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Abstract

We have witnessed an unprecedented growth in the variety and volume of in-
teractive data intensive web services over the past decade owing to improving
Internet connectivity and increasing penetration of smartphones and sensors.
Similar growth has also been noticed in the evolution of computing hardware.
Machines with multiple processor sockets and cores and large main-memory are
now commonplace. Cloud computing infrastructures have also gained widespread
adoption. As a result, these are exciting times to design high-performance scalable
software systems to enable productive development and deployment of interactive
data intensive services.

Existing popular approaches to build these services can be classified under
two extreme ends. At one end, a modern high-performance in-memory database
system is employed as a full-fledged programming environment to both store data
and execute application logic. At another end, an actor runtime is utilized to store
application logic and data in memory while utilizing a key-value storage layer
only for persistence. Curiously, we notice that both these disparate approaches
have complementary strengths and weaknesses. While database systems provide
transactional guarantees along with a high-level data model supporting declar-
ative query capabilities as robust and elegant state management features, they
lack programming model primitives for modularity, scalability and to exercise
performance control. While actor runtimes provide the actor primitive for modu-
larity and scalability as well as an asynchronous messaging construct to exercise
performance control, they lack robust and elegant state management features.

In this dissertation, we propose a new vision of an actor database system in order
to integrate actor programming model features in database systems. The purpose
of this dissertation is to explore this vision of an actor database system for its
viability and benefits. Towards this goal, we make three main contributions. First,
we argue for a new vision of actor database systems in light of current application
and hardware trends. We concretize the notion of an actor database system by
defining its feature sets followed by a detailed case study of a new benchmark,
SmartMart, which is representative of emerging interactive data intensive services.

Second, we introduce a new programming model for actor database systems
called reactors that enriches relational databases with an actor construct and
support for asynchronous function invocations under ACID guarantees. We build an
in-memory multi-core OLTP database engine, named REACTDB, and demonstrate
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the scalability of the system and its ability to translate the performance benefits of
the programming model by evaluating it under classic OLTP benchmarks.

Third, we investigate the potential of leveraging task-level parallelism available
in complex application logic using the reactor programming model in REACTDB on
existing multi-core hardware. Using the SmartMart benchmark, we vary and ob-
serve the effects of a number of classical parallelism factors in order to demonstrate
the effectiveness of the programming model and the low-overhead implementation
of transactional parallelism in the system.



Resumé

Det forgangne årti har medbragt en hidtil uset vækst i forskelligartede og og mang-
foldige interaktive data-intensive web-tjenester, i særdeleshed grundet forbedret
adgang til Internettet, samt spredningen af smartphones og sensorer. En lignende
vækst er fundet sted indenfor udviklingen af datamaskiner. Det er blevet almin-
deligt med maskiner udstyret med adskillige processorer og kerner, samt store
mængder af hukommelse. Brugen af cloud computing er også blevet hverdag.
Følgeligt er det interessant at studere hvorledes man bør designe højtydende og
skalérbare systemer med henblik på effektiv udvikling og anvendelse af interaktive
data-intensive tjenester.

Gængse fremgangsmåder til konstruktion af sådanne tjenester kan klassificeres
i to yderkategorier. I den ene kategori finder vi moderne højtydende in-memory
databaser, der kan benyttes som fuldgyldige programmeringsmiljøer der både la-
grer data og afvikler programlogik. I den anden kategori finder vi anvendelsen af en
actor runtime til at lagre programlogik og data i hukommelsen, hvor et traditionelt
lagersystem kun bruges til at sikre persistens. Disse uensartede fremgangsmåder
viser sig at have styrker og svagheder der komplementerer hinanden. Databas-
esystemer understøtter transaktionelle garantier og abstrakte datamodeller med
deklarative forespørgsler, samt en robust og elegant teknik til tilstandshåndtering,
men programmeringsmodellen savner primitiver til understøttelse af modular-
itet, skalérbarhed, samt detaljeret operationel kontrol. Medens actor runtimes
netop har aktørmodellen som fundament for modularitet og skalérbarhed, samt
asynkrone beskeder til operationel kontrol, så savner de en robust og elegant
teknik til tilstandshåndtering.

I denne afhandling præsenterer vi en vision for et actor database system, der
netop integrerer funktionalitet fra aktørmodellen i databasesystemer. Formålet
med denne afhandling er at udforske anvendeligheden og fordelene ved et sådan
actor database system. I dette regi gør vi tre konkrete bidrag. For det første
argumenterer vi for actor database systems i lyset af de nuværende trends indenfor
applikations- og maskinudvikling. Vi konkretiserer idéen med et actor database
system ved at definere dets funktionalitet, fulgt af et detaljeret studie af et nyt
benchmarkprogram, SmartMart, som er repræsentativt for kommende interaktive
data-intensive tjenester.

For det andet beskriver vi en ny programmeringsmodel for actor database sys-
tems, kaldet reactors, der beriger relationelle databaser med en aktørkonstruktion,
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samt understøttelse for asynkrone funktionskald med ACID-garantier. Vi kon-
struerer en in-memory flerkernet OLTP-databasemotor, kaldet REACTDB, og viser
skalérbarheden af systemet, og dets evne til at realisere ydelsesfordelene ved pro-
grammeringsmodellen, ved en evaluering med klassiske OLTP-benchmarkprogrammer.

For det tredje undersøger vi potentialet for, på eksisterende flerkerne-maskiner,
at udnytte den job-parallelisme der er til rådighed i kompleks programlogik udtrykt
via reactor-modellen in REACTDB. Med SmartMart som arbejdsbyrde ændrer og
observerer vi effekten af en række klassiske faktorer indenfor parallelisme, med
henblik på at vise programmeringsmodellens effektivitet, og den effektive imple-
mentering af transaktionel parallelisme i systemet.



To my family
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Chapter 1

Introduction
“Imagination is more important than knowledge.”

— Albert Einstein

1.1 Motivation

The past decade has witnessed an explosion in the growth of interactive data-
intensive web services [47, 65]. Buoyed by ever growing Internet connectivity,
proliferation of smartphones and sensors, and an ever-growing human desire
to digitize our interaction with the world around us, the variety and volume
of interactive data-intensive web services continues to grow. This growth has
been fueled by the increase in availability of tools to build these services and the
improving accessibility and usability of cloud computing infrastructure for their
deployment. Interactive data-intensive web services span diverse domains ranging
across classic banking, reservation, telecommunication and order entry systems,
to newer and emerging domains of multiplayer online games, social networks,
financial fraud detection, portfolio risk assessment, online trading, information
visualizations, chat and call services, crowd collaboration and synchronization
platforms, mobile and social payment platforms, real-time bidding applications
and even IoT streaming from space balloons [7,31,57,63,93,96,97,105,120,132].
This rise in application diversity is only expected to increase given the predicted
penetration of smartphones, Internet connectivity and IoT devices. The increase in
the variety of interactive data-intensive web services has also gone hand in hand
with the rise of their volume i.e., the number of users of these data-intensive web
services, which has raised the scalability bar of these services, especially ones that
become popular.

In order to build, maintain and deploy these services, various approaches
exist in the design space. Before categorizing the approaches in the design space
of these services, we discuss the service domain trends in Section 1.1.1 and the
hardware trends in Section 1.1.2 that are being witnessed over the past decade.
We discuss these trends to highlight their impact on the software systems that are
being used to build and deploy these services.
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2 CHAPTER 1. INTRODUCTION

1.1.1 Interactive Data Intensive Service Domain Trends

One of the distinctive traits of modern services is their interactive nature that
enforces hard real-time requirements to elicit a response. Interactivity and hard
real-time requirements stem either from these services being user facing or from a
need to respond in real time to devices (e.g. to sensors sending readings). One of
the central goals of these web services today is to first minimize the time to market
in order to capture market share of users. This is followed by the requirement to
minimize time to add new features to the service and to fix bugs. This is necessary
to retain current users and to attract new users in the face of competitors in an
increasingly hostile online marketplace. As a result, it is imperative that as the
application complexity (size of code base, data footprint) increases, it remains easy
to maintain. This mandates that the software systems used to build and deploy
these services must maximize programming productivity.

As the service becomes popular, it is critical that they scale to support the
number of growing users without affecting the performance perceived by individual
users. This directly puts the onus on the application developers to either ensure that
the design of the service is scalable to start with, or to understand the scalability
issues in the service and redesign it. Even though a service might be scalable, in
the presence of competition the application developers need to reason about and
improve the service performance if possible. Thus, this requires that the software
systems employed to build these services must be scalable, should provide their
users with features to understand service scalability and performance, and must
allow the flexible control of these features.

The workload of these services has traditionally resembled classic on-line
transaction processing workloads [28,61,129], which have minimal application
logic, span a few records with key-based lookups, are write-heavy and require
consistency. However of late, especially with emerging new domains the amount
and nature of application logic interacting with the data has changed. This change
in application logic has come or is anticipated to come in various forms. Het-
erogeneous workloads consisting of read-mostly transactions [128] are being
increasingly observed that mix scans and aggregation operations over small ranges
in the traditional OLTP workload of point look-ups. Increasingly, more conditional
statements influencing different data and query footprints are being observed in
these workloads. As newer services emerge by modeling non-traditional applica-
tion domains, complex application logic can range across diverse domains such
as financial computations [33], real-time simulations [127,130,131], and online
machine learning methods [90], to name a few.

1.1.2 Hardware Trends

The past decade has also witnessed enormous growth on the hardware front.
With gains diminishing from single-threaded performance of processors, chip
designers are increasing the number of cores on a processor socket and the number
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of processor sockets in order to provide more computation power. In line with
Moore’s law, the processors with increasing core counts and sockets are becoming
cheaper as well. Similar gains have been observed in main-memory capacity which
has accompanied a decrease in their price. The authors of [121] argued ten years
back that most OLTP applications would fit the main memory of either a single
node machine or a cluster of machines. Their argument is as follows

“The overwhelming majority of OLTP databases are less than 1 Tbyte
in size and growing in size quite slowly. For example, it is a telling
statement that TPC-C requires about 100 Mbytes per physical distri-
bution center (warehouse). A very large retail enterprise might have
1000 warehouses, requiring around 100 Gbytes of storage, which fits
our envelope for main memory deployment.”

Now, a machine with 256 GB RAM and two sockets each with eight physical cores
costs around 8000 USD which would suffice for the deployment argued above.
The same deployment can be achieved at an even lower cost with a cluster of cloud
computing nodes. Similar price/performance gains have been observed in disk
technology (solid state drives) and in networking infrastructure (RDMA) as well.
Cloud computing as an infrastructure is also seeing widespread adoption for the
deployment of these data intensive services. All these hardware trends require that
the software systems used to deploy these services need to be extremely resource
efficient in order to translate the hardware benefits to perceivable application
performance [10].

1.1.3 Interactive Data Intensive Service Design Approaches

Existing popular approaches of building interactive data intensive services employ
a three-tier client-server architecture varying the utilization of the data and the
application tiers in different ways. All these approaches can be broadly classified
under two extreme ends outlined below:

1. Utilize an in-memory OLTP database system as a full-fledged programming
environment where the entire application logic and data resides while the
application tier is completely stateless.

2. Utilize an application programming framework (actor frameworks) in the
application tier where the entire application logic and data resides while a
key-value storage layer is employed at the data tier only for persistence.

In Sections 1.2 and 1.3, we highlight the benefits and limitations of both these
design approaches in light of the previously identified software and hardware
trends. In fact, we observe that the benefits and limitations of these two extreme
approaches are complementary to each other. As a result, we highlight the impor-
tance of the opportunity to explore the integration of the feature sets of these two
disparate system domains. This exploration forms the crux of this dissertation,



4 CHAPTER 1. INTRODUCTION

which explores the design space of the integration of actor programming models in
modern database systems. The dissertation investigates the viability and potential
of such a system by building an in-memory database system for multi-core ma-
chines exposing an actor programming model and then by evaluating the system
and the programming model for benchmarks representative of interactive data
intensive services.

1.2 Modern In-Memory OLTP Database Systems

In light of the hardware trends outlined in Section 1.1.2, the database com-
munity made concerted efforts to identify scalability and performance issues in
traditional disk-based OLTP database designs for multi-core and multi-machine
deployments [68,75,76,121]. Given these findings, extensive work has been done
by the community to redesign the database system internals for main-memory,
multi-core and multi-machine deployments [50,79,80,92,98,125]. The theme of
this work has been on increasing the scalability of modern in-memory database
systems to high transaction volumes by either removing the bottlenecks in the
traditional systems or by rebuilding them from scratch.

While the internals of these systems were redesigned, the classical abstraction
provided by databases remained unchanged. The classic guarantees of ACID
transactions for execution of application programs makes it very easy to prototype
applications using these systems. The high-level data model and declarative query
capabilities simplify how the application logic accesses and manipulates data.
Atomicity guarantees free the application developer from reasoning about partial
executions of programs either due to program errors or failure of the database
system. The guarantees of serial execution of programs (serializable isolation level)
completely insulates application developers from the effects of concurrency. The
durability guarantee ensures that the effects of successfully completed programs
are recoverable. All these features in conjunction greatly simplify nascent design
of interactive data-intensive services thus making them an ideal environment to
quickly prototype applications.

However, as the application complexity grows due to increase in size of code
base (stored procedures), the number of relations, constraints and triggers, it
becomes very hard to debug and isolate bugs and failures because a tuple in a
relation can be modified by any stored procedure (lack of data encapsulation makes
it hard to trace source of bugs). The lack of modularity features in these systems
makes it hard to tame the complexity of the service over time. Database systems
have traditionally only provided a data model while the programming model has
been left implicit. This implicit programming model provides a monolithic view
of the database, i.e., a machine with a single unit that stores data and a single
computational unit that executes queries to access and manipulate data sequentially.
Since the programming model lacks the notion of a scalable computational entity,
it is hard if not impossible to reason about the scalability of programs executing on
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it. As a result, designers of interactive data intensive services often find it difficult
to isolate whether scalability issues arise from the application logic in the service
or from scalability issues of the database system.

A stored procedure is used to implement the application logic that executes
sequentially one statement at a time in these systems. Stored procedure statements
can consist of a sequence of queries interspersed with conditional statements, loops
and function calls. The query optimizer in a database system can only infer data-
flow parallelism in a single query and hence can only parallelize individual queries
within a stored procedure. In addition, there is no guarantee that the query
optimizer will infer or choose to exploit data-flow parallelism in a query. The
lack of a scalable computational primitive in the programming model restricts
the developer from specifying parallelism across multiple statements in stored
procedures. As the complexity of application logic in interactive data intensive
application grows, application developers will increasingly feel the lack of necessary
primitives to control and improve the performance of their programs especially in
the parallel hardware available today.

Modern in-memory OLTP database systems are designed either using a shared-
everything [50,76,125] or a shared-nothing architecture [80,121]. Data and code
partitioning is a necessity in a shared-nothing database due to their architecture
to distribute the code and data across the partitions. Some shared-everything
databases that employ internal partitioning of data structures for high performance
in multi-core machines [98] also need to perform data and code partitioning.
Since the programming model does not have any notion of partitioning, shared-
nothing databases depend on inference mechanisms to distribute code and data
across partitions [41, 101]. The performance of these systems is predicated on
the inference of a good partitioning layout. Since these inference mechanisms
depend on the workload and the database implementation, their fragility leads
to unpredictable performance behaviors that cannot be cleanly understood and
influenced using the programming model [72]. Even the high performance of
shared-everything database systems that do not necessitate data partitioning [125]
in a multi-core setting is reliant on the affinity of data to the processing cores
because of cache coherence and NUMA effects, and any performance variability
cannot be explained and controlled using the programming model guarantees.

Summary. The robust state management features of the modern in-memory
database systems aid in the design of interactive data intensive services by freeing
the application developer from reasoning about correct manipulation of state
under concurrency and failures, thus allowing her to focus on the specification of
the application logic in a high-level data model with declarative query capability.
However, the lack of modular programming abstractions complicates debugging
and isolation of faults especially as the size of the service (data and code base)
grows with time. The lack of a computational primitive in the programming
model hinders reasoning about scalability and exercising flexible control over the
application logic to improve performance.
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1.3 Actor Systems

The use of application frameworks for designing interactive data intensive appli-
cations has been gaining a lot of attention [18, 118, 119]. Actor programming
models [4,23] are seeing increased adoption for deploying these services in cloud
computing infrastructures [6, 56, 97, 110]. The distributed actor programming
model provides the scalable computational construct of an actor to allow a service
to be constructed using this building block. The distributed programming model
enables reasoning about the scalability of the service in terms of the actor building
block. By controlling the granularity of the actors, the application developer can
flexibly control the scalability of her service. The distributed programming model
obviates the need for partitioning in order to deploy the service in cloud computing
infrastructures.

By encapsulating state within the actor and enforcing restrictions on the access
of state across actors, they provide the benefits of a modular abstraction. In
addition, programming language support for modularity in these systems greatly
aids in isolating bugs and failure, and testing the service as it grows in complexity
and size. The popularity of microservices [69] highlights the importance of a loosely
coupled design for modularity benefits. Actor programming models enable the
application developer to flexibly define the granularity of their modules and achieve
the most beneficial module architecture. Actor programming models also provide
a computational construct in addition to a modular one. This computational
construct along with asynchronous message passing semantics of actors makes
it possible for application developers to specify and leverage parallelism within
the application logic. As a result, the application developers can reason about and
flexibly control the performance of the service. This is especially important given
the service trends of increasing complexity in application logic.

Despite their appeal, actor runtimes such as Erlang and Akka [6,14] expose
problems of actor lifetime management and sharing their references in order
to communicate to the application developer. This becomes a hard problem
to solve especially in a cloud computing infrastructure. Orleans [23] obviates
these problems by removing these responsibilities from the service and delegating
it to the run-time. Nevertheless, other problems of state management remain.
Although actors provide the notion of single-threaded execution within an actor,
management of actor state for durability is exposed to the application developers.
These systems typically employ a key-value storage layer [38] for durability of actor
state that needs to be explicitly managed by the application developer. Additionally,
consistency of state across actors under concurrent execution of programs and
under failures (errors in application logic, failure of the system) needs to be
managed by application developers. This leads to complications in application
logic for state management and impacts developer productivity. The data model
in these systems is tied to either the actor programming language run-time or the
programming language used to build the actor framework. As a result, there is
no physical data independence and consequently portability of the service suffers
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across actor systems. In addition, the lack of declarative query capabilities also
affects developer productivity. The lack of these features has also motivated a call
to integrate database functionality into actor run-times and work is underway in
this direction [26,54,124].
Summary. Distributed actor programming models provide the desirable primitive
of a modular, scalable computational construct that can be used to reason about
modularity and scalability of interactive data intensive services. This puts the
application developer firmly in control to tame complexity and scalability issues
as the service grows in size. Asynchronous messaging between actors provides a
construct to reason about the performance of application logic and to control it.
The lack of robust state management under failures and across actors either limits
the use of these actor systems to services that can tolerate these issues or raises
the need to handle the issues in the service. This leads to increased complexity
of the service and lowers developer productivity. The lack of a high-level data
model and declarative query capabilities affects portability of these services and
curtails any benefits that could be obtained from physical data independence and
optimization of query plans for declarative queries.

1.4 Summary of Goals and Contributions

In light of the discussion of the previous sections, the overall goal of this dissertation
is to concretize the idea of an actor database system and investigate its viability
and benefits. Consequently, our work has been organized under three functional
blocks namely (1) to outline the vision of an actor database system in light of
current application and hardware trends (2) to investigate the challenges that
arise in the design and implementation of an actor database system by building an
in-memory multi-core OLTP database engine with an actor programming model
(3) to evaluate whether the performance guarantees of the programming model
can be leveraged for performance gains in the system, especially for benchmarks
with available task-level parallelism on multi-core machines. We elaborate the
contributions of each of these functional blocks below:

1.4.1 Actor Database Systems Vision

In the first functional block, we motivate the need for actor database systems by
analyzing how existing approaches of building interactive data intensive services
do not address the observed application and hardware trends. During our analysis
of the shortcomings of existing approaches, we also emphasize how actor database
systems would address these issues. In light of the aforementioned analysis, we
concretely define an actor database system by postulating their mandatory feature
sets, which are organized under four broad tenets. These tenets identify the
characteristics of an actor database system which are given a precise interpretation
by the feature sets. To highlight the necessity and applicability of the feature
sets, we perform a detailed case study for a benchmark (SmartMart) that we
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designed to model an interactive data-intensive smart supermarket application. In
the case study we use detailed application pseudocode to demonstrate how the
promulgated features of an actor database system can be utilized by an interactive
data intensive application. In addition to demonstrating the benefits of the actor
database system features by pseudocode examples, we also illustrate the potential
of the programming model in improving performance by evaluating the benchmark
in a prototype system discussed in the next section.

1.4.2 Reactor Programming Model and REACTDB

In the second functional block, we investigate the challenges that arise in order to
integrate actor programming models inside database system kernels on machines
with large main memory and multi-core processors. In order to validate the
viability of the system and the programming model, we enrich the relational
database programming model with (1) the computational construct of an actor
and (2) asynchronous function invocation semantics. This new programming
model named reactors guarantees atomic and serializable execution of programs.
In order to support the reactor programming model, we build a multi-core in-
memory OLTP database engine named REACTDB that comprises of in-memory
storage, concurrency control and transaction coordination layers. In order to focus
on the challenges of integrating reactor programming model in the kernel of a
high-performance database engine and to understand whether the performance
promises of the programming model can actually be perceived in practice, we
refrain from building a full-feature actor database system, thus delegating support
for declarative querying, durability, monitoring and administration to future work.
We discuss in detail the design and implementation of REACTDB highlighting how
the system virtualizes the database architecture that can be configured when the
system is deployed. In our results with classic OLTP benchmarks we show that the
reactor programming model can be leveraged for observable performance gains
at the microsecond scale. In addition, we also demonstrate the scalability of the
system under different configurations of database architecture.

1.4.3 Transactional Parallelism in Reactors and REACTDB

In the third and final functional block, we build upon our previous evaluation work
of classic OLTP benchmarks discussed in the previous section. We use the SmarMart
benchmark that was designed in the first functional block (Section 1.4.1) with
controllable task-level parallelism in mind to systematically study how classic par-
allelism factors of overhead, parallelizable work and its dependencies, interference
and skew affect the performance of REACTDB. We also explain how the observed
effects can be cleanly understood using the reactor programming model. We also
conduct a detailed discussion on the internal implementation details of REACTDB
to highlight their efficient design that plays a key role in ensuring parallelism
benefits leveraged by application programs can be perceived in practice.
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1.4.4 Publications

Previous versions of some of the chapters of this dissertation have been published
or are in submission in international conferences. We list these chapters along
with their respective publications below:

• Chapter 2 - Actor Database Systems : A Manifesto [112] Vivek Shah and
Marcos Antonio Vaz Salles. Manuscript in Submission, preprint available as
CoRR abs/17707.06507, 2017.

• Chapter 3 consists of two publications namely:

1. Reactors: A Case for Predictable, Virtualized Actor Database Sys-
tems [113] Vivek Shah and Marcos Antonio Vaz Salles. Manuscript In
Submission, preprint available as CoRR abs/1701.05397, 2017.

2. Transactional Partitioning: A New Abstraction for Main-Memory
Databases [111] Vivek Shah. In VLDB PhD Workshop, 2014.

• Chapter 4 - An Evaluation of Intra-Transaction Parallelism in Actor
Database Systems. Vivek Shah and Marcos Antonio Vaz Salles. Manuscript
In Preparation, 2017.

1.4.5 Structure of Dissertation

The dissertation has been organized following the order of the functional blocks
outlined in the contributions. In Chapter 2, we propose the vision of actor database
systems arguing for its need and enunciating the feature sets that would identify an
actor database system. We also perform a case study to exemplify the feature sets
and performance potential of actor database systems in the context of an interactive
data intensive application. In Chapter 3, we present a concrete programming
model designed for actor database systems called reactors. We also discuss the
design and implementation of an in-memory multi-core OLTP database system
that exposes the reactor programming model named REACTDB. In Chapter 4, we
discuss in detail the algorithms and mechanisms used by REACTDB to ensure that
the reactor programming model can be leveraged for performance benefits with
minimal overheads. We also perform a detailed evaluation complementing our
previous work to highlight how classical parallelism factors manifest in REACTDB
for an interactive, data-intensive application benchmark. Finally, in Chapter 5,
we present our concluding remarks and outline ongoing and future directions of
research.



Chapter 2

Actor Database Systems: A
Manifesto

“Opposites are not contradictory but complementary.”

— N. Bohr

Interactive data-intensive applications are becoming ever more pervasive in do-
mains such as finance, web applications, mobile computing, and Internet of Things.
Typically, these applications are architected to utilize a data tier for persistence.
At one extreme, the data tier is a simple key-value storage service, and the ap-
plication code is concentrated in the middle tier. While this design provides for
programmability at the middle tier, it forces applications to forego classic data
management functionality, such as declarative querying and transactions. At the
other extreme, the application code can be colocated in the data tier itself using
stored procedures in a database system. While providing rich data management
functionality natively, the resulting lack of modularity and state encapsulation
creates software engineering challenges, such as difficulty in isolation of bugs and
failures or complexity in managing source code dependencies. In addition, this
monolithic architectural style makes it harder to scale the application with grow-
ing request volumes and data sizes. In this chapter, we advocate a new database
system paradigm bringing to developers the benefits of these two extremes, while
avoiding their pitfalls. To provide modularity and reasoning on scalability, we
argue that data tiers should leverage the actor abstraction; at the same time,
these actor-based data tiers should offer database system features to reduce bugs
and programming effort involved in state manipulation. Towards this aim, we
present a vision for actor database systems. We analyze current trends justifying the
emergence of this abstraction and discuss a set of features for these new systems.
To illustrate the usefulness of the proposed feature set, we present a detailed case
study inspired by a smart supermarket application with self-checkout.

10
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2.1 Introduction

Online services are becoming increasingly ubiquitous requiring management of sub-
stantial data along with low-latency interactions. These interactive data-intensive
applications include online games, social networks, financial systems, operational
analytics data management, web applications and upcoming Internet-of-Things
(IoT) and mobile computing platforms [31,33,63,120,132]. The standard method-
ology to architect these applications is to segregate the server-side application logic
across an application (or middle) tier and a data tier. Opinions seem to be divided
on how to architect the application code across the application and the data tiers.
Existing approaches can be classified across two extreme ends: (1) Architect the
data tier as a dumb storage abstraction with the entire logic in the application tier;
(2) Architect the application tier to be completely stateless using the database as a
full-fledged programming enviroment with the entire data manipulation logic in
the data tier.

In approach (1), database functionality such as transactions and declarative
querying are either sacrificed or underutilized. This approach leads to increased
demand on the middle tier for well-defined state management functionality un-
der concurrency and failures. This demand can be met either by: (a) building
the necessary features in the application tier, however leading to reduced pro-
ductivity [19, 115]; or (b) utilizing application frameworks with only limited
transactional features in the middle tier, however leading to misconceptions and,
consequently, incorrect applications [18].

In approach (2), the database is conceptualized as a monolithic entity where
the state is maintained and manipulated through sequential programs written
using declarative querying and limited general purpose programming constructs,
e.g., stored procedures without modern object-based modularity features. The lack
of modularity in this approach makes it hard to identify bugs, isolate failures and
maintain application code, especially with growing data and application complexity.
Furthermore, the monolithic design makes it hard for the application developer to
reason about the scalability and performance of the data tier.

