ganeiber, and Mardia, 2018).

Sine Skewing

Sine skewing (Ameijeiras-Alonso and Ley, 2021) is a procedure for breaking
the symmetry of a given toroidal distribution. Treating sine skewing as a
higher-order method, which takes a distribution and yields its skewed variate,
allows for a simple implementation that works for any toroidal distribution
with a simulation method.

The simulation method for the skewed distribution follows three steps
outlined in (Ameijeiras-Alonso and Ley, 2021). For some k-dimensional base
density f with location µµµ, parameters θθθ, and skewness λλλ their sampling scheme
is

1. Sample y from base density f ;

2. Sample u from the uniform density over [0, 1];

3. Generate skewed samples x by

xxx =

y if u ≤ 1

2

(
1 +

k∑
i=1

sin(yi − µi)
)

−y + 2µ otherwise,

where y ∈ [−π, π)k is a draw from f and x ∈ [−π, π)k is the corresponding
skewed sample.
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To compute the log probability density, we simply take the log of Equa-
tion (4.5), which yields

log f(ϕ, ψ;µ,θ) + log(1 + λϕ sin(ϕ− µϕ)
+ λψ sin(ψ − µψ)),

for a density f on the 2-torus.

Benchmarking

We benchmark the sampling time for varying sampling sizes on CPU7 and
GPU8. Dispatching to the computation device (i.e., GPU or CPU) is declared
in logic and handled by the backend frameworks, so the same high-level code
(our implementations) is executed regardless of the device. We compare our
implementation of the sine distribution to the implementation provided as a
supplement to (Kent, Ganeiber, and Mardia, 2018) in R. We are unaware of
publicly available implementations of the sine skewed sine distribution with
simulation methods and so did not benchmark our implementation of sine
skewing against any reference. The timings are given in log (base ten) scale in
Figure 4.2.

For Pyro, the average time of ten repetitions is presented along with the
associated standard deviation; only the average timings are given for the
reference R implementation. For NumPyro we run eleven repetitions and
dismiss the first call which takes between two and seven seconds. We then
report the average and deviation for the remaining ten repetitions. We do this
because Jax can amortize the high cost of the first iteration (where the python
program is traced) upon repeated computation. As expected, we observe that
for Pyro, sampling is faster on CPU for a low number of samples (i.e., less
than around three thousand); see the solid green lines in the left and middle
plots of Figure 4.2. Note that the simulation with skewing adds negligible
overhead. The faster simulation for small sample sizes on the CPU is because
i) the CPU does not incur overhead from transferring memory between devices
and ii) small sample sizes provide limited parallelism for the GPU to exploit.
The same plots for NumPyro (cross markers) show the effect of the different
computational backend (i.e. Jax). Once the sampling scheme is traced, we
observe close to constant computation time for exponentially growing sample
sizes on GPU and only a single order of magnitude increase for CPU. The Pyro
implementation is faster due to its use of the extended sampling scheme.

For large sample sizes, we see a significant 3114-fold speedup for the GPU
in the Pyro framework; and a 6785-fold speedup compared to the reference R
implementation. NumPyro provides a more modest 3000-fold speedup compared
to the R implementation.

7Intel® Xeon® Silver 4114 Processor (13.75M Cache 2.20 GHz).
8NVIDIA Quadro RTX 6000.
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Figure 4.2: Average timings in seconds for differing sample sizes. We compare
sampling in R (Kent, Ganeiber, and Mardia, 2018), with our sampling imple-
mentations in Pyro and NumPyro.

The right plot of Figure 4.2 shows that the reference implementation of
the sine distribution is faster in R for sample sizes smaller than 25, which is
due to the overhead associated with Pyro’s PyTorch backend and its use of
parallel subroutines. This also causes the improved performance of Pyro for
larger sample sizes. NumPyro on CPU needs substantially larger sample sizes
before outperforming the R implementation.
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4.4 Application

To illustrate our implementations, we model the dihedral angles pairs, see
Figure 4.3, of serine (S), glycine (G), and proline (P). The models are Bayesian
mixture models with sine skewed sine distributions as likelihoods. We infer
model parameters with Iterative NUTS in NumPyro. Following the analysis of
(Bystroff, Thorsson, and Baker, 2000) (Table 5), we use ten mixture components
for glycine, nine for serine, and seven for proline. The angle pairs are taken
from the 9mer dataset described in (Thygesen et al., 2021). We restrict our
attention to these three amino acids as they are representative of all amino
acids.

Data

We obtained our dihedral angle data set from a previously described protein
fragment data set (Thygesen et al., 2021). The data set consists of protein
fragments of length 9 (9mers) derived from the 3733 proteins selected with
cullpdb (Rohl et al., 2004). All included proteins have i) resolution less than 1.6
ångström, ii) R-factor less than 0.25, iii) sequence identity below twenty percent,
and iv) sequence identity below 20 percent with proteins used in CASP13. All
fragments consist of angles from the allowed region on the Ramachandran
plot (Ramachandran, Ramakrishnan, and Sasisekharan, 1963), with outliers
removed using the PHENIX software (Liebschner et al., 2019). We use the
60/20/20 split provided in the dataset and pool the angles by amino acid type.
There are 47130 angles for proline, 74830 for glycine, and 59304 for serine.
However, we only use a random subsample of one thousand angle pairs for each
amino acid. We do this to avoid running long chains with enumeration, which
scales linearly with the number of mixture components. Further, this alleviates
the density peaks present in the data, which are challenging for both HMC and
NUTS.

