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Abstract

This thesis presents CSP as a means of orchestrating the execution of tasks in a scientific
workflow. Scientific workflow systems are popular in a wide range of scientific areas,
where tasks are organised in directed graphs. Execution of such graphs is handled by
the scientific workflow systems and can usually benefit performance-wise from both
multiprocessing, cluster and grid environments.

PyCSP is an implementation of Communicating Sequential Processes (CSP) for
the Python programming language and takes advantage of CSP’s formal and verifiable
approach to controlling concurrency and the readability of Python source code. Python
is a popular programming language in the scientific community, with many scientific
libraries (modules) and simple integration to external languages. This thesis presents a
PyCSP extended with many new features and a more robust implementation to allow
scientific applications to run on heterogenous hardware, combining multiple hardware
architectures. This is especially important in scientific computing as the performance
of computational tasks may be orders of magnitude faster depending on the hardware
architecture used.

To ensure the robustness of the PyCSP library the internal synchronisation model
has been model-checked successfully using the SPIN Model Checker. This has checked
the synchronisation model for the presence of deadlocks, livelocks, starvation, race
conditions and correct channel communication behaviour.

The use of PyCSP for scientific workflows is demonstrated through examples. By
providing a robust library for organising scientific workflows in a Python application I
hope to inspire scientific users to adopt PyCSP. As a proof-of-concept this thesis demon-
strates three scientific applications: kNN, stochastic minimum search and McStas to
scale well on multi-processing and cluster computing using PyCSP. Additionally, Mc-
Stas is demonstrated to utilise grid computing resources using PyCSP.

Finally, this thesis presents a new dynamic channel model, which has not yet been
implemented for PyCSP. The dynamic channel is able to change the internal synchroni-
sation mechanisms on-the-fly, depending on the location and number of channel-ends
connected. Thus it may start out as a simple local pipe and evolve into a distributed
channel spanning multiple nodes. This channel is a necessary next step for PyCSP to
allow for complete freedom in executing CSP processes on local and remote resources.
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Chapter 1

Introduction

Computers are providing an enormous potential for scientific advancement in almost
all scientific fields. Computational science is a tool for scientists, and as a tool one of
its purposes is to assist in reducing the time from idea to scientific discovery. Another
purpose is to allow virtual experiments of natural phenomenons, that are impossible or
impractical to create on demand in nature.

The driving motivation for the presented work is to give scientists that are not Com-
puter Science majors the possibility to build correct, efficient, modular, reusable and
scalable applications. It is a well-known challenge to maintain scientific code; many
applications are written by scientists without any formal computer science or software
engineering qualifications and have often grown organically from a small kernel to hun-
dreds of thousands of code-lines. Such applications have traditionally targeted simple
single-core systems and have still grown to a complexity where the cost of maintain-
ing the codes is prohibiting, and where the continued correctness of the code is often
questionable. This problem is being addressed today by training scientists in design
patterns and good practice in program development. However, emerging architectures,
which are massively parallel and often heterogeneous, may again raise the complexity
of software development to a level where scientific users (non-computer scientists) are
no longer able to produce reliable scientific software.

In this thesis, the term scientific users is used quite loosely to mean programmers
that are scientists, but not computer scientists. Scientific users of computing is in itself
a diverse group, one extreme is scientists that use existing applications, commercial
or community codes, where they change configurations and input data, but in general
do not change the code itself. The other extreme is scientists that primarily do program
development, often the persons behind large community codes. The approach I promote
here targets the set in between the two extremes, scientists that express the model they
work on directly as a computer program, but where the programming is still a means to
an end, and not the primary focus of the research. This kind of computational-scientist
typically changes the code frequently, and the code is most often shared with a small
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number of co-researchers, typically within a research group. I target scientific users
of computers that do their own programming and change their program frequently to
match the development in their research. They are interested in better performance of
their applications, but productivity and time to solution are the critical measures in their
program development.

The classic approach to parallel programming involves threads, shared memory and
locks, but this requires that the programmer identifies all critical regions and dependen-
cies correctly without resulting in serialised executions, caused by large computational
parts in critical regions. Scientific users usually avoid this kind of programming and
use OpenMP [31] to add parallelisation. OpenMP is mostly used for loop parallelisa-
tion and requires identifying all critical regions within a loop. Another approach is to
use parallelised libraries such as BLAS [26], but these are often not enough and are
limited to shared memory systems. Scientific users must be encouraged to write main-
tainable and well-structured code. Several tools such as the Intel Parallel Studio [3]
or Microsoft Parallel Computing [8] exist that aim to aid programmers in producing
parallel programs, but these tools are not flexible enough for scientific applications and
do not interface well with code produced during the past 30 years which is still in use.
Most scientists have access to many different kinds of computing resources, thus the
produced code must also be portable and must run on single-core, multi-core, cluster
and grid systems. Graphical workflow systems as Knime [23, 88] and Taverna [49, 59]
are helping scientists to structure code, but they lack sufficient support for parallel exe-
cution.

PyCSP, a CSP library for Python is the main contribution of this thesis. It has been
designed to fit with the needs of the scientific users, which also means that hard choices
have been made. PyCSP has been optimised towards transparency for the scientific user.
This approach is to accommodate a more flexible and forgiving use of CSP than what
is currently available in occam-pi, JCSP, C++CSP2, CHP, and others. Two of the hard
choices were: 1. Choosing an any-to-any channel over explicit separation in one-to-
one, any-to-one, one-to-any and any-to-any channels. 2. Python is dynamically typed
and it was chosen to also have dynamically typed channels. The down-side of these
choices is that errors that would have been caught at compile-time are not discovered
until run-time or not at all.

PyCSP is optimised to allow computational scientists to be productive and create
code that can grow organically – other CSP variants, i.e. JCSP, targets software engi-
neering and thus requires the programmer to explicitly choose the nature of a channel.
While PyCSP and JCSP appear (and are) very similar at first look, the target users for
each CSP system have dictated the hard choices and at their core the CSP systems thus
become quite different.
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1.1 Contributions
The central contributions of this thesis is the work on PyCSP; a CSP library for Python,
useful for experimentation, research and teaching in educational contexts. This thesis
also presents a number of related contributions, where some make use of PyCSP. Two
contributions that do not relate directly to PyCSP are:

Implementation of an optimised and parallel version for shared memory archi-
tectures of a scientific Java application. The new implementation have made it
possible to perform clustering for at least ten times more ChIP profiles, even
though the algorithm has a time and space-complexity of O(n2). The results are
presented in the paper ”CATCHprofiles: Clustering and Alignment Tool for ChIP
profiles”.

Implementation of a GPGPU version for finding likelihoods of stereo-based ar-
ticulated tracking. It is now possible to achieve speedups of more than two or-
ders of magnitude when running this application on a GPU compared to a single
CPU core. The work is described in the paper ”GPU Accelerated Likelihoods for
Stereo-Based Articulated Tracking”.

The paper ”CSPBuilder - CSP based Scientific Workflow Modeling” was published
in 2008 and based on work done in my Master’s Thesis. It presents CSPBuilder - a
new framework that consists of a visual tool to build applications and a tool to execute
the constructed applications. The framework is implemented in Python and incorpo-
rates extensive use of the CSP algebra. The primary advantages of this framework
lie in code reuse and construction of complex scientific applications focusing on the
workflow. CSP ideas underpin the concurrency mechanisms employed in constructed
applications, enabling the automatic deconstruction of whole systems into individual
concurrent components.

The original PyCSP which was closely related to JCSP, has been redone with a new
feature set. The work is published in ”PyCSP Revisited” and ”Three Unique Implemen-
tations for Processes in PyCSP”. This was a necessary next step to provide students and
scientific users with a flexible CSP library. The result is a much simpler PyCSP with
only one channel type, delayed termination through retiring channels, support for output
guards, and an external choice that is closer to that of occam than JCSP. The contributed
PyCSP has introduced features that have not yet been seen in any other CSP library.

The new PyCSP has been demonstrated in ”PyCSP - Controlled Concurrency”.
The use of CSP for executing scientific workflows on distributed systems is validated
through experiments in ”Rapid development of scalable scientific software using a pro-
cess oriented approach”. Tracing of PyCSP networks and a tool for visualising traces
was also added to the PyCSP package, with the purpose of providing a better under-
standing for a constructed workflow.
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The final contribution is the design and automatic verification of a dynamic channel
model that can start out as a simple local pipe and evolve dynamically into a distributed
channel spanning multiple nodes. This work was published in ”Verification of a Dy-
namic Channel Model using the SPIN Model Checker”. With the results from this pa-
per I can also conclude that the synchronisation mechanism in the contributed PyCSP
can be model-checked successfully by SPIN. The channel uses a two-phase locking
approach with global ordering of locks, which is shown to work correctly for both a
shared memory model and a distributed model.

1.2 Publications
List of published peer-reviewed papers:

Rune Møllegaard Friborg, Søren Hauberg, Kenny Erleben: GPU Accelerated
Likelihoods for Stereo-Based Articulated Tracking
Paper presented at Computer Vision GPU (CVGPU 2010), ECCV 2010 Workshop, Her-
sonissos, Heraklion, Crete, Greece, September 11, 2010

Rune Møllegaard Friborg, Brian Vinter: CSPBuilder - CSP based Scientific Work-
flow Modeling
Communicating Process Architectures 2008, WoTUG-31, Proceedings of the 31st WoTUG
Technical Meeting, University of York, Yorkshire, UK, September 7-10, 2008
ISBN: 978-1-58603-907-3, Concurrent Systems Engineering 66, IOS Press, pp. 347 –
369

Brian Vinter, John Markus Bjørndalen, Rune Møllegaard Friborg: PyCSP Revis-
ited
Communicating Process Architectures 2009, WoTUG-32, Proceedings of the 32nd WoTUG
Technical Meeting, Technische Universiteit Eindhoven, The Netherlands, November 1-
4, 2009
ISBN: 978-1-60750-065-0, Concurrent Systems Engineering 67, IOS Press, pp. 263 –
276

Rune Møllegaard Friborg, John Markus Bjørndalen, Brian Vinter: Three Unique
Implementations of Processes for PyCSP
Communicating Process Architectures 2009, WoTUG-32, Proceedings of the 32nd WoTUG
Technical Meeting, Technische Universiteit Eindhoven, The Netherlands, November 1-
4, 2009
ISBN: 978-1-60750-065-0, Concurrent Systems Engineering 67, IOS Press, pp. 277 –
292
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Rune Møllegaard Friborg, Brian Vinter, John Markus Bjørndalen: PyCSP - con-
trolled concurrency
IJIPM: International Journal of Information Processing and Management, Vol. 1, No.
2, pp. 40 – 49, 2010
DOI: 10.4156/ijipm.vol1.issue2.6

Rune Møllegaard Friborg and Brian Vinter: Rapid Development of Scalable Sci-
entific Software Using a Process Oriented Approach
JOCS: Journal of Computational Science, In Press, Corrected Proof
DOI: 10.1016/j.jocs.2011.02.001

Rune Møllegaard Friborg, Brian Vinter: Verification of a Dynamic Channel Model
using the SPIN Model Checker
Communicating Process Architectures 2011, WoTUG-33, Proceedings of the 33rd WoTUG
Technical Meeting, University of Limerick, Ireland, June 19-22, 2011
ISBN: 978-1-60750-773-4, Concurrent Systems Engineering 68, IOS Press, pp. 35 – 54

Paper in submission:

Fiona G. G. Nielsen, Kasper Galschiøt Markus, Rune Møllegaard Friborg, Lene
Monrad Favrholdt, Hendrik G. Stunnenberg, Martijn Huynen: CATCHprofiles:
Clustering and Alignment Tool for ChIP profiles
Submitted to PLoS One.