The actor programming model has desirable primitives for concurrency and
modularity [3]. By encapsulating state, providing single-threaded semantics for
encapsulated state manipulation, and encouraging an asynchronous function-
shipping programming paradigm, actors provide a general, modular and concur-
rent computational model. However, actors expose state management respon-
sibilities such as durability, global state consistency across actors, and failure
management to the application developer. Despite these shortcomings, actor
frameworks and languages, such as Akka [6], Erlang [13,56] and especially the
virtual actor model of Orleans [23], are increasingly being used to build soft
caching layers designed to scale to millions of actors deployed across hundreds of
servers using existing cloud-computing infrastructure. These applications vary in
diversity, including as examples chat and call services, crowd collaboration and
synchronization platforms, mobile and social payment platforms, real-time bidding
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applications, online games, and even IoT streaming from space balloons [7,57,97].
The popularity of these applications points to the appeal of the actor programming
model, which allows application developers to design modular, scalable programs
for deployment in an increasingly parallel and heterogenous cloud-computing
infrastructure without sacrificing developer productivity.

In line with microservices [69], we believe the data tier should be programmed
as a logically distributed runtime with the necessary configurable state man-
agement guarantees that are appropriate for the application. In addition, the
programming abstraction of the data tier should allow for modular, scalable,
performance-portable and cloud-ready design of application programs. Towards
this goal, we call on the database community to define and explore the research
problems originating from the integration of actor-oriented programming models
and classic database management systems.

In this chapter, we propose to center this research agenda around the new
abstraction of actor database systems, which provides the illusion of a distributed
logical runtime enriched with data management features. Actor database systems
are envisioned to increase the programmability of the data tier, where the applica-
tion hard state with strong guarantees of durability and consistency is maintained.
As such, actor database systems are complementary to the design of the middle
tier, where stateless application logic or alternatively soft-state resides. Even if the
middle tier employs actors, as in Orleans [23], such a middle tier cannot subsume
the data tier, since only weak state management guarantees are provided and
consistency is traded off for availability.
Contributions and Roadmap. This chapter proposes a new vision to marry actors
and database systems. Specifically, the chapter makes the following contributions:

1. To motivate the actor database system paradigm, we discuss in Section 2.2 an
example of an interactive data-intensive application in the domain of smart
supermarkets. The example illustrates at a high level the varied features
that a data tier implemented as an actor database system should support.

2. We argue in Section 2.3 why the time is ripe for the emergence of the new
abstraction of actor database systems by analyzing a number of current
trends in the design of interactive data-intensive applications.

3. Given the aforementioned analysis, we present in Section 2.4 a set of tenets
and features that should be followed by every actor database system.

4. To illustrate the potential interplay of these features with applications, we
drill down in Section 2.6 on a case study of the smart supermarket application
introduced as the running example. After discussing modularity, querying,
and transactions through application pseudocode, we illustrate the promise
of improved performance with asynchronicity in actor database systems by
implementing and evaluating the application in an actor database system
prototype.
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Figure 2.1: Actors in the data tier of a simplified IoT smart supermarket
application. The cart actor supports two transactions, namely add_items
and checkout. Several functions are invoked in response to the add_items
transaction (1). Both get_customer_info and get_price are asyn-
chronously invoked on the customer and multiple store section actors, re-
spectively (2). Once the customer marketing group is obtained, then
get_fixed_discounts is invoked on the group manager actor (3). On
checkout (4), get_variable_discount_update_inventory is invoked
on each store section asynchronously (5). Finally, a detached transaction
add_store_visits is invoked for later execution on the customer actor to record
the store visit (6).

In Section 2.8, we discuss related work before concluding.

2.2 Motivating Example

We motivate the integration of actors and database systems by an example that
illustrates the needs of many emerging interactive data-intensive applications.
Consider a simplified future IoT supermarket application for next-generation self-
checkout [11,103]. The application models the workflow of a customer carrying a
smart shopping cart equipped with sensors that can detect physical items inside
it. The smart cart periodically interacts with a backend service, which is itself
implemented using an actor database system in the data tier. Figure 2.1 shows a set
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of database actors for this application, along with a chain of function invocations
triggered by the functionality to add items and checkout.

The application is functionally decomposed into actors to represent customers,
carts, store sections, and group managers for marketing campaigns. For modu-
larity, state is encapsulated within each actor; however, for programmability and
declarative specification, the state of each actor is abstracted by a set of relations
and application functions employ declarative queries against relations. For example,
the customer actor contains relations recording general information about the
customers and their store visits, while the cart actor contains relations recording
the contents of the cart. The store section actor contains relations recording the
inventory of the store section and its purchase history, and the group manager
contains relations recording the fixed discount available on each item specialized
for a group of customers.

For database-style consistency in state manipulation, selected functions perform
actions atomically, in particular the add_items and checkout functions. When
the add_items function is invoked, we atomically update the cart with the latest
prices and fixed discounts. Similarly, when checkout is called, we atomically
compute demand-based variable discounts, update inventory, and compute aggre-
gates for the order. In addition, these functions need isolation under concurrent
updates, e.g., when multiple simultaneous checkouts update the same items in
the inventory and calculate demand-based variable discounts. Furthermore, the
changes made by checkout require durability for recording purchase history and
updating the inventory.

Even though it may seem natural to treat functions such as add_items
and checkout as classic database transactions, the interaction of database-style
functionality with actors brings new challenges and opportunities. In particu-
lar, both transactions invoke a number of sub-transactions across various actors.
In the actor model, function calls between actors are asynchronous. For exam-
ple, add_items asynchronously invokes get_customer_info and get_price
on customer and store section actors respectively, while checkout invokes
get_variable_discounts_update_inventory on store section actors. This
asynchronicity in invocations exposes intra-transaction parallelism, which must
interplay cleanly with transactional semantics. Moreover, we may not always wish
that asynchronous function calls be part of the same transactional context. For
example, checkout triggers a detached transaction add_store_visit, which is
separately executed at a later time, to record a trace of store visits for the customer.
In such a case, flexibility in fault tolerance guarantees can be afforded to the de-
tached transaction for recording the purchase of the customer, since independent
failure of a customer actor does not preclude the main application functionality
from being executed. Similarly, add_items might not need durability since it
can be recomputed from the cart’s physical contents albeit with different prices
and fixed discounts (if inventory or group manager prices and discounts change)
depending on application semantics. Finally, asynchronicity also has implications
on declarative querying functionality. While queries to the state of an actor are
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synchronous, the semantics of multi-actor queries involving asynchronous function
calls needs to be carefully considered.

2.3 Why Actor Database Systems Now?

In this section, we outline the technological and application design trends that act
as key enablers for the use of actor database systems.

2.3.1 Popularity of Cloud Computing Platforms, Middleware and
Microservices

The last decade has witnessed a massive growth in the amount and variety of
web services, which have targeted cloud computing infrastructure for deployment.
Utilizing a three-tier architecture, these services employ a stateful middle tier using
web-application frameworks or language runtimes, while the data tier consists
of a database system. Web-application frameworks employing asynchronous
and reactive programming, actor runtimes and NoSQL data stores have seen
widespread adoption for constructing these interactive web services. Increasingly,
application logic has been moved away from the database system into the middle
tier, repurposing the database system as a fault-tolerant, consistent storage layer.
Originally, this migration of logic to the middle tier was a response to scalability
and performance concerns of the data tier, but of late programming flexibility and
development productivity have emerged as major drivers [102,118,119].

However, this approach has not been without its share of failings. The lack and
misunderstanding of data consistency semantics, fault-tolerance models, and query
capabilities in the middle tier have affected application correctness [18,46], which
has raised voices for integrating database features into middle tier platforms [26].
The growth of microservices as an architectural pattern has made a case for a
modular, scalable, fault-tolerant design of these web services to avoid the pitfalls
of a monolithic architecture [69]. However, current deployments of microservices
argue for containerization of whole software components, which raises the op-
erational cost of these services and burdens the application to administer and
integrate these modular software systems.

Actor database systems have the potential to address all these existing gaps.
They provide a concrete programming paradigm to functionally decompose the
data tier in modules across actors in line with the microservice architecture, but
at a logical level independent of actual software system components and without
paying a high overhead for modularity and encapsulation. They also incorporate
well-understood, decade-strong data management and fault-tolerance guaran-
tees, which relieves developers from the burden of reasoning about complicated
state consistency semantics under asynchronous, concurrent executions of ap-
plication programs in the presence of failures. In short, actor database systems
increase the programmability of the data tier, which can then be conceived as a
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language runtime with robust state management features instead of just a storage
abstraction.

2.3.2 Modular, Elastic, Available and Heterogeneous Applications

The popularity of microservices points to the importance of a modular design
as a solution to manage application complexity and failures. A modular design
helps in better fault isolation, debugging and profiling of the individual modules
as opposed to a monolithic design, thus increasing programming productivity. In
addition, a modular design can improve availability by a fail-soft strategy, where
faulty modules and its dependents can be made unavailable instead of an entire
application. A modular design also aids in targeted monitoring of the modules and
better analysis of impacts, which can bring substantial benefits in load provisioning
and resource utilization with workload changes. The latter has a direct impact
on supporting elasticity for an application, which has become important today
given the 24x7 nature of online web services and the changes in workload they go
through.

Modularity is also an important building block in supporting the heterogeneous
requirements of current web services. For example, an application might have
varying durability needs where (1) the entire data need not be durable and/or
(2) only executions of certain programs need to be durable. Another case can
be made for encrypted data where the entire data need not be encrypted and
engender the associated overheads. Similarly, a case can be made for concurrency
control, where different subsets of data and programs can benefit from different
concurrency control structures and isolation levels. Currently, these heterogeneous
needs are explicitly managed by the application by deploying associated software
components, which significantly increases application complexity and maintenance
overheads.

Actor database systems with their modular, concurrent and fault-tolerant
programming model can cater to these application needs in a manner that is
both more natural and better integrated with data management functionality. By
allowing decomposition across actors and supporting actor heterogeneity, actor
database systems can allow application programmers to declare the durability,
encryption and concurrency needs of each actor, thus making such actors the
islands of homogeneity in the application.

2.3.3 Increasing Parallel Hardware

Over the past two decades, computing power has increased dramatically. Initially,
this increase came in the form of higher clock rates for processors; of late, in
the form of more processing elements (cores) in a single chip. The cost of these
computing elements has gone down dramatically as well, making them widely
affordable. Dropping costs and improving performance have also been witnessed
in storage and networking technologies, which has given rise to new challenges
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for database systems to transition these hardware benefits to applications [10].
Even though database systems lie at the cross-section of system software (OS)
and application programs, they lack abstractions to expose the available physical
parallelism using a high-level programming model.

To this end, actor programming models hold promise to fill this gap, as they
possess: (1) well-defined concurrency and asynchronous message passing se-
mantics, and (2) a function-shipping programming paradigm. Actors allow for
portable specification of applications in terms of high-level, application-defined
concurrent computational elements independent of the actual physical hardware
and operating system primitives. With an actor-based specification, the available
control-flow parallelism in application functions can then be leveraged from a
higher level of abstraction to improve application performance. Additionally, actor
database systems can exploit the locality information encoded in actors to better
target classic data management optimizations, e.g., for index structure layouts,
code generation, and transaction affinity.

2.3.4 Latency Sensitive Applications

The last few years have witnessed a rapid growth of stateful, scalable, latency-
sensitive web services in various application domains, e.g., online games, mobile
and social payment platforms, financial trading systems, and IoT edge analyt-
ics [102,118]. The increasing adoption of scalable actor runtimes such as Akka,
Erlang and Orleans to deploy these services points towards the attractiveness of
actor programming models for designing these applications [119]. By providing
single-threaded execution with asynchronous message passing semantics, actors
simplify concurrent programming while enabling developers to leverage available
asynchronicity in the design of latency-sensitive and locality-aware applications.

However, actor runtimes shift the responsibility for state management under
failures to the programmer, which has raised the need for integrating classical
database state management functionality [26]. The data model in these runtimes
is low-level, language-dependent and lacks declarative query capabilities, thus
pushing physical design decisions into applications.

Actor database systems have the potential to simplify application development
and portability without compromising programming flexibility and correctness in
this growing space of stateful, latency-sensitive applications. To this end, actor
database systems provide robust state management guarantees as well as high-
level data model and query capabilities, bringing physical data independence to
the actor programming model.

2.3.5 Security Risks

With increasing pervasiveness of software services, security challenges faced by
these services continue to grow dramatically. These challenges include issues
pertaining to data integrity, access control, authorization, monitoring and auditing
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of these services. It is equally important to detect security violations and to mitigate
them with minimum possible impact on the service operation. With increasing
size of application deployments and complexity, it is imperative that software tools
support specification of secure application code and help in static and dynamic
verification.

Actor database systems open up new possibilities to re-think the database
security model for current and future applications. For example, the traditional
security model based on users and roles can be augmented in actor database
systems with object-capability security, aiding in monitoring information flow
on message passing. Having a modular architecture can also enable auditing of
security violations and upon incidents, help in limiting unavailability to only the
affected actors and/or functions instead of all actors and all functions.

2.4 Actor Database System Tenets

In this section, we outline the tenets that identify an actor database system based
on the analysis in Section 2.3. We further enumerate and classify the actor database
system features under these basic tenets. We propose mandatory features that
we envision a system must support to qualify as an actor database system and
meet the design trends of interactive data-intensive applications. However, we
do not consider this feature set as final, but as a concrete formulation for further
discussion in the community. We additionally list a set of optional features that
were part of our reflections in Section 2.5.

2.4.1 Overview

Tenet 1: Modularity and Encapsulation by a Logical Actor Construct. In order
to tackle growing application complexity, isolate faults, define heterogeneous
application requirements and increase programming productivity, modular pro-
gramming constructs providing encapsulation are required. It is also desirable that
the overhead of modularity be as low as possible and that modules be defined by
the application independently of the hardware and software used for deployment.
Actors provide this low-overhead computational construct in an actor database
system as opposed to objects, which are a data encapsulation mechanism only.
Tenet 2: Asynchronous, Nested Function Shipping. For latency-sensitive appli-
cations to leverage the benefits of increasingly parallel hardware, asynchronicity
in communication among actors becomes necessary. By using asynchronous func-
tion shipping to communicate with an actor and by utilizing nested invocations
of such asynchronous functions, an application can leverage the available ap-
plication control-flow parallelism to minimize latency, increase locality of data
accesses in functions, and thus improve application performance using high-level
programming abstractions.
Tenet 3: Transaction and Declarative Querying Functionality. In order to ease
the burden of managing complexity and to increase programming productivity,
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a well-defined model for concurrency and fault-tolerance is desirable. Single-
threaded execution semantics in actor models has been extremely appealing to
programmers, hinting at the potential of borrowing and adapting classic database
mechanisms such as transactions and more specifically nested transaction mod-
els [129]. Moreover, to bring physical data independence to actor models, a
high-level data model and declarative query capabilities are required for easy
interaction with encapsulated state within the actors.
Tenet 4: Security, Monitoring, Administration and Auditability. In order to
address security threats, support for limiting information flow is required from the
programming model during design and construction of applications. In addition, at
runtime, monitoring, administration and auditing components provide for further
manageability of security violations. By virtue of modularity and encapsulation in
actors, a host of language-based security techniques can be provided to enrich the
programming model to reason about security of the application during the design
phase and to enable software verification. Actor modularity also enables targeted
monitoring, auditing, administration and response to security threats in order to
minimize availability issues.

2.4.2 Tenet 1: Modularity and Encapsulation by a Logical Actor
Construct

Mandatory Feature 1: Logical, Concurrent, Distributed Actors With Location
Transparency. For modularity, an actor database system must provide a program-
ming abstraction of concurrent and distributed logical actors. A logical actor is an
application-defined processing entity that communicates using message passing.
Messages can be modeled as a computation that causes a response (see Tenet 2).
Logical actors are concurrent and distributed because every logical actor is isolated
from each other and can run at the same time independently. A logical actor does
not imply a one-to-one mapping to an actual physical element (e.g., thread or
process) used to implement it, but is merely an application modeling construct.

Even though logical actors communicate via message passing, we define a
logical actor to not have a mailbox abstraction as a traditional actor [4]. Hence,
a logical actor must not be conceptualized as an interrupt handler where the
application developer needs to implement the message receiving loop. Rather,
a logical actor is a reactive entity that processes requests submitted to it from
clients or other logical actors. The decision to make logical actors reactive does not
preclude the use of application-defined mailboxes, but does not force this design
onto every application over an actor database system.

The application developer can model and structure her application with logical
actors as in Figure 2.1. Note that the relations displayed in the figure could
have been alternatively grouped under a different actor design. Consequently, a
given application can be structured in multiple ways depending on how logical
actors are defined. We envision that a logical actor would be understood by
developers as a logical thread of control and used to capture the units of scaling



20 CHAPTER 2. ACTOR DATABASE SYSTEMS: A MANIFESTO

and available parallelism of the application. For example, the whole set of logical
actors in Figure 2.1 could be instantiated once per store or group of stores. At finer
granularity, the application could be scaled on the number of carts and sections
within a store.

A logical actor primitive can be provided in multiple ways. An object-oriented
abstraction [23, 34] can be used to provide a logical actor primitive where the
methods of the object define the computations that can be invoked on the logical
actor. A function-oriented primitive can also be used by just declaring the logical
actors and then defining computations in terms of them. In contrast to objects in
object-oriented database systems [15], however, actors in actor database systems
are not simply an abstraction to encapsulate data and define behavior on it. Logical
actors provide the illusion of a thread of control and thus allow the developer
to explicitly model the scalable units of her application as well as asynchronous
computation and communication as discussed in Tenet 2. Logical actors allow
decomposition of the data tier in a modular fashion allowing for better isolation
of bugs, containment of failures, and management of application complexity.

Every logical actor must be uniquely identified by a name. In other words, a
logical actor must be assigned a name from a logical namespace by the application.
The name of a logical actor acts as the logical actor’s sole identity from a program-
ming perspective. For example in Figure 2.1, the name of a customer actor is the
implicit primary key of the customer_info relation, i.e., the customer ID.

Mandatory Feature 2: Actor Lifetime Management. Since the programming
model exposes primitives for specifying application-defined logical actors, a nat-
ural question is whether the application needs to manage the life cycle of these
actors. Traditionally, actor models have exposed actor lifetime management to the
application. However, an actor database system can either choose to manage actor
lifetime itself or delegate it to the application by selecting any of the following
mechanisms:

(1) Dynamic Actor Creation: Similarly to dynamic memory allocation, the
application can be given the control to create and destroy logical actors dynamically.
An attempt to create a duplicate logical actor or to destroy a non-existent logical
actor must be signaled by appropriate errors. This policy is similar to the model
supported by existing actor language runtimes, such as Akka [6] or Erlang [13,56].

(2) Static Actor Creation: An actor database system can also choose to manage
actor lifetime itself and therefore not provide primitives for actor creation and
deletion. In this mechanism, the actor database system creates the illusion of logical
actors to be in perpetual existence to the application. This can be supported by
(a) automatic actor creation [34], where accessing an actor by name automatically
creates that actor; or (b) declarative actor creation, where the application declares
the names of the logical actors that should be available for the lifetime of the
application.
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2.4.3 Tenet 2: Asynchronous, Nested Function Shipping

Mandatory Feature 3: Asynchronous Operation Support. Asynchronous mes-
saging is necessary as a communication mechanism for logical actors to provide
a programming construct for the application developer to reason about control
and data flow dependencies and explicitly expose parallelism in a computation
for performance. Asynchronous messaging across actors can be implemented in
various ways, e.g., using traditional actor model message passing [3], or method
invocations on objects returning promises [34], to name a few. Irrespective of
implementation mechanism, asynchronous logical actor messaging must allow
the caller to synchronize on the result of the communication if desired, i.e., if
the communication is a send primitive then the client can choose to wait until
the message is successfully received; similarly, if the communication is through
a remote procedure call, then the client can choose to wait until its result is
propagated back. For example in Figure 2.1, the functions get_customer_info
and get_price are invoked asynchronously within the add_items transaction.
Similarly, multiple calls to get_variable_discount_update_inventory are
invoked asynchronously within checkout.

By introducing asynchronicity in the messaging mechanism, the illusion of a
purely sequential program is broken. Racy computations may now be possible,
i.e., in the absence of any concurrent computation and given the same input state,
the program execution can produce inconsistent result states depending on the
order in which asynchronous computations are scheduled on a conflicting data
item. Either the programming model must disallow statically the formulation of
such programs or the runtime must reject such malformed programs. In addition,
the impact of asynchronous messaging on the isolation semantics exposed by the
programming model of an actor database system must be clearly defined.

2.4.4 Tenet 3: Transaction and Declarative Querying Functionality

Mandatory Feature 4: Memory Consistency Model. An actor database system
must provide primitives to allow an application to control the isolation level
across concurrent computations. Although enforcing before-or-after atomicity
(serializability) of computations on the union of the states of all actors in an
actor database would be the simplest isolation level to program with in order
to guarantee correctness, evidence suggests that applications can tolerate lower
isolation levels with alternative guarantees and mechanisms [18, 109]. At the
same time, and in contrast to microservice architectures [69], actor database
systems should not shy away from defining consistency semantics for global state
manipulation across multiple actors.

Isolation levels and their control can be provided in various ways: (1) Borrow-
ing traditional database isolation levels and exposing them as annotations in actor
computations; (2) Following a turn-based model similar to Orleans [23]; (3) Em-
ploying application-defined invariant-based isolation guarantees [17,109]. In all
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of these alternatives, isolation in sub-computations of a given computation must
be considered carefully. For example, the isolation level of a parent computation
could be propagated to child computations, the child could remain independent
of the parent, or isolation level for the parent and the child computations should
be compatible.
Mandatory Feature 5: Fault-Tolerant Actors With Application-Defined Dura-
bility. An actor database system must free the application developer from worrying
about partial alteration of actor state by an incomplete computation under failure.
Consequently, an actor database system must support the classic notion of all-or-
nothing atomicity of computations (recoverability). Still, detached transactions
running independently from a calling transaction should be provided to allow for
flexibility in fault-tolerance guarantees and performance. For example, the logic
of the add_store_visit call in Figure 2.1 is executed as a detached transac-
tion with respect to checkout. To establish a fault-tolerance contract in the call,
an exactly-once qualifier could be added to the add_store_visit invocation.
Different detached transaction invocations may have different qualifiers, e.g., for
at-most-once or at-least-once semantics.

In addition to recoverability, database systems guarantee durability of com-
mitted transactions. By contrast, actor runtimes do not provide any durability
guarantees for computations, forcing the application developer to store either
parts or the entirety of actor state in an external storage system. To allow flexi-
bility of application design, the programming model of an actor database system
must fall in-between the two extremes and allow an application to control actor
state durability. The logical programming model must thus support the notion
of durability as a property to avoid conflation with physical deployment as is the
case in actor systems. For example in Figure 2.1, the application may choose not
to make the cart actor durable, since it can always be reconstructed if needed by
reading the contents in the physical shopping cart itself. Alternatively, durability
annotations could be specified per computation and not per actor. In contrast
to early systems such as Argus [87], however, such mechanisms must work in
conjunction with a high-level data model and declarative querying, as discussed
in the following features.
Mandatory Feature 6: High-Level Data Model and Declarative Querying
Support. The state of a logical actor must be abstracted by a high-level data model
to provide for physical data independence. An application developer should have
full freedom in defining the schema of a logical actor fitting the application needs,
thus allowing schema definitions to vary across logical actors. This allows the
application in Figure 2.1 to specify appropriate schemas in the relational model for
the different actors, and frees the application developers from worrying about the
physical data layout. The actor database system must also provide a declarative
query facility over the state encapsulated in a single actor. This query facility
provides ease of programming and allows for reuse of existing database query
optimization machinery for performance.
Mandatory Feature 7: Multi-Actor Declarative Querying. Declarative querying
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in an actor database system must extend to multiple actors. Multi-actor query
support could be added by prepending actor names before relations, objects, or
other data model constructs similarly to object-oriented query languages [8,85].
However, this simplicity is elusive: as opposed to object models, the actor model
includes explicit asynchronicity in any multi-actor accesses, which must happen
through message passing or function calls. Thus, the semantics of asynchronous
execution of computations needs to be reconciled with the simplicity of a declara-
tive interface. In addition, query optimization needs to be revisited to take into
account asynchronicity elements in query specifications.

2.4.5 Tenet 4: Security, Monitoring, Administration and Auditability

Mandatory Feature 8: Actor-Oriented Access Control. Actor encapsulation and
modularity provide security by ensuring that an actor’s state can only be accessed
through its methods and by localizing security breaches. This enables standard
static verification of illegal accesses by information flow analysis. However, this
mechanism can be enriched further with access control features found in classic
RDBMS, in particular fine-grained access control models [77, 107]. Such an
integration would allow, for example, rich access specifications by methods of
actor types and/or particular actor names to other methods of actor types and/or
given actor names. By allowing both static and dynamic configuration of access
control, static verification and debugging utilities can enrich the design process
while dynamic changes protect against violations at runtime. In addition, to
further protect against unauthorized access, actors should allow specification of
encrypted relations in their state and annotation of methods as encrypted to ensure
all communication to and from the methods are encrypted as well.
Mandatory Feature 9: Administration and Monitoring. An actor database
system should also provide an administrative interface for flexible maintenance,
allowing addition and removal of actors, changing resources allocated to them and
modifying access control specifications. Furthermore, an actor database system
must support targeted monitoring of actors by gathering statistics of actor usage as
well as audit traces of actor method executions, potential security violations, and
anomalous accesses. Taken together, this functionality enables administrators to
intervene in the system at a fine granularity, e.g., removing or deactivating specific
actors that are detected as exhibiting malicious behavior.

2.5 Optional Features for Actor Database Systems

In this section, we list a number of features for actor database systems that we
have classified as optional. The integration of these features promises interesting
research challenges, but the need for their support based on interactive data-
intensive application design trends is not as clear as for mandatory features. We
refrain from classifying the optional features under specific tenets, since some of
the features may have interactions with multiple tenets.
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Optional Feature 1: Actor Computational Heterogeneity. The traditional
actor model and its supported platforms advocate a notion of computational
homogeneity, i.e., every logical actor has equal processing power [4]. However, in
certain applications, some actors may have to sustain higher computation load
than others. For example in Figure 2.1, a store section might have to sustain a
higher load than a customer actor.

An actor database system can support programming constructs to allow the
application developer to declare computational heterogeneity dependencies across
actors, e.g., ActorX > 2 × ActorY . These declarative specifications can be
extended to express memory and communication requirements across actors as
well. These logical actor computational relationships can then be leveraged in the
actual deployment of logical actors on physical hardware to adapt to application
load and to better specify and sustain application service level agreements.
Optional Feature 2: Data Model Heterogeneity. Given the growth in variety of
data-intensive applications, it would be hard to presume that a single data model
across all logical actors would suffice for all application needs. In order to provide
more flexibility, an actor database system could allow disjoint parts of the state in
and across actors to be abstracted by different data models (e.g., relational, object
oriented, XML). Such data model heterogeneity would allow for rich modeling
of state within and across logical actors, avoiding re-architecting an application
on top of a single data model. In contrast to recent proposals for polystores [53],
however, an actor database system must provide the mandatory features discussed
in Section 2.4. For example in Figure 2.1, the inventory and purchase history could
be stored using an XML or object-oriented data model in the store section actor.
Optional Feature 3: Language Integration and Computational Completeness.
One of the reasons for the popularity of NoSQL and MapReduce systems has been
their mature integration with high-level programming languages, which makes
it very productive for application developers to interface their application code
with such systems. Therefore, tighter integration of programming languages in an
actor database system is a desirable property. Since actor database systems aim
at a large set of interactive data-intensive applications, an actor database system
with a strong programming language integration providing computational com-
pleteness has a stronger appeal for adoption than one exposing a computationally
incomplete domain-specific language embedding. Moreover, easy integration of
the actor database system infrastructure with multiple target language dialects
would increase the chances of adoption even further.