Mixture Model

To model the dihedral angles we consider mixture models of the form

n∑
i=1

wi gSS(ϕ, ψ|θθθi),

where 0 < wi < 1,
∑

iwi = 1 are mixture weights and θθθi denoted all parameters
of sine skewed sine distribution gSS with pdf given by Equation (4.5) and
antecedent pdf given by Equation (4.3). We refer to the mixture as the Skewed
model.

Our approach is close to (Mardia, 2013) who considers a mixture of sine dis-
tributions for modeling the entire Ramachandran plot. Also, like our approach,
(Ameijeiras-Alonso and Ley, 2021) modeled angle pairs for individual amino
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Figure 4.3: A protein is a polymer of amino acids, whose geometry can be
quantified by their dihedral or torsion angles. The ϕ, ψ, and ω triplet denotes the
torsion angles associated with the C ′−N−Cα−C ′ bonds, the N−Cα−C ′−N
bonds, and the Cα − C ′ −N − Cα bonds, respectively. Assuming ideal bond
angles and bond lengths, these angles suffice to describe the geometry of the
protein’s backbone. The ω angle tends to be very close to either pi or (in rare
cases) 0. Not all triplet values can occur in amino acids, mainly because of steric
clashes between atoms. The top row of Figure 4.4 (known as Ramachandran
plots) shows empirically measured angles pairs for serine, glycine, and proline.
The angle pairs of serine are representative for the rest of the amino acids.
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Figure 4.4: The top row shows the Ramachandran plots (see Figure 4.3 for de-
tails) of the data used for inference. The bottom row shows the Ramachandran
plots of the posterior predictive samples from the Skewed mixture model, see
Figure 4.5.
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acids. However, they use only a two-component mixture model for comparing
a range of toroidal distributions to their skewed variants. Furthermore, unlike
(Mardia, 2013; Ameijeiras-Alonso and Ley, 2021) our approach is Bayesian,
which allows quantifying the uncertainty of the posterior.

For the concentration of the sine distribution we use a constant scaled Beta
prior. As it is not obvious whether to favour high or low concentrations we
introduce a hyper prior on the Beta prior. The hyper prior controls the mean
βµ ∼ Uni(0, 1), where Uni denotes the uniform distribution, and virtual count
βc ∼ Gam(1, 1/20), where Gam is the gamma distribution.

The Beta prior is given by Beta(βµβc, (1− βµ)βc). To see this, consider a
random variable X ∼ Beta(A,B) whose expectation is βµ = E[X] = A/βc =
A/(A + B). Rearranging yields Beta(βµβc, (1 − βµ)βc). The concentration
scaling is fixed to seventy, and thus 0 ≤ ϕ, ψ ≤ 70.

Recall that the location of the sine distribution denote is µµµ = (µϕ, µψ) ∈
[−π, π)2. κκκ = (κϕ, κψ) ∈ [0,∞)2 denotes its concentration. For the correlation
we scale √κϕκψ by ρ ∈ [0, 1], which ensures we obtain mixtures of uni-modal
sine distributions.

We use uni-variate von Mises distributions on the locations, denoted as
vM(µ, κ). Like the sine distribution, the von Mises distribution is parameterized
by a location µ ∈ [−π, π) and concentration κ ∈ [0,∞). We use the prior
vM(π, 2) on µψ to avoid the forbidden region of the Ramachandran plot. For
µψ, we choose a flat von Mises prior.

For skewness we use a uniform prior. Recall the skewness is constrained to
|λϕ|+ |λψ| ≤ 1. We accommodate this constraint by first sampling λϕ uniformly
from [−1, 1] and then using the sampled λϕ to decide the support interval (i.e.,
[−1 + |λϕ|, 1− |λϕ|]) for the uniform sample of λψ.

For correlation we put a Beta(2, 10) prior on the scale factor ρ. The prior
favors a low correlation over maintaining relatively high sample efficiency for
the posterior predictive samples.

Finally, we put a Dirichlet distribution, denoted Dir, of our mixture weights.