1.3 Organisation
This thesis is organised into chapters providing the background for the main work
(Chapters 2, 3, 4 and 5), the presentation of the main work (Chapter 6), future work
(Chapter 7) and finally conclusions (Chapter 8). The published papers listed in the
previous section are included in appendix A.

5



Chapter 2

Scientific Workflows

The concept of workflows emerged during the 1980’s in the business community and
was used to describe a sequence of tasks and the dependencies between such tasks.
The scientific community have since picked it up, as there was a need to organise tasks
involved in applications within computational science. The computational tools for
scientists involve complex data analysis, visualization steps, data aggregation and data
handling in general. A common usage scenario in bio-science involves interfacing with
online gene databases or performing sequence analysis through online services. For
many scientists, such tasks also include the repetitive cycle of moving data between
tasks.

Scientific workflows systems are systems that are optimized towards handling sci-
entific workflows, enabling users to built and execute workflows. The need for such
systems emerged in the mid 1990’s [89]. During execution, all necessary data is auto-
matically moved between tasks. Currently many different scientific workflow systems
exist and as many different approaches to executing a scientific workflow. Curcin [32]
looks into whether it is possible to design a scientific workflow system that may satisfy
all needs. He investigates six difference scientific workflow systems: Discovery Net,
Taverna, Triana, Kepler, Yawl and BPEL. His conclusion is that conformity between
the systems is highly unlikely, due to the differences in requirements for each scientific
domain. The overview of workflow system features in [36] shows a diversity in fea-
tures and provides an overview to assist the scientific user in the selection of the right
scientific workflow system for a project.

Scientific workflow systems provide non-computer scientists with the means of cre-
ating large computational-oriented applications, partially by the organisation of tasks
and the dependencies between them. An executing scientific workflow is defined as a
workflow instance. In workflow instances, often a central administration unit is han-
dling the dependencies. Data flows through the workflow instance and is the basis of
sub-problems and sub-solutions until eventually a result or several results are found. A
scientific workflow models the data-flow of a scientific application.
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2.1 Cases of Scientific Computing
For two scientific applications, I have assisted scientists by producing high performance
implementations replacing parts of their original application. Scientific workflows for
these examples are presented, to show how a scientific application can be mapped to
a workflow, though the applications have not been composed in scientific workflow
systems. The initial code for the first application was a complete implementation in the
Java programming language, with no particular modularised design.

2.1.1 Clustering and Alignment Tool for ChIP profiles
The purpose of the first application, CATCHprofiles (Clustering and Alignment Tool
for CHip profiles), is to fully explore the spatial and combinatorial patterns in ChIP-
profiling data and detect potentially meaningful patterns. In this process, the binding
patterns must be aligned and clustered which is an algorithmically and computationally
challenging task. Figure 2.1 shows an example of a matched alignment and the fol-
lowing merge by average. The clustering is a hierarchical composition of the profile
patterns with the exhaustive alignment at each step. The work presented in this section
has been published in [73] (Appendix A.2).

Figure 2.1: Conceptual illustration of the CATCH clustering algorithm, which shows
the clustering of four profiles with two tracks of ChIP data, plotted in red and blue
respectively. All pairs of profiles are aligned to find the alignment with the highest
similarity.
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Figure 2.2: Screenshot of CATCHprofiles cluster view.

The application has a user-friendly graphical interface (Figure 2.2) for examination
and browsing of the clustering results. CATCHprofiles requires no prior knowledge
about functional sites, detects known binding patterns ”ab initio”, and enables the de-
tection of new patterns from ChIP data at a high resolution. CATCHprofiles’ capability
for exhaustive analysis combined with its ease-of-use makes it an invaluable tool for
explorative research based on ChIP profiling data.

Upon activation of a clustering of N selected profiles from the CATCHprofiles Java
application, the entire job description of data and user-selected parameters are compiled
in JSON format and used as input to the high performance CATCH engine written
in C. The complete clustering result is then loaded back into the Java application for
visualisation.

The CATCHprofiles’ clustering algorithm has four main components: the initial
comparison and similarity score computation for all profile pairs, the selection of the
highest scoring profile pair, the merging of the selected pair into a representative pro-
files and the updating of the similarity score table. The CATCH engine written in C
is implemented with care to ensure that there are no conflicts when accessing shared
memory from subroutines. The OpenMP [33] directives are then used to implement a
platform-independent threading for the pairwise score computations and the selection of
the highest scoring profile pair. The computations are contained in loops and are simple
to parallelise using OpenMP, as all shared memory conflicts have been removed from
the subroutines. The OpenMP directives are translated to pthread calls by the compiler.
The compiler creates the necessary code to handle creation and termination of threads,
synchronisation between threads, shared and local variables and orchestration of the
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workload between the running threads.
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Figure 2.3: The speedup plot of the relative performance increase in the CATCHprofiles
clustering engine. The parallel implementation of the CATCHprofiles clustering engine
results in a near-linear speedup of computation time with increased number of threads.
The y-axis shows the speedup and the x-axis the number of threads used.

The benchmarks are executed on a multi-core system with 8 cores: two Intel Xeon
E5310 Quad Core processors and 8 GB RAM running Ubuntu 9.04. The speedup plot
(Figure 2.3) shows a close to linear speedup for up to 8 cores when executing our
benchmarks. The benchmark data set consisted of 5920 profiles, 8 tracks and a track
length of 52. On the 8-core machine the CATCH algorithm required approximately
57 minutes to finish, illustrating the algorithm capacity for clustering larger data sets
within a reasonable running time.

The paper in appendix A.2 includes results that were computed on a SGI Altix 3700
supercomputer running CATCHprofiles successfully on 128 cores and using close to
128 GB of memory.

2.1.1.1 Scientific Workflow

Figure 2.4 shows a constructed scientific workflow which is based on the structure of
the computational part of the CATCHprofiles application. Later, in Chapter 4 I will
discuss how the CSP algebra can be used to define the relations shown in figure 2.4.
In the previous section, single tasks of this workflow have been changed to be able to
utilise a multi-core processor efficiently.
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Perform unsupervised clustering of ChIP profiles

Load ChIP profiles

Input: N sequences of T tracks

Visualize the clusters of ChIP profiles

Save the clusters of ChIP profiles

Compute N*N/2 scores

Output: Tree of clusters with N*2 nodes

Find best score of all computed scores

Merge the two sequences with the best score

Merged all sequences?

Yes

Compute scores for merged sequence

No

Figure 2.4: Scientific workflow of main tasks in CATCHprofiles
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2.1.2 Likelihoods for Stereo-Based Articulated Tracking
The next application is within the scientific field of computer vision. For many years
articulated tracking has been an active research topic within the computer vision com-
munity. While working solutions have been suggested, computational time is still prob-
lematic. This section presents a GPU implementation that is orders of magnitude faster
than a traditional CPU implementation of a ray-casting based likelihood model.

Figure 2.5: The images show stereo points with a super-imposed illustration of a skin
model.

Three-dimensional articulated human motion tracking is the process of estimating
the configuration of body parts over time from sensor input [78]. One approach to
this estimation is to use motion capture equipment where e.g. electromagnetic markers
are attached to the body and then tracked in three dimensions. While this approach
gives accurate results, it is intrusive and cannot be used outside laboratory settings.
Alternatively, computer vision systems can be used for non-intrusive analysis such as
the one shown in Figure 2.5. One standard approach is to use a particle filter [30] for
finding a sequence of poses that match the observed data well. From a practical point of
view this means making many random guesses of the current pose and comparing these
to the observed data. In terms of performance, the critical part is comparing each guess
to the data.

At the heart of the articulated tracker is a particle filter, which is concerned with
estimating an unobserved state of a system from observations. In terms of articu-
lated tracking it is concerned with estimating the pose ~θt at each frame in a video se-
quence. In terms of statistics, it seeks p(~θt|X1:t), where the subscript denotes time and
X1:t = {X1, . . . ,Xt} denotes all observations seen at time t. This distribution is crudely
represented as a set of samples that are propagated through time by sampling from
p(~θt|~θt−1). Each sample ~θ( j)

t is assigned a weight according to its likelihood p(Xt|~θ
( j)
t ).
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Thus, at each time step t the following must be computed:

for j = 1 to J do
Sample ~θ( j)

t from p(~θt|~θ
( j)
t−1) ;

w j ← p(Xt|~θ
( j)
t ) ;

end for

It is expensive to evaluate the likelihood p(Xt|~θ
( j)
t ), but the loop can be executed in par-

allel as each sample is treated completely independently. Executing this loop in parallel
on a GPU requires optimising the data access patterns, otherwise the performance is
likely to be worse than on a CPU. Once new samples are drawn and assigned weights,
the current pose can be estimated as the mean value of p(~θt|X1:t).

The algorithm presented in appendix A.1 achieves a major speedup when imple-
mented on the GPU. However, it requires careful planning in designing for the massive
parallelism in the GPU architecture. The first problem to be addressed is how to block
data and computations efficiently with respect to performance. The task is to minimise
data communication and maximise the amount of computations done by one block of
threads. The targeted GPU architectures are the CUDA [9] enabled Nvidia GPUs with
compute capability from 1.1 to 1.3.
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Figure 2.6: Illustration of the grid layout and kernel launches for a single GPU. A
sequence of measure kernel launches is executed: one for each tile of samples. Only
a single reduction kernel is launched prior to returning to the CPU thread handling the
GPU.

The orchestration of data results in the grid layout illustrated in Figure 2.6. The grid
of thread blocks is organised in such a way that each thread block corresponds to one
sample and one tile of stereo points. A measure kernel is then launched on this grid.
During execution the measure kernel will loop over samples in consecutive launches
to avoid stalling the GPU hardware. Additionally, support for multiple GPU devices is
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performed by dividing the samples into one chunk for each GPU. If multiple GPUs are
available the same number of CPU worker threads is created and then given a GPU to
control. The overhead of launching CPU threads is small and the effect is only visible
for very small problem sizes that are not relevant for this problem domain.

 0

 100

 200

 300

 400

 500

 600

6144,500

12288,1000

18432,1500

24576,2000

30720,2500

36864,3000

43008,3500

Sp
ee

du
p

Data size: Stereo points, Samples

Nvidia 8600M GT
Nvidia Tesla C1060
Nvidia 2x9800GX2

Figure 2.7: The speedup achieved when computing a data set of the specified size on a
GPU vs. the CPU. The referenced sequential CPU implementation is measured on an
Intel Core 2 Duo @ 2.4Ghz.

The speedup plot in figure 2.7 uses a CPU implementation as reference. The same
input data set has been used for the CPU and the GPU benchmarks. The measure
function used in the CPU implementation is identical to the measure function used in
the GPU implementation, but the invocation of the measure function is purely sequential
and thus only utilise one core. Since the problem is memory bound, the one thread will
have to wait on memory. It is expected that an optimised CPU implementation could
execute twice as fast, compared to the reference CPU implementation. On the GPU, the
memory latency has been successfully hidden which becomes apparent when looking
at the speedup numbers in figure 2.7.

2.1.2.1 Scientific Workflow

Figure 2.8 shows a constructed scientific workflow based on the structure of the com-
putational part of the presented application. Later, in Chapter 4 I will discuss how the
CSP algebra can be used to define the relations shown in figure 2.8.