2.6 Case Study: SmartMart

In this section, we perform a case study of the smart supermarket application
outlined in Figure 2.1 and briefly described in Section 2.2 in light of the enunciated
tenets and the feature set in Section 2.4. We revisit each of these tenets and features
to provide a concrete example of each in the context of this application.
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2.6.1 Application Logic Overview

The SmartMart application models interactions in a supermarket where carts are
equipped with sensors to read the physical cart contents and to trigger checkout
operations. These sensors periodically interact with the back-end service in the
data tier to call add_items and checkout. In a real application, more operations,
such as to remove items from the cart, need to be supported, but we omit these
additional operations for brevity.

In the application, the discount available on an item is classified into two
components: (1) fixed discount and (2) variable discount. The fixed discount is
customized for a marketing group of customers, while the variable discount is
computed based on the demand for the item over a predefined window. Every
item has a minimum price as well to ensure that discounts do not overshoot it.
The price and fixed discount are computed when items are added to the cart, while
the variable discount is only computed at checkout. For an item i, if qi,t represents
the quantity bought at time t and Sk

i,t represents the set of quantities from the
reverse purchase history of the item starting at t − 1 and size at most k, then the
variable discount is computed using the following formula:

vdisci,t =
qi,t

µ(Sk
i,t) + c ×σ(Sk

i,t)
× V Di (2.1)

For a tunable and predefined constant c, the denominator in the fraction
models a target purchase quantity from the history of purchases based on the
mean plus c standard deviations of the purchase quantity distribution. V Di is the
predefined variable discount that such a purchase would receive. Thus, the current
purchase is normalized by the target purchase and then multiplied with V Di to
compute the dynamic variable discount.

2.6.2 Tenet 1

According to Feature 1, an actor database system must provide a construct to create
logical actors. In Figure 2.3, the keyword actor is used to specify two application-
defined actor types, namely (1) Customer and (2) Group_Manager. An actor
type definition must also include the encapsulated state using the supported data
model, which is bound to the lifetime of the actor. In the example, the state has
been abstracted using relations, whose schema definition is omitted for brevity.1

Each actor type also defines the set of methods that can be invoked on the actor. In
contrast to methods in classic object-based models, actor models explicitly define
that method calls must be logically shipped for execution on the desired actor, since
each actor is a logically concurrent entity. Furthermore, the state encapsulated in
each actor can only be accessed by invoking methods defined by the actor. An actor
method can contain any sequence of queries, procedural logic and invocations to

1The full pseudocode for the example is available in Section 2.6.6.4. For all code examples, we
make simplifications in type annotations and conversions to keep the pseudocode brief.
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CREATE ACTORS OF TYPE Customer WITH NAMES IN (22 , 32) ;
CREATE ACTORS OF TYPE Cart WITH NAMES IN (42 , 43) ;

DROP ACTORS OF TYPE Cart WITH NAMES IN (42) ;

Figure 2.2: Example of Actor Creation and Removal.

actor Customer {
state :

relation customer_info ( . . . ) ;

relation s t o r e _ v i s i t s ( . . . ) ;

method :
tuple get_cus tomer_ info () { . . . } ;

void a d d _ s t o r e _ v i s i t (int s to re_ id , timestamp time ,
float amt , float f i x ed_d i s c ,
float va r_d i s c ) { . . . } ;

} ;

actor Group_Manager {
state :

relation d i s count s ( . . . ) ;

method :
list<tuple> g e t _ f i x ed _ d i s c ou n t s (list<int> i tems ) { . . . } ;

} ;

Figure 2.3: Actor definitions.

other actors. Any variable defined in actor methods and not in the state has the
lifetime of the method only and not the actor.

In line with Feature 2, an actor database system must provide automatic actor
lifetime management. For example, in a system supporting static declarative actor
creation, commands to create and delete actors should be provided to support
actor creation and removal. Figure 2.2 is a sample script which illustrates how to
create and delete actors with the appropriate type and name:2

The declared actors are available for the lifetime of the application from the
point of their creation to the point of their deletion, and the actor database system
is responsible for managing the lifecycle of these actors. Any invocation of a
method on an actor not created would result in an error. Moreover, the use of
these commands are for administration only and are disallowed from the method
body of the actors as per the static actor creation policy.

2Integer values are used as actor names in the SmartMart application for simplicity; in general,
an actor name can be any application-defined string.
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2.6.3 Tenet 2

According to Feature 3, an actor database system must support nested asyn-
chronous function shipping. To exemplify this feature, we abstract method invoca-
tions on actors as asynchronous function calls returning futures, which represent
the result of the computation. In Figure 2.4, we illustrate how method invocations
and result synchronization could be operationalized in an application program.
The figure shows the pseudocode of the add_items method in the Cart actor. For
simplicity, we assume that the cart is private for a customer, and the method is only
invoked once for all the items ordered in the cart before a checkout is performed.
Within the pseudocode of add_items, further method invocations to other actors
are performed. An invocation of a method on an actor must specify the type of
the actor within the <> brackets and the name of the actor within the [] brackets,
followed by the method and its arguments. For example, in the first loop in the
program, we invoke the get_price method on each of the store sections in the
item orders. The call is directed to an actor of type Store_Section, whose name
is given by the section ID. The method gets as argument a list of the items across all
item orders for the corresponding section ID. As a result, the method call produces
a future. All futures are collected in a map for synchronization at a later time. As
such, the subsequent logic in add_items is executed while the asynchronous calls
to get_price are processed.

The pseudocode employs an imperative style of invocation of asynchronous
function calls in different actors, demonstrating the flexibility in actor models in
encoding arbitrary control flow logic and dependency in application code. For
example, after the first loop, an invocation to the customer actor to get the cus-
tomer group is made, and the future is immediately synchronized upon since the
customer group value is necessary for invocation of get_fixed_discounts on
the group manager actor. So the computation of get_pricemay overlap with both
get_customer_info and get_fixed_discounts, while get_customer_info
is sequential wrt. get_fixed_discounts. Furthermore, a method invocation on
an actor can trigger further asynchronous method invocations to other actors, thus
allowing arbitrary nesting. In such a case, a method invocation only completes
when all its nested method invocations complete. Actors support function shipping
by design, since methods can only execute on the actor that defines them and
hence the notion of locality is implicit.

Different schemes can be used to synchronize on future results. The calling
code can synchronize on the future by invoking get when the value is needed. For
example, this is done to obtain the result value from the get_fixed_discounts
method call. Alternatively, multiple futures can be synchronized upon at the same
time by calls such as when_all or when_one to consume result values when all
or any one are available, respectively. In the example, the futures from the price
lookups are synchronized upon using the barrier semantics (when_all), after which
cart purchases are recorded and an updated session ID value is returned for later
use during checkout.
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nondurable actor Cart {
state :

. . .

method :

int add_items (list<order> orders , int o_c_id ) {
. . . // Organize the i tem i d s in o r d e r s by s t o r e s e c t i o n

map<int ,future> r e s u l t s ;
for ( se c t i on_orde r : o rde r s _by_ s to r e_ se c t i on ) {

future r e s := actor<Store_Sect ion >[ s e c t i on_orde r . s ec_ id ] .
g e t _ p r i c e ( sec t i on_orde r . i t em_ids ) ;

r e s u l t s . add( sec t i on_orde r . sec_ id , r e s ) ;
}

future c_g_res :=
actor<Customer>[o_c_id ] . ge t_cus tomer_ info () ;

int c_g = c_g_res .get () ;

. . . // Compute l i s t o f a l l i d s o f o rdered i t ems

future d i s c _ r e s := actor<Group_manager>[c_g ] .
g e t _ f i x ed _d i s c ou n t s ( ordered_items ) ;

. . . // Generate s e s s i o n _ i d and update c a r t _ i n f o

list<tuple> d i s count s = d i s c _ r e s .get () ;

r e s u l t s . v a l u e _ l i s t ( ) .when_all () ;

. . . // I t e r a t e over p r i c e s and d i s c o u n t s and s t o r e in c a r t _ p u r c h a s e s

return v_ se s s i on_ id ;
}

. . .
} ;

Figure 2.4: Implementation of add_items in the Cart actor.

2.6.4 Tenet 3

Feature 4 specifies that a memory consistency model must be defined by an actor
database system to clarify the semantics of multiple method invocations on the
same actor and across actors. While multiple memory consistency models are
possible, in our example we adopt classic database serializability, and propagate
this same isolation level across all nested method invocations. This simplifies
the application code in Figures 2.4 and 2.5, since the application developer is
insulated from concurrent and asynchronous manipulation of actor state within
and across multiple transactions. Furthermore, in order to maintain well-defined
results under asynchronicity, any two conflicting sub-computations on the same
actor must be ordered by the application code via synchronization using futures;
otherwise, the actor database system aborts the entire computation.
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In line with Feature 5, we adopt all-or-nothing atomicity of methods and
application-defined durability per actor in our example. All-or-nothing atomicity
frees the developer from worrying about partial state changes encapsulated by one
or many actors, and thus frees the application logic from implementing failure-
handling code as in Figures 2.4 and 2.5. Application-defined durability per actor
allows flexible specification of durability requirements. In the example, the Cart
actor is annotated as nondurable, while the other actors are durable by default.
So, all state manipulation of committed transactions is durable on the Customer,
Group_Manager and Store_Section actors only. This allows the application to
flag cart state as transient, while not giving up all other data management features
in implementing cart operations.

In addition to durability annotations, the notion of detached transactions al-
lows for invocations of sub-computations in a separate transactional context, i.e.,
the sub-computation does not share the isolation level and atomic commitment
requirements of the caller [100]. The caller can specify when the detached com-
putation should be invoked, e.g., on successful commit of the caller, abort of
the caller, or any of them. This feature has been used in Figure 2.5 to invoke a
detached transaction on the customer actor so as to record purchase information
on successful commit of checkout.

According to Feature 6, a high-level data model and declarative state query-
ing capabilities must be provided. In Figure 2.5, cart_info exemplifies a re-
lation schema abstracting portion of the encapsulated state of the actor type
Cart. The method checkout interacts with the encapsulated cart_info and
cart_purchases relations using declarative queries in SQL.

Figure 2.5 also exemplifies Feature 7, since declarative multi-actor querying
is employed in contrast to the use of imperative constructs and explicit future
synchronization in application code in Figure 2.4. The figure shows a SQL query
that invokes get_variable_discount_update_inventory in all store sec-
tions that have participated in the given session. The list of items passed as input
to each invocation is constructed by converting the relational result of a nested
query to a list by function LIST. The result of the invocations is a relation with
price and discount information per store section. This result is aggregated in the
top-level SQL query to compute the total amount bought along with total fixed
and variable discounts for the checkout.

A number of issues need to be considered when specifying
the semantics of such multi-actor queries. First, the calls to
get_variable_discount_update_inventory are asynchronous, but
the query needs the actual values returned from the calls in its execution. This
suggests a semantics in which the values are available immediately, as if the
calls were synchronous, but that allows for the query optimizer to delay future
evaluation as much as possible. Second, since calls are dispatched in bulk
in SQL, it may be necessary for application logic to differentiate the results
coming from different actors. In the query, we assume any values returned
from an asynchronous function invocation can be converted to sets of tuples
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nondurable actor Cart {
state :

relation c a r t _ i n f o ( c_ id int , s t o r e _ i d int ,
s e s s i o n _ i d int) ;

relation car t_purchases ( . . . ) ;
. . .
method :

float checkout (int c _ s e s s i o n _ i d ) {
SELECT ∗ INTO v_ca r t FROM c a r t _ i n f o ;
timestamp v_c_time := current_time () ;

SELECT SUM(amount) amt , SUM( f i x e d _ d i s c ) f i x ed_d i s c ,
SUM( va r_d i s c ) va r_d i s c

FROM (SELECT (SELECT amount , f i x ed_d i s c , va r_d i s c
FROM actor<Store_Sect ion >.

ge t_va r i ab le_d i s count_upda te_ inven to ry (
v_ca r t . c_id , v_c_time ,
LIST(SELECT i _ id , i _quan t i t y ,

i _ p r i c e , i _ f i x e d _ d i s c ,
i _min_pr i ce

FROM car t_purchases
WHERE sec_ id = S . sec_ id
AND s e s s i o n _ i d =

S . s e s s i o n _ i d ) )
WHERE name = S . sec_ id )

FROM (SELECT DISTINCT sec_ id
FROM car t_purchases
WHERE s e s s i o n _ i d = c _ s e s s i o n _ i d ) S) ;

DETACH actor<Customer>[v_ca r t . c_ id ] . a d d _ s t o r e _ v i s i t (
v_ca r t . s to re_ id , v_c_time , amt , f i x ed_d i s c , va r_d i s c )

ON COMMIT ;

return amt ;
}
. . .

} ;

Figure 2.5: Implementation of checkout in the Cart actor.
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with the actor name included as a column. In this way, we can select the right
actor from a set of results through predicates such as the WHERE clause name =
S.sec_id. Third, asynchronous function calls may update state, as is the case
with get_variable_discount_update_inventory. Actors have disjoint
state, so from the query it is possible to determine statically that the updates will
not be conflicting given that each invocation goes to a distinct actor and there are
no further nested calls. However, the restrictions on updates in asynchronous
function invocations embedded in multi-actor queries need to be carefully thought
out, e.g., to ensure commutativity and associativity of operations.

2.6.5 Tenet 4

By Feature 8, actor-oriented access control should enrich traditional object-
based access modifiers with fine-grained access control as studied in database
systems. In the SmartMart example, suppose we wish to configure mini-
mum levels of access to mitigate security risks so that: (Rule 1) add_items
in Cart actors has access to get_price in Store_Section actors,
get_fixed_discounts in Group_Manager actors and get_customer_info
in Customer actors; (Rule 2) checkout in Cart actors has access to
get_variable_discount_update_inventory in Store_Section actors
and add_store_visit in Customer actors; and (Rule 3) A set of specific cart
instances (e.g., carts 12, 13, and 14) can only interact with the sections of their
corresponding physical store (e.g., store sections 100 and 200). This access con-
figuration can be enforced in an actor database system using the commands listed
in Figure 2.6:

The first REVOKE statement revokes access rights of all actors to each other.
The next GRANT statement configures Rule 1 for access privileges of add_items,
while the next statement configures Rule 2 for access privileges of checkout in
the Cart actor type. The final statement additionally sets up a rule by actor name
to enforce Rule 3. The previous rules, which are configured by actor types, can
additionally use the WITH NAMES clause to configure even finer granularity of
access. Taken as a whole, the set of rules must cleanly compose or otherwise be
flagged and rejected. The set of configured rules can be used for static verification
and debugging of security violations. In addition, modification of these rules during
deployment enables dynamic adaptivity of security policies to meet unforeseen
security threats, e.g., by revoking rights from selected actors.

Since the application functionality is deconstructed in terms of actors, Fea-
ture 9 implies that the actor database system should provide monitoring of actor
usage and resource utilization (e.g., some store sections being more loaded than
others), security violations (e.g., a Group_Manager actor attempting to access a
Store_Section actor), and audit traces (e.g., traces of checkout and nested
method invocations). It also implies administrative support to scale actors and re-
sources to meet usage fluctuations discovered during monitoring, or change access
control specifications based on security violations, to name a few possibilities.



32 CHAPTER 2. ACTOR DATABASE SYSTEMS: A MANIFESTO

REVOKE ACCESS TO ACTORS OF TYPE ALL FROM ACTORS OF TYPE ALL ;

GRANT ACTORS OF TYPE Cart WITH METHODS IN ( add_items )
ACCESS TO

ACTORS OF TYPE Store_Sec t ion WITH METHODS IN ( g e t _ p r i c e )
AND ACCESS TO

ACTORS OF TYPE Customer WITH METHODS IN ( get_cus tomer_ info )
AND ACCESS TO

ACTORS OF TYPE Group_Manager WITH METHODS IN
( g e t _ f i x ed _ d i s c ou n t s ) ;

GRANT ACTORS OF TYPE Cart WITH METHODS IN ( checkout )
ACCESS TO

ACTORS OF TYPE Store_Sec t ion WITH METHODS IN
( ge t_va r i ab le_d i s count_upda te_ inven to ry )

AND ACCESS TO
ACTORS OF TYPE Customer WITH METHODS IN ( a d d _ s t o r e _ v i s i t ) ;

GRANT ACTORS OF TYPE Cart WITH NAMES IN (12 ,13 ,14)
ACCESS TO

ACTORS OF TYPE Store_Sec t ion WITH NAMES IN (100 , 200) ;

Figure 2.6: Configuration of fine-grained access-control of Cart actors in Smart-
Mart

2.6.6 Evaluation: Asynchronicity + Transactions

In this section, we evaluate: (1) The potential for performance gains provided by
asynchronous communication in actor databases (Section 2.6.6.2); and (2) The ef-
fect of load under concurrency on transactions with asynchronicity (Section 2.6.6.3).

2.6.6.1 Experimental Setup

We present the hardware, workload, system prototype, and methodology used for
the evaluation.
Hardware. We employ a machine with two sockets, each with one eight-core 2.6
GHz Intel Xeon E5-2650 v2 processor with two physical threads per core, leading
to a total of 32 hardware threads. Each physical core has a private 32 KB L1 data
and instruction cache and a private 256 KB L2 cache. All the cores on the same
socket share a last-level L3 cache of 20 MB. The machine has 128 GB of RAM in
total, with half the memory attached to each of the two sockets, and runs 64-bit
RHEL Linux 3.10.0.
Workload. We used the SmartMart application for our experiments. To simulate
the workings of one store, we created eight Store_Section actors. For each, we
loaded the inventory relation with 10,000 items and the purchase_history
relation with 300 entries per item for a total of 3,000,000 entries, simulating a
history of 120 days where 500 customers on average visit the store per day and buy
50 items each. We fix the number of Group_Manager actors to 10 and vary the
number of Cart actors depending on the experiment. The number of Customer
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actors is set to 30 times the number of carts. To calculate the variable discount, we
tuned the window size to correspond to 150 records in the purchase_history
relation, thus calculating a target purchase quantity over 60 days (Equation 2.1).
The entire size allocated after loading was ~3 GB.
System Prototype. We run our experiments in an actor database system prototype
named REACTDB (described in Chapter 3) with basic implementations of Features 1
to 4. Actors are allocated to thread pools pinned to cores, and all actor state is
stored in index structures under optimistic concurrency control (OCC) in Silo [125].
Method invocations on actors provide serializability. We configured the prototype
in two modes, namely: (1) sync: all the method invocations across actors are
executed synchronously and in the same thread to represent sequential execution;
and (2) async: a method invocation on a Store_Section actor is dispatched to
the thread pool representing the actor for execution using a queue. We ran our
experiments without any durability of transactions. We tuned the thread pool sizes
to minimize queuing delays and maximize usage of physical cores.
Methodology. We map each Cart actor to the thread pool pinned to each of the
eight physical cores in the first socket. We allocate worker threads such that each
worker thread generating method invocations on a Cart actor is mapped to the
hyper-threaded core of the corresponding cart to simulate client affinity. For async,
all actors except of type Store_Section that are involved in a cart transaction
are local to same core as the cart, and accessed synchronously. Invocations to
methods of Store_Section actors, however, are dispatched for asynchronous
execution. Each of the Store_Section actors are mapped to thread pools pinned
to each of the eight physical cores on the second socket.

A worker runs interactions consisting of (1) add_items and on its successful
commit (2) checkout. We measure the average latency and throughput of the
entire interaction using an epoch-based measurement strategy [51]. Each epoch
consists of 2 sec, and we report averages and standard deviations of successful
interactions over 20 epochs. Workers choose customer IDs from a uniform dis-
tribution. The items and store sections in orders are also chosen from a uniform
distribution for a configurable number of store sections and items per store section
in the order.

2.6.6.2 Leveraging Asynchronicity in SmartMart

To more clearly observe the gains offered by asynchronicity, we first study the
effect of increasing both work and asynchronicity in method calls from a single
worker. We vary the number of store sections from 1 to 8 while keeping the
number of items ordered from each section fixed at 4, thus varying the size of
the order from 4 to 32. Figure 2.7 shows that the throughput of sync degrades
with increasing order size given the sequential execution of the methods. The
slope of the curve also decreases with store sections since the increase in the
order size is constant, and hence has a smaller impact as the order size grows. By
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Figure 2.7: SmartMart throughput with varying order size.

contrast, async has lower throughput when the number of store sections is one, but
reaches 3.2x higher throughput than sync for 8 store sections. At the beginning,
async suffers from lack of sufficient asynchronicity and overhead of dispatch to the
Store_Section actor as opposed to shared memory accesses in sync. However,
as the number of store sections increases, asynchronicity benefits arise since the
variable discount computations across store sections during checkout and price
lookups during add_items are overlapped to utilize parallel resources.

2.6.6.3 Effect of Load on Asynchronicity

By gradually increasing the number of concurrent workers, we study the effect
of load on the benefits of asynchronicity observed above. We keep the work fixed
to an order size of 32, corresponding to an order across 8 store sections and 4
items from each store section, and increase the number of workers, carts and
customers in the experiment. Figures 2.8 and 2.9 show the throughput and latency
observed. While sync exhibits excellent throughput and latency scalability as we
increase the number of workers, the throughput of async scales well until three
workers and then degrades before roughly stabilizing. This is because at three
workers the Store_Section actors are close to full resource utilization (CPU
core at 88%), maxing out at four workers and then becoming the bottleneck. The
resulting effect of queuing can also be seen in the latency measurements, where
the latency increases dramatically after four workers.

Despite the queuing effects, async still outperforms sync because of the amount
of physical resources being utilized by it, namely 16 cores with intra-transaction
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Figure 2.8: SmartMart throughput with fixed order size and varying workers.
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Figure 2.9: SmartMart latency with fixed order size and varying workers.
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parallelism as opposed to 8 cores in sequential execution. We did not perform
measurements for more than 8 workers, since the hardware does not have enough
physical cores to sustain our setting for async. Nevertheless, we would expect
a crossover with sync as load increases. In short, asynchronicity can bring both
throughput and latency benefits over a traditional synchronous strategy when load
in the database is light to normal and transactions exhibit parallelism.

During this experiment, we observed abort rates of ~5-7% despite the small
amount of actual logical contention on items. This happens because the OCC
protocol of Silo aborts transactions if the version numbers of nodes scanned change
at validation time, caused in our experiments by tree splits due to inserts.

2.6.6.4 SmartMart Implementation Details

In Figures 2.10 and 2.11, and Figure 2.12, we present the pseudocode of the Smart-
Mart application introduced in the main body of the chapter. In the pseudocode,
we make use of an additional conversion function TABLE to transform a list of
values into a relation. The Customer and Group_Manager actor functionality in
Figure 2.10 is straightforward and just interacts with the encapsulated state using
declarative queries. In the Customer actor, we introduce an annotation to make
a relation, passwd, and method, authenticate, encrypted for security.

Figure 2.11 outlines the implementation of the Store_Section actor. The
get_price method returns the minimum price and the price of the requested
items from the inventory. The get_variable_discount_update_inventory
method first computes a relation (ph) with the mean and standard deviation of
purchase quantities for every item in the list of requested items (ord_items)
for a statically defined history window size of K. This relation is then joined
using an inner join with inventory and the relation representing the ordered
items (TABLE(ord_items)) to get the necessary information required to compute
the cumulative price and discounts to be returned for the order. Note that the
minimum price has been accounted for in the price and discount computations.
Subsequently, for each item in the order, the inventory is updated to reflect the
purchase (and replenished if necessary), following which the purchase is recorded
in the purchase_history relation.

Figure 2.12 shows the implementation of the Cart actor. The add_items
method first constructs a list of item ids by store section from orders provided
as input. For brevity in the pseudocode, we represented these data structure
interactions as function calls, namely: (1) extract_arrange, (2) extract_ids,
and (3) lookup. The method then invokes get_price method calls on each of
the Store_Section actors asynchronously storing the futures in a map data
structure for later synchronization. Declarative multi-actor queries were not used,
because we want to overlap other subsequent computations in the body of the
method in addition to the asynchronous get_price method calls across store
sections.
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actor Group_Manager {
state :

relation d i s count s ( i _ i d int , f i x e d _ d i s c float) ;

method :

list<tuple> g e t _ f i x ed _d i s c ou n t s (list<int> i _ i d s ) {
return LIST(SELECT ∗ FROM d i s count s

WHERE i _ i d IN (TABLE( i _ i d s ) ) ) ;
}

} ;

actor Customer {
state :

relation customer_info ( cust_name string , c_g_id int) ;

relation s t o r e _ v i s i t s ( s t o r e _ i d int , t ime timestamp ,
amount float ,
f i x e d _ d i s c float , v a r_d i s c float) ;

encrypted relation passwd ( enc_passwd string) ;

method :

tuple get_cus tomer_ info () {
SELECT ∗ INTO v_ in fo FROM customer_info ;
return v_ in fo ;

}

void a d d _ s t o r e _ v i s i t (int s to re_ id , timestamp time , float amt ,
float f i x ed_d i s c , float va r_d i s c ) {

INSERT INTO s t o r e _ v i s i t s
VALUES ( s to re_ id , time , amt , f i x ed_d i s c , va r_d i s c ) ;

}

encrypted bool au then t i c a t e (string enc_passwd ) {
SELECT ∗ INTO v_passwd FROM passwd ;
return v a l i d a t e _ f n ( enc_passwd , v_passwd ) ;

}
} ;

Figure 2.10: Implementation of Group_Manager and Customer actors.
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actor Store_Sec t ion {
state :

relation inventory ( i _ i d int , i _ p r i c e float ,
i _min_pr i ce float ,
i _ q u a n t i t y int , i _ v a r _ d i s c float) ;

relation purchase_h i s to ry ( i _ i d int , t ime timestamp ,
i _ q u a n t i t y int , c_ id int) ;

method :

list<tuple> g e t _ p r i c e (list<int> i _ i d s ) {
return LIST(SELECT i _ p r i c e , i_min_pr i ce FROM inventory

WHERE i _ i d IN (TABLE( i _ i d s ) ) ) ;
}

tuple ge t_var i ab le_d i s count_upda te_ inven to ry (
int c_id , timestamp c_time , list<tuple> ord_items ) {

SELECT SUM ((CASE
WHEN i _ p r i c e > i _ f i x e d _ d i s c + i _ v a r _ d i s c

THEN i _ p r i c e − ( i _ f i x e d _ d i s c + i _ v a r _ d i s c )
ELSE i _min_pr i ce ) ∗ i _ q u a n t i t y ) AS amount ,

SUM( i _ f i x e d _ d i s c ∗ i _ q u a n t i t y ) AS f i x ed_d i s c ,
SUM ((CASE

WHEN i _ p r i c e > i _ f i x e d _ d i s c + i _ v a r _ d i s c
THEN i _ v a r _ d i s c

ELSE ( i _ p r i c e − i _min_pr i ce − i _ f i x e d _ d i s c ) )
∗ i _ q u a n t i t y ) AS va r_d i s c

INTO v _ t o t a l s
FROM

(SELECT ph . i _ id , o . i _quan t i t y ,
(o . i _ q u a n t i t y / (ph . i_avg + c ∗ ph . i _ s tddev ) )
∗ inv . i _ v a r _ d i s c AS i _ va r_d i s c ,
o . i_min_pr ice , o . i _ p r i c e , o . i _ f i x e d _ d i s c

FROM (SELECT i _ id ,
AVG( i _ q u a n t i t y )

OVER (PARTITION BY i _ i d
ORDER BY time DESC
ROWS BETWEEN CURRENT ROW AND K FOLLOWING)

AS i_avg ,
STDDEV( i _ q u a n t i t y )

OVER (PARTITION BY i _ i d
ORDER BY time DESC
ROWS BETWEEN CURRENT ROW AND K FOLLOWING)

AS i _ s tddev
FROM purchase_h i s to ry
WHERE i _ i d IN (SELECT i _ i d FROM TABLE( ord_items ) ) ph

INNER JOIN TABLE( ord_items ) o ON (o . i _ i d = ph . i _ i d )
INNER JOIN inventory inv ON ( inv . i _ i d = ph . i _ i d ) ) ;

foreach o_ i IN ord_items {
UPDATE inventory
SET i _ q u a n t i t y = CASE

WHEN i _ q u a n t i t y > o_ i . i _ q u a n t i t y
THEN i _ q u a n t i t y − o_ i . i _ q u a n t i t y

ELSE 10000
WHERE i _ i d = o_ i . i _ i d ;

INSERT INTO purchase_h i s to ry
VALUES ( o_ i . i _ id , c_time , o_ i . i _quan t i t y , c_ id ) ;

}
return v _ t o t a l s ;

}
} ;

Figure 2.11: Implementation of Store_Section actor.