Bringing it all together, we can write the skewed model as
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Procedure 2 Skewed Model
1: βµϕ ∼ Uni (0, 1)
2: βcϕ ∼ Gam (1, 1/20)
3: βµψ ∼ Uni (0, 1)
4: βcψ ∼ Gam (1, 1/20)
5: for i ∈ [1, . . . ,m] do ▷ Mixing plate
6: µ

(i)
ϕ ∼ vM (π, 2)

7: µ
(i)
ψ ∼ vM (0, 0.1)

8: κ
(i)
ψ ∼ Beta(βµψβcψ , (1− βµψ)βcψ)

9: κ
(i)
ϕ ∼ Beta(βµϕβcϕ , (1− βµϕ)βcϕ)

10: ρ(i) ∼ Beta(2, 10)
11: λ

(i)
ϕ ∼ Uni(−1, 1)

12: λ
(i)
ψ ∼ Uni(−1 + |λ

(i)
ϕ |, 1− |λ

(i)
ϕ |)

13: π(i) ∼ Dir(1)
14: θ(i) ← (µϕ,µψ, 70κϕ, 70κψ,ρ

√
κϕκψ,λϕ,λψ)

15: end for
16: for j ∈ [1, . . . , D] do ▷ Observation plate
17: (ϕϕϕ(j),ψψψ(j)) ∼

∑m
i=1πππ

(i) gSS
(i)
(
ϕ, ψ;θθθ(i)

)
18: end for

where m is number of mixture components, D is number angle pairs
observations, and ◦ is the Hardamard product between real vectors. The
Skewed model is presented graphically in Figure 4.5. Note the mixture plate
(line 3) corresponds to the outer rectangle in Figure 4.5 and the observation
plate (line 13) to the inner square in Figure 4.5.

The informative priors used in are somewhat ad-hoc, and more structured
investigations into what constitutes good/optimal priors would be of interest
for both the fields of Bioinformatics and Directional Statistics.

NumPyro caches support transformations (e.g., h : [−1, 1] → R) for dis-
tributions with constrained support. The caching poses a challenge for the
uniform skewness prior. To see the problem, note that the support of λψ in
Algorithm 2 line 9 depends on the current value of λϕ. Therefore, after the
first accepted proposal, the support transformation is stale, i.e., referring to
an earlier computation state invalid for the current state. We opted for the
equivalent λψ ∼ (1 − |λϕ|) Uni(−1, 1) in code as it makes the support static
(i.e., always [−1, 1]). 9

The full code example is distributed with the NumPyro framework.

9During integration into Pyro, Du Phat (a core Pyro-PPL developer) noted the stick-
breaking transformation (Sethuraman, 1994) could be used for a more elegant and generalized
solution.
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Figure 4.5: Probabilistic graphical model representation of the hierarchical
Bayesian mixture model using the sine skewed sine distribution. The large
plate (shown as rectangle) applies to the n mixture components and the small
plate applies to the D (i.e., 1000) angles.

Amino Acid ESS R̂ Divergences warmup samples Inference time Accept prob
Serine 1575.88 1 0 500 1500 7m23s 0.91
Glycine 1448.33 1 0 500 1500 6m40s 0.90
Proline 1384.20 1 0 500 1500 6m25s 0.93

Table 4.1: Summary statistics of Markov chains for models trained on individual
amino acids. Statistics shown include mean effective sample size (ESS), mean
Gelman-Rubin diagnostic R̂, number of divergent samples, number of warmup
samples, the total number of samples, the total time for sampling, and mean
acceptance probability.

Inference

We infer parameters using iterative NUTS in NumPyro. NUTS was proposed by
(Hoffman, Gelman, et al., 2014) and introduces a stop criterion for the trajectory
of the Hamiltonian dynamics in HMC. Iterative NUTS is an extension to NUTS
by (Phan, Pradhan, and Jankowiak, 2019a), which introduces a data-structure
on the trajectory that makes NUTS work well with Jax.

We initialize the sine distribution locations with k-means clustering. We
set the max tree depth for NUTS to seven, use target probability 0.8 and
initial step length 1.71× 10−2. We run the chain for one thousand five hundred
samples with five hundred burn-in, called warmup, samples. The time take
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to sample the chains (inference time) is about seven minutes on our CPU10.
The mean MH-ratio, called acceptance probability, is slightly greater than our
target probability (0.8). However, both chain diagnostics (ESS and R̂) indicate
the chains have converged. The diagnostics are detailed in Section 4.6. All
chain statistics are gathered in Table 4.1.

Results

Figure 4.4 shows that simulation from the posterior predictive distribution
(bottom row) is visually close to the observation angles (top row). For glycine
(middle row) the simulation has put some density in the forbidden region of
the Ramachandran plot. The local density in the Ramachandran plot can be
highly peaked, which poses a challenge for iterative NUTS. We handle this here
by subsampling the data.

10Intel® Xeon® Silver 4114 Processor (13.75M Cache, 2.20 GHz).
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4.5 Discussion