In the previous section, the task ”Compute likelihood value” in the workflow has
been made to run on the GPU efficiently.
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A purpose for this algorithm is to provide a quick match for a pose recorded by
cameras. The match can then be used to generate feedback for the user in front of
the cameras. The response time for the implementation must be fast enough, such
that the feedback result is still relevant for the user. Additionally, it must have a high
throughput, and from the scientific workflow in figure 2.8 it is clear that the generation
of the next set of 3D coordinates can be computed in parallel with the search for the
current best likelihood value. The composed task of finding the best skeleton, may
continue with the next set of coordinates every time the best likelihood value have been
found. Such optimisations are not necessarily simple to find, which is why the execution
of a scientific workflow must adopt naturally.

Find best skeleton

Left camera

Generate 3D coordinates

Right camera

Input: 3D stereo points

Compute likelihood value

Input: skeletons

For every skeleton

Extract best likelihood

Output: Select skeleton

Check for correct skeleton

Recommend correction

False

Move to next state

True

Figure 2.8: Scientific workflow of articulated tracking
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2.2 Scientific Workflow Systems
This section provides a short overview of a few popular scientific workflow systems and
focuses on their capability of executing workflow instances in a parallel environment.
The systems presented in this section all provide a desktop authoring environment and
enactment engine for scientific workflows. Figure 2.9 shows a screenshot (downloaded
from http://www.knime.org) of an example data analysis workflow in Knime, the overall
GUI is similar across the different systems. Features common for most of the presented
systems are:

Sharing of workflows to a component repository for allowing easy access and
reuse.

Recording provenance information, in order for a workflow instance to be repro-
duced.

Through components, direct access to larger number of scientific data reposito-
ries.

Hierarchy in workflows, where complex tasks may be composed of simpler com-
ponents.

Scientific workflows are represented as a directed graph.

A command-line execution tool for executing scientific workflows.

Applications that are built using scientific workflow systems may be data inten-
sive or computational intensive. The systems should optimise for both cases. Data-
parallelism is used to improve the computational intensive parts where data may be
streamed or e.g. large arrays are divided into smaller chunks. The data-parallelism is
a fine-grained approach to better performance. The coarse-grained approach for com-
putational intensive systems is the off-loading of tasks to other available processors,
preferably where the data already resides. Data intensive applications may often be im-
proved through parallel computing, but rather than running computations in parallel the
data is fetched in parallel to increase the available bandwidth and, more importantly,
reduce the latency of waiting for the next batch of data.

2.2.1 Taverna
Taverna [49] is oriented towards execution of eScience applications in grid environ-
ments. It is easily extendable and written in Java. Code written in other programming
languages than Java must be run in separate processes. Distributed execution of tasks is
handled through a broker service which manages the execution.
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Figure 2.9: Screenshot of an example data analysis workflow in Knime

2.2.2 Knime
Knime[88, 24] is built on the eClipse framework and is written in Java. It has a similar
feature set to Taverna. Knime is especially popular for chemistry and bio-science related
applications. Control flows can be created by adding special components that add a
conditional loop or a conditional branch.

2.2.3 LabVIEW
LabVIEW [51] is designed for interfacing with lab equipment and analysing the re-
ceived data for meaningful information. Data can be processed and results shared
through displays, reports and the Web. It differs from the other systems by encour-
aging a more fine-grained flow-based programming. It also supports realtime systems
and is able to export applications to hardware, e.g. FPGAs.

2.2.4 Kepler
Kepler [65] differs from the other workflow systems in that it separates the structure of
the workflow model from its model of computation. Different engines may be used for
executing a given workflow graph. The Kepler scientific workflow system is written in
Java and has a feature set similar to Taverna and Knime.
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2.2.5 P-Grade / P-Grade Portal
This system is particularly different from the others. The P-GRADE [55] project uses a
CSP-inspired parallel environment for executing distributed scientific applications. The
project combines low-level programming and a graphical workflow tool with a CSP-
like communication model. Applications created with this tool are compiled to MPI
or PVM and provide basic support for grid systems. A later project named P-GRADE
portal [56] presents an online Web platform for handling dependencies between grid
jobs and enables a single application to use multiple grid middleware architectures. The
P-GRADE portal has left the CSP-style programming used in the first P-Grade project
and is now using directed acyclic graphs for its workflows.

2.3 Fine-grained and Coarse-grained Orchestration
Workflows are traditionally composed at the coarse-grained level as the individual tasks
in a workflow consist of one or more algorithms.

The work in this thesis is a follow-up on the scientific workflow systems and does
not replace current scientific workflow systems. Many scientists are using these systems
and making it possible for them to create full eScience applications, with only little
programming experience. Other scientists may use MATLAB or Python NumPy for
their eScience projects. In reality these systems does not exclude each other but may
as well benefit from a combined application. A combined application, where the coarse
grained orchestration is handled by the scientific workflow system and the fine-grained
is handled by NumPy / MATLAB. As these scientists are not well-trained in structured
programming development there is a need for tools that make it simple to organise
the coarse-grained orchestration. The workflow may for many applications represent
the coarse-grained orchestration, while the fine-grained orchestration of an application
consists of the math or routines in the individual tasks.
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Chapter 3

Hardware Architectures for Scientific
Workflows

The performance of scientific workflow instances differs depending on how suited the
hardware architecture is for the different tasks. Most scientists have access to a range
of hardware architectures, where some are optimized towards handling large data sets
and others more on computations. This chapter provides an overview of the different
architectures used for executing scientific workflows. I use the four classifications by
Flynn [37]: SISD, SIMD, MISD and MIMD. The MISD (Multiple Instruction, Single
Data) classification is not relevant for scientific workflows, as it is used for fail-over or
redundancy in critical systems.

3.1 SISD
SISD (Single Instruction, Single Data) is a term referring to a computer architecture
in which a single processor; the uniprocessor, executes a single instruction stream to
operate on data stored in a single memory system. SISD can have concurrent processing
characteristics within the microprocessor. Instruction fetching and pipelined execution
of instructions are common examples found in most of the modern SISD computers.
Such computers may execute instructions out-of-order, while committing them in-order.
Executing instructions out-of-order allows for a better utilisation and thereby a higher
IPC (instructions per clock). A higher IPC usually results in an improved performance
to power usage ratio.

In scientific computing the SISD hardware architecture is rarely used, but a corre-
sponding software architecture can be seen in many places. Single tasks in a scientific
workflow can be viewed as single applications communicating with other tasks. The
tasks may run on individual nodes and communicate through standard network proto-
cols. The tasks may even share data, but only through communication, never through
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implicit access to shared or distributed memory. Every task in such a system is com-
pletely isolated and behaves similarly to the SISD architecture.

Similarly, web services are often used in scientific workflows and are from the user
point-of-view a SISD architecture, as it is a separate application with a single instruction
pointer and memory system. The use of web services is common in the fields of bio-
informatics, astronomy, chemo-informatics, health informatics and others. Using the
WSDL (Web Service Description Language) it is possible to connect to a large amount
of existing services. WSDL is an XML format and the interface to many web services. It
is the machine-readable description of the operations (or functions) offered by a service.
Internally the web services are run on the MIMD architecture to be able to serve a large
amount of requests from a single database.

3.2 MIMD
Each processor fetches its own instructions and operates on its own data. MIMD (Multi-
ple Instructions, Multiple Data) architectures are the most versatile systems for parallel
computing and can be organized into shared-memory and distributed memory systems.
This division is made on how the MIMD processors access memory. Shared memory
systems may be of the bus-based, extended or hierarchical type. Distributed memory
machines may have hypercube or mesh interconnection schemes.

The multi-core processor is a MIMD architecture and consists of multiple homoge-
neous cores with access to a shared memory system. The scheduling of threads onto
cores is handled by the operating system. To utilise multiple cores in a single appli-
cation it is necessary to organise tasks, such that there are tasks that do not depend on
each other.

Several scientific workflow systems use a thread pool to execute independent tasks
in parallel on multi-core processors. Shared memory systems in 2011 exist with up to
256 cores, but are extremely expensive at that size. Off-the-shelf hardware is available
with up to 12 cores per processor. Distributed memory systems, such as supercomputers
or clusters, can scale to a large amount of cores. Depending on the processor design
and the bandwidth of the inter-connection they range from extremely expensive (top
500 supercomputers [67]) to inexpensive clusters of standard workstations [91].

The existing scientific workflow systems that are able to execute on clusters use a
main control node to handle the scheduling of tasks onto nodes. A single main con-
trol node is a huge bottle-neck and limits the execution of scientific workflows to small
clusters. Clusters are very common in the scientific community, as many scientists have
computational-intensive problems to solve. Re-occurring single tasks in a scientific
workflow may require large computations, thus a specialised high-performance imple-
mentation for a cluster could be implemented and re-used in scientific workflows. This
approach is discussed in Section 3.4.
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3.3 SIMD
SIMD (Single Instruction, Multiple Data) architectures execute the same instruction
by multiple processors using different data streams. Each processor has its own data
memory (hence multiple data), but there is a single instruction memory and control
processor which fetches and dispatches instructions. Multimedia extensions in modern
processors are a limited form of SIMD parallelism. Vector architectures are the largest
class of processors of the SIMD architectures.

Vector architectures have gotten a recent revival from GPUs. Especially because
of the CUDA [9] and OpenCL [11] frameworks that enable programmers to run gen-
eral purpose applications on GPUs and not just graphic related computations. Vector
architectures require massive parallelism in problems where a problem is divided into
a large amount of independent fine-grained tasks. Such fine-grained tasks are not im-
possible to handle for scientific workflows, but since scientific workflows are the tool
of the scientific user low-level design choices should be avoided.

Today, scientific workflows are not executed on vector processors, but vector pro-
cessors can be used indirectly through libraries or specialised implementations.

3.4 Heterogenous Computing
The MIMD and SIMD are two very different architectures, both built for parallel com-
puting. Executing applications split on multiple architectures is a complex task that re-
quires multiple binaries for different hardware. The advantage of running such a setup
is that some types of computational problems benefit from SIMD architectures while
others benefit from the more flexible MIMD architecture. Often applications running on
GPUs require a part of the application to run on the main processor, in order to handle
the basic control flow of the application. This is due to the GPU being highly optimised
towards fine-grained parallelism with a minimum of diverging branches. Implementing
for SIMD architectures is generally more challenging than implementing for MIMD
architectures. In MIMD architectures there is a lot of help through cache pre-fetching
and control flow logic to reduce the amounts of cache-misses and flushing of pipe-lines.

As time is a critical factor in implementing executable scientific workflows it would
make sense to only execute tasks on specialised hardware, if it is possible to achieve a
large performance improvement. Such a choice is made possible by using a framework
that allow the use of heterogenous architectures.

The IBM CELL-BE [104] is a heterogenous architecture as it consists of two differ-
ent architectures on the same silicon die. Equivalent to the GPU, the IBM CELL-BE is
a challenge to program correctly. The IBM CELL-BE was designed with high through-
put workloads in mind [77]. It includes a single PowerPC Processor core, its L2 cache
as well as a set of high throughput cores. These cores each contain a local memory store
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that is incoherent with the rest of the memory system. The local store has a guaranteed
latency for data delivery, allowing for a simpler execution pipeline than a system with
a coherent cache hierarchy. It requires the user to manually manage the data contents
through software-programmed DMA operations.

The production of the IBM Cell has been discontinued, but new heterogenous ar-
chitectures are continually being developed. Both the AMD Fusion [1] and the Nvidia
Tegra [10] are chips with multiple architectures on a single silicon die.

By orchestrating applications as executable scientific workflows tasks can be split
onto multiple architectures if needed. Components of a graphical user interface may
also be executed as tasks in an executable scientific workflow, thus control panels could
be executed on mobile units (tablets, smart phones).