2.6. CASE STUDY: SMARTMART 39

actor Cart {
state :

relation c a r t _ i n f o ( c_ id int , s t o r e _ i d int , s e s s i o n _ i d int) ;

relation car t_purchases ( sec_ id int , s e s s i o n _ i d int , i _ i d int ,
i _ q u a n t i t y int , i _ f i x e d _ d i s c float ,
i _min_pr i ce float , i _ p r i c e float) ;

method :
int add_items (list<order> orders , int o_c_id ) {
// Organize the i t ems i d s in o r d e r s by s t o r e s e c t i o n
orde r s_by_ s to r e_ se c t i on = ex t rac t _a r range ( orders ) ;

map<int ,future> r e s u l t s ;
for ( se c t i on_orde r : o rde r s _by_ s to r e_ se c t i on ) {

future r e s := actor<Store_Sect ion >[ s e c t i on_orde r . s ec_ id ] .
g e t _ p r i c e ( sec t i on_orde r . i t em_ids ) ;

r e s u l t s . add( sec t i on_orde r . sec_ id , r e s ) ;
}

SELECT c_g_id INTO v_c_g_id
FROM actor<Customer>. ge t_cus tomer_ info ()
WHERE name = o_c_id ;

// Compute l i s t o f a l l i d s o f o rdered i t ems
ordered_i tem_ids := e x t r a c t _ i d s ( orders ) ;
future d i s c _ r e s := actor<Group_manager>[v_c_g_id ] .

g e t _ f i x ed _ d i s c ou n t s ( ordered_i tem_ids ) ;

// Generate s e s s i o n _ i d and update c a r t _ i n f o
SELECT s e s s i o n _ i d + 1 INTO v_ se s s i on_ id FROM c a r t _ i n f o ;
UPDATE c a r t _ i n f o
SET c_ id = o_c_id , s e s s i o n _ i d = s e s s i o n _ i d + 1;

list<tuple> d i s count s := d i s c _ r e s .get () ;
r e s u l t s . v a l u e _ l i s t ( ) .when_all () ;

// I t e r a t e over p r i c e s and d i s c o u n t s and s t o r e in c a r t _ p u r c h a s e s
foreach s e c _ i d _ r e s in r e s u l t s {

foreach i_p in s e c _ i d _ r e s . second .get () {
f i x e d _ d i s c := lookup ( discounts , i_p . i _ i d ) ;
i _ q u a n t i t y := lookup ( orders , i_p . i _ i d ) ;
INSERT INTO car t_purchases
VALUES ( s e c _ i d _ r e s . f i r s t , v_ ses s ion_ id , i _ id ,

i _quan t i t y , f i x ed_d i s c , i_p . min_price ,
i_p . p r i c e ) ;

}
}
return v_ se s s i on_ id ;

}

float checkout (int) {
. . .

}
} ;

Figure 2.12: Implementation of Cart actor.
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After firing price lookups, the customer group is looked up using a declarative
multi-actor query on the Customer actor. The customer group is then used to
invoke get_fixed_discounts on the Group_Manager actor. Finally, synchro-
nization is used to get the discounts and to wait for all price results to become
available from store sections. Using imperative constructs, we iterate over the
values of the price results (results). For each record in the map data struc-
ture, .first and .second are the handle to the key and the value respectively.
For each store section ID (sec_id_res.first), we invoke get() on the future
(sec_id_res.second) to get the price values of the items requested from that
store section. Note that this call to get() returns immediately, since synchroniza-
tion on all the futures has been done earlier with when_all(). We use the price
information in conjunction with lookups in our input orders and fixed discount
values (discounts) to then record an entries in cart_purchases for use during
checkout.

The method checkout is implemented in Figure 2.5 and explained in Sec-
tion 2.6.4. Consequently, the function implementation is omitted from the defini-
tion of the Cart actor in Figure 2.12 for brevity.

2.7 Research Opportunities

In this section, we outline research avenues in actor database systems organized
under topical areas for better perspective.

2.7.1 Theoretical Foundations

With the introduction of actor database systems, interesting challenges arise on
how to integrate logical actors, which are compute entities by essence, with the
theory of database design and querying [1]. For example, the theory of data
normalization has provided a measure of the quality of a database schema, with
reduction of data redundancy being a key goal. With the introduction of actors,
measures for the quality of a logical actor database (actors + schema) need to be
defined. Intuitively, more actors would hint at a more scalable database design,
but excessive distribution of application logic may lead to low efficiency. Such
trade-offs need to be captured theoretically, and their consequences on the theory
of normalization examined. In addition, it is an interesting challenge to formalize
the notion of database constraints spanning the schema of relations in multiple
actors. In the example of Figure 2.1, in order to ensure that the fixed discount
does not exceed an item’s minimum price, we would need to specify a constraint
spanning Group_Manager and Store_Section actors.

With the introduction of actors encapsulating state, the classical formalism of
transactions also needs to be revisited. The classical transactional model [27] needs
extension to formalize transactions across actors and investigate isomorphism of
properties of programs across the models. In Chapter 3, we introduce a model
for formalizing transactions across actors, called reactors, as an extension to
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the classical transactional model [27], and prove that serializability of programs
is isomorphic across the models. However, formalization of the semantics of
detached transactions and of application-defined isolation levels for different child
sub-transactions are also open problems that need further exploration.

2.7.2 Conceptual Modeling

The entity-relationship model has become the de facto standard for conceptually
modeling the database [39]. The model is connected to a well-understood method-
ology for translating designs into corresponding database representations. With
the introduction of actor databases, similar analytical machinery and associated
tools are required to equip application developers with a methodology to model
an application using actors.

2.7.3 Programming Model and Query Support

As pointed out in Tenets 2 and 3, actor database systems necessitate the integration
of asynchronous programming with declarative querying. It is non-trivial to define
proper query semantics and query optimization methods for this new scenario.
Another interesting challenge for the programming model is the choice of query
capabilities. To support tighter language integration, declarative query capabilities
must be exposed by either using native language support or enhancing abstractions
supported by the programming language. The space of complete declarative
querying versus mixed declarative querying and imperative programming support,
as well as the associated impacts on expressibility, productivity, and performance,
needs to be explored and evaluated.

2.7.4 System Implementation and Design

Numerous challenges arise on efficiently designing and implementing systems
for heterogenous hardware architectures and cloud computing infrastructure
while guaranteeing high resource utilization, scalable performance, and ease of
programming. Two extreme approaches could be investigated. At one end of the
spectrum, one could integrate database features into actor runtimes, starting for
example from transaction support [124]. At the other end, one could add actor
programming support into classical databases. For the latter, however, classical
database components such as logging and recovery would need to be revisited in
order to support application-defined durability. At the same time, such cross-cutting
low-level mechanisms need to smoothly integrate with potential heterogeneity
in actors due to type annotations and with asynchronous execution of methods
across actors.

Actor database systems may also open up opportunities to re-architect database
systems in new ways. By advocating a design of an application using actors, an actor
database system can now introduce a system architecture to virtualize a database
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across the extremes of shared-everything and shared-nothing at deployment, while
keeping the programming model and application programs intact. In Chapter 3,
we introduced an architecture to virtualize a database across the extremes of
shared-everything and shared-nothing at deployment time, while keeping the
programming model and application programs intact. This opens the space of
various deployment optimization problems that can be further explored.

2.7.5 Software Engineering and Security

The introduction of actor database systems raises many interesting questions re-
garding the design of applications across the middle tier and the data tier. The
set of design principles that should guide the placement of application function-
ality needs further exploration. In addition, implications on scalability, resource
efficiency, consistency and availability can be explored by segmenting application
functionality in different ways between the middle and data tiers. Moreover, the
effect of an actor-oriented programming model in the data tier on code quality, i.e.,
number of bugs or ease of debugging and isolating failures needs to be explored.
Furthermore, security models that integrate well with software engineering prac-
tices should be investigated. Emerging applications and traditional applications
need to be modeled using actor database systems to understand and quantify the
benefit of various programming model features.

2.8 Related Work

2.8.1 Actor languages and frameworks

Actors were proposed as a model for concurrent computations centered around a
message passing semantics [3]. Actors encapsulate state, provide single-threaded
semantics for message handling and hence state manipulation, and support an
asynchronous message shipping programming paradigm. Because of these con-
cepts, actor languages and frameworks provide an elegant mechanism to model
concurrent and distributed applications [6,32,56,110]. However, managing actor
lifecycle, handling faults and ensuring high-performance of actor runtimes in a
distributed infrastructure complicates their usage, which has led to the appeal of
virtual actors [34] for transactional middleware [24].

Despite advances in actor runtimes such as virtual actors, actors put the burden
of state management on the application. Applications need to choose either main
memory or using external storage solutions for actor state, depending on durability
and fault-tolerance requirements. Applications are also forced to account for and
handle the failure and consistency models of the underlying storage systems
employed. Lack of all-or-nothing atomicity leads to complications in application
code to ensure consistency of application state under failure.

By contrast, actor database systems offer the state management guarantees that
classic databases have long provided under the notion of transactions to ensure
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application developers can focus on writing application logic. By providing well-
defined state manipulation semantics in the presence of failures, actor database
systems simplify construction of distributed, concurrent and stateful applications.
In addition, actor runtimes lack a high-level data model along with declarative
querying facilities, which actor database systems provide. Actor database sys-
tems are envisioned to abstract the data tier as a distributed runtime to increase
its programmability and scalability, and not as a replacement of actor runtimes
deployed in the middle tier as a soft-caching layer with high-availability and
weak-consistency guarantees.

2.8.2 Microservices

Microservices have gained a lot of popularity recently as a software engineer-
ing paradigm [69]. Microservices advocate design of software systems as small,
modular services that are deployed independently and communicate using a mes-
saging mechanism. Each small, modular service can use an independent software
stack. Actor database systems can be viewed as a programming paradigm to
design the database tier of a software system using the microservice architecture
by functionally decomposing the data tier in modules across actors. By allowing
decomposition of the data tier in terms of actors, actor database systems provide a
lightweight and resource-efficient primitive when compared with decomposition
across multiple database instances as with existing solutions. One or many actor
database systems can be used for deployment of the data tier depending on the
needs of the application and its design.

2.8.3 Classic Relational Database Management Systems (RDBMS)

RDBMS were designed to support declarative querying of data abstracted using
a relational data model [71]. In order to shield the application developer from
concurrent execution of application programs and hardware failures, ACID trans-
actions became the de facto standard for RDBMS. At a high level, the programming
model of a database is that of a single shared space, where access to data items
is achieved using a declarative query language with transactional guarantees. As
a performance optimization, stored procedures were introduced to co-locate a
sequence of client queries in the database and reduce data transfer costs [108].

This programming model leads to a monolithic design of the data tier causing
the following issues: (1) Since any part of the application logic in any stored
procedure can access any data stored in relations, it becomes hard to isolate and
identify bugs in application logic especially with growing size of data, numbers
of relations and stored procedures, and with growing application complexity;
(2) Since the entire data and logic are shared in the database, a failure causes
unavailability of the entire database system instead of failure of the affected parts
only; (3) Since the programming model lacks a notion of an active thread of
control and consequently the notion of what constitutes an unit of scalability, it is
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hard to reason about the scalability of the database without understanding details
of database system implementation. In contrast, by providing an actor-oriented
primitive for state encapsulation and modularity, actor database systems provide
an application-controlled mechanism to functionally decompose the database
into modules. This mechanism allows application developers to manage code
complexity, isolate bugs, contain failures, and reason about scalability of the
database.

2.8.4 Partitioned RDBMS

Modern database systems employ database partitioning to deploy the database
over different hardware deployment infrastructures, e.g., multiple machines or
multiple cores in the same machine, and co-locate data with processing elements
for performance. This technique is applied in database architectures for systems
covering the extremes of shared-nothing [80, 121] and shared-everything [50,
76, 98, 125]. Despite the extensive use of data partitioning under the hood in
these systems, the programming model introduced by classic RDBMS remains
unchanged. As such, partitioned RDBMS also suffer from the same software
engineering problems caused by the monolithic design of the data tier, since
these systems are invariant in their programming model compared with classic
RDBMS. In addition to solving the aforementioned software engineering issues,
actor database systems provide a programming model that allows application
developers to understand the performance issues with their design. Furthermore,
asynchronous messaging between actors allows application developers to explicitly
leverage intra-transaction (data and control) parallelism in arbitrary programs,
and to reason about the relative performance of different programs depending on
the level of parallelism employed.

2.8.5 Object-oriented Database Management Systems (OODBMS)

OODBMS focused on addressing the impedance mismatch existing between RDBMS
and programming languages [15,21]. While persistent programming language
runtimes tried to bring database support to popular object-oriented languages such
as C++ [16], OODBMS such as O2 proposed an object-oriented data model with an
embedded declarative query language [85]. OODBMS proposed object-orientation
for modularity, data encapsulation, behavior specification and extensibility. How-
ever, objects in OODBMS do not have any notion of a thread of control, i.e, objects
are not an active execution entity that can execute logic but rather they are an
abstraction to encapsulate data and to define behavior on this data.

On the contrary, actors in an actor database system both encapsulate data
and represent an active, concurrently executing entity with a thread of control.
This allows for reasoning about locality and scalability in terms of the number of
actors and their communication patterns with each other. Actor database systems
support asynchronous communication primitives, which allows for specification
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of parallel programs spanning multiple actors. The latter is not possible with the
synchronous method invocation semantics of objects in OODBMS. Actors in actor
database systems can support any data model, e.g., the relational data model as
advocated in this chapter, while the data model is inflexible in OODBMS.

2.9 Outlook and Conclusion

This chapter has made the case for actor database systems, a new data manage-
ment approach combining the virtues of actor runtimes and classic databases.
Actor database systems comprise logical actors with asynchronous operations as
well as transactional features and declarative querying, providing for modularity,
parallelism, fault tolerance, and security. We believe that actor database systems
open up exciting research possibilities in various aspects of data management
ranging from conceptual modeling to system design.

We argue that increasingly the world of interactive data-intensive applications
will look more like the scenario depicted in Figure 2.1, where a combination of com-
plex logic and data management is the norm. Instead of having database systems
be relegated to persistent state management components in these applications, our
call to the database community is for reimagining database programming models
and architectures for this new world, and marry actors and database systems into
a new abstraction.



Chapter 3

Reactors: A Case For Virtualized,
Predictable Actor Databases

“The cheapest, fastest, and most reliable components of a computer system
are those that aren’t there.”

— G. Bell

The requirements for OLTP database systems are becoming ever more demand-
ing. Applications in domains such as finance and computer games increasingly
mandate that developers be able to reason about and control transaction laten-
cies in in-memory databases. At the same time, infrastructure engineers in these
domains need to experiment with and deploy OLTP database architectures that
ensure application scalability and maximize resource utilization in modern ma-
chines. In this chapter, we propose a relational actor programming model for
in-memory databases as a novel, holistic approach towards fulfilling these chal-
lenging requirements. Conceptually, relational actors, or reactors for short, are
application-defined, isolated logical actors that encapsulate relations and process
function calls asynchronously. Reactors ease reasoning about correctness by guar-
anteeing serializability of application-level function calls. In contrast to classic
transactional models, however, reactors allow developers to take advantage of
intra-transaction parallelism and state encapsulation in their applications to reduce
latency and improve locality. Moreover, reactors enable a new degree of flexibility
in database deployment. We present REACTDB, a system design exposing reactors
that allows for flexible virtualization of database architecture between the extremes
of shared-nothing and shared-everything without changes to application code.
Our experiments with REACTDB illustrate latency control, multi-core scalability,
and low overhead in OLTP benchmarks.

3.1 Introduction

Three trends are transforming the landscape of OLTP systems. First, a host of
latency-sensitive OLTP applications has emerged in areas as diverse as computer
games, high-performance trading, and web applications [33,120,132]. This trend

46



3.1. INTRODUCTION 47

brings about challenging performance requirements, including mechanisms to
allow developers to reason about transaction latencies and scalability of their
applications with large data and request volumes [114,126]. Second, database
systems are moving towards solid state, in particular in-memory storage [82], and
hardware systems are integrating increasingly more cores in a single machine.
This trend brings about new requirements for database architecture, such as
processing efficiency in multi-core machines and careful design of concurrency
control strategies [125,134]. Third, there is a need to operate databases out of
virtualized infrastructures with high resource efficiency [25,81,94]. This trend
leads to the requirement that virtualization abstractions for databases impose
low overhead and allow for flexible deployments without causing changes to
application programs.

Recent research in OLTP databases has shown that addressing all of these
requirements is a hard problem. On the one hand, shared-nothing databases,
such as H-Store [121] or HyPer [80], fail to provide appropriately for multi-core
efficiency. This is due to the impact of overheads in mapping partitions to cores
and of synchronous communication in distributed transactions across partitions.
Consequently, these systems are very sensitive to how data is partitioned, with
impacts on both transaction latencies and throughput. On the other hand, shared-
everything databases have a hard time achieving multi-core scalability. To do so,
these systems either internally partition their data structures, e.g., DORA [98], or
rely heavily on affinity of memory accesses to cores in transactions submitted to the
system, e.g., Silo [125]. Thus, deployment decisions can deeply affect efficiency
and scalability in these systems and are difficult to get right across application
classes.

As a consequence, both developers and infrastructure engineers in demanding
OLTP domains have a hard time controlling the performance of their transactional
databases. Despite advances in profiling tools to identify causes of latency variance
in database systems [73], today developers lack clear abstractions to reason about
transaction latencies at a high level in their applications. In addition, the variety
of modern in-memory database engines, including numerous specialized designs
ranging internally from shared-nothing to shared-everything [99,106,133], chal-
lenges the ability of infrastructure engineers to flexibly experiment with and adapt
database architecture without affecting application code.

Actor programming models provide desirable primitives for concurrent and
distributed programming [3,14,70], which of late have evoked a strong interest
in the database community [26]. To holistically meet the challenging require-
ments imposed on OLTP systems, we propose a new actor programming model
in relational databases called Relational Actors (or reactors for short). Reactors
are special types of actors that model logical computational entities encapsulating
state abstracted as relations. For example, reactors can represent application-level
scaling units such as accounts in a banking application or warehouses in a re-
tail management application. Within a reactor, developers can take advantage
of classic database programming features such as declarative querying over the
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encapsulated relations. To operate on state logically distributed across reactors,
however, developers employ explicit asynchronous function calls. The latter allows
developers of latency-sensitive OLTP applications to write their programs so as
to minimize cross-reactor accesses or overlap communication with computation.
Still, a transaction across multiple reactors provides serializability guarantees as in
traditional databases, thus relieving developers from reasoning about complex con-
currency issues. With reactors, developers can reason about latency vs. scalability
trade-offs in their transactional applications as well as about relative performance
of different programs. Reactors allow application-level modeling between the
extremes of a relational database (single reactor encapsulating all relations) and
key-value stores (each reactor encapsulating a key-value pair).

To address the challenges of architectural flexibility and high resource efficiency
in multi-core machines, we design an in-memory database system that exposes
reactors as a programming model. This system, called REACTDB (RElational ACTor
DataBase), decomposes and virtualizes the notions of sharing of compute and
memory in database architecture. First, we introduce a containerization scheme
to abstract shared-memory regions in a machine. Second, within a container,
compute resources abstracted as transaction executors can be deployed to either
share or own reactors. The combination of these two notions allows infrastructure
engineers to experiment with deployments capturing a range of database architec-
ture patterns in a manner that is as simple as changing a configuration file. At the
same time, no changes are required to application code using reactors.
Example: Digital Currency Exchange. We abstract an application coded using
a set of reactors as a reactor database. Consider a simplified digital currency
exchange application, in which users may buy or sell currency through their
credit card providers. Figure 3.1 contrasts how such an application would be
written with a classic transactional database and a reactor database in parts (a)
and (b), respectively. The exchange wishes to bound its exposure to settlement
risk, namely cancelled credit card payments, by a maximum limit stored in relation
settlement_risk. In part (a), it does so in the procedure auth_pay by only
allowing additions to the orders relation if the total current exposure is below the
limit. In part (b), we see the same logic expressed with reactors. The exchange and
each of the providers are modeled as relational actors with private state (relations)
that can execute certain procedures. The exchange reactor can execute auth_pay
and encapsulates in its state information about providers and the settlement
limit. Provider reactors store in their states fragments of the relation orders
with the payments for each provider, and can execute procedures calc_risk and
add_entry. In auth_pay, the exchange reactor invokes asynchronous calls to
provider reactors, making explicit the available intra-transaction parallelism. Since
the exchange strives for the lowest latency possible, this program formulation
improves transaction response time with respect to part (a) in a way that is clearly
explainable to a developer pursuing application performance optimization. In
addition, it becomes explicit in transaction programs that code is conceptually
moved close to the data it touches, allowing developers to control for locality. At the
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same time, ACID properties are guaranteed for auth_pay, providing the same level
of safety as in the classic transactional model, but with higher performance control.
As evidenced by the collapse of the Flexcoin bitcoin exchange [116], we argue that
the right trade-off for new OLTP applications is to provide abstractions that allow
developers to organize application logic for performance without compromising
consistency in concurrent executions. We further elaborate on this example and
our model in Section 3.2.
How are reactors different from database partitioning?
In contrast to database partitioning, which is a data-oriented optimization, reactors
represent a compute-oriented abstraction. Reactors can be used to model horizontal
partitioning of tuples, but also vertical partitioning of relations, or any arbitrary
grouping of relation fragments. However, reactors can also model functional
decomposition of an application. For example in a banking application, one
reactor can capture functionality of debits and credits over accounts, while another
the functionality of risk calculations to authorize debits and credits, which is not
feasible to model with database partitioning alone. In addition, reactors provide
a primitive to model affinity and parallelism in arbitrary application logic. For
example, the risk calculations can done by different prediction models in parallel
in the database by running these calculations in different reactors. By contrast,
detecting this parallelism in a classic stored procedure over a single logical global
schema would require complex control-flow analysis, and may not be possible
at all.
Contributions. In summary, our work makes the following contributions:

1. We present a novel logical abstraction for relational databases called reactors.
This abstraction is grounded on transactional semantics offering serializabil-
ity and an asynchronous programming model allowing for reasoning at a
high level about latency and application scalability (Section 3.2).

2. We discuss the design of REACTDB, an in-memory database system for OLTP
exposing reactors. REACTDB enables configuration of database architecture
at deployment time without changes to application code (Section 3.3).

3. In experiments with classic OLTP benchmarks, reactors provide latency con-
trol at the microsecond scale for varied program formulations. In addition,
for given program formulations, database architecture can be configured to
allow for scalable execution in a multi-core machine (Section 3.4).

3.2 Programming Model

3.2.1 Reactor Concepts

In contrast to classic transactional or actor models, reactors bring together all of
the following concepts:
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           VALUE

          50000

bool auth_pay(pprovider, pwallet, 
                           pvalue){
  SELECT SUM(value) INTO risk 
   FROM orders WHERE settled = ‘N’;

  SELECT value INTO allowed_risk 
   FROM settlement_risk ;

  if allowed_risk > risk + pvalue 
    INSERT INTO orders VALUES
    (pprovider,pwallet,pvalue,‘N’);
    return true;
  
  else
    return false;
}

WALLET VALUE SETTLED

43 450 N

21 300 N

WALLET VALUE SETTLED

42 100 N

85 3000 Y

42 1000 N

           VALUE

          50000

settlement_risk
NAME

MC_US

VISA_DK

providers

Exchange Reactor

reactor Provider {
  ...
  int calc_risk(){
    SELECT SUM(value) INTO risk 
         FROM orders WHERE settled = ‘N’;
    return risk;
  }

  void add_entry(wallet, value){
    INSERT INTO orders VALUES
                (wallet, value, ‘N’);
  }
}

reactor Exchange {
  ...
  bool auth_pay(pprovider, pwallet, 
                           pvalue) {
    SELECT name INTO dest_providers
         FROM providers;

    results := [];   
    foreach provider in dest_providers
      res := calc_risk() on reactor provider;
    results.add(res);

    SELECT value INTO allowed_risk 
         FROM settlement_risk;
    risk := 0;
    foreach res in results 
      risk := risk + res.get();

    if allowed_risk > risk + pvalue
      add_entry(pwallet,pvalue) 
                     on reactor pprovider;
      return true;

    else
      return false;
  }
}    

PROVIDER WALLET VALUE SETTLED

MC_US 42 100 N

VISA_DK 43 450 N

MC_US 85 3000 Y

VISA_DK 21 300 N

MC_US 42 1000 N

Name : Exchange

settlement_risk

       orders
Provider Reactor

Name : MC_US

       orders

Provider Reactor

Name : VISA_DK

       orders

auth_pay

calc_risk

calc_risk

add_entry

add_entry

   (a)    (b)

Figure 3.1: A simplified currency exchange application in: (a) the classic transac-
tional model, and (b) the reactor model.

1. A reactor is an application-defined logical actor that encapsulates state
abstracted using relations.

2. Declarative queries are supported only on a single reactor. Communication
across reactors is achieved by asynchronous function calls. A computation
(function) across reactors consists of a sequence of intra-reactor statements
and/or nested cross-reactor function calls.

3. Computations (functions) across reactors provide transactional guarantees.

4. Reactors provide an abstract computational cost model to allow for high-level
reasoning about transaction latencies.

3.2.2 Programming with Reactors

3.2.2.1 Application-Defined Relational Actors

A reactor is a type of actor specialized for the management of state abstracted by the
relational model. The pseudocode in Figure 3.2 conceptualizes the capabilities of a
reactor. As a regular actor [3], a reactor encapsulates a state, which can be accessed
by computations invoked on the reactor. However, unlike in a regular actor, in
which communication is typically achieved by non-blocking send and blocking



3.2. PROGRAMMING MODEL 51

Reactor : Actor {
R e l a t i o n a l S t a t e r s ;

Future execute ( compute_fn , args ) {
return new Future( compute_fn ( args , r s ) ) ;

}
}

Figure 3.2: Conceptual view of reactors as an actor type.

receive primitives, the only form of communication with a reactor is through
asynchronous function calls returning promises [89]. Moreover, the code of such
functions is similar to that of database stored procedures, which can intermix
declarative queries over relations with other program logic and function calls.
These asynchronous function calls are abstracted in Figure 3.2 by the execute
function, which takes as an argument a function to be computed on the reactor’s
state along with appropriate arguments, and returns a promise representing the
result of the computation. In the remainder of this chapter, we refer to such a result
as a future, and use the terms function and procedure on a reactor interchangeably.