We presented efficient implementations of the sine distribution and the sine
skewing procedure for the 2-torus in the PPLs Pyro and NumPyro. Currently,
efficient implementations of directional distributions are generally scarce, with
the univariate von Mises distribution as the notable exception. Therefore, we
believe there is considerable untapped potential in making these methodologies
more generally available to modern software running on parallel hardware. An-
other promising research direction is tailoring inference algorithms to work on
non-Euclidean manifolds. In particular, implementing the so-called reparame-
terization trick (Kingma, Salimans, and Welling, 2015) for toroidal distributions
would make these distributions available as directional priors in variational
autoencoders (Xu and Durrett, 2018).
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mean std median 5.0% 95.0% n_eff R̂
beta_mean_phi 0.98 0.03 0.99 0.94 1.00 7.01 1.22
beta_mean_psi 0.99 0.01 0.99 0.98 1.00 33.65 1.02
beta_prec_phi 18.11 18.51 12.27 0.44 47.61 9.83 1.08
beta_prec_psi 23.22 16.91 18.89 1.93 44.83 55.77 1.02
corr_scale[0] 0.02 0.01 0.02 0.00 0.04 81.95 1.00
corr_scale[1] 0.02 0.02 0.02 0.00 0.04 21.03 1.05
corr_scale[2] 0.01 0.01 0.01 0.00 0.02 126.25 1.00
corr_scale[3] 0.00 0.00 0.00 0.00 0.01 108.85 1.00
corr_scale[4] 0.08 0.04 0.08 0.01 0.13 17.91 1.01
corr_scale[5] 0.07 0.04 0.07 0.01 0.13 100.84 1.00
corr_scale[6] 0.05 0.03 0.05 0.00 0.09 46.31 1.09
corr_scale[7] 0.00 0.00 0.00 0.00 0.01 13.63 1.01

. . .
Number of Hamiltonian trajectory divergences: 0

4.6 Pyro PPL automatic MCMC summary statistics

Below is a summary of Pyro’s and NumPyro’s summary statistics for the
MCMC chain run for 3000 steps with a mixture of fifteen sine models on the
serine angle-pairs. The Rubin-Gelman Diagnostic R̂ (Gelman, Rubin, et al.,
1992) for two MCMC chains x and y of length n as

R̂ =

√
1/n

∑n
i=1 Var[(xi, yi)]

(n− 1)/n2
∑n

i=1 Var[(xi, yi)] + Var[(xj + yj)nj=1]
.

For a single chain R̂ is computed by comparing the first half to the second half
of the chain. 1 ≤ R̂ < 1.1 is generally considered an indicator of convergence.

The effective sample size, n_eff, measures the increase in uncertainty due
to within-chain auto-correlation. For m chains of length n the effective sample
size can be estimated by

n_eff =
mn

−1 + 2
∑m

t=0(ρ2t + ρ2t+1)

where ρt is the estimated auto-correlation with lag t.
Divergence are registered when the energy difference between the head of

the chain and the proposal is greater than one thousand.
5.0% and 95.0% denote the boundaries of the posterior density with 90% of

the probability mass for each variable.
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Probabilistic Differentiable
Molecular Simluation
Ola Rønning1, Christophe Ley2, and Thomas Hamelryck13

5.1 Introduction

The new frontier of protein structure prediction is finding the distribution
of probable conformations (Lane, 2023). Current deep methods like Al-
phaFold2(Jumper et al., 2021), OmegaFold (Wu et al., 2022), and RoseTTAFold
(Baek et al., 2021) give high-resolution snapshots from the native conformation
ensemble. To reach the new frontier, the forecaster must reason about the
ensemble rather than snapshots and adhere to experimental observations of
the protein-water system and its dynamics. The challenge for current methods
is that the methods embed the folding process in deep networks, which are
black-box forecasters and often found overly confident in predictions (Nguyen,
Yosinski, and Clune, 2015).

To overcome these challenges, we propose formulating the forecaster as
a DPP using a rotation invariant heteroscedastic scoring function to learn
an implicit solvent all-atoms energy function. The advantage of such an
approach is threefold. First, the statistical models allow us to separate the
folding dynamics from uncertainty in the experimental observations (native
conformation ensemble). We propose using the Langevin equations (as detailed
in Section 5.2)for accounting for stochasticity in the dynamics and the above-
mentioned scoring function to account for all probable native conformations.
Second, we will base our stochastic model on an empirical force field developed
by (Irbäck and Mohanty, 2006; Irbäck, Mitternacht, and Mohanty, 2009)
(known as ProFasi). ProFasi is a course-grained force field with 29 parameters
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that account for local and global interactions as detailed in Section 5.3. With
a DPP formulation of ProFasi we can easily extend the expressibility (and
granularity) of the force field by including (stochastic) neural networks–at the
expense of interpretability. Third and finally, our approach is generative for
the discretized folding trajectory and so allows us to infer statistical properties
of both the trajectory and the native ensemble of conformations.

This chapter outlines the main components of our approach to protein
folding but does not include an evaluation of our approach. Our approach relies
on a flexible statistical inference engine which we believe we have developed
with the EinStein library (see Chapter 2 and Chapter 3).
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5.2 Statistical model

We model the folding of single peptides to their native conformation in an
implicit solvent under constant temperature. The temperature is chosen such
that the protein should reach the native conformation within a fixed folding
time.

The native conformation likelihood We use the Bayesian version of the
Theseus model (Moreta et al., 2019) for observed native conformations D given
by

p(D|M,R,U) =

N∏
i

N (Di|MiRi,U),

where Mi is the noise free folded conformation at time T , Ri is the rotation
that aligns Di with Mi and U is the atom level covariance. Unlike conventional
methods, the Theseus model can account for the rotational invariance of peptide
conformations and the heteroscedasticity of atom positions in the peptide. We
consider the alignment rotation Ri a random variable in SO3. We construct the
distribution of Ri by transporting two projected Gaussian random variables to
SO3 using a generalization of Perez-Sala et al., 2013 uniform distribution over
the space of rotations. We assume atoms are pairs independent and use an
empirical estimate of their variance derived from the b-factor of the observations
(see Sun et al., 2019 for details).