3.5 Grid Computing
Grid computing [57] started as a means of sharing supercomputers or clusters between
research facilities. Such resources are expensive to have running, when they are unused
for periods of time. Through collaboration and the sharing of resources it is possible to
achieve a higher utilisation.

The resources in a Grid may be of multiple hardware architectures, thus when re-
questing resources it is necessary to request the type of the resources needed. It is com-
mon for grid resources to differ and that the grid middleware allow the user to select
grid resources based on the requirements for a specific application.

The grid middleware is the control software that handles resources, job queues, job
scheduling and users. Submitting jobs to a grid for execution has a high latency and
should not be done for sequential tasks, but only for tasks where the problem can be
split into multiple jobs for concurrent execution.

Grid resources are used in scientific workflow systems, where tasks (jobs) are sub-
mitted to a grid environment for execution. Only the computational-intensive tasks are
sent to a grid, as the scheduling of grid jobs can have a high latency and often there is
no upper limit to the latency.
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Chapter 4

Communicating Sequential Processes

The Communicating Sequential Processes algebra, CSP [45, 46], was introduced more
than 25 years ago and while it was highly popular and thoroughly investigated in its
first years, interest dropped off in the late 1980 because the algebra appeared to be a
solution in search of a problem, namely modelling massively concurrent processes and
providing tools to solve many of the common problems associated with writing parallel
and concurrent applications.

CSP provides many attractive features with respect to the next generation proces-
sors; it is a formal algebra with automated tools to help prove correctness, it works with
entirely isolated process spaces, thus the inherent coherence problem is eliminated by
design, and it lends itself to being modelled through both programming languages and
graphical design tools.

4.1 The CSP Algebra
Hoare’s CSP book [46] describes Communicating Sequential Processes in detail in-
cluding the algebraic laws. Processes are defined as patterns that define all possible
behaviors of events. These events are atomic and synchronous between the individual
processes. Events often behave as channels communicating data objects synchronously
between processes. The patterns are described in an explicit syntax. Table 4.1 displays
a selected subset of the patterns that are especially relevant for the content presented in
this thesis.

The process a → P denotes that the event a must happen for process P to be exe-
cuted. For an event a to happen means that the environment must communicate a. The
process P = (a → P) is a process that continues to be willing to communicate a to
the enviroment. The processes P ; Q and P || Q denote the sequential and parallel
composition of process P and Q. Process P ||| Q denotes that the processes P and Q
do not communicate on any shared events and thus are not dependent on each other.
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Table 4.1: A subset of the algebraic syntax for processes in CSP

a→ P event a then process P
P ; Q process P followed by process Q
P || Q process P in parallel with process Q
P ||| Q process P interleaving process Q
P u Q process P or process Q (non-deterministic)
P � Q process P choice process Q
(a→ P | b→ Q) a then process P choice b then process Q (provided a , b)
S KIP successful termination process
S TOP deadlock process
b!e on channel b output value of e
b?x on channel b input to x

Process P u Q denotes the internal choice between processes P and Q where one will
execute, but the choice is nondeterministic to the environment. Process P � Q denotes
the external choice where both processes are available to communicate to the environ-
ment, but only one must be chosen and the choice is made by the environment. The
S KIP process is the successful termination at which the execution ends and the S TOP
process denotes a deadlock.

Using the syntax from table 4.1 it is possible to specify concurrent behaviour. The
functionality described by the syntax in table 4.1 is the minimum set of functionality
for the implementations with support for CSP presented in Section 4.4.

The CSP algebra is supported by the automated model checker FDR [82, 64]. The
FDR has been used extensively in industrial applications [62]. The combination of the
mathematics of refinement and the existance of a model checker is crucial for the CSP
algebra as a tool for specifying concurrent models.

4.1.1 Concurrent Processes
In CSP a process is an independent unit of behaviour. It executes in a system where
the other processes are called the environment of the process. A process can be run
sequentially, concurrently or a combination thereof to the environment (Table 4.2).

Processes participate in events. Events are the basic CSP construct for synchronisa-
tion and communication. When two processes want to engage in the same event concur-
rently they are allowed to proceed to their continuations, provided that both processes
agree to continue. If one process wants to engage in an event where the environment is
unable to engage in the same event, the process will be unable to move to a new state
and remains unchanged. In case all processes want to engage in unmatched events the
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system has dead-locked.

Table 4.2: Process P1 concurrently with P2 and P3. P2 and P3 are executed in se-
quence.

Q = P1 || (P2 ; P3)

4.1.2 Nondeterminism
Nondeterminism occurs in a situation where the exact same actions from the environ-
ment may lead to different behaviour for the same set of processes. In CSP there are
two sources of nondeterminism: The explicit choice P � Q and the implicit choice
P u Q. The implicit choice is equivalent to asynchronous concealed events where
the environment must be able to engage concurrently in all concealed events to avoid a
possible dead-lock. The explicit choice or general choice is the choice which is made
by the environment. This nondeterminism can be controlled by a single construct, the
external choice. The external choice P | Q allows a single process to engage in one
event among a set of events. If the environment wants to engage in multiple events the
choice is nondeterministic. If the environment wants to engage in a single event, the
choice is deterministic.

4.1.3 Communication
The only means of communication between processes is through channels (Table 4.3).
A channel is a directed connection between processes along which messages may be
sent. Two processes engaging in an event is similar to two processes engaging in a
directed communication across a channel. A communication is a special case of event-
based synchronisation. In the CSP applications relevant for this thesis all events in a
CSP network are communications. None of the CSP libraries in Section 4.4 implement
a means of engaging in an event that is not a communication.

Table 4.3: Process P1 concurrently sending a message on channel b to P2

P1 = b!e→ S KIP
P2 = b?x→ S KIP
Q = P1 || P2
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4.2 π-calculus
The π-calculus [69, 86] is a separate work from CSP and was developed on the calculus
of concurrent systems [68]. The calculus of concurrent systems was being developed
in parallel with CSP during the 1980’s. The process-oriented approach has today been
influenced by the π-calculus together with CSP. This thesis primarily focuses on CSP
but uses a few features from the π-calculus as an addition to the CSP algebra.

The π-calculus is a calculus for mobile processes where the process network is al-
lowed to change dynamically by interchanging channel ends between processes. Mo-
bile channel ends have the benefit of simplifying process networks, as the different
process patterns specifically designed for mobile channel ends (patterns for mobility)
have shown in [84].

4.3 CSP in Scientific Workflows
Only few [106, 55] have previously looked at CSP and thought that this might be a good
specification for describing scientific workflows. In Section 6.1 I present a framework
that uses ideas from the CSP algebra and the scientific workflow systems (in Section
2.2), combined in a framework that allows CSP-based applications to be designed in a
visual tool, and executed in a variety of ways (depending on the hardware available).
I stipulate that CSP is ideal for reasoning about the dataflow of scientific applications,
particularly when the motivation is concurrent execution. The compositional structure
of a CSP network enables application developers to reuse networks of components as
top-level components themselves.

The work by Wong [105, 106] has demonstrated an equivalence between workflow
processes and the CSP algebra by describing CSP models of van der Aalst et al.’s [96]
workflow patterns. It has been demonstrated by Wong that refinement is useful in the
development of workflow processes because it allows for formal comparisons between
workflows. The results by Wong are also true for scientific workflows, though the often
used workflow patterns may be different than the ones presented by van der Aalst et al.

As object-oriented programming has design patterns, it makes sense that process-
oriented programming would have process patterns. Process patterns for the CSP al-
gebra (or process-oriented languages) have only recently been presented by Sampson
[84]. The patterns presented by Sampson are basic, flexible and diverse. They describe
often-occurring scenarios in concurrent applications. When modeling scientific work-
flows in CSP it is beneficial to utilise the process patterns by Sampson, as this will
almost always result in a reduced complexity for a workflow.
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4.4 Programming with CSP
This section discusses the programming languages that have native support for CSP
constructs, that provide CSP constructs through embedded domain-specific languages
(EDSLs) and the languages with libraries that add CSP constructs.

4.4.1 Native CSP
The occam programming language [66], which was developed in the early 1980’s, was
the first programming language to support CSP. occam was also the only supported lan-
guage available for the INMOS Transputer; a microprocessor with hardware support
for concurrency. A lot of work has later been put into occam to make it a modern pro-
gramming language, now called occam-π. The latest implementation for occam-π is the
Tock [85] compiler, which is written in Haskell and probably going to replace occ21 in
KRoC [6]. Tock interprets occam-π code into portable C code that uses the CCSP [71]
library for execution. The CCSP library is extremely fast. CCSP implements processes
as user-level threads and uses a very robust and optimised scheduler that can handle
millions of processes. The utilisation of multiple cores is handled automatically by the
scheduler in CCSP (see [81]). occam applications can also run on clusters using the
P0ny network environment [87]. The P0ny network environment allows for channels to
be defined as network-enabled.

The occam-π compilers perform a rigorous checking at compile-time e.g. static type
checking, detecting possible dead-locks and more. There are no other languages with
support for CSP that perform as extensive checking at compile time.

The Go programming language [16] by Google is a new language and was first pub-
lished as a Google project in 2007. The Go language has native support for CSP as the
only way to do concurrent programming. Processes are lightweight co-routines and a
single application can easily use 10.000 co-routines. Similar to occam-π, Google Go
can utilise multiple cores on multi-core systems. The co-routines in Go are called go-
routines and are executed through an asynchronous call. It is not yet possible to wait for
a go-routine to finish, except through explicitly communicating with it. Channels are by
default synchronous, but can be defined with a bounded buffer. The external choice is
provided through a select call that can randomly select between ready input and output
ends of a channel. Since the select call does not provide a prioritised choice it is not
possible to guarantee a fair choice by ordering the channel ends. Currently the chan-
nels are not yet network-enabled, thus node-to-node communication must be handled
through other means of communication. The slogan of Go is ”Do not communicate by
sharing memory; instead, share memory by communicating.”
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4.4.2 EDSL-based CSP
The Java environment provides the Java Virtual Machine (JVM) which executes Java
byte code. Alternative compilers for new and old languages have been created which en-
able other languages than Java to run on the JVM. Scala [74] fuses object-oriented and
functional programming in a statically typed programming language, provides lightweight
processes and compiles to Java byte code. The CSP implementation; Communicating
Scala Objects (CSO) [92, 63] has been implemented for Scala on top of lightweight pro-
cesses, making it possible to reduce communication overhead and increase the amount
of processes in a single application.

Communicating Haskell Processes (CHP) [28] is a CSP implementation for Haskell.
It is built on top of Haskell monads which are special units of execution. The Haskell
scheduler from the Glasgow Haskell Compiler (GHC) is very fast and is able to utilise
multi-core systems. All of the known CSP constructs are implemented in CHP. CHP has
strongly typed channels and even allows for direct model-checking of CHP applications.

4.4.3 Library-based CSP
The support for CSP can be added to programming languages through libraries. De-
pending on the programming language, the CSP constructs can be made to appear more
or less as built-in constructs. It is usually desired to make the CSP constructs appear
as natural elements of the programming language, since CSP is supposed to facilitate
the possibility of process-oriented programming in a non process-oriented program-
ming language. The external choice construct is particularly difficult to implement as
a basic statement similar to if or switch statements. Thus the external choice is for
all the library-based CSP implementations almost always followed by an if or switch
statement selecting a branch depending on the result from the external choice. The
CSP implementation for a programming language is built on the concurrent features
available in the language, such as threads, shared memory and locks.