A reactor database is a collection of reactors. In order to instantiate a reactor
database, we need to declare the names of the reactors constituting the reactor
database and a schema creation function to define the relations encapsulated
by each reactor type. A reactor is a purely logical computational entity and can
be accessed by the name declared when initializing the reactor database. The
application developer has full control over the schema layouts for the reactors.
The developer cannot create or destroy reactors; declaring the name of the reactor
ensures that it is available for the lifetime of the application, bound by the failure
model of the reactor database. Note that in contrast to objects in an object-oriented
database [35, 85], reactors are active computational entities, i.e., a reactor is a
combination of a logical thread of control and an encapsulated relational state
accessible exclusively by that logical thread. While objects encapsulate complex
types, reactors encapsulate whole relational schemas; declarative querying happens
only within, not across reactors, and communication across reactors is explicit
through asynchronous function calls.

In the example of Figure 3.1(b), the state of a provider reactor consists of
a horizontal fragment of the orders relation, but with the provider column
removed (since the provider is the same for all tuples in such a reactor). The state
of the exchange reactor consists of relations settlement_risk and providers.
This illustrates that different reactors may contain either the same or different
schemas. The application logic in procedure auth_pay first looks up the providers
to calculate the risks for. The procedure then performs a nested asynchronous
invocation of the procedure calc_risk on each of the provider reactors.

It is not necessary to know in advance all the providers and their names to
model the reactor database. It is sufficient to know: (1) the types of the reactors
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expected, namely exchange and provider reactors; (2) the schema of each reactor
type; and (3) the name mapping to address provider reactors. As such, adding
new providers does not necessitate rewriting the application logic.

3.2.2.2 Asynchronous Function Calls

To invoke a procedure on a reactor, we must explicitly use the declared name of the
reactor where the computation must be executed. The procedure logic can access
the relational state on the reactor where it is invoked through declarative queries.
If the procedure needs to access the state of another reactor, then it must invoke
another procedure on the target reactor. This is necessary because the states of
different reactors are disjoint. Since the result of a procedure is represented by
a future, the calling code can choose to wait for the result of the future, invoke
procedures on other reactors, or execute further application logic. This flexibility
allows application developers to expose parallelism within the procedure.

In Figure 3.1(b), the syntax procedure_name(args) on reactor
reactor_name specifies an asynchronous procedure call routed to the reactor
with a given name. In the logic of auth_pay, the execution of calc_risk is
overlapped on each of the provider reactors and the futures returned by the calls
are stored in the results list. The exchange reactor then looks up the allowed
risk value to further overlap the execution of this logic before synchronizing on
the results of the futures. The exchange reactor sums up the total risk by accessing
the value of each future by invoking get() on the future object. If the total risk
is within the allowed risk, then the exchange reactor performs another nested
asynchronous procedure call to add_entry on the provider reactor name given as
a parameter to auth_pay. This call results in adding an order at the appropriate
target provider reactor. Asynchronous procedure calls allow the application logic
to leverage available parallelism in a computation spanning reactors.
Does the reactor programming model necessitate manual optimization? We
posit that reactors can act as a bridging model between a classic database abstrac-
tion and a key-value API. Reactors provide the possibility for developers to navigate
the extremes between a single-reactor with full SQL support and a radical decom-
position of individual tuples as reactors. We envision that the typical application
modeling will be a hybrid between these two extremes balancing reuse of query
optimization machinery with low-level performance control. The popularity of
NoSQL databases points to the need and willingness among application developers
to obtain higher performance control and scalability for their applications even at
the cost of sacrificing traditional database features such as query optimization and
transaction support.

3.2.2.3 Reactor Consistency using Transactional Semantics

To guarantee consistency of the state encapsulated by a reactor database, the
semantics of procedure invocations on reactors is transactional. We differentiate



3.2. PROGRAMMING MODEL 53

between top-level and nested asynchronous procedure calls. Top-level calls are
executed by clients on a reactor and are termed interchangeably transactions
or root transactions. Transactions respect the classic ACID properties: atomicity,
consistency, isolation, and durability [27]. We denote a concrete execution i of a
transaction by Ti .

Nested asynchronous procedure calls are executed by a reactor on another
reactor. Since these calls must always occur within the overall context of a root
transaction, they are called sub-transactions. We denote a concrete execution j
of a sub-transaction of transaction Ti on a reactor k by ST k

i, j. Sub-transactions
allow programmers to structure their computations for performance, allowing
for concurrent computation on (logically) distributed state among reactors. Sub-
transactions are not used, however, to allow for partial commitment. Any condition
leading to an abort in a sub-transaction leads to the abort of the corresponding
root transaction. This approach towards the semantics of nested calls is exactly
the reverse of what is adopted in classic systems such as Argus [88], reflecting our
focus on leveraging the high degree of physical parallelism in modern commodity
hardware for transactional processing as opposed to managing faults in settings
with a high degree of physical distribution (e.g., geo-distribution) as in previous
work. A transaction or sub-transaction completes only when all its nested sub-
transactions complete. This frees the client logic from explicitly synchronizing
on the result of a sub-transaction invocation if it does not need the result of the
sub-transaction.

For example in Figure 3.1(b), the auth_pay procedure does not wait on the
result of the add_entry procedure call, since the programming model guarantees
that the transaction corresponding to auth_pay only completes when all its sub-
transactions complete.

Any program in the classic transactional model can be trivially remodeled
in the reactor programming model by specifying a single reactor. For example,
we could model a single exchange reactor with the schema and application logic
shown in Figure 3.1(a). However, the benefits of our programming model are only
fully achieved when developers of latency-sensitive OLTP applications remodel
their logic as done in Figure 3.1(b). In particular, in the reformulated logic, intra-
transaction parallelism is exposed. Furthermore, the trade-off between scalability
on the number of provider reactors and latency of executing the logic of auth_pay
becomes explicit.
Is there a development methodology to architect an application using reac-
tors? An interesting avenue for future research is to explore an analytical machin-
ery allowing for modeling and comparing the quality of reactor database designs,
similar to the entity relationship model and decomposition of universal relations
by functional dependencies in classic relational databases. Such an analytical ma-
chinery could provide application developers with a methodology to model their
applications as reactors. Although answering this question is beyond the scope of
this chapter, we envision that the following steps could be taken by developers. As
a first step, the developer starts from a single reactor with the whole relational
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schema and all application functions. Unlike in a traditional relational database,
however, as the developer observes undesirable latency or throughput scalability,
now s/he has the possibility to break down complex application functions across
multiple reactors. Throughout this process of performance measurement and func-
tionality decomposition, the developer does not need to worry about correctness
issues due to concurrency, which are handled by the transactional semantics in the
reactor programming model. This process exposes latency costs as cross-reactor
communication that can be overlapped, and enables scaling on the number of
reactors. This exercise can also point developers to inherent scalability limitations
of the application itself.

3.2.2.4 Intra-Transaction Safety

Introducing asynchronicity in a transactional abstraction is not trivial. Since
asynchronicity exposes intra-transaction parallelism, race conditions could arise
when sub-transactions that conflict on a data item are invoked asynchronously
on the same reactor. Moreover, such invocations would violate the illusion that a
reactor is a computational entity with a single logical thread of control. To avoid
these issues, we must enforce that at most one execution context is active for a
given reactor and root transaction at any time.

First, we enforce that whenever a reactor running a procedure directly executes
a nested procedure invocation on itself, the nested invocation is executed syn-
chronously. This policy corresponds to inlining the sub-transaction call, resulting
in future results being immediately available. To deal with nested asynchronous
invocations, we define the active set of a reactor k as the set of sub-transactions,
regardless of corresponding root transaction, that are currently being executed
on reactor k, i.e., have been invoked, but have not completed. Thus, the runtime
system must conservatively disallow execution of a sub-transaction ST k

i, j when:

∃ST k
i, j′ ∈ active_set(k) ∧ j′ 6= j

This dynamic safety condition prohibits programs with cyclic execution struc-
tures across reactors and programs in which different paths of asynchronous calls
lead to concurrent sub-transactions on the same reactor. By introducing this safety
condition, the run-time conservatively assumes that conflicts may arise in asyn-
chronous accesses to the same reactor state within a transaction, and thus aborts
any transaction with such dangerous structures.

By leveraging this dynamic safety condition, we envision that appropriate
testing of transaction logic at development time will be sufficient to root out most,
if not all, dangerous structures from the code of latency-sensitive OLTP applications.
However, formalizing static program checks to aid in detection of dangerous call
structures among reactors is an interesting direction for future work.
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3.2.3 Conflict-Serializability of Transactions

To formalize the correctness of concurrent executions of transactions in reactors,
we show equivalence of serializable histories in the reactor model to serializable
histories in the classic transactional model. We restrict ourselves exclusively to
the notion of conflict-serializability. Technically, our formalization is similar to
reasoning on nonlayered object transaction models [129].

3.2.3.1 Background

We first review the formalism introduced by Bernstein et al. [27, page 27] for the
classic transactional model and introduce relevant notation. In this model, the
database consists of a collection of named data items, and transactions encapsulate
a sequence of operations. A transaction Ti is formalized as a partial ordering
of operations with an ordering relation <i and comprises a set of operations.
Operations include reads and writes, along with either a commit or an abort. A
read from a data item x is denoted ri[x], a write to x denoted wi[x], while a
commit is denoted ci and an abort ai. The ordering relation <i orders conflicts.
Two operations conflict iff at least one of them is a write and both of them reference
the same named item. We assume that a transaction does not contain multiple
operations of the same type to the same named data item as in [27, page 27]
without any impact on the results.

3.2.3.2 Reactor Model

Without loss of generality, we assume reactor names to be drawn from the set of
natural numbers. Recall that we denote a sub-transaction operation in transaction
Ti on reactor k by ST k

i, j , where j identifies the sub-transaction within the transac-

tion Ti. rk
i, j[x] denotes a read from data item x , and wk

i, j[x] denotes a write to

data item x in ST k
i, j . Note that data items in different reactors are disjoint. Using

this notation, we can define a sub-transaction and a transaction in the reactor
model as follows.

Definition 1. A sub-transaction ST k
i, j is a partial order with ordering relation <i, j

where,

1. ST k
i, j ⊆ { rk

i, j[x], wk
i, j[x], ST k′

i, j′ | j 6= j′, x is a data item in k };

2. Let

basic_ops(rk
i, j[x]) = rk

i, j[x]

basic_ops(wk
i, j[x]) = wk

i, j[x]

basic_ops(ST k
i, j) = {basic_ops(o) | o ∈ ST k

i, j},
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if o1 ∈ ST k
i, j ∧ o2 ∈ ST k

i, j

∧ rk′
i, j′[x] ∈ basic_ops(o1)

∧wk′
i, j′′[x] ∈ basic_ops(o2),

then either o1 <i, j o2 or o2 <i, j o1.

Note that the ordering relation <i, j of a sub-transaction establishes order
according to conflicts in leaf-level basic operations, potentially nested in sub-
transactions.

Definition 2. A transaction Ti is a partial order with ordering relation <i where,

1. Ti ⊆ { ST k
i, j } ∪ {ai , ci};

2. ai ∈ Ti ⇐⇒ ci 6∈ Ti;

3. if t is ci or ai (whichever is in Ti), for any further operation
p ∈ Ti , p <i t;

4. if o1 ∈ Ti ∧ o2 ∈ Ti ∧ o1, o2 6∈ {ai , ci}∧
rk′

i, j′[x] ∈ basic_ops(o1)∧wk′
i, j′′[x] ∈ basic_ops(o2),

then either o1 <i o2 or o2 <i o1.

Formally, a transaction comprises exclusively sub-transactions, and the relation
<i orders sub-transactions according to conflicts in their nested basic operations.
In the reactor model, two sub-transactions conflict iff the basic operations of at least
one of them contain a write and the basic operations of both of them reference the
same named item in the same reactor. Under this extended notion of a conflict, the
definition of history, serial history, equivalence of histories and serializable history
in the reactor model are the same as their definitions in the classic transactional
model [27], but with sub-transactions replacing basic operations. With these
definitions in place, we now show that serializability of transactions in the reactor
model is equivalent to serializability of an appropriately defined projection into
the classic transactional model.

Definition 3. The projection of a basic operation o from the reactor model to the
classic transactional model, denoted by P(o), is defined as:

1. P(rk
i, j[x]) = ri[k ◦ x]

2. P(wk
i, j[x]) = wi[k ◦ x]

3. P(ci) = ci

4. P(ai) = ai

where ◦ denotes concatenation.
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The definition provides a name mapping from the partitioned address space
of reactors to a single address space, which is done by concatenating the reactor
identifier with name for a data item.

Definition 4. The projection of a sub-transaction ST k
i, j from the reactor model

to the classic transactional model, denoted by PS(ST k
i, j) is a partial order with

ordering relation <i, j
S :

1. PS(ST k
i, j) ⊆ {P(o) | o ∈ basic_ops(ST k

i, j)};

2. if o1 ∈ ST k
i, j ∧ o2 ∈ ST k

i, j ∧ o1 <i, j o2 ∧ o1, o2 are reads or writes, then

P(o1)<
i, j
S P(o2);

3. if ST k′
i, j′ ∈ ST k

i, j , then <i, j
S is extended by <i, j′

S ;

4. if o1 ∈ ST k
i, j ∧ o1 is a read or a write ∧ ST k′

i, j′ ∈ ST k
i, j ∧ o1 <i, j ST k′

i, j′ , then

P(o1)<
i, j
S PS(ST k′

i, j′);

5. if ST k′
i, j′ ∈ ST k

i, j ∧ o2 ∈ ST k
i, j ∧ o2 is a read or a write ∧ ST k′

i, j′ <i, j o2, then

PS(ST k′
i, j′)<

i, j
S P(o2);

6. if ST k′
i, j′ ∈ ST k

i, j ∧ ST k′′
i, j′′ ∈ ST k

i, j ∧ ST k′
i, j′ <i, j ST k′′

i, j′′ , then PS(ST k′
i, j′) <

i, j
S

PS(ST k′′
i, j′′).

Definition 5. The projection of a transaction Ti from the reactor model to the
classic transactional model, denoted by PT (Ti) is a partial order with ordering
relation <i

T :

1. PT (Ti) ⊆ (
⋃

ST k
i, j∈Ti

PS(ST k
i, j)) ∪ {P(o) | o ∈ Ti ∧ o is a commit or abort};

2. <i
T is extended by

⋃

ST k
i, j∈Ti

<
i, j
S ;

3. if ST k
i, j ∈ Ti ∧ ST k′

i, j′ ∈ Ti ∧ ST k
i, j <i ST k′

i, j′ ∧ o1 ∈ PS(ST k
i, j) ∧ o2 ∈ PS(ST k′

i, j′),
then o1 <

i
T o2;

4. if t is ci or ai (whichever is in PT (Ti)), for any further
operation p ∈ PT (Ti), p <i

T t.

The definitions unroll all sub-transactions in the reactor model into read and
write operations in the classic transactional model while maintaining ordering
constraints.

Definition 6. The projection of a history H over a set of transactions T= {T1, T2, ..., Tn},
in the reactor model to the classic transactional model, denoted by P(H) is a partial
order with ordering relation<PH

over a set of transactions T ′ = {PT (T1), PT (T2), ..., PT (Tn)}
iff:
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1. PPH
(H) =

⋃n
i=1 PT (Ti);

2. <PH
is extended by

⋃n
i=1 <

i
T ;

3. if o1 ∈ PS(ST k
i, j)∧ o2 ∈ PS(ST k′

i′, j′)∧ ST k
i, j ∈ Ti ∧ ST k′

i′, j′ ∈ Ti′ ∧ ST k
i, j <H ST k′

i′, j′ ,
then o1 <PH

o2 as long as o1 and o2 conflict.

Theorem 3.2.1. A history H is serializable in the reactor model iff its projection
H ′ = P(H) in the classic transactional model is serializable.

Proof. Let us assume H is serializable and H ′ is not serializable. From the serializ-
ability theorem, since H is serializable, the serializability graph of H (SG(H)) is
acyclic; since the projected history H ′ is not serializable, the serializability graph
SG(H ′) must be cyclic. Therefore, there must exist a cycle T ′i → . . .→ T ′j → . . .→
T ′i . Since the graph is built on operations of the classic transactional model, then
there must be conflicting operations o′i <PH

. . .<PH
o′j <PH

. . .<PH
o′i . By condition

(3) of Definition 6, there must exist sub-transactions ST k
i,l ∈ Ti and ST k′

j,l ′ ∈ T j such

that ST k
i,l <H . . .<H ST k′

j,l ′ <H . . .<H ST k
i,l . As a result, SG(H) must be cyclic, and

we arrive at a contradiction. To show the reverse direction, it is simple to follow
a similar argument, but starting with a cyclic graph in SG(H) and showing that
SG(H’) must be cyclic as well in contradiction.

Theorem 3.2.1 implies that we can, with appropriate care, employ an existing
scheduler for the classic transactional model to implement a scheduler for the
reactor model. This is done in Section 3.3 by reusing the optimistic concurrency
control (OCC) scheduler of Silo [125] together with the two-phase commit (2PC)
protocol [27].

3.2.4 Computational Cost Model

In this section, we introduce a cost model to support developers of latency-sensitive
OLTP applications in controlling the latency of a transaction program expressed
using reactors. Clearly, latency depends heavily on program structure. For ex-
ample, certain programs can overlap asynchronous invocations of functions in
other reactors with processing logic and/or synchronous function invocations;
other programs may do so only conditionally, or have data dependencies between
different asynchronous function calls. For concreteness, we focus on a subset of
programs where in every sub-transaction, all asynchronous invocations happen
simultaneously at one given program point only, but our cost analysis can be
extended to other program structures as well.

Consider a sub-transaction ST k
i, j. We call syncseq(ST k

i, j) its sequence of chil-

dren sub-transactions and Pseq(ST k
i, j) its processing logic executed synchronously

and not overlapped with asynchronous sub-transactions. Any sub-transaction
invocation incurs communication costs. We term Cs(k, k′) the cost to send a sub-
transaction call from reactor k to reactor k′, and Cr(k′, k) the cost to receive a result
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L(ST k
i, j) = Pseq(ST k

i, j) +
∑

ST k′
i, j′∈ syncseq(ST k

i, j)

L(ST k′
i, j′)

+
∑

k′∈ dest
�

syncseq(ST k
i, j)
�

�

Cs(k, k′) + Cr(k
′, k)

�

+ max

�

maxST k′
i, j′∈ async(ST k

i, j)

�

L(ST k′
i, j′) + Cr(k

′, k)

+
∑

k′′∈ dest
�

prefix(async(ST k
i, j) , ST k′

i, j′ )
�

Cs(k, k′′)
�

,

Povp(ST k
i, j) +

∑

ST k′
i, j′∈ syncovp(ST k

i, j)

L(ST k′
i, j′) +

∑

k′∈ dest
�

syncovp(ST k
i, j)
�

�

Cs(k, k′) + Cr(k
′, k)

�
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Figure 3.3: Modeling latency cost of a procedure call in the reactor model.

from k′ at k. The sequence of children sub-transactions of ST k
i, j executed asyn-

chronously are denoted async(ST k
i, j). The synchronous children sub-transactions

and processing logic overlapped with the asynchronous sub-transactions are repre-
sented by syncovp(ST k

i, j) and Povp(ST k
i, j), respectively. If S represents a sequence

of sub-transactions, prefix(S, ST k
i, j) denotes the sequence of sub-transactions in S

upto ST k
i, j and including it. Moreover, we say that dest(ST1, . . . , STn) represents

the sequence of reactors that sub-transactions ST1, . . . , STn execute on.
Now, the latency cost of ST k

i, j is modeled by the formula in Figure 3.3. The for-
mula represents the latency cost if enough parallelism is available in the underlying
physical implementation to overlap all asynchronous sub-transactions. The same
formula can be applied recursively to compute the latency cost for sub-transactions
of arbitrary depth. Since a root transaction is a special case of a sub-transaction,
i.e., a sub-transaction without a parent, the same formula applies, modulo any
overheads incurred for commitment.

Reasoning about cost components as in Figure 3.3, developers can re-architect
their programs to improve the latency of their sub-transactions by: (1) increasing
asynchronicity of children sub-transactions, (2) overlapping execution of applica-
tion logic by introducing sub-transactions, and (3) reducing the processing cost of
the application logic. In addition, without worrying about absolute values of cost
parameters, but considering that communication events have in general larger
cost than local processing, the developer can reason about relative latency costs
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for her program in a way similar to algorithmic complexity measures. In particular,
when communication cost dwarfs local processing cost, the reasoning is similar to
what is done under the I/O model [2].

Finally, developers can reason about scalability by considering how data, com-
putation and communication are spread among reactors. In particular, if developers
architect their applications such that increasing amounts of data and computation
are distributed among increasing numbers of reactors while at the same time
keeping the number of cross-reactor calls roughly constant per transaction, then
adequate transactional scalability should be expected.

As explained in the discussion on manual optimization in Section 3.2.2.2,
reactors allow developers to navigate a space of choices between fully automatic
optimization and manual performance-oriented design. The existing approach
of fully automatic optimization does not provide a clean methodology to deal
with performance problems when optimization fails. With reactors, however,
developers can reason at a high-level on latency cost and employ reactor design and
asynchronous function calls to better control performance, allowing specification
of application-level information otherwise unavailable to the database system.

3.3 System Architecture

3.3.1 Overview

In this section, we discuss the architecture of REACTDB, an in-memory database sys-
tem that exposes the reactor programming model. The design of REACTDB aims at
providing control over the mapping of reactors to physical computational resources
and memory regions under concurrency control. The system implementation cur-
rently targets a single multi-core machine for deployment; however, REACTDB’s
architecture is designed to allow for deployments in a cluster of machines, which
we leave for future work.

As shown in Figure 3.4, REACTDB’s architecture is organized as a collection of
containers. A container abstracts a (portion of a) machine with its own storage
(main memory) and associated mechanisms for transactional consistency. Each
container is isolated and does not share the data stored in it with other containers.
Containers are associated with computational resources (cores) disjoint from
other containers, abstracted by transaction executors. A transaction executor
consists of a thread pool and a request queue, and is responsible for executing
requests, namely asynchronous procedure calls. Each transaction executor is
pinned to a core. Single-container transactions are managed by the concurrency
control mechanism within the container, while a transaction coordinator runs a
commitment protocol for transactions spanning multiple containers. Transactional
durability is currently disabled in our implementation, but could be achieved by a
combination of techniques such as fast log-based recovery [137] and distributed
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Figure 3.4: REACTDB’s Architecture.

checkpoints [55]. Alternatively, an approach such as FaRM’s could be employed to
minimize any impact of durability mechanisms on latency [52].

Each container stores a two-level mapping between a reactor and a transaction
executor. On the first level, a reactor is mapped to one and only one container.
Together with appropriate container deployment, this constraint ensures that asym-
metrically large communication costs are only introduced between, but not within,
reactors, in line with our computational cost model. On the second level, a reactor
can be mapped to one or more transaction executors in a container. Transaction
routers decide the transaction executor that should run a sub-transaction according
to a given policy, e.g., round-robin or affinity-based.

Transport drivers handle communication across containers. REACTDB has a
driver component that is used by client code to send transactions into the system
for processing. REACTDB accepts pre-compiled stored procedures written in the
reactor programming model in C++ against a record manager interface. An
instance of a pre-compiled stored procedure and its input forms a transaction.
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3.3.2 Concurrency Control

3.3.2.1 Single Container Transactions

Every transaction or sub-transaction written in the reactor programming model
specifies the reactor where it must be executed. If the destination reactor of a
child sub-transaction is hosted in the same container as the parent sub-transaction,
the child sub-transaction is executed synchronously within the same transaction
executor to minimize the communication overhead of migrating across transaction
executors. If all the sub-transactions in the execution context of a root transaction
are executed within one container, then the native concurrency control mechanism
of the container is used to guarantee serializability. As a consequence of Theo-
rem 3.2.1, REACTDB can reuse an existing concurrency control mechanism, and
we chose Silo’s high-performance OCC implementation [125].

3.3.2.2 Multi-Container Transactions

When a sub-transaction is invoked on a reactor mapped to a container different than
the current container, the call is routed by the transport driver to the destination
container and then by the transaction router to the request queue of a transaction
executor. Once the sub-transaction is queued, the calling code gets a future
back representing this computation. If the calling sub-transaction code does not
synchronize on the future, then once the caller completes, REACTDB enforces
synchronization on the futures of all child sub-transactions.
Two-Phase Commit. By the above synchronization policy, a root transaction can
finish when all the sub-transactions created and invoked in its context finish,
recursively. The transaction executor then invokes the transaction coordinator to
initiate a commitment protocol across the containers that have been touched by
the transaction, either directly or by any of its deeply nested sub-transactions. The
transaction coordinator in turn performs a 2PC protocol. The first phase of the
protocol runs a validation of Silo’s OCC protocol on all the involved containers.
If the validations are successful, the locks on the write-set of the transaction are
acquired and released only when the write phase ends. If any of the validations
fail, the transaction is aborted.

Cooperative Multitasking. To minimize the effect of stalls due to synchronization,
each transaction executor maintains a thread pool to process (sub-)transactions.
The threads use cooperative multitasking to minimize context switching overheads.
A thread blocks if it tries to access the result of a sub-transaction invoked on a
different container and the result is not yet available. In such a situation, it notifies
another thread to take over processing of the request queue and goes back to the
thread pool when the (sub-)transaction being executed by it is completed.
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3.3.3 Deployments

The decomposition of the notions of compute and shared memory by transaction
executors and containers allows infrastructure engineers to flexibly deploy RE-
ACTDB in a number of database architectures. In the remainder of the chapter, we
restrict ourselves to three main deployment strategies:

(S1) shared-everything-without-affinity: This strategy employs a single container
in which each transaction executor can handle transactions on behalf of any reactor.
REACTDB is configured with a round-robin router to load balance transactions
among executors. All sub-transactions are executed within the same transaction
executor to avoid any migration of control overhead. This strategy adheres to the
architecture of most shared-everything databases [71].

(S2) shared-everything-with-affinity: This strategy is similar to shared-everything-
without-affinity in that it employs a single container, but with the difference that
an affinity-based router ensures that root transactions for a given reactor are
processed by the same transaction executor. In sub-transaction calls, even if to
different reactors, no migration of control happens, and the sub-transaction is
executed by the same transaction executor of the root transaction. This deployment
strategy closely adheres to the setup employed in the evaluation of Silo [125].

(S3) shared-nothing: This strategy employs as many containers as transaction
executors, and a given reactor is mapped to exactly one transaction executor.
While this strategy aims at maximizing program-to-data affinity, sub-transaction
calls to different reactors may imply migration of control overheads to other
transaction executors. In our experiments (Section 3.4), we further decompose
this configuration into shared-nothing-sync and shared-nothing-async, depending
on how sub-transactions are invoked within application programs. In the former
option, sub-transactions are invoked synchronously by calling get on the sub-
transaction’s future immediately after invocation. In the latter option, the call
to get is delayed as much as possible for maximal overlapping of application
logic with sub-transaction calls. From an architecture perspective, both of these
setups represent a shared-nothing deployment with differing application programs
exercising different synchronization options. The deployment strategy shared-
nothing-sync models the setup of shared-nothing databases such as H-Store [121]
and HyPer [80], albeit with a different concurrency control protocol. The shared-
nothing-async strategy represents a deployment that allows REACTDB to leverage
intra-transaction parallelism as provided by the reactor programming model.