Folding trajectory We model the dynamics of the folding trajectory T Uθt

by the Langevin equations (Gillespie, 2000)

mẍ = ∇xU(x) + λẋ+
√

2kbTη(t)

where T ≥ 0 is the temperature in Kelvin, U : R3n → R is the potential
energy, kb is the Boltzmann constant, λ ≥ 0 is the friction constant and η is
a stationary zero mean multivariate Gaussian process. By integrating with
respect to time dt′ we obtain configuration xt by following the stochastic
trajectory given by

T Uθt x0 = x0 +

∫ t

0
dt′∇xUθ(x(t′)) +

∫ t

0
dt′η(t′) η(t) ∼ N(0,

√
2kbλτ)

= x0 +

∫ t

0
dt′∇xUθ(x(t′)) + tN(0, 2kbλT )

(
z0 = x0 + tN(0,

√
2kbλτ)

)
= z0 +

∫ t

0
dt′∇xUθ(x(t′))

with initial conformation x0 and at temperature τ . We use that the stationary
Gaussian process is independent of time to reduce the trajectory from a
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stochastic differential equation to an ordinary differential equation (ODE).
The simplifications allow us to compute the trajectory by Euler discretization
(Ortega and Poole, 1981), which gives the recurrence

xt+1 = xt +∆t∇xUθ(x(t)).

We can obtain the gradient with respect to θ reverse mode automatic differen-
tiation. This will be computationally efficient. However, the memory overhead
will be proportional to the size of the discretization. To overcome the memory
overhead, we strip mine the discretization and use recomputation of the forward
AD sweep as proposed by Schenck et al., 2022.

The conformation potential For potential, we use a variate of ProFasi
(Irbäck and Mohanty, 2006; Irbäck, Mitternacht, and Mohanty, 2009), an all
atom’s potential with implicit solvent. The potential decomposes additively
into terms that model local and global interactions. The potential is given by

Utot =
3∑
i=1

E
(i)
loc + Ehb + Ehp + Ech + Eev.

The local interactions (denoted by E
(·)
loc) model repulsion between charged

atoms in consecutive peptide units, as well as the potential of the side-chain
conformations. The global contribution includes a term modeling hydrogen
bond formation (denoted Ehb), a term for the hydrophobic effect (Ehp), one
for side chain charge (Ech), and a term modeling steric clashes (Eev where
"ev" abbreviates excluded volume). The exact functional form we use varies
slightly from Irbäck and Mohanty, 2006; Irbäck, Mitternacht, and Mohanty,
2009 due to our use of array programming and our choice of folding dynamic.
In Section 5.3, we give a complete account of our ProFasi variate.
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5.3 ProFasi potential

Irbäck, Mitternacht, and Mohanty, 2009 describes the implicit solvent all-atoms
potential (called ProFasi) that we emulate. Due to the array programming
style of most modern linear algebra libraries in Python (which includes Jax),
our potential varies slightly from that available in the (C++ based) ProFasi
software package Irbäck and Mohanty, 2006. We detail the exact energy terms
in our potential below.

Let ai, aj ∈ P be the (Cartesian) coordinates of the i’th (and j’th) atom
in protein sequence P order from the N-terminus to C-terminus. We denote
the euclidean distance as ||ai − aj || (measured in angstrøm) and use adji,j for
adjacency between atoms (adjacent atoms are fixed with respect to each other,
details are given in Section 5.4). We denote free parameters by w· ∈ R, and
generally name them according to their associated energy term. Our potential
has 29 free parameters in total.

Hydrogen bonding term In our potential we model hydrogen bonding
between amino (NH) groups and carbonyl (CO) group. Hydrogen bonds occur
between two backbone groups, or a backbone group and a charged side-chain
group (i.e. Aspartic acid (Asp), Glutamatic acid (Glu), Lysine (Lys), and
Arginine (Arg)).

The hydrogen bonding potential is given by

ehb =
∑
k<l

whb(k, l)
[
u
(
||akH − alO||

)
v(∠k,lNH . . .O,∠k,lH . . .OC)

]
where k index the amino groups in P, l index the carbonyl groups in P,
whb(k, l) is a free parameter, u(·) mimics a Lennard-Jones potential, and v(·, ·)
is a misalignment penalty. The functional form of the Lennard-Jones potential
is

u(∆) = 5
(σhb

∆

)12
− 6

(σhb

∆

)10
,

with van der Waals radius σhb = 2, and the misalignment penalty is given by

v(∠1,∠2) =

{√
cos(∠1)cos(∠2) if ∠1,∠2 > π/2

0 otherwise.