CTJ [43] and JCSP [101] are CSP implementations for the Java programming lan-
guage. Both implementations have processes and channels implemented as objects and
use the standard threading library in Java to facilitate the concurrent properties for pro-
cesses. CTJ is primarily for real-time systems, while JCSP is a more general CSP
library. The channels in JCSP are typed and separated into one-to-one, one-to-any, any-
to-one and any-to-any channels. JCSP also has network-enabled channels, making it
possible to create distributed JCSP applications. External choice is in JCSP limited to
one-to-one channels for output channel ends.

C++CSP2 [27] is a CSP implementation for C++ which is able to both utilise mul-
tiple cores and use user-level threads for fast context switching. User-level threads
are more efficient and provide greater flexibility than kernel threads. It is possible to
optimise the scheduling of user-level threads to fit with the internal priority in the appli-
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cation, since the scheduler is in user-level code and the operating system is not involved.
In C++CSP2 it is necessary to specify whether processes should be run as user-level
threads or kernel-level threads.

Python-CSP [72] is a CSP library for Python presented in 2009. The synchronisa-
tion design is similar to JCSP and implements CSP processes using OS processes or
threads. There is currently no network support for Python-CSP.

The PyCSP [25, 40, 98, 42] library also implements the CSP constructs for Python.
PyCSP is the main work of this thesis and thoroughly discussed in chapter 6.
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Chapter 5

Python in Science

The Python programming language [83] and the CPython interpreter were first released
in 1991 and have continually been updated while popularity has increased. There are
numerous alternative interpreters available for Python today which all have their advan-
tages and disadvantages that are discussed in Section 5.1.

Most relevant for this thesis is the wide usage of Python within the scientific field.
This usage has had the positive effect that many scientific libraries (modules) [7] have
been added to Python. More and better libraries have caused a feedback loop of more
scientific users, which again motivates more scientific libraries. Besides the large
amount of scientific libraries Python already comes with a standard library [18] which
covers everything from asynchronous processing to zip files. The following is a short
list of interesting and relevant scientific libraries (modules). There are definitely many
more.

NumPy [75] - Provides both basic and advanced array operations. This library
is required by most other scientific libraries, as it enables Python to perform fast
vector operations on arrays. The array object is particularly well-suited for inter-
operability with C / C++ libraries.

Matplotlib [50] - A plotting library for 2D and 3D plotting. It provides a set of
functions familiar to MATLAB users and uses the NumPy array as the primary
datatype.

DistNumPy [60] - Executes Python / NumPy code on parallel architectures by
splitting the vector operations and distributing the workload to multiple hosts.
Code must be written to use NumPy array operations as all other operations exe-
cute sequentially.

SciPy [53] - Is a set of scientific tools for Python. It includes NumPy and imple-
ments matrix operations for NumPy matrices such as linear algebra and fourier
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transforms together with many other scientific tools. It focuses on the interoper-
ability between the provided set of tools with the overall goal to simplify scientific
computing in Python. The list of features is comprehensive.

PyCUDA and PyOpenCL [58] - They are libraries for handling GPGPU (Gen-
eral Purpose GPU) programming through Python. This approach is especially
powerful, as the binary GPU code is run-time generated. Python is a dynamic
interpreted language, thus function arguments are not known until run-time. Pro-
viding run-time code generation enables the library to make run-time optimisa-
tions based on the actual function arguments.

The approach to writing the compute-intensive parts in C or another compilable
language such as Fortran is described in [61] and believed to be within the capabili-
ties of non computer scientists. Programming skills for sequential C and Fortran code
have been taught to many non computer scientists. Some scientific problems will have
libraries that can perform the computational tasks, such as the scientific libraries pre-
sented above, thus eliminating or reducing the need for a compilable language.

5.1 Python Interpreters
The standard CPython interpreter is the official interpreter from the Python community.
The CPython interpreter has a Global Interpreter Lock (GIL) that ensures exclusive
access to Python objects, when running multiple threads in one interpreter instance.
Because of this GIL, it is difficult to achieve any speedup in Python from running mul-
tiple threads, unless the actual computation is performed in external modules (libraries)
that release the GIL. Instead of releasing and acquiring the GIL in external modules it
is possible to use multiple processes that run separate CPython interpreters with sepa-
rate GILs. In Python 2.6 the multiprocessing module [14] can handle processes, which
enables us to make a comparison between threads and processes. The comparison in Ta-
ble 5.1 shows the result of computing π (Monte Carlo method) in parallel using threads
and processes (Listing 5.1).

Table 5.1: Comparison of threads and multiprocessing on a dual core system with
Python 2.6.2

Workers 1 2 3 4 10
Threads 0.98s 1.52s 1.56s 1.55s 1.57s
Processes 1.01s 0.57s 0.54s 0.54s 0.56s
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Listing 5.1: Calculation of π (Monte Carlo method) in parallel using threads and pro-
cesses
cnt = 1000000 / workers
def compute(id, cnt):
pi = 4.0*reduce(
lambda x,y: x+(random()**2+random()**2<1.0),
xrange(cnt)

) / cnt
subpi[id] = pi

# Threads
import threading
subpi = [0 for i in range(workers)]
threads = [ threading.Thread(target=compute, args=(cnt,))
for i in range(workers) ]

map(threading.Thread.start, threads)
map(threading.Thread.join, threads)
print "Threading result:", sum(subpi)/len(subpi)

# Processes
import multiprocessing
subpi = multiprocessing.Array(’d’, [0.0 for i in range(workers)])
processes = [multiprocessing.Process(target=compute, args=(cnt,))
for i in range(workers) ]

map(multiprocessing.Process.start, processes)
map(multiprocessing.Process.join, processes)
print "Multiprocessing result:", sum(subpi)/len(subpi)

The GIL is to blame for the poor performance for threads illustrated in Table 5.1.
It is possible to obtain good performance for threads, but through the use of external,
non-Python, modules which release the GIL. The developers of CPython have tried to
replace the GIL with a more fine-grained locking scheme, but so far they have been
unsuccessful [17] as it reduced the performance of unthreaded Python code too much.
Another project, the unladen swallow project [19], has also researched on how to re-
move the GIL. They believe that CPython should drop reference counting and move to
a pure garbage collection system. This is a major change to CPython and has not yet
been tried. In addition, the unladen swallow project has meanwhile been discontinued.

In parallel with the evolution of the CPython interpreter, many other interpreters
have surfaced. Two especially relevant in relation to the GIL are Jython [5] and Iron-
Python [4]. Jython is a Python interpreter that translates Python code to Java byte code
for execution on the JVM (Java virtual machine) runtime system. It is very fast and it
uses the JVM garbage collector instead of reference counting, thus eliminating the GIL.
Similar to Jython, IronPython translate Python code to MSIL (Microsoft Intermediate
Language) byte code for execution on the .NET CLR (Common Language Runtime).
IronPython also avoids the GIL through the use of a garbage collector and provides an
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effective JIT compilation in the runtime system.
Cython [2] is not an interpreter but a compiler, which can generate C-extensions

(modules written in C) for Python from annotated Python code. Functions that are
compiled to C are annotated with C types. Using these tools, it is possible to speed up
the execution of Python code.

Unfortunately none of the scientific libraries presented in the previous section are
available for other interpreters than the CPython interpreter. The reason being that the
libraries are mostly written in C or C++ and interface with CPython using the CPython
API (defined in header files). Stackless Python [94] is the only exception, as this is
a modified CPython interpreter with native support for micro-threads (non-preemptive
user-level threads).

The micro-threads in Stackless Python is an extension of a co-routine implementa-
tion named greenlets. The greenlets [93] have been made available to CPython through
a greenlet module, thus allowing fast co-routines in the standard CPython interpreter.
Greenlets are also available in the PyPy interpreter, where functions such as Just-
in-Time compilation and many other interesting features are being worked on. The
PyPy [80] interpreter is written in the Python language and is compatible with existing
Python code. It is not yet stable, but shows promising results and has recently gained
support for serialising executing co-routines in one interpreter and then later resuming
execution in another interpreter instance.

5.2 Parallel Programming in Python
Parallel programming in Python is possible through the use of many different libraries.
There are fork-based systems similar to Python’s built-in map function. Classic sys-
tems such as the built-in threading or multi-processing library provide basic support
with synchronisation structures such as locks, monitors and queues. Common for those
libraries is the use of shared data structures which may hide dependencies between pro-
cesses. Such dependencies easily cause data-hazards, while use of locks can result in
dead-locks or race-conditions. Shared memory, locks and monitors are difficult con-
structs to get right in parallel programming.

Most high-level approaches to parallel programming have been implemented for
Python. There is task based systems, such as Parallel Python [95] administering a
pool of workers (or servers). The Pyro [13] library for handling remote procedure
calls and remote Python objects. The ZeroMQ [20] library that provides an alterna-
tive socket implementation, targeted towards distributed computing and clusters. Data-
parallel systems that parallelise vector or matrix operations, such as DistNumPy [60].
Message-passing libraries such as MPI for Python [34] which enable fast and advanced
communication between processes.
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Chapter 6

PyCSP

The work presented in this chapter focuses on the development of PyCSP; a CSP li-
brary for Python. PyCSP was first presented in 2007 [25] and implemented processes
as threads, motivated by an application domain with scientific users and for hands-on
teaching of distributed and parallel computing in computer science. It was quickly
adopted by many students at the participating institutions. The synchronisation mecha-
nisms used for the first PyCSP was based on JCSP [102].

This chapter will present different usages of CSP in Python as well as a completely
new PyCSP that removes many limiting factors compared to the original version from
2007.

The graphical approach to CSP applications has existed since the introduction of
the INMOS Transputer and occam. Many alternatives on how to explore or edit process
networks have been tested and used. Most of these are discussed by Jacobsen (Chapter
”The Process Explorer” in [52]) and include occam based environments and non-occam
based environments as well as the author’s environment : POPExplorer (The Process
Oriented Programming Explorer). Section 6.1 presents a graphical approach to CSP that
are targeted towards scientific workflow modeling in Python. The content of Section 6.1
was originally presented in my Master’s thesis [38]. It has later been published in [41]
which is included in Appendix A.3.

6.1 A graphical approach to Python CSP applications
Many scientists (chemists, physicists, etc.) are not experienced programmers but are
able to do scientific computing by programming sequential applications. So far they
have been relying on the hardware manufacturers to produce hardware which improved
the performance of their applications – allowing for solving more sophisticated prob-
lems that require large computations. Scientists are now forced to develop concurrent
applications, in order to take advantage of parallel hardware. The amount of difficulty

33



involved in creating concurrent applications depends on the programming language and
methodology. Traditional concurrent programming, with threads and locks, makes it
difficult to program even simple applications – adding more parallelism to an already
threaded program tends to result in problems, not solutions. As a direct result, concur-
rent programming is seen as challenging, and is generally avoided by the majority of
scientists.

The goal of PyCSP is that scientists should develop concurrent programs using a
CSP-based approach, where applications are built as layered networks of communi-
cating processes. Such an approach is reliable; no unexpected surprises; scalable, to
different numbers of processes and processors; and compositional, enabling processes
to be ”glued” together to build increasingly complex functionality.

A feature of CSP-based designs is that every process can be completely isolated
from the global namespace, only interacting with other processes through well-defined
mechanisms such as channel inputs and outputs – processes are not context sensitive.
This in turn permits a high level of code reuse within scientific communities, as previ-
ously built components can be connected in different ways, corresponding to the data
flow of a particular computation.