Other flexible deployments, similar to [104], are possible as well. To change
database architecture, only configuration files need to be edited and the system
bootstrapped. Since applications operate only on reactors, the mapping of reactors
to containers and transaction executors is immaterial for the application logic.
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3.4 Evaluation

In this section, we evaluate the effectiveness of REACTDB and the reactor program-
ming model. The experiments broadly aim at validating the following hypothe-
ses: (H1) The reactor programming model allows for reasoning about latency
in alternative formulations of application programs (Section 3.4.2.1). (H2) The
computational cost model of reactors can be efficiently realized by REACTDB (Sec-
tions 3.4.2.3 and 3.4.2.2). (H3) REACTDB exhibits close to linear transactional
scale-up in a standard benchmark when deployed across multiple cores (Sec-
tions 3.4.3.1 and 3.4.3.2). (H4) REACTDB allows for configuration of database
architecture, without any changes to application code, so as to exploit asyn-
chronicity in transactions depending on the level of load imposed on the database
(Section 3.4.3.3 and 3.4.3.4).

3.4.1 Experimental Setup

3.4.1.1 Hardware

For our latency measurements in Section 3.4.2, we employ a machine with one
four-core, 3.6 GHz Intel Xeon E3-1276 processor with hyperthreading, leading to
a total of eight hardware threads. Each physical core has a private 32 KB L1 cache
and a private 256 KB L2 cache. All the cores share a last-level L3 cache of 8 MB.
The machine has 32 GB of RAM and runs 64-bit Linux 4.1.2. A machine with high
clock frequency and uniform memory access was chosen for these experiments to
challenge our system’s ability to reflect low-level latency asymmetries in modern
hardware as captured by our programming model.

For our measurements in Section 3.4.3, we use a machine with two sockets,
each with 8-core 2.1 GHz AMD Opteron 6274 processors including two physical
threads per core, leading to a total of 32 hardware threads. Each physical thread
has a private 16 KB L1 data cache. Each physical core has a private 64 KB L1
instruction cache and a 2 MB L2 cache. Each of the two sockets has a 6 MB L3
cache. The machine has 125 GB of RAM in total, with half the memory attached
to each of the two sockets, and runs 64-bit Linux 4.1.15. The higher number of
hardware threads and accentuated cache coherence and cross-core synchronization
effects allow us to demonstrate the effect of virtualization of database architecture
in scalability and cross-reactor transaction experiments.

3.4.1.2 Methodology

An epoch-based measurement approach similar to Oltpbench is used [51]. Average
latency or throughput is calculated across 50 epochs and the standard deviation
is plotted in error bars. All measurements include the time to generate transac-
tion inputs.
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3.4.1.3 Workloads and Deployments

For the experiments of Section 3.4.2, we implement an extended version of the
Smallbank benchmark mix [9]. Smallbank simulates a banking application where
customers access their savings and checking accounts. Oltpbench first extended
this benchmark with a transfer transaction, which is implemented by a credit to
a destination account and a debit from a source account [64]. We extend the
benchmark further with a multi-transfer transaction. Multi-transfer simulates a
group-based transfer, i.e., multiple transfers from the same source to multiple
destinations. Thus, by varying the number of destination accounts for multi-
transfer and controlling the deployment of REACTDB, we can vary both the amount
of processing in the transaction as well as the amount of cross-reactor accesses
that the transaction makes.

Each customer is modeled as a reactor. We configure REACTDB with 7 database
containers, each hosting a single transaction executor for a total of 7 transaction
executors mapped to 7 hardware threads. The deployment plan of REACTDB is
configured so that each container holds a range of 1000 reactors. A single worker
thread is employed to eliminate interference effects and allow us to measure latency
overheads of single transactions. The worker thread generating transaction inputs
and invocations is allocated in a separate worker container and pinned to the
same physical core hosting the container responsible for the first range, but in
a separate hardware thread. In order to keep our measurements comparable,
the multi-transfer transaction input generator always chooses a source customer
account from this first container.

The experiments of Section 3.4.3 use the classic TPC-C benchmark [123]. We
closely follow the implementation of the benchmark from Oltpbench [64], which
makes usual simplifications, e.g., regarding think times. In our port of TPC-C,
we model each warehouse as a reactor. We configure the number of transaction
executors to be equal to the scale factor for the experiment. The number of client
worker threads generating transaction calls is also equal to the scale factor, and
these workers are configured to reside in a separate worker container. Each client
worker thread generates load for only one warehouse (reactor), thus modeling
client affinity to a warehouse.

To showcase REACTDB’s ability to configure database architecture at deploy-
ment time, we experiment with the deployments described in Section 3.3.3.

3.4.1.4 Application Programs

We evaluate different application program formulations for the multi-transfer trans-
action added to Smallbank, exercising the asynchronous programming features
of reactors (see Section 3.4.2.4). Similar to Figure 3.1(b), multi-transfer invokes
multiple sub-transactions. In contrast to the figure, in some program variants, we
force synchronous execution by immediately calling get on the future returned.
The first formulation, fully-sync, invokes multiple transfer sub-transactions from
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Figure 3.5: Latency vs. size and different user program formulations.

the same source synchronously. Each transfer sub-transaction in turn invokes a syn-
chronous credit sub-transaction on the destination account and a synchronous debit
sub-transaction on the source account. The partially-async formulation behaves
similarly; however, each transfer sub-transaction invokes an asynchronous credit
on the destination account and a synchronous debit on the source account, overlap-
ping half of the writes in the processing logic while still executing communication
proportional to the transaction size sequentially. The fully-async formulation does
not invoke transfer sub-transactions, but rather explicitly invokes asynchronous
credit sub-transactions on the destination accounts and multiple synchronous
debit sub-transaction on the source account. Thus, not only are roughly half of
the writes overlapped, but also a substantial part of the communication across
reactors. The final formulation, opt, is similar to the fully-async transaction, but
performs a single synchronous debit to the source account for the full amount
instead of multiple synchronous debits. Consequently, processing depth is further
reduced and should roughly equal two writes, while communication should be
largely overlapped.

In addition, we implement all transactions of TPC-C in our programming
model. Unless otherwise stated, we always overlap calls between reactors as
much as possible in transaction logic by invoking sub-transactions across reactors
asynchronously.



3.4. EVALUATION 67

3.4.2 Latency Control

3.4.2.1 Latency vs. Program Formulations

In this section, we show an experiment in which we vary the size of a multi-transfer
transaction by increasing the number of destination accounts. Each destination
is chosen on a different container out of the seven in our shared-nothing deploy-
ment (see Section 3.4.2.2 for alternative choices). The latency for the different
application program formulations is outlined in Figure 3.5. The observed curves
match the trends predicted by the cost equation of Figure 3.3. First, as we increase
transaction size, the processing and communication costs of a multi-transfer in-
crease linearly across all formulations. Second, the highest latencies overall are
for fully-sync, and latencies become lower as more asynchronicity is introduced
in the formulations by overlapping sub-transaction execution. Third, there is a
substantial gap between partially-async and fully-async, due to asymmetric costs
between receiving procedure results and sending procedure invocations to other
reactors. The latter manifests because of thread switching costs across cores in
the receive code path, as opposed to atomic operations in the send code path. In
opt, latency is further reduced when compared to fully-async by cutting in almost
half the processing costs, which have a smaller impact than communication across
cores. It is interesting to note that these optimizations can be done on the µsec
scale. The programming model allows a developer to reduce the latency of a
transaction from 86 µsec to 25 µsec by simple program reformulations without
compromising consistency.

3.4.2.2 Latency Control across Physical Configurations

In this section, we complement the results in Section 3.4.2 by evaluating the
latency impact of different physical mappings of reactors in REACTDB. In particular,
we provide additional experiments showing that observed latencies for the multi-
transfer transaction can be reliably explained by whether the affected reactors are
co-located or not on physical components employed in a given configuration.

3.4.2.2.1 Local vs. Remote Calls In this section, we show how the config-
uration of physical distribution can affect the latency of transactions. The cost
equation of Figure 3.3 models communication costs among reactors (namely Cs
and Cr), which are higher when reactors are mapped to containers over distinct
physical processing elements. We term calls among such physically distributed
reactors remote calls. By contrast, calls between reactors mapped to the same
container are termed local calls.

To highlight cost differences in remote calls, we consider the fully-sync and
opt multi-transfer formulations. We evaluate two extremes: either destination
accounts span all containers (-remote) or are on the same container as the source
account (-local). Figure 3.6 shows that the cost of fully-sync-remote rises sharply
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Figure 3.6: Latency vs. size and different target reactors spanned.

because of increase in both processing and communication costs compared to fully-
sync-local, which only sees an increase in processing cost. There is a comparatively
small difference between opt-local and opt-remote, since the processing of remote
credit sub-transactions is overlapped with the local debit sub-transaction, and
thus part of the fourth component summed in Figure 3.3. The extra overhead
in opt-remote comes from larger, even if partially overlapped, communication
and synchronization overheads to invoke the sub-transactions on the remote
transaction executors and receive results.

3.4.2.2.2 Varying Degree of Physical Distribution In order to better under-
stand the growth in communication costs due to remote calls, we conduct another
experiment where we fix the multi-transfer transaction size to seven destination
accounts, and then control these accounts so as to span a variable number of
containers. Recall that in the deployment for this experiment, each of the seven
containers has exactly one transaction executor pinned to a hardware thread. We
use the fully-sync formulation of multi-transfer, so we expect to see higher latencies
as a larger number of the credits to the seven destination accounts are handled by
remote transaction executors.

We experiment with three variations for selecting destination accounts for
our multi-transfer transaction as we vary the number k of transaction executors
spanned from one to seven. The first variant, round-robin remote, performs 7−k+1
local debit calls by choosing accounts mapped to the first container, and k − 1
remote calls by choosing accounts round-robin among the remaining containers.
The second variant, round-robin all, performs d7/ke local calls and b7/kc remote
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Figure 3.7: Latency for transactions of fixed size varies predictably with distribution
of target reactors.

calls. Finally, we measure an expected value for latency by selecting destination
accounts with a uniform distribution, termed random.

Figure 3.7 shows the resulting latencies. We observe a smooth growth in the
latency for round-robin remote, since we increase the number of remote calls
exactly by one as we increase the number of transaction executors spanned. The
behavior for round-robin all differs in an interesting way. For two transaction
executors spanned, round-robin all performs three remote calls and four local
calls. While round-robin all performs four remote calls and three local calls for
three transaction executors, the method performs five remote calls and two local
calls for both five and six transaction executors spanned. These effects are clearly
reflected in the measured latencies. For random, the expected number of remote
calls is between six and seven, which is again tightly confirmed by the latency of
the multi-transfer transaction in Figure 3.7.

3.4.2.3 Cost Model Breakdown

In this section, we break down our measurements of transaction latencies by the
cost components in Figure 3.3, and further validate that our cost model is realiz-
able in REACTDB. We focus on the fully-sync and opt multi-transfer formulations
described above, and vary the size of the multi-transfer transaction by changing
the number of destination accounts similarly to Figure 3.5. For each variant, we
profiled the execution time of the programs in REACTDB into the components
of the cost model of Figure 3.3. In addition, we used the profiling information
from fully-sync for a transaction size of one to calibrate the parameters of the
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Figure 3.8: Latency breakdown into cost model components.

cost model for prediction, including processing and communication costs. From
the parameter values for the single-transfer fully-sync run, we employed the cost
equation of Figure 3.3 to predict the execution costs for other transaction sizes
and for both the fully-sync and opt program formulations. The predicted values
are labeled fully-sync-pred and opt-pred.

We break down transaction latencies into the following components: (a) sync-
execution: the cost of processing the logic in the transaction and in synchronous
sub-transactions, corresponding to the first two components of the cost equation
in Figure 3.3; (b) Cs and Cr : the forward and backward costs of communication
between reactors in the third component of the cost equation; (c) async-execution:
the cumulative execution cost of all asynchronous sub-transactions overlapped
with any synchronous sub-transactions and processing logic, corresponding to the
fourth component of the cost equation; (d) commit + input-gen: the cost of the
commit protocol, including OCC and 2PC, along with the time to generate the
inputs for the transaction. The latter cost component is not shown in Figure 3.3
since it only applies to root transactions and not to any sub-transaction in the
reactor programming model. As such, we would expect the bulk of the difference
between the predicted and observed performance to be explainable by this cost
component.

Figure 3.8 shows that the predicted breakdown for the cost components closely
matches the latencies profiled for actual executions in REACTDB, even at such a
fine granularity. The slight difference in the overlap of different bars is within the
variance of the observed vs. the calibration measurement, and expected especially
since calibration measures parameters within the 5µsec range. For a transaction
size of one, we can see that opt has the same performance behavior as fully-sync.
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This effect arises because the destination transaction executor for the credit in the
transfer is the same as the source transaction executor for the debit, resulting in a
synchronous execution of the credit and debit sub-transactions similar to fully-sync.
As we increase the transaction size, the number of transaction executors spanned
by the transaction increases, and the execution costs of fully-sync grow because
of increasing costs in sync-execution, Cs and Cr . As remarked in Section 3.4.2.1,
the cost asymmetry between Cs and Cr arises due to thread switching costs across
cores in the receive code path compared to atomic operations in the send code
path. For opt, we do not observe any sync-execution costs, since all credit sub-
transactions are overlapped with each other and with the single debit on the
source reactor. The growth in the async-execution cost of opt with increasing
transaction size is caused by the rising communication cost for the sequence of
credit sub-transactions, i.e, the last asynchronous credit sub-transaction incurs a
cumulative cost of communication of all asynchronous sub-transactions before it
in the sequence.

In summary, we observe that reactors and asynchronous function calls, the
two primary constructs of our programming model, can be used to explain effects
on the latency of transactions at the microsecond scale. In particular, the number
of calls to distributed reactors and the degree of call overlap strongly influence
transaction latency. The latencies of transactions can be reliably profiled in our
system REACTDB into the components of the cost model of Figure 3.3 even in a
challenging scenario where the cost of the processing logic in the benchmark is
extremely small and comparable to the cost of communication across reactors.
This evidence indicates that it is possible for developers to observe and explain
the latency behavior of programs with reactors and to reformulate their programs
for better performance.

3.4.2.4 Smallbank Implementation Details

In this section, we provide implementation details of the application programs in
the Smallbank benchmark, which were used in the experiments in Sections 3.4.2.1,
3.4.2.3 and 3.4.2.2. In this benchmark, each customer was modeled as a reactor.
Figure 3.9 outlines the encapsulated relations on each Customer reactor, namely
(1) account, which maps the customer name to a customer ID, (2) savings and
(3) checking, which represent the saving and checking account of the customer,
respectively. For strict compliance with the benchmark specifications, we have
maintained the customer ID field in the savings and checking relations despite
it being a relation holding a single tuple for a customer reactor. We have also
performed the lookup on the account relation for customer ID followed by its use
on the saving and checking relation to maintain the logic and query footprint
of the benchmark specification. Figure 3.10 shows the various methods exposed
by the customer reactor to represent the various formulations of the multi-transfer
application logic.
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Figure 3.9: Example Customer Reactor in Smallbank.

The transfer transaction uses an enviroment variable during compile
time (env_seq_transfer) that can be enabled or disabled to execute the
multi_transfer_sync method in fully-sync or partially-sync mode.1 In the
benchmark, multi_transfer_sync, multi_transfer_fully_async, and
multi_transfer_opt were invoked on the source customer reactor from which
the amount must be transferred to the destination customer reactors. The ex-
plicit synchronization in multi_transfer_sync is done for safety, though not
required when the src_cust_name customer reactor executes the method. This
is because in this case the nested transact_saving sub-transaction on the
src_cust_name reactor is executed synchronously producing the same effect.
However, explicitly specifying the synchronization there improves code clarity.
For the same reason, explicit synchronization on the transact_saving sub-
transaction is done in the multi_transfer_fully_async method as well.

3.4.3 Virtualization of Database Architecture

3.4.3.1 Transactional Scale-Up

In this section, we evaluate the scalability of REACTDB across multiple cores for the
three database architecture deployments described in Section 3.3.3. Figures 3.11
and 3.12 show the average transaction throughputs and latencies of running the
TPC-C transaction mix as we increase the number of warehouses (reactors). We
observe that the shared-everything-without-affinity deployment exhibits the worst

1This also helps in minimizing code duplication.
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reactor Customer {
  …
  void transact_saving(amt) {
    SELECT cust_id INTO v_cust_id FROM account;
    SELECT balance INTO v_bal FROM savings WHERE cust_id = v_cust_id;

    if v_bal + amt < 0
      abort;

    UPDATE savings SET balance = balance + amt WHERE cust_id = v_cust_id;
  }

  void transfer(src_cust_name, dst_cust_name, amt) {
    if amt <= 0
      abort;
  
    res := transact_saving(dst_cust_name, amt) on reactor dst_cust_name;

    if env_seq_transfer
      res.get();

    transact_saving(src_cust_name, -amt) on reactor src_cust_name;
  }
  
   void multi_transfer_sync(src_cust_name, dst_cust_names, amt){
    foreach dst_cust_name in dst_cust_names
      res := transfer(src_cust_name, dst_cust_cust_name, amt) 
                         on reactor src_cust_name;
      res.get();    
  }
  
  void multi_transfer_fully_async(src_cust_name, dst_cust_names, amt) {
    if amt <= 0
      abort;

    foreach dst_cust_name in dst_cust_names
      transact_saving(dst_cust_name, amt) on reactor dst_cust_name;    

    foreach val in dst_cust_names
      res := transact_saving(src_cust_name, -amt) on reactor src_cust_name;
      res.get();
  }

  void multi_transfer_opt(src_cust_name, dst_cust_names, amt) {
    if amt <= 0
      abort;

    foreach dst_cust_name in dst_cust_names
      transact_saving(dst_cust_name, amt) on reactor dst_cust_name;    

    num_dsts := dst_cust_names.size();
    transact_saving(src_cust_name, -(amt*num_dsts)) on reactor src_cust_name;
  }
}

Figure 3.10: Implementation of Smallbank multi-transfer transactions.

throughput and latency scalability among the deployments selected. This effect is
a consequence of shared-everything-without-affinity’s poor ability to exploit mem-
ory access affinities within each transaction executor, given round-robin routing
of transactions. On the other hand, shared-everything-with-affinity and shared-
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Figure 3.11: TPC-C throughput with varying deployments.
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Figure 3.12: TPC-C latency with varying deployments.
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nothing-async both take advantage of access affinities and behave similarly. We see
that shared-everything-with-affinity is slightly superior to shared-nothing-async.
The difference lies in the relative costs in these deployments of sub-transaction
invocations vs. direct memory access of data for remote warehouses. For a scale
factor of one, there are no cross-reactor transactions, and the performance of the
two deployments is identical. From a scale factor of two onwards, the probabilities
of cross-reactor transactions range between 0% to 10% (there is a 1% chance
of items in new-order being remote and a 15% chance for customer lookups in
payment). In shared-nothing-async, a sub-transaction call is routed to its corre-
sponding transaction executor, incurring context switching and communication
overheads. By contrast, since shared-everything-with-affinity executes the sub-
transaction in the same transaction executor, the remote call costs are traded off for
the relatively smaller costs of cache pressure. We also ran the experiment with all
the transaction classes in the TPC-C mix invoking sub-transactions synchronously
in the shared-nothing deployment (shared-nothing-sync configuration described
in Section 3.3.3). However, the throughput and latency of this configuration was
close (within the variance bars) to the shared-nothing-async configuration because
of the low percentage of cross-container calls in the default TPC-C mix. We hence
omit the curve from Figures 3.11 and 3.12 for brevity.

In short, the results indicate that REACTDB can be flexibly configured with
different database architectures to achieve adequate transactional scalability for
a given workload. In the case of TPC-C, high affinity of data accesses in transac-
tions to physical processing elements (cores) is fundamental to performance, and
observed under all configurations explored but shared-everything-without-affinity,
which models the architecture of most shared-everything databases. Further ex-
ploration of the issue of affinity and of containerization overheads of REACTDB is
presented in Section 3.4.3.2.

3.4.3.2 Affinity and Overhead in REACTDB

In this section, we complement the results in Section 3.4.3.1 by delving into
the effect of affinity on the shared-everything-without-affinity deployment and
characterizing the containerization overheads of REACTDB.

3.4.3.2.1 Effect of Affinity To further drill down into the issue of affinity of
reactors to transaction executors, we ran an experiment in which we vary the
number of transaction executors deployed in shared-everything-without-affinity,
but keep the scale factor of TPC-C at one with a single client worker. The results
are shown in Figure 3.13. In such a setup, for k transaction executors deployed,
the load balancing router ensures the n-th request is sent to transaction executor
n mod k. Thus, the different transactions from the workers are being spread
around the transaction executors, which destroys the locality in the transaction
executors and accentuates the cache coherence and cross-core communication
costs. We found that with two transaction executors throughput drops to 86%
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Figure 3.13: Effect of affinity on TPC-C throughput for shared-everything-without-
affinity.

compared to one transaction executor and progressively degrades to 40% for 16
transaction executors. For comparison, the corresponding per-core throughput
for shared-everything-with-affinity at scale factor 16 in Figure 3.11 is 87% of the
per-core throughput at scale factor one. This result highlights the importance of
maintaining affinity of transaction execution for high performance, especially in a
NUMA machine with accentuated cache coherence and cross-core communication
costs.

3.4.3.2.2 Containerization Overheads To account for the overhead of con-
tainerization, we also ran REACTDB while submitting empty transactions with
concurrency control disabled. We observe roughly constant overhead per transac-
tion invocation across scale factors of around 22 µsec. Even though for the setup
with TPC-C this overhead would correspond to close to 18%, we measured that
thread switching overhead between the worker and transaction executor across
different cores is a largely dominant factor and is dependent on the machine
used. When compared with executing the TPC-C application code directly within
the database kernel without any process separation, as in Silo, the overhead is
significant, but if a database engine with kernel thread separation is assumed, as
is the normal case, the overhead is negligible.

3.4.3.3 Effect of Load

To further drill down on the potential benefits of asynchronicity under concurrency,
we evaluate in this section the two database architectures shared-nothing-async
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Figure 3.14: Throughput of new-order-delay transactions with varying load.
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and shared-everything-with-affinity under varying load. We control the amount
of load by varying the number of workers from 1 to 8, while keeping the number
of warehouses constant at a scale factor of 8. For clarity, we focus exclusively
on new-order transactions. Each new-order consists of between 5-15 items and
we force each of the items to be drawn from a remote warehouse with equal
probability. Since the default new-order formulation has limited parallelism in
the logic executed at remote warehouses, we augmented the logic for stock data
update with an artificial delay between 300 and 400 µsec by generating random
numbers to model stock replenishment calculations. This increases the overall
work in the transaction without increasing its footprint and the contention on the
database.

Figures 3.14 and 3.15 show the throughput and latency, respectively, of run-
ning 100% new-order-delay transactions under increasing load. With one worker,
the throughput of shared-nothing-async is double that of shared-everything-with-
affinity. The former executes all the stock updates across 5-6 remote warehouse
asynchronously (average distinct remote warehouses chosen from 7 using a uni-
form distribution) fully utilizing the available hardware parallelism, while the
latter executes the entire transaction logic sequentially. Although shared-nothing-
async incurs higher communication cost in dispatching the stock updates to be
performed by different warehouse reactors, the greater amount of work in each
stock update makes it worthwhile in comparison to sequential shared memory
accesses in shared-everything-with-affinity. Conversely, as we increase the number
of workers and thus pressure on resources, the throughput of shared-nothing-async
starts growing less than that of shared-everything-with-affinity. Note that the abort
rate for the deployments was negligible (0.03-0.07%), highlighting the limited
amount of contention on actual items.

In summary, these results suggest that the most effective database architecture
may change depending on load conditions when asynchronicity can be exploited
by transaction code. Under high load, shared-everything-with-affinity exhibits
the best performance among the architectures evaluated, since it reduces over-
head at the expense of not utilizing at all intra-transaction parallelism. On the
other hand, when load conditions are light to normal and when transaction logic
comprises enough parallelism, shared-nothing-async can achieve substantially
higher throughput and lower latency. To further validate these observations, we
evaluate in Section 3.4.3.4 the effects of varying cross-reactor accesses in the
TPC-C benchmark under conditions of high load.

3.4.3.4 Effect of Cross-Reactor Transactions

In this section, we evaluate the impact of cross-reactor transactions on the per-
formance of the different database architectures, complementing the results of
Section 3.4.3.3. For clarity, we focus exclusively on new-order transactions. To
vary the percentage of cross-reactor new-order transactions, we vary the probabil-
ity that a single item in the transaction is drawn from a remote warehouse (the
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Figure 3.16: Throughput of cross-reactor new-order transactions.
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Figure 3.17: Latency of cross-reactor new-order transactions.

remote warehouses are again chosen with an equal probability). Each new-order
consists of between 5-15 items. We do not extend the new-order transaction with
any additional computations, limiting the amount of intra-transaction parallelism
available.

Figures 3.16 and 3.17 show the throughput and latency, respectively, of running
the TPC-C benchmark with 100% new-order transactions at a scale factor of eight,
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i.e., eight warehouses receive transactions from eight workers at peak load. Since
REACTDB uses Silo’s OCC protocol and owing to the low contention in TPC-C even
upon increasing the number of remote items, we would expect the throughput
and latency of shared-everything-with-affinity to be agnostic to changes in the
proportion of cross-reactor transaction as per the results in [125]. However, we
see a gradual decrease in the throughput and an increase in the latency for all the
deployments. We believe these effects are a consequence of cache coherence over-
heads and remote memory latency in the NUMA machine employed. We observe
further that both shared-nothing-sync and shared-nothing-async configurations
exhibit the same latency and throughput at 0% cross-reactor transactions as shared-
everything-with-affinity. However, there is a sharp drop in the performance of
shared-nothing deployments from 0% to 10% cross-reactor transactions. This effect
is in line with our previous observation that sub-transaction invocations require ex-
pensive migration of control in contrast to both shared-everything-without-affinity
and shared-everything-with-affinity. Note that the abort rate for all the different
deployments remained negligible (0.02%-0.04%), highlighting the limited amount
of contention on actual items.

We observe that shared-nothing-async exhibits higher resilience to increase
in cross-reactor transactions when compared with shared-nothing-sync. Both
latency and throughput of shared-nothing-async are better by roughly a factor
of two at 100% cross-reactor transactions. This is because shared-nothing-async
employs new-order transactions with asynchronous sub-transaction invocations
on remote warehouse reactors, and tries to overlap remote sub-transaction invo-
cation with execution of logic locally on a warehouse reactor. This demonstrates
how application programs can leverage the programming model to engineer ap-
plication code using reactors with different performance characteristics. At the
same time, infrastructure engineers can select the database architecture that
best fits the execution conditions for the workload without changes to applica-
tion code. In the case of peak load and limited intra-transaction parallelism,
shared-everything-with-affinity turned out to be the best architecture
among the ones considered for this scenario, in line with the results of [125].

3.5 Related Work

3.5.1 In-memory OLTP Databases

H-Store [121] and HyPer [80] follow an extreme shared-nothing design by hav-
ing single-threaded execution engines responsible for each data partition. As a
result, single-partition transactions are extremely fast, but multi-partition trans-
actions and skew greatly affect system throughput. LADS [133] improves upon
this limitation by merging transaction logic and eliminating multi-partition syn-
chronization through dynamic analysis of batches of specific transaction classes.
In contrast to these shared-nothing engines, shared-everything lock-based OLTP
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systems specifically designed for multi-cores, such as DORA [98] and PLP [99], ad-
vocate partitioning of internal engine data structures for scalability. Orthrus [106]
partitions only the lock manager and utilizes a message-passing design for lock ac-
quisition to reduce lock contention across multiple cores for contended workloads.
In contrast to the baked-in architectural approach of earlier engines, REACTDB
borrows the highly-scalable OCC implementation of Silo [125], building on top of
it a virtualization layer that allows for flexible architectural deployments, e.g., as
a classic shared-everything engine, a shared-nothing engine, or an affinity-based
shared-everything engine. In addition, REACTDB is not restricted to specific trans-
action classes, supporting transactions with, e.g., user-defined aborts, conditionals,
and range queries. Finally, REACTDB is the first engine realizing the programming
model of reactors, which provides developers of latency-sensitive OLTP applica-
tions with a new abstraction to reason about latency in transactional programs.
The reactor programming model and REACTDB are a refinement and concretization
of our earlier vision of transactional partitioning [111].