Like Irbäck and Mohanty, 2006 we set the free parameter whb(k, l) as

whb(k, l) =


wbb if l, k are both in the backbone
0 if l, k are in both side-chains
0 if l, k are in consecutive peptide-bond units
wsc otherwise,

where Irbäck and Mohanty, 2006 uses wbb, wsc = (3, 2.3).
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Partial peptide charge term The partial peptide charge term represents
interactions between partial charges in consecutive peptide bond units. We
index the peptide units by n and order them from N-terminus to C-terminus.
For a protein with N amino acids, we have N − 1 peptide units (which we
denote pn). Each peptide units contains the four atoms (Cn,On,Nn,Hn) ≡ rn,
where C and O are in the n’th amino acid, and N and H are in the next amino
acid. The partial peptide charge term is given by

e
(1)
loc = w

(1)
loc

N−2∑
n=1

∑
i∈pn

∑
j∈pn+1

qiqj
||ai − aj ||

,

where q ∈ (0.42,−0.42, 0.2,−0.2) is the partial charge for C, O, N, and H
respectively.

Peptide oxygen-oxygen and hydrogen-hydrogen repulsion term The
peptide OO and HH repulsion term provide a repulsion for neighbouring
peptides when the OO or HH are exposed to each other. This makes the
formation of double hydrogen bonds less likely. Glycine has different backbone
potentials due to its lack of a Cβ atom, so peptide units which share a Glycine
are excluded. To simplify notation we therefore index by the order of the residue
(denoted rn), rather than the peptide units. The peptide units which share a
Glycine are represented in Glycine ψ-angle penalty term. The functional form
of the OO and HH repulsion term is

e
(2)
loc = w

(2)
loc

∑
n|rn ̸=Gly

f∆
(n)
HH + f∆

(n)
OO

where f is the map x 7→ max(0, tanh 3x),

∆
(n)
HH =

(
min

(
||anH − an+1

N ||, ||an+1
H − anN||

)
− ||anH − an+1

H ||
)
,

and
∆

(n)
OO =

(
min

(
||an−1

C − anO||, ||anC − an−1
O ||

)
− ||an−1

O − anO||
)
.

Note that when the peptide units cover a Proline we let ∆HH = 0, as it lacks
the hydrogen.

Glycine ψ-angle penalty term The lack of a Cβ atom in Glycine makes it
considerably more flexible. However, Irbäck, Mitternacht, and Mohanty, 2009
notes that the observed Ramachandran plot for Glycine is not as spread as a
steric consideration would suggest. The Glycine ψ-angle penalty term penalise
ψ = ∠NCα . . .CN torsion angles around ±2π/3 radians. The term is given by

eGloc = wGloc

∑
n|rn=Gly

cosψn + 2 cos 2ψn.
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Table 5.1: Side-chain torsion angle classifications κ(·, ·) (reproduced from Irbäck,
Mitternacht, and Mohanty, 2009). χi denotes the i’th side-chain torsion angle
ordered according to .

Residue χ1 χ2 χ3 χ4

Ser, Cys, Thr, Val I
Ile, Leu I I
Asp, Asn I IV
His, Phe, Tyr, Trp I III
Met I I II
Glu, Gln I I IV
Lys I I I I
Arg I I I III

Side-chain rotamer term The potential for the side-chain torsion angles
(denoted χ·) is expressed by the side-chain rotamer term. The distribution of
angles follow steric considerations, so four prototypical angles are sufficient.
Table 5.1 give the angle classifications according to the residue r and side-chain
torsion angle index i (i.e. κ(r, χ) ∈ {I, II, III, IV}). The potential term is given
by

e
(3)
loc =

∑
n

∑
i∈rn

w
(3)
loc(κ(rn, χi)) cosn(κ(rn, χi))χi

where w(3)
loc(·) and n(·) are step functions given by

w
(3)
loc(c) =


0.6 if c = I
0.3 if c = II
0.4 if c = III
−0.4 if c = IV

, n(c) =


0.6 if c = I
0.3 if c = II
0.4 if c = III
−0.4 if c = IV

.

Hydrophobic effect term The hydrophobic effect term models the hy-
drophobic interactions between the residues listed in Table 5.2. The term takes
the functional form

ehp = −
∑
n<m

C
(
r(hp)n , r(hp)m

)(
h(r(hp)n ) + h(r(hp)m )

)

where C(·, ·) denotes the contact measure between two residues and h(·) is the
hydrophobic energy. We model the hydrophobic energy as additive to avoid
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Table 5.2: Atoms used to compute the contact measure for the hydrophobic
effect (reproduced from Irbäck, Mitternacht, and Mohanty, 2009)

Residue r(hp)

Pro {Cβ,Cγ ,Cδ}
Tyr {Cγ ,Cδ1,Cδ2,Cϵ1,Cϵ2,Cζ}
Val {Cβ,Cγ1,Cγ2}
Ile {Cβ,Cγ1,Cγ2,Cδ}
Leu {Cβ,Cγ ,Cδ1,Cδ1}
Met {Cβ,Cγ , Sδ,Cϵ}
Phe {Cγ ,Cδ1,Cδ2,Cϵ1,Cϵ2,Cζ}
Trp {Cγ ,Cδ1,Cδ2,Cϵ3,Cζ3,Cη2}
Arg {Cβ,Cγ}
Lys {Cβ,Cγ ,Cδ}

introducing more free parameters. The energy is given by

h(r) =



0.3 if r ∈ {Arg}
0.4 if r ∈ {Met,Lys}
0.6 if r ∈ {Val}
0.8 if r ∈ {Ile,Leu,Pro}
1.1 if r ∈ {Tyr}
1.6 if r ∈ {Phe,Trp}

.