While architectures have differing performance characteristics, programming in dif-
ferent languages can also affect performance. Development in a high-level language
such as Python is usually faster, but also often produces code that runs slower than
a similar implementation in a low-level language, such as C. By programming the
computational-intensive parts in C and using Python as the ”glue”, the execution time
is improved and it is avoided having to program the entire application in C, saving
development time.

When doing scientific work, which often relies on particular math libraries for per-
forming computations, the functions provided are not necessarily all implemented in
the same language. By using tools such as SWIG [15] and F2PY [76] these issues are
addressed, making it possible to use code from C, C++ and Fortran in a single scientific
application.

CSPBuilder is a framework, written in Python, that assists scientists in creating con-
current applications based on a CSP design. CSPBuilder uses a graphical user interface
similar to other scientific workflow systems (Section 2.2) already available.

6.1.1 CSPBuilder
In CSPBuilder every application begins with a blank canvas, where processes and chan-
nels can be inserted. Processes appear as named boxes, with their external connections
labelled. Channels are shown as lines connecting the processes. To simplify things, any
inbound or outbound connection accepts one channel going in or out, depending on the
connection type.
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Figure 6.1: A CSPBuilder application that generates incrementing natural numbers

A number of connected processes is defined as a process network (Figure 6.1). The
network (in Figure 6.1) can also be saved as a component for reuse in another applica-
tion, thus enabling compositional process networks.

Connecting processes using a one-to-one channel is simple, since it is represented
by a single line going from one process to another. Representing the any-to-any, one-
to-any and any-to-one channel types is not as trivial. Connection points are introduced
to address this issue. A connection point can have any number of inbound and out-
bound connections to processes or other connection points, enabling visualisation of all
channel types and the ”bending” of channels.

Further implementation details of the CSPBuilder framework is in Appendix A.3.
CSPBuilder provides a simple and intuitive means for designing concurrent appli-

cations. The graphical tool produces CSP network descriptions that are interpreted into
a PyCSP network and supports transparent integration of C, C++ and Fortran functions.
Experiments were performed where a CSPBuilder application was distributed onto net-
works of workstations and cluster systems. Because PyCSP at that time did not support
networked channels, extensive modifications to the basic channel code in PyCSP was
required to make the experiments possible.

The CSPBuilder framework has exposed a need for a more flexible channel type in
PyCSP. It was found that dealing with multiple channel types in a dynamic language
was not ideal and that components could not be re-used easily, since only the one-to-
one and any-to-one supported the alt construct. A single any-to-any channel type is
semantically equivalent to a one-to-one, one-to-any and any-to-one depending on the
number of readers and writers. Thus, by providing an any-to-any channel type with
support for the alt construct processes can be re-used without being limited by the CSP
library.

6.2 A New Implementation of PyCSP
The primary user group for the PyCSP library is scientists with a background in some-
thing other than computer science, though the first adopters have been students at the
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University of Copenhagen. The reported experience from the students was regarded as
valuable information, since the students were given scientific computing assignments.
The most frequent comment we received from the students was disappointment that true
parallelism could not be obtained using pure Python code. This is because of the Global
Interpreter Lock in the standard Python interpreter (see Section 5.1). To address this, a
new PyCSP implementation was added with support for operating system processes in
addition to threads. Strictly speaking, this could be done with no changes to the PyCSP
API and a new process-based implementation could transparently replace the previous.
However, a number of other comments we received also addressed the syntax and se-
mantics of PyCSP and we thus decided to revisit the design. The work on the PyCSP
implementations has been published in [98, 40] and is included in Appendix A.4 and
A.5.

The new API is implemented in four versions: Threads, processes, greenlets and
networked. All four versions are packed in a single module, to motivate the developer to
switch between them as needed. A common API is used for all implementations making
it trivial to switch between them, as shown in Table 6.1. When switching to another
implementation the PyCSP application may execute very differently as processes may
be scheduled in another order. Hidden latencies may also become more apparent when
all other processes are waiting to be scheduled.

Table 6.1: Switching between implementations of the PyCSP API

pycsp.threads pycsp.processes
import pycsp.threads as p

@pycsp.process
def P(msg):

print msg

pycsp.parallel(P("Hello"))

import pycsp.processes as p

@pycsp.process
def P(msg):

print msg

pycsp.parallel(P("Hello"))

The implementations are:

pycsp.threads - A CSP process is implemented as an OS thread. The internal
synchronisation is handled by thread-locking mechanisms. This is the default
implementation. Because of the Python Global Interpeter Lock, this is best suited
for applications that spend most of their time in external routines that release the
GIL.

pycsp.processes - A CSP process is implemented as an OS process. The inter-
nal synchronisation is more complex than pycsp.threads and is built on top of the

36



multiprocessing module available in Python 2.6. This implementation is not af-
fected by the Global Interpreter Lock, but has some limitations on a Windows OS
and generally has a larger communication overhead than the threaded version.

pycsp.greenlets - This implementation uses co-routines instead of threads. Green-
lets [93] is a simple co-routine implementation available as a Python module. It
provides the possibility of creating 100.000 CSP processes in a single CSP net-
work. This version is optimal for single-core architectures since it provides the
fastest communication, but with no parallelism.

pycsp.net - A simple network-enabled implementation based on pycsp.threads.
All synchronisation is handled in a single process. This provides the same func-
tionality as pycsp.threads, but adding a larger cost and a bottleneck by introducing
a server process. It uses Pyro [13] for communication.

pycsp.dist (experimental) - An implementation which automatically distributes
processes to random hosts provided in a host list. Every host must be accessible
through SSH with key-based authentication. The individual channels communi-
cate using the pycsp.net implementation.

pycsp.grid (experimental) - Provides a new @grid\_process decorator that sub-
mits a process as a Grid job for execution at a remote resource. The resource is
found through a set of parameters given to the @grid\_process decorator specify-
ing the requirements for a grid job. The channel communication is setup using
pycsp.net. Additionally Pyro [13] has been replaced with XML-RPC in an al-
ternative version, since many Grid resources are behind firewalls that only allow
outgoing HTTP traffic on port 80.

pycsp.dist and pycsp.grid are not available in the official version of PyCSP but in
experimental branches.

It is not possible to mix the process construct from one implementation with the
channel construct of another implementation. This issue is approached in Section 6.5.
The model of synchronisation used as the basis for the implementations is described
and model-checked successfully in Section 6.2.5.

6.2.1 Processes
Just as in the original PyCSP processes are wrapped in a process decorator, i.e. they
are not merely implementations of a Process class as in JCSP [100] or C++CSP [27].
The advantages of this approach are that processes will be easily recognisable in the
source code, and that it gives great flexibility for the PyCSP runtime environment to
handle processes in different ways. The constructor used is @process, and a hello world
example could look like the following example:
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@pycsp.process
def hello_world(msg):

print "Hello world, this is my message " + msg

Usually one or more channel ends will be part of the parameters for a process. Defining
a process as above will not instantiate or execute any code: it is simply defined as a
process to be used in a network at a later time.

6.2.2 Process sets
Once a process is defined, a set of processes may be instantiated and executed using
the Parallel or Sequence constructs similar to the old version. However, in order to
accommodate variable size networks a process set may now include lists of processes
as well as individual processes.

pycsp.Parallel(
source(),
[worker() for i in range(10)],
worker() * 10, # syntactic sugar
sink()

)

In the above example source, worker and sink have all been defined as processes and the
parallel construct will run one source, many workers and one sink process in parallel
and return once all processes have terminated. Naturally the example makes little sense
without the use of channels for communication; these will be introduced below. Apart
from the support for mixing scalars and vectors of processes, the Parallel and Sequence
constructs work as in the previous version and should be intuitive to anybody with any
CSP experience.

6.2.3 Channels
PyCSP originally based much of its design on JCSP, continuing the use of specialised
channel types: one-to-one, one-to-any, any-to-one and any-to-any. The type names
designate how many writer and reader processes were allowed to be attached to the
respective channel ends.

The main reason for the specialised channel types was that the implementation of
the alt construct, which allowed external choice, was based on the JCSP version and
placed strict limitations on the use of channels: only one process could safely use an
alt construct with a given channel end. To safeguard against misuse, only the reading
end of channel types that were restricted to one reader could be used as guards in an
external choice. Limitations such as these can be cumbersome to work around when
designing your CSP application and even more so for newcomers to PyCSP.
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6.2.3.1 New Channel type

There is only one channel type in the new PyCSP, as PyCSP is targeted towards sci-
entific uses. The channel is similar to the previous any-to-any channel, but with the
difference that both input and output channel ends support external choice. The use of
external choice is described in Section 6.2.4.

chanA = pycsp.Channel(’A’)
chanB = pycsp.Channel(’B’, buffer=5)
chanList = pycsp.Channel(’B’) * 10

Retrieving channel ends for use in processes has also changed in PyCSP. Previously,
a programmer would grab a channel end by calling the read() or write() method of
the channel. This has been replaced with the channel.reader() and channel.writer()
functions which also have a role in channel poisoning described below.

6.2.3.2 Channel poison

The concept of poisoning channels with the purpose of shutting down an applica-
tion was introduced in C++CSP[29] and later investigated in some detail by Bernhard
Sputh[90]. A channel is poisoned and all subsequent reads or writes on this channel
will throw an exception. This exception can be caught and used as a shut-down proce-
dure or just to shut down that single channel. In the following example we create two
processes, source and sink, and a channel to connect them. The source process finally
poisons the channel to terminate the network, which will happen since the sink process
does not catch the exception.

@pycsp.process
def source(chan_out):

for i in range(10):
chan_out("Hello world")

pycsp.poison(chan_out)

@pycsp.process
def sink(chan_in):

while True:
print chan_in()

chan = pycsp.Channel()
pycsp.Parallel(source(chan.writer()), sink(chan.reader()))
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Since all channels now support multiple readers and writers it is easy to add more
readers and writers:
pycsp.Parallel(source(chan.writer()), sink(chan.reader()),

source(chan.writer()), sink(chan.reader()),
source(chan.writer()), sink(chan.reader()),
source(chan.writer()), sink(chan.reader()),
source(chan.writer()), sink(chan.reader()))

or
pycsp.Parallel([source(chan.writer()) for i in range(5)],

[sink(chan.reader()) for i in range(5)])

Both versions produce five source and five sink processes, however the created net-
work will not do what the user may intuitively think it does. One of the sources are
bound to finish first and it will then poison the channel, which will terminate the net-
work before all the expected messages have been printed. The problem is extremely
common in producer-consumer class applications and users end up with complex solu-
tions for terminating the network.

To address this we introduce a poison mechanism based on reference counting. Cre-
ating channel ends and retires from them update a counter of how many readers or writ-
ers we have on a channel, and the leave method may perform automatic poisoning when
no readers or no writers are left.

The reader() and writer() methods automatically join the respective ends of a chan-
nel, returning a unique reference to that channel end. A new function, retire(), is used
to leave a channel end. All subsequent requests to this channel end reference will raise
an exception. When all readers or writers have retired a channel, the other end of the
channel is also retired. This is similar to how poison is propagated in the previous
versions of PyCSP, but with one important difference: with a poisoned channel any
reference to that channel will trigger a ChannelPoisonException which is caught in the
Process class that wraps all PyCSP processes. The exception handler then poisons all
the other channels that were passed to the process upon initialisation. With a retired
channel, the ChannelRetireException is thrown and the other channel ends are retired
rather than poisoned. Implementation-wise the two are identical apart from the name of
the exception that is raised.