3.5.2 Transactional Partitioned Data Stores

A class of systems provides transactional support over key-value stores as long
as keys are co-located in the same machine or key group [42, 43]. Warp [58],
in contrast, provides full transaction support with nested transactions, but limits
query capabilities, e.g., no predicate reads are provided nor relational query sup-
port. The limited transactional support and low-level storage-based programming
model make it difficult to express OLTP applications as opposed to the reactor
programming model, which provides serializable transactions with relational query
capabilities. Recent work has also focused on enhancing concurrency through static
analysis of transaction programs [91,136]. The latter work could be assimilated
in the implementation of REACTDB’s concurrency control layers as future work.

3.5.3 Asynchronous Programming

As mentioned previously, reactors are a novel restructuring in the context of
databases of the actor model [3]. In contrast to regular actors, reactors comprise
an explicit memory model with transactions and relational querying, substan-
tially simplifying program logic. These features make the reactor model differ
significantly from the virtual actors of Orleans [23] and from other actor-based
frameworks [14,70]. Recent work in Orleans has focused on a vision of integrating
traditional data-management functionality in a virtual actor runtime for the middle
tier of a classic three-tier architecture [26,54]. This approach is complementary
to our work of integrating actor features in a database system, i.e., enriching the
data tier itself. Additionally, REACTDB comprises building a high-performance,
scalable, multi-core OLTP system with an actor-oriented programming model and
latency control, which is not the target design and feature set of the vision for
Orleans [26].
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As explained in Section 3.2.2, reactors are related to the early work on Ar-
gus [88] because of the asynchronous transactional programming model supporting
nested function calls; however, the reactor programming model is substantially
different from that of Argus. First, the use of a relational data and query model is
a central idea of reactors, but not of Argus. Note that the latter is not a simple
restriction of the former, because the programming issues handled by a relational
abstraction, e.g., physical data independence, would need to be coded from scratch
at a very low level in Argus. Second, user-defined logical actors are a central idea
of reactors, but not of Argus either. A process in Argus is a low-level thread of
control mapped to physical execution, while reactors are logical computational
entities, which do not map one-to-one to physical threads in REACTDB. Third,
reasoning about latency from the programming model is a central idea of reactors,
but again not of Argus. Even though Argus has low-level asynchronous calls, it
lacks an explicit cost model of synchronous and asynchronous communication.
In addition, on the system implementation level, REACTDB is an OLTP database
system designed for low-overhead virtualization of database architecture, which
was never the focus of Argus. These differences to Argus also distinguish our
work from a large class of object-oriented distributed computing and operating
systems [30,40,44,84,95].

3.5.4 Database Virtualization

Virtualization of database engines for cloud computing has focused on particular
target database architectures, e.g., shared-nothing databases with transactional
support only within partitions [25] or distributed control architectures with weaker
consistency guarantees [81]. By contrast, REACTDB offers infrastructure engineers
the possibility to configure database architecture itself by containerization, while
maintaining a high degree of transaction isolation. Our results support recent
observations of low overhead of use of container mechanisms together with an
in-memory database [92], while showing that even more flexibility in database
architecture can be achieved at negligible cost.

The design of REACTDB is reminiscent of work on OLTP on hardware is-
lands [104] and on the cost of synchronization primitives [45]. Our work provides
a solution for low-level control of the effects of hardware heterogeneity through a
new programming model and system design allowing reasoning about latency at
a high level.

3.6 Conclusion

In this chapter, we introduced reactors, a new relational abstraction for in-memory
OLTP databases. This abstraction exposes an asynchronous programming model
allowing for flexible program design and reasoning about latency while maintaining
serializability of transactions. We presented the design of REACTDB, the first
implementation of reactors. REACTDB allows for flexible and controllable database
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architecture configuration at deployment time. Reactors open up a variety of
directions for future work, ranging from reactor database modeling to efficient
mapping of reactors to distributed hardware architectures.



Chapter 4

An Evaluation of
Intra-Transaction Parallelism In
Actor Database Systems

“No amount of experimentation can ever prove me right; a single experi-
ment can prove me wrong.”

— Albert Einstein

Over the past decade, we have witnessed dramatic evolution in hardware capa-
bilities and database system designs. The new trends in Moore’s law forecast a
scenario in which processors with increasing core counts keep getting cheaper.
Similarly, main-memory capacity is increasing while cost per gigabyte dropping.
As a result, a single-node multi-core machine today can be superior in performance
and price than a cluster of machines two decades back. At the same time, a recent
vision of actor database systems has been proposed to increase the programmability
of database systems by fusing actor programming models with state management
capabilities. These new systems promise to provide support for upcoming latency-
sensitive applications with complex application logic and task-level parallelism.
In this scenario, a natural question is whether an actor database system with an
asynchronous programming model can adequately expose the parallelism available
in modern multi-core hardware. Towards that aim, we conduct in this chapter a
thorough evaluation of the factors that affect intra-transaction parallelism in a
prototype actor database system, named REACTDB, for an application benchmark
designed with task-level parallelism in mind and running on a multi-core machine.
Based on our evaluation, we observe that the mechanisms employed to implement
transactional parallelism in REACTDB introduce minimal overhead, indicating that
expectations regarding parallel performance resulting from the use of asynchronic-
ity constructs can be verified in practice. As a consequence, given the hardware
landscape today, we believe it is time for the database community to carefully
consider intra-transaction parallelism in benchmarks with complex application
logic in addition to only inter-transaction parallelism and its associated trade-offs.

84
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4.1 Introduction

The past decade has seen a revolution in the hardware landscape and consequently
in database system design. As the gains of single-threaded performance of pro-
cessors dwindled, chip designers have responded by adding processing power
in the form of more cores in a processor. In this new continuation of Moore’s
law, processors with growing numbers of cores become increasingly affordable
over time. This trend has also been witnessed in the capacity growth and price
decline of main-memory, thus making a single-node multi-core machine today
more powerful and cheaper than a cluster of machines two decades back. This
has brought focus back to overhead and scalability issues in the design of tra-
ditional database systems for this brave new world of large main memory and
multi-core machines [76,121]. The database system community has responded
by redesigning the architecture and internals of database systems for this new
scenario [50,78,80,83,98,125]. The guiding ambition for this response, particu-
larly in OLTP DBMS, has been on improving transactional scaleup or high-volume
processing of sequential transactions.

A recent radical vision of actor database systems has proposed integration of
actor-oriented programming models with the traditional database system features
of transactions and declarative querying (Chapter 2). The vision argues for the use
of a logical actor programming model (1) to model applications in terms of actors
for modularity benefits and (2) to leverage asynchronicity in the programming
model to specify available task parallelism in the application logic. At the same
time, the actor database system guarantees that the execution of application logic is
carried out under transactional guarantees, thus freeing application developers to
write parallel programs without having to reason about complex synchronization
for correctness. The vision thus argues for marrying actor programming features
with the state management capabilities of database systems to enable application
developers to reap the benefit of application-level modularity and asynchronicity
while maintaining their insulation from concurrency and failure issues.

Promising results have been shown in this earlier vision in leveraging asyn-
chronicity in transactions for the proposed SmartMart benchmark (Section 2.6
in Chapter 2), which models a simplified future IoT supermarket application for
next-generation self-checkout [11,103]. The benchmark attempts to model a new
and upcoming class of latency-sensitive applications with complex application logic
mixed with data accesses. Examples of complex application logic can range across
domains such as financial computations [33], real-time simulations [127,130,131],
and online machine learning methods [90], to name a few. In the benchmark,
the complex application logic is modeled through a mix of read-mostly transac-
tions [128] with calculations for mean and standard deviation intermixed with
conditional statements and aggregation operations. The benchmark aims to model
application logic with an amount of parallelizable work and task-level parallelism
sufficient to benefit from parallel execution.

In this work, we aim at revisiting in the context of actor database systems
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and multi-core machines the classical performance studies from two decades
back [37,48] that evaluated performance benefits from parallelism in distributed
database systems [49]. We evaluate whether the promise of parallel programming
in an actor database system, namely REACTDB (Chapter 3), actually translates to
observable performance benefits in a single-node, multi-core machine today. In
our study, we do not focus on the effects of concurrency control mechanisms on
transaction processing performance that have been studied recently [67,135], but
solely on the factors that affect parallel programs and how their effects manifest in
an actor database system. To the best of our knowledge, this is the first evaluation
of intra-transaction parallelism benefits in actor database systems for multi-core
machines.

In our evaluation, we observe that the effect of classic factors affecting paral-
lelism clearly manifest in the measured behavior for intra-transaction parallelism
in the studied benchmark. The results indicate that an actor database system can
implement transactional parallelism with minimal overhead, and in a way that
allows application developers to exploit such parallelism in modern multi-core ma-
chines. Based on our evaluation, we believe it is time for the database community
to investigate intra-transaction parallelism and its trade-offs with inter-transaction
parallelism in complex application benchmarks as opposed to focusing only on
scalability of sequential transactions and associated microarchitectural effects.

In summary, we make the following contributions in this chapter:

1. We perform a thorough study of the factors that affect parallelism and their
effects on a benchmark with complex application logic in the REACTDB actor
database system prototype.

2. We discuss in detail the implementation of internal components that facilitate
transactional parallelism in REACTDB and illustrate through our experiments
that the associated overhead introduced in the benchmark studied is minimal.

The remainder of this paper is organized as follows. In Section 4.2, we present
briefly the classical factors that affect parallel program performance as well as
the actor database system REACTDB and the benchmark SmartMart used in our
evaluation. In Section 4.3, we drill down into the design and implementation
features of REACTDB that ensure the benefits of intra-transaction parallelism in
application programs are maintained by the system. In Section 4.4, we evaluate
the system by varying the benchmark parameters and configurations to quantify
the effects of the parallel programming factors enunciated earlier. Finally, we
discuss related evaluation work in Section 4.5 and conclude.

4.2 Background

In this section, we first review the classical factors that affect performance of
parallel programs, whose effects we evaluate in the context of an actor database
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system (Section 4.2.1). We then provide background on actor database systems
and the particular system chosen for our experimental evaluation, namely RE-
ACTDB(Section 4.2.2). Finally, we briefly describe the benchmark employed in
this chapter, SmartMart (Section 4.2.3).

4.2.1 Factors Affecting Parallelism

There are several classic factors that affect the performance of parallel programs,
the main of which we recap below.

4.2.1.1 Overhead

Any parallel program is affected by the cost paid by its execution overheads. Exam-
ples of overhead comprise: (1) Startup costs that a program has to pay to initiate
the parallel computations, including the cost of communication with the parallel
processing units necessary to dispatch the work to be performed; (2) Transactional
overheads that a program has to pay while running in a database context to obtain
transactional guarantees. Some of the overheads can be potentially parallelized,
e.g., commit protocol, transaction management overheads, communication cost
to send results back from the parallel processing units, while others cannot, e.g.,
communication cost to initiate parallel computations.

4.2.1.2 Parallelizable Work and Dependencies

Any parallel program is governed by Amdahl’s law [12], which prescribes that
the performance of a parallel program is governed by its amount of parallelizable
work, i.e., the fraction of total work that would benefit from parallel execution.
For a program having a small amount of parallelizable work, the gains from
parallelism with increasing numbers of parallel resources will quickly diminish.
As a result, the nature of the program and its functional decomposition, including
dependencies among tasks, has a direct influence on the parallelism benefits that
can be achieved. In particular, parallelism will not benefit a sequential program,
while an embarrassingly parallel program can expect almost linear improvements
in performance from corresponding increases in parallel resources. Note that
dependencies have a direct influence on the synchronization that must be exercised
in the program, leading to communication overheads.

4.2.1.3 Interference

Typically, parallel programs are written without consideration for the amount
or utilization level of parallel processing resources. In practice, however, when
resources are shared for the processing of parallel programs, slowdowns can occur.
Resource sharing can happen due to (1) execution of multiple parallel programs
at the same time, or (2) lack of available resources to sustain the amount of
parallelism specified in the program.
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4.2.1.4 Skew

In order to get the maximum gain from parallelism, a parallel program must keep
all the parallel resources busy at all times. This requires that all tasks executed on
the parallel resources have almost the same processing time. This turns out to be
especially important as parallel resources are added, since the execution time of
the parallel program can end up being dominated by its slowest task. As a result,
any imbalance, i.e., skew, in the execution time of the tasks of a parallel program
can negatively affect its gains from parallelism.

4.2.2 Actor Database Systems and REACTDB

Actor programming models [4] and runtimes [6, 56, 110] have seen increased
adoption of late to program the middle tier of stateful applications [119]. Con-
comitantly, a greater need for state management features in such systems has
emerged. To partially address this need in the middle tier, the Orleans project
has introduced the notion of virtual actors [23], as well as initiated efforts to
integrate actor indexing [26] and transaction support [54]. However, this line of
work has largely targeted keeping the single-threaded actor programming model
intact and trading availability for consistency for deployment in a cloud computing
infrastructure.

Recently, a vision for integrating actor programming models and database
systems at the data tier has been outlined (Chapter 2). This work advocates bring-
ing the benefits of modularity, performance, and security from actors to classic
database systems. Within this context, the possibility of exploiting parallelism
through asynchronicity of communication among actors while maintaining trans-
actional guarantees arises. Even though prior work in actor database systems
has shown promising performance results in the use of asynchronicity in transac-
tions (Section 2.6.6.2 in Chapter 2), the effect of the multiple factors affecting
parallelism still needs to be thoroughly explored in these systems.

Towards the latter, we base this study on REACTDB, an in-memory actor
database system designed for multi-cores that provides a logical, actor-oriented
programming model (Chapter 3). In REACTDB, a logical actor is referred to as a
reactor, because the state of an actor is abstracted using relations. Reactors are
purely an application-defined construct and exist for the lifetime of the application.
Communication among reactors is achieved by asynchronous nested function in-
vocation semantics. Concretely, function invocations on reactors are asynchronous
calls returning promises [89], referred in the remainder as futures, and can cause
nested function invocations on other reactors. However, any function invocation
on a reactor is guaranteed to be atomic and serializable. REACTDB does not at
present provide durability guarantees. Moreover, application programs in RE-
ACTDB are written using the reactor programming model directly in C++, where
the state of reactors is abstracted through indices supporting interactions against
a record-manager interface. Thus, according to the classification in the actor
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database systems manifesto (Section 2.4 in Chapter 2), REACTDB only supports
Features 1-4. Despite these limitations, the feature set offered by REACTDB is
sufficient for evaluation of the potential benefits of intra-transaction parallelism
achieved through asynchronicity in an actor database system, which is the focus
of this chapter.

REACTDB has been designed to allow flexible specification at deployment
time of underlying database architecture across the extremes of shared-nothing
and shared-everything without necessitating any changes to application code. To
achieve this flexibility, REACTDB virtualizes database architecture by abstracting the
notions of memory and computational resources. To abstract memory, REACTDB in-
troduces containers, which are shared-memory regions under a concurrency control
protocol. Currently, REACTDB utilizes the optimistic concurrency control (OCC)
implementation of Silo [125]. To abstract computational resources, REACTDB
assigns transaction executors to containers. A transaction executor is implemented
by a thread pool, pinned to a core, employing a cooperative scheduling strategy.
To create a deployment, REACTDB requires the specification of the mapping of
transaction executors to containers and reactors to transaction executors, such that
a reactor can be mapped to only one container. In case a reactor is mapped to more
than one transaction executor in a given container, a transaction router selects the
target destination executor for a function call based on a user-configured policy,
e.g., affinity-based or round-robin. We utilized this flexible deployment feature
of containers in our experimental evaluation in Section 4.4 while keeping the
application programs unchanged. We discuss some of the implementation features
of REACTDB that affect intra-transaction parallelism performance in Section 4.3.

4.2.3 SmartMart Benchmark Description

The SmartMart benchmark (Section 2.6 in Chapter 2) was designed to model a
simplified future IoT supermarket application for next-generation self-checkout [11,
103]. The application models the workflow of a customer inside the supermarket
carrying a smart shopping cart that is equipped with sensors to itemize its physical
contents.

The benchmark consists of seven relations, while the workload comprises
of a workflow of (1) adding items and (2) checkout, simulating the actions of
customers in the supermarket. The throughput and latency metrics are reported
for the entire workflow. In the benchmark specification (Section 2.6 in Chapter 2),
the functional decomposition of the application across actors has already been
done along with the schema specification for each actor and the declarative queries
to interact with the actor state. We used the same decomposition of actors in our
experimental evaluation in Section 4.4 and ported the declarative queries into
handcrafted physical plans over the database index interfaces of REACTDB.

Importantly, most of the asynchronicity in the transactions in the benchmark
arises from the functionality to calculate various types of discounts. In particu-
lar, the application defines two different types of discounts on each item in the



90
CHAPTER 4. AN EVALUATION OF INTRA-TRANSACTION PARALLELISM IN

ACTOR DATABASE SYSTEMS

inventory: (1) fixed discount and (2) variable discount. The fixed discount is
customized based on the marketing group of the customer, while the variable
discount is computed based on the demand for the item over a pre-defined window.
The price and fixed discounts are fetched asynchronously when items are added
to the cart, while the variable discount is only asynchronously computed during
checkout according to a formula based on the mean and standard deviation of item
quantities ordered in a history window (Section 2.6 in Chapter 2). At checkout,
the entire price and discounts are aggregated for the customer’s order.

We employ the SmartMart benchmark because it has the necessary parameters
that allows us to vary and observe the effects of the factors outlined in Section 4.2.1.
Moreover, the benchmark’s fit to actor database systems facilitates the evaluation
of intra-transaction parallelism in such systems, as is the focus of the present study.

4.3 Transactional Parallelism Implementation

In this section, we discuss the implementation details of REACTDB related to trans-
actional parallelism. REACTDB’s core abstraction for intra-transaction parallelism
is that of asynchronicity in nested function calls, which are provided while main-
taining transactional guarantees of atomicity and serializability. We begin by first
discussing the thread pool management features in a transaction executor, which
are the active computational entities in REACTDB (Section 4.3.1). We then explain
the workflow followed by a transaction executor (Section 4.3.2), and continue by
discussing the implementation of a function calls on reactors and the associated
dispatch mechanism across containers and transaction executors (Section 4.3.3).
Finally, we outline the commit protocol employed by the system (Section 4.3.4),
before discussing issues of code generation and memory management that help in
achieving high performance in REACTDB (Section 4.3.5).

4.3.1 Thread Management In Transaction Executors

A transaction executor is a thread pool pinned to an actual physical core. Transac-
tion executors are created when REACTDB is bootstrapped based on an assignment
to containers specified in configuration files. REACTDB runs as a single process,
and all the threads in a transaction executor after creation wait to be scheduled in
order to run. Every transaction executor has its own thread scheduler, which is
configured with the number of active threads allowed to run at any point of time.
Figure 4.1 depicts the thread states and the events that cause transitions between
these states. Every thread in a transaction executor is in one of these four states at
any point of time.

After creation, all the threads are in the READY state and wait for permission
from the scheduler to run. A scheduler allows a thread to run only if the number
of current active threads does not exceed a limit of active threads configured per
scheduler. Once a thread gets permission to run, it enters the ACTIVE state and
keeps dequeuing and executing (sub-)transaction requests from the transaction
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Figure 4.1: Transaction Executor Thread States and Transitions

executor queue. During the course of execution of (sub-)transactions, the thread
can get blocked if it needs to wait for the availability of a future result of a nested
sub-transaction. In such a case, the thread transitions to the BLOCKED state and
notifies the scheduler. The scheduler then permits another thread in READY state to
begin execution, if available. The BLOCKED thread transitions to the UNBLOCKED
state once the sub-transaction result it is waiting for becomes available. Until the
end of the execution of the current (sub-)transaction, the thread never returns
to the ACTIVE state, but can transition back and forth between BLOCKED and
UNBLOCKED. When the entire execution of the (sub-)transaction is complete, the
thread returns back to the thread pool, transitioning to the READY state. As such,
the thread can now once again wait for permission from the scheduler to run.

These mechanics of thread scheduling aim to ensure that the queue of a
transaction executor is continuously drained by active threads up to the limit
on thread resources. This minimizes delay on scheduling of transactions and
sub-transactions while controlling admission to compute resources allocated to
the system. Note that a thread in the ACTIVE state that never needs to wait for
an unavailable sub-transaction result will drain the transaction executor queue
continuously and not return back to the thread pool.
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Algorithm 4.1 Transaction Executor Workflow
1: procedure TXNEXECUTOR::EXECUTEFOREVER (sched, queue, coord, container)
2: while t rue do
3: sched.await()
4: while runningUnblocked do
5: t xn← queue.deque()
6: if t xn.isRootT xn() then
7: t id ← generateT id()
8: t xn.setT id(t id)
9: d bC t x ← container.createDbC t x(t id)

10: else
11: d bC t x ← container.getOrC reateDbC t x(t xn.getT id())
12: end if
13: t xn.setDbC t x(d bC t x)
14: t xn.run()
15: success← t xn.waitForSubT xns()
16: if t xn.isRootT xn() then
17: coord.commitOrAbor t(t xn, container, success)
18: else
19: t xn.dispatchResul t();
20: end if
21: end while
22: end while
23: end procedure

4.3.2 Transaction Executor Workflow

Algorithm 4.1 represents the workflow of the threads in the transaction executor.
The procedure EXECUTEFOREVER receives as arguments the scheduler for the
transaction executor, the transaction executor queue, the container to which the
transaction executor belongs, and the transaction coordinator for the container.
As explained in the previous section, when the threads in a transaction executor
are created, they wait for permission from the scheduler to run (line 3). Once
permission is granted by the scheduler, the thread dequeues (sub-)transactions
from the transaction executor queue (line 5). Every transaction has a database
context that stores necessary concurrency control information such as write and
read sets for OCC. This database context is stored in the container, since the context
needs to be re-used across any nested sub-transaction executions touching the
same container.

Every database context of a transaction is mapped by a transaction identifier
that is generated once when a root transaction begins execution. Even though this
identifier is carried along in sub-transaction invocations across containers, every
transaction has only one database context in any given container. Lines 6-12 show
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the creation of transaction identifier, the creation of the database context for a
transaction, and the lookup of database contexts for sub-transactions. To avoid
conflicts among sub-transactions of the same root transaction, the transaction
executor also ensures that a database context in a container is accessed by only one
thread at any point of time and conservatively aborts any transactions violating
this requirement. The database context is utilized during the actual execution of
(sub-)transaction code (line 14), where the run method abstracts the application
logic.

Once the application logic completes, an explicit synchronization is done to
wait for the completion of nested children sub-transactions. This guarantees
that the parent can only return once all child sub-transactions are complete,
recursively (line 15). As such, when all children of a root transaction complete,
the transaction execution is complete and a commit protocol must be initiated
based on the results of the transaction execution. The commit protocol runs in the
transaction coordinator, and ensures that a transaction is aborted if the execution
encountered errors and committed otherwise (line 17). Finally, if the transaction
is not a root transaction, the result of the sub-transaction must be dispatched back
to the caller (line 19). A transaction executor also performs other functionality for
memory management and garbage collection that we omit from the pseudocode
for simplicity.

The workflow followed by a transaction executor aims to ensure that trans-
actional contexts are managed properly across multiple containers in support of
atomicity and serializability. Note that the workflow does not make any assump-
tions on patterns of nested asynchronous function calls in application logic and will
accept programs with arbitrary nested invocations of functions and synchroniza-
tion structures, allowing for expression of complex intra-transaction parallelism in
application control flow.

4.3.3 Asynchronous Function Call Implementation

Having outlined the workflow of a transaction executor in the previous section,
we now explain how asynchronous function calls are implemented in REACTDB.
Specifically, we outline the steps triggered when the application logic invokes a
function call in a particular reactor.1

Algorithm 4.2 shows the corresponding pseudocode. The function EXEC cap-
tures the dispatch logic of a function call on a reactor, abstracted in REACTDB
by a (sub-)transaction txn. EXEC receives as arguments a handle to the par-
ent (sub-)transaction from which the (sub-)transaction was invoked (empty for
a root transaction), the container where the parent transaction was executing,
the reactor on which the (sub-)transaction is invoked, and the arguments to the
(sub-)transaction. Lines 2 and 3 store the (sub-)transaction inputs and the (sub-
)transaction reactor inside txn so that these values can be later accessed by the

1In [113], such a call corresponds to the use of the construct fn(args) on reactor X in
the application logic.
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Algorithm 4.2 Asynchronous Transaction Execution
1: function TXN::EXEC (parentTxn, txn, srcContainer, reactor, args)
2: t xn.set Input(ar gs)
3: t xn.setReactor(reactor)
4: resul t ← t xn.createResul tFuture()
5: if ¬t xn.isRootT xn() then
6: parentT xn.addToSubT xns(t xn)
7: t xn.setT id(parentT xn.getT id())
8: end if
9: dstCont ← srcContainer.GetContainer(reactor)

10: if dstCont = srcContainer then
11: t xn.setDbC t x(parentT xn.getDbC t x())
12: t xn.run()
13: else
14: t xn.setContainer(dstCont)
15: dstContainer.schedule(t xn)
16: end if
17: return resul t
18: end function

transaction logic. Line 4 creates the future result of the transaction that will be
later returned at the end of the function (line 17). If txn is a not a root transaction,
then its handle is stored in the list of sub-transactions of the parent (lines 5 and 6).
This list of sub-transactions is used by the parent to ensure synchronization of its
children sub-transaction executions in waitForSubTxns (Algorithm 4.1). The
identifier of the sub-transaction is also set to that of the parent (sub-)transaction
for all non-root transactions (line 7).

To execute the sub-transaction, the destination container mapped to the
reactor is looked up by consulting the reactor-to-container mapping stored
in the source container (line 9). If the destination container is the same as the
source container (only true for non-root transactions), then the database context
of the parent sub-transaction is stored in the child sub-transaction and the method
call to the application logic is directly invoked. This action chains the invoca-
tion sequence, leading to synchronous execution (lines 10-12). The intuition
for this decision is that we wish to eliminate the overhead of rescheduling the
sub-transaction when a migration to another container is unnecessary. As a special
case, this decision also ensures that a sub-transaction invoked on the same reactor
is synchronously executed with minimal overhead.

If the source container differs from the destination container, the destination
container is stored in the (sub-)transaction for later use during the commit protocol.
Then, the transport driver of the source container is invoked to move the txn to
the destination container (line 15). In the current implementation of REACTDB, the
logic utilizes shared-memory access to directly invoke schedule on the destination
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Algorithm 4.3 Commit Protocol
1: procedure TXNCOORDINATOR::COMMITORABORT(rootTxn, srcContainer, com-

mit)
2: if commit then
3: success← srcContainer.getDbC t x().validate()
4: else
5: success← f alse
6: end if
7: containers← rootT xn.getRemoteContainers(srcContainer)
8: if success then
9: for all container ∈ containers do

10: success← container.getDbC t x().validate()
11: if ¬success then
12: break
13: end if
14: end for
15: end if
16: if success then
17: srcContainer.getDbC t x().write()
18: for all container ∈ containers do
19: container.getDbC t x().write()
20: end for
21: else
22: srcContainer.getDbC t x().abor t()
23: for all container ∈ containers do
24: container.getDbC t x().abor t()
25: end for
26: end if
27: rootT xn.setCommitStatus(success)
28: rootT xn.dispatchResul t()
29: rootT xn.end()
30: end procedure

container, which looks up the destination transaction executor for the reactor with
the aid of the transaction router and enqueues the (sub-)transaction into the
corresponding transaction executor queue.