The contact measure run over the atoms given in Table 5.2 and its functional
form is

C(rn, rm) =
min (γ(rn, rm)(|rn|+ |rm|),Γ(rn, rm) + Γ(rn, rm))

γ(rn, rm)(|rn|+ |rm|)
,

where | · | denotes the count measure, γ(·, ·) is a step function given by

γ(ri, rj) =

{
0.75 if ri ∧ rj ∈ {Pro,Phe,Tyr, Ile,Leu,Val}
1 otherwise

, (5.1)

and Γ is a function. The Γ function is given by

Γ(ri, rj) =
∑
ak∈ri

min
al∈rj

max

[
min

(
−||ak − al||2

∆⊤ −∆⊥
−∆⊤, 1

)
, 0

]
,

where ∆⊤ is an upper distance threshold and ∆⊥ is a lower distance threshold.
Irbäck and Mohanty, 2006 uses ∆⊥ = 3.72 ≤ ||ak − al|| ≤ 4.52 = ∆⊤.
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Table 5.3: Atoms used to compute the side-chain charge contact measure
(reproduced from Irbäck, Mitternacht, and Mohanty, 2009)

Residue r(ch)

Arg {Nϵ,Cζ ,Nη1,Nη2}
Lys {H1

ζ ,H
2
ζ ,H

3
ζ}

Asp {Oδ1,Oδ2}
Glu {Oϵ1,Oϵ2}

Side-chain charge term The side-chain charge term models interactions
among residues with charged side chains. The residues contributing to the term
are Arg, Lys, Asp, and Glu. The functional for of the side-chain charge term is

ech = −wch
∑
n<m

q(r(ch)n , r(ch)m )C(rn, rm)

where C(·, ·) is the contact measure (which has functionally similar to Equa-
tion (5.1)) and q(·, ·) is the charge. Table 5.3 lists the atoms used by the contact
measure. C(·, ·) varies from Equation (5.1) by letting γ(·, ·) = 1. To compute
the charge we use

q(ri, rj) = −s(ri)s(rj)

where s(·) is the charge sign with functional form

s(r) =

{
1 if r ∈ {Lys,Arg}
−1 if r ∈ {Asp,Glu}

.

Spring (bond length) energy term The ProFasi potential uses ideal
covalent bond lengths. While folding a protein the proposed configurations
maintain the covalent bond lengths by augmenting tosion angles. This update
is not suitable for a differential simulator. To insure the conformations adhere
to the ideal bond length we therefore introduce a square (spring) potential on
all covalent bonds in the protein. The energy term is applied together with the
bond angle energy term in a separate step from the rest of the potential. The
spring energy is given by

esp =
∑

i,j∈adj(P)

(ri,j − ci,j)2 ,

where ri,j is the distance between atoms i and j in protein P and ci,j is the
ideal bond length between the two atoms. Note that esp is quadratic in ri,j
and so we can obtain esp = 0 with a single step using Newton’s method.

(Covalent) bond angle energy term
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Excluded volume term The excluded volume potential energy is then given
by

eev = wev
∑
i<j

λi,j


(
(σi+σj)
||ai−aj ||

)12
if ¬adji,j

0 otherwise
,

where wev, λi,j ∈ R are free parameters (Irbäck and Mohanty, 2006 uses
wev = 0.1) and σi is the i’th atoms radius (we model atoms as fixed size
spheres). The λi,j factor corrects the local potential when atoms are bonded by
a triple covalent bond (Favrin et al., 2003; Irbäck, Mitternacht, and Mohanty,
2009), we use

λi,j =

{
1 if i,j are triple bonded
3/4 otherwise

.

For atom radius we use σ ∈ (1.77, 1.75, 1.53, 1.42, 1) for S, C, N, O and H
respectively (Irbäck, Mitternacht, and Mohanty, 2009). Note that Irbäck and
Mohanty, 2006 use a cutoff ||ai − aj ||2 ≤ 4.3 as a computational optimization.
In the Jax framework we cannot use a radius cutoff as all indices must be
known at run-time (that is index arrays must be concrete).

5.4 Pairwise fixed atoms

ProFasi operates with fixed bond lengths and some per residue fixed structure;
however, it is not apparent from (Irbäck, Mitternacht, and Mohanty, 2009;
Irbäck and Mohanty, 2006) exactly which atom pairs to consider fixed. To
ascertain the fixed structures, we, therefore, simulate the dynamics of permuta-
tions of an (artificial) protein that contained all twenty amino acids for 5000
cycles in ProFasi and computed the variance of the pairwise distances of all
atoms vgbfcdover time (the 5000 cycles). We choose the permutations, so every
amino acid occurs at both terminals and once inside the protein.
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Discussion of results

SVGD requires increasing particles to represent higher dimensional models (Ba
et al., 2021). This is computationally burdensome, as SVGD scales quadrati-
cally in complexity with the number of particles. Nalisnick and Smyth, 2017
empirically demonstrate that we can improve performance on real-world (high-
dimensional) problems while using fewer particles by lifting particles to densities.
We generalize the method of Nalisnick and Smyth, 2017 using the Rényi α-
divergence, and prove that their method corresponds to using α = 0. This is
important, as we show that using α = 1 instead of α = 0 leads to significantly
better results. We show this for many problems, ranging from a regression
in housing prices to image classification, using Bayesian neural networks and
variational autoencoders. We also show that our method performs better than
others, including MFVI, Laplace approximation, and SVGD. In addition, we
demonstrate why our method does better: our method reduces the noise in the
gradient estimation.