The following code demonstrates how the retire expression can be used instead of
the poison expression. The network will now be poisoned by the last source process to
finish, rather than the first. This feature hugely simplifies many networks.
@pycsp.process
def source(chan_out):

for i in range(10):
chan_out("Hello world")

pycsp.retire(chan_out)
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6.2.4 External choice
One of the criticisms that the original PyCSP attracted was the way that external choice
was implemented, which had more in common with UNIX socket programming using
select than the more compact occam ALT operation. After executing an external choice
(Alternative) you are required to read from the selected channel. Failing to do so would
break the rules for the choice construct in CSP. Thus we decided to simplify the usage
of alt by combining select with a custom-defined action on the guard, similar to the
occam ALT. Based on this, a new choice is introduced named AltSelect.

AltSelect has changed significantly from Alternative, partly to make it more like
occam, partly to support output guards.

A guard set is now represented as a prioritised list of guards where a guard is a
Guard object and can be initialised with an attached action. An action is a function of
type choice and is executed if the guard is selected. If the guard is an input guard then
the choice function will always be handed the parameter channel_input, which is the
message that was read from the channel. AltSelect will also always return the tuple
(guard, msg). The returned guard is the guard that was chosen by AltSelect. If the
guard was an input guard, msg is the message that was read from the chosen channel,
otherwise msg has the value None. If a guard action was defined then it is executed
before AltSelect returns.

Listing 6.1: AltSelect
@pycsp.choice
def read_action(info, channel_input):

print info + str(channel_input)

@pycsp.choice
def write_action(val):

print "Wrote " + str(val)

@pycsp.process
def par_in_out(cin1, cin2, cout3, cnt):
for i in range(cnt):
pycsp.AltSelect(
pycsp.InputGuard(cin1,

read_action(info="received on cin1")),
pycsp.InputGuard(cin2,

read_action(info="received on cin2")),
pycsp.OutputGuard(cout3, i, write_action(i))

)

Note that AltSelect always performs the guard that was chosen, i.e. channel input
or output is executed within the AltSelect, so an AltSelect execution with no declared
choice, or a choice where the results are simply ignored, still performs the guarded input
or output. An example of AltSelect usage is shown in Listing 6.1.
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An action might alternatively be passed as a string. This string is then evaluated with
a copy of the current namespace. All mutable types can be updated from the evaluation
of this string. In Python, the list, dict and set types are built-in mutable types.

@pycsp.process
def counter(cin0, cin1):

try:
cnt = [0,0] # use mutable type
while True:
pycsp.AltSelect(
pycsp.InputGuard(cin0, action="cnt[0] += 1"),
pycsp.InputGuard(cin1, action="cnt[1] += 1")

)
except ChannelPoisonException:

print ’Counted:’, cnt

AltSelect performs a prioritised select from the guards in the guard list. This is
especially useful when using timeout or skip guards. A guard set having a skip guard
as the first item always commits to the skip guard, thus skip is usually used as the last
item in a guard set. A timeout guard will try to commit when the defined seconds have
passed. An example usage of the PyCSP timeout guard is shown in Listing 6.2.

Listing 6.2: AltSelect with timeout
(guard_selected , msg) = pycsp.AltSelect(
pycsp.InputGuard(cin),
pycsp.TimeoutGuard(seconds=1)

)

if isinstance(guard_selected , pycsp.TimeoutGuard):
print timeout !

PyCSP provides four built-in guard types to use with external choice. AltSelect
allows for any combination of the available guard types in a guard list. The channel
input, timeout and skip guard are well known to the CSP community:

InputGuard(chan_input_end, action=[optional])

- channel end input
OutputGuard(chan_output_end, value=<msg>, action=[optional])

- channel end output
TimeoutGuard(seconds=<sec>, action=[optional])

- when expired, it will commit
SkipGuard(action=[optional])

- at first chance, it will commit

The output guard is new in PyCSP, although thoroughly discussed throughout the
years and previously seen in Communicating Java Threads[44]. It is well understood
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by most programmers that use process algebra that output guards are not needed from a
CSP point of view, and one may with relative ease construct equivalences for any type
of output guard using only input guards. However, output guards are convenient for the
user of PyCSP and equivalences are hard to construct for users that are not professional
programmers, thus we provide the output guard as a primitive in PyCSP. All guard types
supported can be interrupted by channel poisoning or retiring. PyCSP channels may be
guarded in both ends, i.e. an output guard can be matched by an input guard.

A common method for avoiding starvation when using external choice is to re-
order the guards in relation to the history of previous choices. A FairSelect construct
is provided that performs a fair choice based on history. The interface of FairSelect is
identical to AltSelect.

6.2.5 Channel Synchronisation
The synchronisation mechanism used for JCSP and the original PyCSP implementation
is different from the one used in the new PyCSP [98, 40]. One particularly interesting
difference is that the JCSP model by Welch et al. [102, 103, 101] handles read and
write operations differently than alt operations. Alt operations are handled similarly
to the three-way handshake protocol to negotiate whether a guard from an alt can be
committed. If a guard is partially selected, the process activating the alt operation must
be asked to reply with an acknowledgement, to ensure that the guard is still active and
can be selected. The addition of the alting barrier [99] has created new possibilities for
JCSP including the support for output guards on symmetric one-to-one channels.

In the new PyCSP model read, write and alt operations are handled similarly by
a channel. The channel synchronisation performs the selection by entering a critical
region that includes all processes depending on a channel. Every process that wants to
read or write to a channel must submit a request. This request is put on a queue and
redirects to a locking object owned by the process. This means that the time-complexity
of a selection has the worst case time-complexity of O(n ∗ k), where n is the amount of
unavailable input guards and k is the amount of unavailable output guards.

A simple way of describing the difference between the two models is that in JCSP
the critical region is in the channel resource which makes the selection, whereas in
the new PyCSP model the critical region includes the dynamic set of processes which
depend on the channel resource. The first model may perform an invalid selection, that
must be rolled back. The second model will never have to roll back.

In Figure 6.2 I show an example of how the matching of channel operations comes
about in the new PyCSP model. Four processes are shown communicating on two
channels using the presented design for negotiating read, write and external choice.
Three requests have been posted to channel A and two requests to channel B. During
an external choice, a request is posted on multiple channels. Process 2 has posted its
request to multiple channels and has been matched. Process 1 is waiting for a successful
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match. Process 3 has been matched and is going to remove its request. Process 4 is
waiting for a successful match. In the future, process 1 and process 4 are going to be
matched. The matching is initiated by both, but exactly one process marks the match as
successful.

Channel A

Channel B

READY
Read queue

SUCCESS(B)
READY

Write queue

SUCCESS(B)
Read queue

SUCCESS
Write queue

Requests

1

2

4

3

Process 1
Read value from 
channel A

Process 4
Write value to 
channel A

Process 3
Write value to 
channel B

Process 2
External choice (alt) on 
the channel operations:
▪ Read from B
▪ Write value to A

Figure 6.2: Example of four processes matching channel operations on two channels

The matching of communication requests on a channel use a method similar to the
two-phase locking protocol where the locks of both involved processes are acquired
before the system state is changed. To handle specific cases where multiple processes
have posted multiple read and write requests, a global ordering of the locks (Roscoe’s
deadlock rule 7 in [82]) must be used to make sure they are always acquired in the same
order. In this local thread system the locks are ordered based on their memory address.
This is both quick and ensures that the ordering never changes during execution. An
alternative index for a distributed system could be a combination of the node address
and the memory address.

The algorithm in Listing 6.4 is executed for every possible pair of read and write
requests posted on channels in Listing 6.3. The first phase acquires locks and the second
phase releases locks. Between the two phases updates can be made. Eventually when
a matching is successful three things are updated: the message is transferred from the
writer to the reader, the active state is changed and the possibly waiting process is
notified.
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Listing 6.3: Pseudo code for the channel synchronisation method. op is a read, write or
alt operation. request is either a read or write request.
request = new_request()
for every channel involved in op:

# post request to channel
if op.type = read:

channel.read_queue.add(request)
else:

channel.write_queue.add(request)
if channel.match() then break

if not done:
waitFor match by another posted request

for every channel involved in op:
channel.remove(op, request)

Listing 6.4: Pseudo code for the channel match algorithm
for read in channel.read_queue:

for write in channel.write_queue:
if active(read) and active(write):

# Two-phase locking
if (memory_addr(read) < memory_addr(write)):

lock(read), lock(write)
else:

lock(write), lock(read)

if active(read) and active(write):
#Execute communication
transfer(write, read)
change_active_state(write, read)
notify_possibly_waiting_process(write, read)

if (memory_addr(read) < memory_addr(write)):
release(write), release(read)

else:
release(read), release(write)

if success then break loops

A model of this channel synchronisation method and an automatic exhaustive veri-
fication of the model is presented in [42] and included in Appendix A.8. The automatic
exhaustive verification is performed using the SPIN model checker on the process con-
figurations shown in Figure 6.3. All six process configurations have been verified to be
free of deadlocks, livelocks, race conditions, unspecified receptions, unexecutable code
and user-specified assertions.
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Figure 6.3: Process configurations used for verification

6.2.6 IO and Co-routines
A limitation with co-routines is that everything runs in a single thread, which means
that a blocking call will block all other co-routines as well. This is especially a problem
with IO operations, since the blocking action might happen in a system call, which is
not detectable from the Python environment.

The @io decorator (Listing 6.5) attempts to solve this by wrapping a function into
a run method on an Io thread object. This Io thread object is created on-the-fly and
yields execution to the scheduler after starting the thread. When the thread’s run method
finishes, the return value is saved and the calling co-routine is rescheduled.

Listing 6.5: Example of IO wrapper
@io
def wait(seconds):
time.sleep(seconds)

The idea of delegating a blocking system call to a separate thread was presented
by Barnes [22] for the Kent Retargetable occam-π Compiler. occam-π implements a
set of channels keyboard and screen that can be used to communicate to processes
reserved for these IO operations. This approach could also be an option for PyCSP, but
it would break when using third-party Python modules. Another alternative would be
to overwrite internal IO functions with a set of functions that yield co-routine execution
while waiting for IO.

Both alternatives have been deemed too comprehensive and not feasible for Python,
thus it is required that IO calls are wrapped using the @io decorator when running with
the pycsp.greenlets implementation.
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6.2.7 Visualisation of PyCSP traces
The traces provided by the trace module in PyCSP are not traces as defined by Hoare
[46]. It is a log of events that can be used to replay the process events. A trace of events
that may help finding performance bottlenecks in communication, load balancing and
contention. From this trace of events it is possible to show a visual representation of
active processes and communication. Figure 6.4 shows a screenshot from a playback of
a PyCSP application. The trace module only records the logic order of events and not
the exact order, thus two concurrent events independent of each other may come in any
order.

Listing 6.6: Example of how to enable PyCSP tracing
import pycsp.threads as pycsp
import pycsp.common.trace as pycsp

pycsp.TraceInit("output.trace")

@pycsp.process
def source(chan_out):

chan_out("Hello world!")
pycsp.retire(chan_out)

@pycsp.process
def sink(chan_in):

while True:
chan_in()

chan = pycsp.Channel()
pycsp.Parallel( source(-chan), sink(+chan) )

pycsp.TraceQuit()

The code in Listing 6.6 outputs the trace file in Listing 6.7. Every line is formatted in
JSON [79] syntax. The trace output can be opened and played back using the PlayTrace
tool shown in Figure 6.4.