4.3.4 Commit Protocol

After the execution of the transaction logic is completed, REACTDB ensures that
all the results of the sub-transactions of a root transaction are available. Then, the
transaction coordinator initiates a linear two-phase commit (2PC) protocol to either
commit or abort the root transaction. Algorithm 4.3 outlines the implementation
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of the 2PC protocol in REACTDB. The validation phase of the OCC protocol is
executed first in the source container, i.e., where the root transaction was initiated
and consequently the transaction coordinator was invoked (line 3). After this
validation step, all the remote containers that are spanned by the transaction are
looked up recursively through the chain of sub-transactions starting from the root
transaction (line 7).

If validation was successful in the source container, lines 8-15 proceed to
run the validation phase of the OCC protocol on each of the remote containers.
Following this process, either the write phase (lines 17-20) or the abort phase
(lines 22-25) is executed, depending on the combined result of validation. At the
end, the commit status of the root transaction is set, so that it can be retrieved
by calling code (line 27). At this point, the execution and commitment of the
transaction is complete, so the caller is notified of the transaction completion (line
28) and cleanups are performed for the transaction (line 29).

4.3.5 Other Implementation Factors

In this section, we highlight additional implementation decisions taken during the
design of REACTDB that contribute to low overhead and high performance, thus
accentuating the benefits of intra-transaction parallelism.

4.3.5.1 Efficient Code Generation

REACTDB has been designed as a framework heavily using C++11 templates to
minimize any dynamic dispatches during execution. In particular, C++ templates
are used in implementation throughout the entire code line, including index
structures, concurrency control mechanisms, transaction coordinators, transaction
executors, transaction routers, schedulers and containers. The application code in
stored procedures extends REACTDB transaction classes and is thus compiled with
REACTDB instead of being linked separately, providing the compiler with a large
body of program code to optimize. In addition, the compiler has the opportunity
to specialize the code generation according to a set of static configuration options
of REACTDB. Post compilation, application binaries for the Smallbank [9, 64],
SmartMart [112], and TPC-C benchmarks [123] reach a size of 34 MB, 32 MB and
41 MB, respectively.

4.3.5.2 Efficient Memory Management

In order to prevent bottlenecks in memory allocation, REACTDB uses a custom
memory allocator for each thread in the transaction executor that pre-allocates
memory on the heap and only dynamically allocates memory if pre-allocated
memory is exhausted. Furthermore, any memory dynamically allocated is not
freed immediately, but reserved by the allocator for later use. Thus, this results
in the memory pool being resized dynamically. Transaction execution consumes
memory from the memory pool while garbage collection reclaims memory back
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on completion of transactions. REACTDB also makes extensive use of the stack
instead of the heap where possible in its implementation.

4.4 Evaluation

In this section, we evaluate the effects of classical parallelism factors as outlined
in Section 4.2.1 on intra-transaction parallelism in actor database systems. More
concretely, we aim at answering the following questions:

• How does the amount of parallelizable work and the overheads of an actor
database system affect the overall speedup of transaction programs (Sec-
tions 4.4.2 and 4.4.3)?

• How does interference from inter-transaction parallelism affect the benefits
of intra-transaction parallelism (Section 4.4.4)?

• How does skew or load imbalance in intra-transaction parallelism affect the
benefits experienced by transaction programs (Section 4.4.5)?

4.4.1 Experimental Setup

4.4.1.1 Hardware

We employ a machine with two sockets, each with one eight-core 2.6 GHz Intel
Xeon E5-2650 v2 processor with two physical threads per core, leading to a total
of 32 hardware threads. Each physical core has a private 32 KB L1 data and
instruction cache and a private 256 KB L2 cache. All the cores on the same socket
share a last-level L3 cache of 20 MB. The machine has 128 GB of RAM in total,
with half the memory attached to each of the two sockets, and runs 64-bit RHEL
Linux 3.10.0.

4.4.1.2 Workload

As discussed in Section 4.2, we used the SmartMart benchmark (Chapter 2)
and the REACTDB prototype in-memory actor database system (Chapter 3) for
our experiments. We employed the same actor modeling for the application as
done previously in Chapter 2. Since our implementation is based on the reactor
programming model, we refer to actors as reactors henceforth. Similar to the
experiments in Chapter 2, we simulate the workings of one store with eight
Store_Section reactors. For each, we loaded the inventory relation with
10,000 items and the purchase_history relation with 300 entries per item for
a total of 3,000,000 entries, simulating a history of 120 days where 500 customers
on average visit the store per day and buy 50 items each. We fix the number of
Group_Manager reactors to 10 and vary the number of Cart reactors depending
on the experiment. The number of Customer reactors is set to 30 times the
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number of carts. To calculate the variable discount, we tuned the window size to
correspond to 150 records (see Section 4.4.2) in the purchase_history relation,
roughly corresponding to 60 days. The entire size allocated after loading was
~3 GB.

4.4.1.3 System Configuration

For our experiments, we configured the system under the two deployment settings
outlined below:

1. sync - In this setting, we employed a single container with an affinity-based
router and with eight transaction executors for the corresponding physical
cores on the first socket of the machine. Each Cart actor and its associated
set of Customer actors were mapped to a disjoint transaction executor, while
all the Store_Section and Group_Manager actors were mapped to all
the transaction executors. As a result, each invocation of a root transaction
on a Cart actor is processed by a unique transaction executor, which also
executes all sub-transactions even if to different reactors. We allocated
worker threads such that each worker thread generating method invocations
on a Cart actor got mapped to the hyper-threaded core of the corresponding
cart, simulating client affinity.

2. async - In this setting, we utilized the other socket on the machine to create
eight containers with affinity-based routers each consisting of one transac-
tion executor for each of the physical cores on the second socket. Each of
the eight Store_Section reactors were mapped to only one container and
consequently only one transaction executor. We employed another container
similar to the sync setting on the first socket of the machine to map Cart,
Customer, and Group_Manager actors. As a result, only a sub-transaction
invocation to a Store_Section actor is dispatched to the corresponding
remote transaction executor and container for asynchronous execution,
while all sub-transaction invocations to other actor types are executed syn-
chronously since they are mapped to the same container. We refrained
from employing a mapping similar to Store_Section reactors for the
Group_Manager and Customer reactors, because we were limited by the
physical parallelism of the machine and we wanted to avoid hyper-threading
effects. In addition, the amount of work in the asynchronous method invoca-
tion to these reactors is minimal compared to the Store_Section reactor,
which would potentially increase execution cost considering the overhead
of dispatch as opposed to shared-memory operations.

Since we could only use eight reactors for the Cart actors in the async setting,
we only used one socket in the sync setting in order to make comparisons across
the two settings. We tuned the thread pool sizes for the transaction executors to
minimize queuing delays and maximize usage of physical cores.
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Figure 4.2: Effect of varying history window scan size on throughput.

4.4.1.4 Methodology

As pointed out in Section 4.2, a worker runs interactions consisting of (1) add_items
and on its successful commit (2) checkout. We measure the average latency
and throughput of the entire interaction using an epoch-based measurement strat-
egy [51]. We run the experiment for 30 epochs, where each epoch consists of
2 sec. We report averages and standard deviations of successful interactions over
the last 20 epochs, ignoring the first 10 epochs that are reserved for warm-up
runs. Workers choose customer IDs from a uniform distribution. Unless mentioned
otherwise, the items and store sections in orders are also chosen from a uniform
distribution for a configurable number of store sections and items per store section
in the order.

4.4.2 Effect of Varying Parallelizable Work

In this section, we study the effect of varying the amount of parallelizable work in
variable discount computation at checkouts on transaction throughput and latency
in the two deployment settings. To avoid interference from inter-transaction paral-
lelism, we run this experiment with a single worker. The number of store sections re-
mains fixed at eight, and the number of items scanned in the purchase_history
relation for variable discount computation is varied. To avoid skew, the number
of items requested from each store section were identical. Finally, to observe the
influence of transaction size, we also experiment with two different settings for the
number of items requested from each store section, namely either four or eight,
thus resulting in a total number of items purchased across all store sections to be
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Figure 4.3: Effect of varying history window scan size on latency.

either 32 or 64.
Figures 4.2 and 4.3 depict the throughput and latency results obtained. Since

we used a single worker, latency and throughput numbers are almost inverses of
each other. We can see that as we increase the history window scan size from 10
to 300, the drop in throughput of sync is higher than that of async. The growing
work due to the larger scan sizes and associated mean and standard deviation
computations can be parallelized across the store sections in the async version,
but not in sync. As a consequence, the curve pairs for the same transaction sizes
diverge (this effect can be seen more clearly in Figure 4.3).

Overall, async dominates sync throughout the experiment, due to its ability
to exploit intra-transaction parallelism and additional resources even if at the cost
of higher overheads. It is interesting to see that as we vary the history window
scan size beyond 40, async-64 starts outperforming sync-32, i.e., a sequential
transaction is outperformed by an asynchronous transaction of twice the size.
Based on the results of this experiment, we choose a history window scan size of
150 for all future experiments, because (1) it is a realistic estimate based on our
assumptions of the workload as explained in Section 4.4.1.2, and (2) it allows us
to experiment with and demonstrate the effects of intra-transaction parallelism
clearly. At that point, the speedup of async-64 over sync-64 is between four
and five, which we discuss further in the next section.

4.4.3 Speedup

In this section, we evaluate the classic speedup [49] obtained for the async deploy-
ment compared to the sync deployment of the SmartMart benchmark as we vary
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the available parallel resources. In line with our previous discussion, we chose a
single worker and a history window scan size of 150 for this experiment. We kept
the total number of items in an order fixed and varied the number of store sections
that these items are ordered from. For example, when the total number of items is
N and the total number of store sections that items are ordered from is k, then
N/k items are ordered from each store section. In order to keep our measurements
clear, we chose only those values of k for which N is a perfect multiple.

Figure 4.4 shows the throughput speedups for our experiment with three
different sizes of N, namely 8, 32, and 64, which are represented by Size N
seq/par bars. As an extra control, we created another variant of variable discount
computation where we replaced the scan over the history by an artificial delay
of 3 msec created by random number generation. This variant models complex
calculations that would increase the ratio of parallel to sequential work without
increasing the database footprint and the sequential commit cost. The variant is
represented by the Size 8 seq/Delay par bar in Figure 4.4. We increased the delay
by this specific amount so as to obtain close to 7x speedup, which we pre-calculated
based on the ratio of sequential to parallel work in the interactions. Note that
we computed the throughput speedup by calculating the ratio of async and sync
throughput. The latency speedups in this experiment were almost identical to the
throughput speedups and are thus omitted.

We can see that at one store section, we have speedups of slightly less that
one. This effect arises due to the lack of asynchronous execution and the small
overhead of dispatch. As we increase the number of store sections, however,
we can see that the speedups obtained increase as well for all transaction sizes.
However, the increase is more pronounced in variants where the ratio of parallel to
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Figure 4.5: Throughput scale-up on both workers and store sections.

sequential work in the transactions is larger. Note that this effect is what is expected
by application program structure, since a non-trivial fraction of the complex
interaction logic, including add_items and parts of checkout, is sequential.

At the maximum available parallelism of eight store sections, the speedup of
Size 8 seq/par is 1.52, the speedup of Size 32 seq/par is 3.66, the speedup of Size
64 seq/par is 4.67, and the speedup of Size 8 seq/Delay par is 6.8. According to
Amdahl’s law, in order to get a speedup of 7, 5, 4, 3 and 2 with 8 parallel resources,
the parallelizable work must be 98%, 91%, 86%, 76% and 57% of the entire work,
respectively. To further drill down into potential sources of overhead, we also
profiled the commit costs for Size 8 seq/par and Size 8 seq/Delay par, which
were almost the same for both. These costs come to ~68.2 µsec and ~93.8 µsec
for the sync and async versions, respectively. For comparison, the latency of the
sequential add_items function for Size 8 seq/par in sync and async was ~125
µsec, corresponding to one-fourth the entire interaction latency.

In short, even at small transaction sizes, transactional overheads correspond
to a small fraction of the latency of the complex application interaction measured.
As such, the behavior observed across the different compared variants stems
largely from the ratio of sequential to parallel work in the application itself. This
results indicates that an actor database system can be used to implement complex
application parallelism patterns in transactional code while introducing only small
overhead.
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Figure 4.6: Latency in scale-up of both workers and store sections.

4.4.4 Scaleup

The effect of load on asynchronous transaction execution in REACTDB was studied
earlier in (Section 2.6.6.3 in Chapter 2). In that experiment, the overall load on
the system was varied by increasing the load on each store section as concurrent
workers were added, since each worker issues orders across all store sections.
As a result, it was observed that async throughput stabilizes when the physical
resources allocated to the Store_Section reactors reach maximum utilization.
In this experiment, we instead increase concurrent workers and physical resources
at the same time, thus ensuring that the load on every store section is the same
whether we employ one or more workers. This setup corresponds to the classic
notion of scaleup [49].

We keep the work fixed to an order size of 32 and vary the store sections
that the order spans. For one worker, all the items are ordered from a single
store section; for two workers, 16 items are ordered from each store section by
each worker across two store sections; for eight workers, four items are ordered
from each store section by each worker across eight store sections. Thus, we
carefully control the load on each store section, with a total order size of 32 items
irrespective of the number of workers. For clarity, we only chose those values of
workers of which 32 is a perfect multiple in order to generate identical load across
store sections.

Figures 4.5 and 4.6 show the throughput and latency observed. We can see that
sync exhibits excellent throughput and latency scalability. This is expected because
the sync deployment is agnostic to intra-transaction parallelism and interference
effects. We present two variants for async. In async-fixed, the store sections for
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the order are the same across all workers. For async-all, the store sections for
the order are chosen uniformly at random from the eight store sections. Thus,
async-fixed corresponds to the classical setup for scaleup, while async-all allows
extra resources to be leveraged by intra-transaction parallelism when the load on
the system is light to normal.

In Figure 4.5, async-fixed also demonstrates excellent scalability and reaches
the same peak throughput and latency at eight workers as the async deployment
in the experiment in (Section 2.6.6.3 in Chapter 2). By contrast, async-all shows
a much higher throughput gain until 4 workers before converging to the same
value as that of async-fixed at eight workers. This effect arises because async-all
benefits at first from lack of interference across transactions, since store sections
are chosen uniformly at random. As the number of store sections in the order
increase, the interference effects grow, and async-all converges at eight workers to
the throughput of async-fixed. This effect can be clearly seen in the latency curve
of async-all in Figure 4.6, which initially shows benefits from intra-transaction
parallelism before queuing delays due to increased load cause latency to degrade.

We observe that the performance of async-fixed is higher than that of sync.
This is expected because of the asynchronous invocations on store sections and the
greater amount of parallel resources available, e.g., one core dedicated to carts
and another core to a store section even for one worker. In addition, the benefits
are also explained by the lower cost of fixed cross-core communication. Since a
transaction spans the same physical cores, this reduces the amount of cross-core
traffic. During this experiment, we observed peak abort rates of ~5-7% at eight
workers, which is identical to the experiment in (Section 2.6.6.3 in Chapter 2).

4.4.5 Effect of Skew

In this section, we study the effect of skew on the benefits of intra-transaction
parallelism. For this experiment, we chose a single worker and kept the work fixed.
We use a zipfian distribution to select the store sections that an item is chosen
from and vary the zipfian constant to model skew on a store section. Figure 4.7
represent the throughput for an order size of 32 items across eight store sections.
We omit a latency plot, since the effects observed match those in the throughput
graph. Moreover, we experimented with order sizes of 64 and 8 with delay (as
used in the speedup experiments of Section 4.4.3). Since we found the shape of
the curves to be identical to the ones presented here, we also omit these results
for brevity.

We can see that as we increase the zipfian constant from 0.01 (no skew) to
0.99 (heavily skewed), the throughput of async decreases. This is because the
amount of work across store sections is no longer balanced, thus introducing
a dependency on the execution cost on the store section with the most orders
(increased depth). The throughput of sync is agnostic to skew, since it does not
utilize any intra-transaction parallelism. Despite a highly skewed workload when
the zipfian constant is 0.99, async still outperforms sync. Even though some store
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Figure 4.7: Effect of skew on throughput with eight store sections.

sections are more popular than others, all the store sections are yet utilized, leading
to intra-transaction parallelism benefits. In other words, while there is a lack of
balance across store sections, the result is still better than sequential execution. As
we increase the zipfian constant to 5.0, however, the distribution becomes more
and more skewed so that all the items in the order are selected from a single store
section. At this point, the performance of async converges to that of sync.

4.5 Related Work

Evaluation of transaction processing performance has a rich history, and a compre-
hensive review exceeds the scope of this chapter. As a consequence, we narrow
our focus in this section to contrast our study with the main categories of previous
evaluation work of parallelism in transactions.

Many early studies evaluated parallel transaction processing architectures and
their impact on concurrency control schemes using performance modeling tech-
niques [5,29,36,37]. Contemporary studies also went further than performance
modeling and performed experimental evaluation with nascent parallel database
systems [48, 62, 74, 122]. In contrast to our work, all of these simulation and
experimentation studies focused on evaluating the performance of disk-based
database architectures and their concurrency control mechanisms under synthetic
data-access oriented benchmarks, with the exception of [62,122] that used the TP1
benchmark [59]. Moreover, these early studies only considered intra-transaction
parallelism achieved through query speedups by data partitioning [48]. By con-
trast, our work revisits the effects of the core factors affecting parallelism in the
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setting of actor database systems with parallelization of arbitrary intra-transaction
control flow in a modern benchmark with complex application logic.

Taking note of the popularity of multi-core machines, cloud computing in-
frastructure and in-memory database systems, recent performance studies have
focused on evaluating concurrency control architectures in a distributed infrastruc-
ture [67] and on single-node multi-core systems [135]. A separate line of recent
work has also focused on evaluating micro-architectural effects of executing OLTP
workloads on in-memory database systems [117]. All of these studies focus on
evaluating inter-transaction parallelism or high-volume transaction processing and
its impact on database architectural components. By contrast, our study focuses on
the benefits of intra-transaction parallelism on multi-core machines. In addition
to going beyond query-level data parallelism [20,22,60,66,86], to the best of our
knowledge, our study is the first to perform such an evaluation in the context of
actor database systems.

4.6 Conclusion

This paper has studied the exploitation by an actor database system of intra-
transactional parallelism in a benchmark with complex application logic over
multi-core hardware. A few distinctive features differentiate our evaluation. First,
all intra-transactional parallelism is exposed to the database system by asyn-
chronous programming constructs in an actor model. This parallelism is not
limited to query-level, but extends to both querying and application logic within
transactions. Second, we observe that variations in the classic factors affecting
parallel efficiency, such as overhead, parallelizable work, interference, and skew,
produce the expected effects on intra-transaction parallelization. These results
indicate that the evaluated actor database system, REACTDB, introduces only mini-
mal overhead in its implementation of transactional parallelism, suggesting that
asynchronicity in actor database systems can be effectively used to bring task-
level parallelism gains to emerging latency-sensitive applications with complex
application logic. Third, instead of pursuing an exclusive focus on maximum load
and transaction throughput, our evaluation illustrates that in a range of light
to normal load situations, asynchronicity can lead to reduced transaction laten-
cies by better use of parallel resources. These lower latencies can also engender
higher throughputs than classic synchronous transaction execution strategies if
idle parallel resources can be put to use by intra-transaction parallelization.

An interesting area of future work is the study of how asynchronicity can be
exploited by an actor database system in more complex multi-level parallelization
scenarios, including a combination of multi-core and multi-node parallelism and po-
tentially even many-core acceleration. Moreover, we believe that intra-transaction
parallelism in complex application logic should be studied more generally by
the database community, in contexts encompassing but also going beyond actor
database systems.



Chapter 5

Conclusion
“Every new beginning comes from some other beginning’s end.”

— Seneca

The variety and volume of interactive data intensive applications along with the
performance of computing hardware have increased tremendously. Machines with
multi-core processors and large-main memory are now commonplace. As a result,
there is a widespread demand for scalable high-performance software systems
to build and deploy these interactive data intensive applications. Traditionally,
database systems have been popularly used to build and deploy these applications
because of their transactional guarantees and high-level data model with declara-
tive query support. However, these systems lack primitives for modularity, which
makes it difficult to maintain applications as their complexity grows. The lack
of a computational primitive makes it hard to reason about the scalability and
performance of the application and to flexibly control it.

Of late, actor runtimes have become extremely popular to design scalable
interactive data intensive applications because of their actor-oriented distributed
programming model and asynchronous message passing semantics. These fea-
tures provide modularity benefits and allow for reasoning about scalability and
performance of the application. However, the lack of state management features
in these systems complicates application development.

Our work has been inspired by the observation that these two disparate system
domains have complementary strengths and weaknesses. Hence, we proposed the
vision of integrating actor features in traditional database systems, thus yielding a
new class of systems named actor database systems. In the following sections, we
outline the contributions of this dissertation towards the exploration of this vision
of actor database systems in order to investigate their potential and viability.

5.1 Summary of the Dissertation

In this dissertation we made three main contributions towards the exploration and
development of actor database systems in the context of the current and upcoming
interactive data-intensive application and hardware trends:
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1. Actor Database Systems Vision: The first part of the dissertation identifies
a gap in the feature sets of existing systems i.e., actor runtimes and database
systems, that impacts interactive data intensive applications. In light of
current application and hardware trends, we analyzed how existing systems
fail to address these trends. We also highlighted how each of these trends
can be addressed by utilizing an actor database system. In order to make the
idea of an actor database system precise, we defined the feature set that an
actor database system must posses and organized these features them under
four broad design goals or tenets. We have postulated the features of an
actor database system at a high level intentionally, so as to allow flexibility
in the design and implementation of these features. In order to highlight the
necessity and applicability of these features, we performed a detailed case
study using the SmartMark benchmark, which was designed specifically to
represent an emerging interactive data intensive application. In addition to
the benefits of modularity, we also demonstrated preliminary performance
benefits of the programming model in the context of multi-core machines.

2. Reactor Programming Model and REACTDB: In light of the feature set of
an actor database system, the second part of the dissertation explores the
question of building a scalable high-performance actor database system in
the current hardware landscape of multi-core, large main-memory machines.
Towards this goal, we introduced a new programming model for relational
databases named reactors that provides (1) a computational construct of a
logical actor for modularity and reasoning about scalability, (2) asynchronous
function invocations across actors while guaranteeing serializable and atomic
executions of programs, (3) a cost model to reason about expected program
execution costs, (4) relational abstraction of actor state and declarative state
query capabilities.

Instead of building a full-feature actor database system, we first focused on
building an in-memory OLTP database engine (REACTDB) exposing the reac-
tor programming model to investigate the challenges that would arise from
integrating the programming model inside database engine implementations.
We also wanted to validate whether the performance promises of the pro-
gramming model could be actually realized in practice. In our experiments
with classic OLTP benchmarks, we demonstrated that the reactor model
can be used to flexibly control the latency of application programs even at
the scale of tens of microseconds. Finally, we also demonstrated how the
database architecture of REACTDB can be configured across the extremes of
shared-nothing and shared-everything at deployment time flexibly without
affecting the application programs and their design. We also demonstrated
the scalability of REACTDB in our experiments.

3. Transactional Parallelism in Reactors and REACTDB: In our experiments
with the TPC-C benchmark, we noticed the limited amount of task-level
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parallelism available in the application logic, which causes sequential ex-
ecution of transaction logic to outperform its parallel execution due to
communication overheads. In order to understand and quantify the impact
of intra-transaction parallelism in the reactor programming model and RE-
ACTDB, we performed a thorough investigation of the classical factors that
affect parallelism using the SmartMart benchmark, which has higher levels
of controllable task-level parallelism in its application logic. Our experiments
demonstrated that the available task-level parallelism can be successfully
exploited using the reactor programming model in order to better utilize
parallel hardware resources. However as expected, the gains from intra-
transaction parallelism are diminished as inter-transaction parallelism is
increased due to sharing of resources. The experiments demonstrate the
use of the programming model to leverage application task level parallelism
without worrying about concurrency and atomicity issues, and the efficient
low-overhead implementation of REACTDB. The experiments also highlight
the flexible deployment configurations of REACTDB, which allows control
over parallel vs sequential execution of different program fragments across
reactors without necessitating any changes in the application logic.

5.2 Ongoing and Future Work

In this section, we outline several interesting directions of ongoing and future work.

Extending REACTDB for Cloud Infrastructure: REACTDB is currently designed
and implemented for high-performance in multi-core machines. Since the archi-
tecture of REACTDB (Section 3.3 in Chapter 3) abstracts communication across
containers using a transport driver component, current work is underway to ex-
tend the system to enable deployment across multiple machines by building a
network transport driver component. In such a deployment, containers on the
same machine would utilize shared memory for communication while utilizing
the network transport driver component across machines. In the design of the
network transport driver component, we are exploring the impacts of a fail-stop
failure model on the internal architecture of the system. Another interesting
challenge that we are facing is to design the network transport driver component
efficiently while relying on using the TCP socket API and its guarantees. It re-
mains to be seen how far we can push the scalable deployment of REACTDB across
machines before encountering scalability and performance issues with the socket
API. Another interesting challenge would be to explore network transport driver
implementations using RDMA technologies for performance. Currently, REACTDB
employs an OCC protocol on all containers and an atomic commitment protocol
across containers if necessary. We anticipate that we would need to revisit our
choice of concurrency control protocol for cloud deployments as well in light of
current evaluation studies [67]. We also plan to evaluate the impacts of various
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deployments over cloud infrastructure on system performance.

Multi-Actor Query Functionality: In Chapter 2, we have demonstrated the
promise of declarative multi-actor querying in an actor database system by exem-
plifying this capability in the case study. An interesting challenge is to formalize
the semantics of declarative multi-actor querying. As opposed to query support in
object-oriented databases [8,85], multi-actor declarative querying must account
for asynchronicity, which can constrain the selection of query plans based on
function invocation dependencies in the query. In addition, the declarative nature
of query specification must be reconciled with the ability to control latency through
asynchronous function invocations.

Deployment Advisors for REACTDB: Currently, in REACTDB the deployment plan,
i.e., the mapping of containers to transaction executors and reactors to transaction
executors is manually specified. While manual configuration provides a high
degree of flexibility and low-level control in tailoring the deployment to a target
hardware architecture, it also necessitates specialized knowledge. An interesting
avenue of future research is to investigate automatic mechanisms to generate
these mappings for a given specification of reactors (based on application design)
and application-defined service level agreements. Such an automatic program or
deployment advisor should enforce constraints so that the cost model guarantees
(Section 3.2.4 in Chapter 3) are not violated, e.g., a reactor should not be mapped
to more than one container. Interesting challenges arise on how to deduce the
notion of containers from machine characteristics and what criteria should be
exposed in the service level guarantees.

Application Defined Durability in REACTDB: REACTDB does not currently sup-
port durability. Possible future work in this direction would be to add support for
classic transactional durability in REACTDB, by either using classic mechanisms of
fast log-based recovery [137] and distributed check-points [55] or by alternatively
leveraging guarantees from hardware [52]. The notion of application-defined
durability, however, introduces interesting design questions on the implementation
of durability mechanisms especially since interactive data intensive applications
often have a larger computation footprint than data in their application logic. The
impact of application-defined durability on transactional guarantees also needs to
be revisited.
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