EinStein provides the latest techniques for SteinVI as an extension to
Numpyro. Our results indicate that the library is substantially faster and
more expressive than other available libraries for SteinVI. EinStein provides a
familiar and efficient interface for practitioners working with the Pyro/NumPyro
PPL and provides a unified code base to researchers for benchmarking new
developments in SteinVI.

We presented efficient implementations of the sine distribution and the sine
skewing procedure for the 2-torus in the PPLs Pyro and NumPyro. Currently,
efficient implementations of directional distributions are generally scarce, with
the univariate von Mises distribution as the notable exception. The distribution
is central to making Thygesen et al., 2023 a statistically sound model of unfolded
protein conformations by accounting for the correlation between torsion in the
backbone.
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Conclusions and perspectives for
further research

We introduce a new algorithm called EwS based on a new connection be-
tween the inference of Stein mixtures and the Rényi variational bound. We
demonstrate that EwS provides better gradient approximations than alternative
algorithms, which results in better performance on real-world problems. EwS is
integrated as a black box library in the NumPyro PPL. EinStein and NumPyro
are distributed freely with an Apache License 2.0 license.

In future work, we intend to integrate EwS with doubly reparameterized
gradient estimators (Tucker et al., 2018). Tucker et al., 2018 demonstrate
that these can eliminate the degradation of the MC estimators of IWAE. Due
to its relation to the update rule in EwS, we hypothesize that we would see
similar effects for other α values. We plan to extend EinStein with Amortized
SVGD (Feng, Wang, and Liu, 2017), Stein points (Chen et al., 2018) and Stein
point MCMC (Chen et al., 2019), POVI (Feng, Wang, and Liu, 2017), ParVI
(Liu et al., 2019), Equivariant SVGD (Jaini, Holdijk, and Welling, 2021) in
subsequent work.

There are several other aspects of the Stein mixture that warrant investiga-
tion. We request funding to analyze Stein mixtures’ finite time convergence
properties in an open DFF project two grant proposal. The analysis will
rely heavily on investigating properties of the kernel in the kernelized stein
discrepancy. By understanding the kernels, we will develop automated methods
for selecting kernels by program analysis of the stochastic program describing
the model. We believe we can manipulate inference diagnostics from exact to
VI methods as an interpolation between exact and approximate inference.

We presented efficient implementations of the sine distribution and the sine
skewing procedure for the 2-torus in the PPLs Pyro and NumPyro. Currently,
efficient implementations of directional distributions are generally scarce, with
the univariate von Mises distribution as the notable exception. Therefore, there
is considerable untapped potential in making these methodologies more generally
available to modern software running on parallel hardware. Another promising
research direction is tailoring inference algorithms to work on non-Euclidean
manifolds. In particular, implementing the so-called reparameterization trick
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Kingma, Salimans, and Welling, 2015 for toroidal distributions would make
these distributions available as directional priors in variational autoencoders
Xu and Durrett, 2018.

The sine distribution accounts for the two major backbone degrees of
freedom (ϕ and ψ). To completely account for the backbone, we would need
a distribution over the 3-torus (to include the cis-trans isomorphism often
called ω). In future work, we look to develop a computationally efficient 3-
torus distribution. To fully model amino acids, we need to account for the
conformation of the side chain. The long-term goal of this line of research
will be n-torus distributions with algebraic normalization constants. Note that
distribution with this property for the 3-torus is ongoing research, poised to be
presented this year. Directional toroidal distributions represent a considerable
untapped potential for statistical chemistry modeling, but they require advances
in modern software and hardware paradigms to be realized. The methods are
central to realizing distributions over protein configurations, the new frontier
of structural bioinformatics (Lane, 2023). They further impact astrophysics
with applications for modeling orbits (Zoubouloglou, García-Portugués, and
Marron, 2022) and solar flare events (Hallin, Liu, and Verdebout, 2022).

To overcome these challenges with deep models for protein structure fore-
casting, we propose formulating the forecaster as a DPP using a rotation
invariant heteroscedastic scoring function to learn an implicit solvent all-atoms
energy function. We outline the approach’s advantages in Chapter 5. The
research is going. From the prototype (under development), we can investigate
introducing deep learning in three key aspects. First, we can parameterize
the functional form of the energy terms. Second, we can parameterize the
Langevin dynamics but parameterize the thermostat, timescale, and stochastic
contributions. Finally, we can introduce finer-grained forcefields (like Wang
et al., 2004) to model more physiochemical properties explicitly.
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