Listing 6.7: The trace output from executing the example in Listing 6.6
{’chan_name’: ’UNIQUEID1’, ’type’: ’Channel’}
{’chan_name’: ’UNIQUEID1’, ’type’: ’ChannelEndWrite’}
{’chan_name’: ’UNIQUEID1’, ’type’: ’ChannelEndRead’}
{’processes’: [
{’func_name’: ’source’, ’process_id’: ’UNIQUEID2’},
{’func_name’: ’sink’, ’process_id’: ’UNIQUEID3’}

], ’process_id’: ’__main__’, ’type’: ’BlockOnParallel’}
{’func_name’: ’source’,
’process_id’: ’UNIQUEID2’, ’type’: ’StartProcess’}

{’func_name’: ’sink’,
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’process_id’: ’UNIQUEID3’, ’type’: ’StartProcess’}
{’process_id’: ’UNIQUEID2’,
’chan_name’: ’UNIQUEID1’, ’type’: ’BlockOnWrite’, ’id’: 0}

{’process_id’: ’UNIQUEID3’,
’chan_name’: ’UNIQUEID1’, ’type’: ’BlockOnRead’, ’id’: 0}

{’process_id’: ’UNIQUEID3’,
’chan_name’: ’UNIQUEID1’, ’type’: ’DoneRead’, ’id’: 0}

{’process_id’: ’UNIQUEID2’,
’chan_name’: ’UNIQUEID1’, ’type’: ’DoneWrite’, ’id’: 0}

{’process_id’: ’UNIQUEID3’,
’chan_name’: ’UNIQUEID1’, ’type’: ’BlockOnRead’, ’id’: 1}

{’process_id’: ’UNIQUEID2’,
’chan_name’: ’UNIQUEID1’, ’type’: ’Retire’, ’id’: 1}

{’func_name’: ’source’,
’process_id’: ’UNIQUEID2’, ’type’: ’QuitProcess’}

{’func_name’: ’sink’,
’process_id’: ’UNIQUEID3’, ’type’: ’QuitProcess’}

{’process_id’: ’UNIQUEID3’,
’chan_name’: ’UNIQUEID1’, ’type’: ’Retire’, ’id’: 1}

{’processes’: [
{’func_name’: ’source’, ’process_id’: ’UNIQUEID2’},
{’func_name’: ’sink’, ’process_id’: ’UNIQUEID3’}

], ’process_id’: ’__main__’, ’type’: ’DoneParallel’}
{’type’: ’TraceQuit’}

In order to allow the tracing of the different PyCSP implementations it was neces-
sary to be able to collect the logged events from threads, processes and remote hosts.
The task of collecting events has been implemented using PyCSP, thus when tracing
a PyCSP application another ”hidden” PyCSP network is created. Figure 6.5 shows
the CSP network including the ”hidden” channels and processes. Here, the sink and
source processes are reporting events using the ”hidden” CSP channel connected to
the Convert2Str process. These events are then streamed to a file. The hidden PyCSP
network uses the same process implementation as the main application, thus if a net-
worked PyCSP application is being traced all events will be collected at the main node
and streamed to a single file.
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Figure 6.4: The tool for visualising PyCSP traces plays back the trace output shown in
Listing 6.7

__main__ (Parallel)

Convert2Str file_w
source

sink

Figure 6.5: The CSP graph for the tracing of the PyCSP application in Listing 6.6
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6.3 Micro Benchmarks
The results of these micro benchmarks provides a detailed view of how PyCSP behaves
when stressed. The benchmarks are designed with the purpose of measuring the channel
communication time including the necessary time required to context switch. Extra
unnecessary context switches may be added by the operating system which is related to
the PyCSP implementation used.

Initiate token
and

destroy token

...

...

Figure 6.6: Ring of variable size

Using the ring design in Figure 6.6 we run a benchmark that sends a token around a
ring of increasing size. The ring benchmark was inspired by a similar micro benchmark
in [81]. N elements are connected in a ring and every element passes a token from the
previous element to the next. This challenges the PyCSP implementation’s ability to
handle an increasing amount of processes and channels. The time measurements do not
include startup and shutdown time and each measured run is divided by the size of the
ring in order to compute an average channel communication time.

The test system has been tweaked to allow a larger number of threads and pro-
cesses than the default. The results for our test system (in Figure 6.7) show that we
can reach 512, 16384 and 262144 CSP processes depending on the PyCSP implemen-
tation used. It is obvious that pycsp.processes should only be used for applications
with few CSP processes because of the exponential increase in latency. As expected,
pycsp.greenlets is able to handle a large number of CSP processes with only a small
decrease in performance.

Investigating the performance in a different perspective we use four rings of static
size N and then send 1 to N-1 tokens to cycle concurrently. In the previous benchmark
there was only one active communication at any given time, which is a rare situation
for an actual application. With this benchmark we see pycsp.processes performs
much better, since it can now utilise more cores. Based on the results in Figure 6.8
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Figure 6.7: Micro benchmark measuring the channel communication time including the
overhead of context switching for an increasing number of CSP processes

we can conclude that pycsp.processes has a higher throughput of channel commu-
nications than pycsp.threads when enough concurrent communications can utilise
several cores.

Looking at the results for the four rings of size N in Figure6.8, an interesting pattern
is observed whenever the number of concurrent tokens comes close to N. For N-1 con-
current tokens the performance of pycsp.threads is almost equal to the performance
of one concurrent token. This behaviour is explained by the blocking nature of CSP,
because when all processes but one has a token, then only this one is able to receive.
This behaviour mimics the behaviour of the test with one token and explains why the
results in Figure 6.8 are mirrored around the center.

From these micro benchmarks we can see that pycsp.threads performs consis-
tently in both benchmarks. pycsp.processes does poorly in Figure 6.7 where the
cost of adding more processes is high, but performs better in Figure 6.8 where a num-
ber of concurrent tokens are added. Finally pycsp.greenlets has proven able to do
fast switching and handle many processes, regardless of the amount of concurrent to-
kens.
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Figure 6.8: Micro benchmarks measuring the average channel communication time
including the overhead of context switching for an increasing number of concurrent
tokens in four rings of size 8, 16, 32 and 64
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6.4 Rapid Development of Scalable Scientific Software
To demonstrate the flexibility and diversity of target architectures that PyCSP supports,
this section describes three different applications using PyCSP to enable concurrent exe-
cution. The chosen problems are: Stochastic minimum search[48], k-nearest-neighbour
search[35] and McStas[54]. They show three different usages of PyCSP; a master-
worker design, a ring design and a network that combines master-worker with a set of
utility processes. The work in this section has been published in [39] and the paper is
included in Appendix A.7.

All PyCSP solutions to the mentioned problems are benchmarked and compared
with an optimal solution. For the stochastic minimum search and kNN this means that
we compare the speedup with a sequential solution written in C, thus the speedup from
the PyCSP solutions will include the overhead of PyCSP, Python and the ctypes Python
module for switching between Python and C.

McStas is an entirely different challenge and comes with a Perl wrapper for a large
code-base that contains C code and supports MPI. For McStas we replace the Perl wrap-
per with our own PyCSP wrapper and use channel communications instead of MPI. The
PyCSP solution for McStas is compared with the packaged solution using MPI for inter-
process communication.

The applications are benchmarked on three different systems: A multi-core system
with two Intel Xeon E5310 (8 cores total), a cluster system with eight Intel Core 2 Quad
Q9400 (32 cores total) interconnected with one gigabit ethernet and an Intel Core 2 Duo
2.4 Ghz (2 cores total) with workers running in a grid system on various hardware. The
stochastic minimum search and kNN are benchmarked on the eight-core system and the
cluster system. McStas is benchmarked on the eight-core system and on the dual-core
system with workers running in a grid system.

Every benchmark was executed three times and the average execution time was
used for computing the speedup plots. The sequential C reference benchmark used for
computing the speedup plots was executed on all architectures, making the speedup
plots comparable.

6.4.1 Stochastic Minimum Search
The PyCSP network for the stochastic minimum search[48] takes a function as input
and uses a Monte Carlo approach to produce a suggestion for a global minimum value
of that function within a user-specified window. The Monte Carlo algorithm is run in
parallel in a set of processes. Each process runs independently of the others and tests
internally for a new minimum local to this process. Whenever a new local minimum
is found it is sent to a master. The master feeds a filter that decides when a result is
a new best global minimum and decides when to terminate the remaining network. A
subset of the code required to create the network in Figure 6.9 is shown in Listing 6.8
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to demonstrate what lines are necessary to create a parallel stochastic minimum search.

__main__ (Parallel)

userout

filter_minimum

master

gmin gmin gmin gmin gmin

Figure 6.9: An extracted snapshot of the stochastic minimum search CSP network with
five processes executing the Monte Carlo algorithm

Listing 6.8: Source code for the stochastic minimum search application where the
userout and filter processes have been omitted. Figure 6.9 shows a visualised trace of
this application.
@process
def gmin(chin,chout, loops):
fname = chin()
res = min( [compute_in_C() for j in xrange(loops)] )
chout(res)
retire(chin, chout)

@process
def master(filter, workers_o ,

workers_i , n_workers , f):
for i in range(n_workers): workers_o(f)
while True: filter(workers_i())

to_worker=Channel();
from_worker=Channel()

Parallel(
master(<filter channel>,
to_worker.writer(), from_worker.reader(),
nprocs, <target function> ),

gmin(to_worker.reader(), from_worker.writer(), loops) * nprocs
)
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The results from running the application on a multi-core and a cluster system are
presented in Figure 6.10. The extra overhead introduced by Python and PyCSP is the
reason why we only get a speedup of 0.6 for the multi-core execution with 1 worker
process. This overhead is caused by the application that continuously sends new local
results, which in turn add channel communication and thus require the processes to
switch between Python and C. The cluster execution adds an extra overhead for network
communication, thus the speedup is 0.5 with 1 worker process. For 8 worker processes
the speedup compared to a sequential C solution is 5.0 for an 8-core host. On an 8-node
cluster with 16 workers we get a speedup of 9.6. The speedup improves as searches run
for longer periods, since the amount of channel communication drops, as the occurrence
of new minimums decreases.
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Figure 6.10: Speedup of stochastic minimum search. The sequential C implementation
executed 500.000 approximations in 38.4 seconds (avg. of three) on the 8 core host and
5.000.000 approximations in 221.2 seconds (avg. of three) on the 8 node cluster.

6.4.2 k Nearest Neighbour Search
The k Nearest Neighbour search problem[35] consists of finding the k nearest neigh-
bours of each target point in a set of N targets with D dimensions. This is used in
machine learning for finding the k nearest neighbours to a sample among a large set
of positive and negative targets. If the k nearest neighbours to a sample are primar-
ily positive, then the algorithm would give the result that a sample is positive together
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with a likelihood value. Any measurement of the distance between each target can be
used, but for this benchmark we have used the Euclidian distance in the space with D
dimensions. To compute the distances the brute force approach is used which has the
complexity of O(N2D) but is easy to parallelise. To compute in parallel the targets are
split into T sets and divided among T worker processes connected in a ring. The CSP
network in Figure 6.11 shows the workers connected in a ring, where every worker is
given a local set which it will pass around the ring. In each pass the worker executes a
kNN algorithm on the local set and the received set, until finally all results are collected
and joined to the end result. Listing 6.9 shows the code for creating the ring network
and how to compute the result for each worker. The ring approach is too fine-grained
for a grid architecture, but well suited for a closely connected parallel architecture such
as cluster computers.

Figure 6.11: k Nearest Neighbour search with four worker (kNN) processes connected in
a ring

In Figure 6.12 we have plotted the speedup for computing the 5 nearest neighbours
in 72 dimensions in a set of 10.000 targets (8 core host) and a set of 60.000 targets (8
node cluster). For the 8 core host we get a speedup of 9.0 with 8 workers, which is
caused by the better cache usage when the local set-size for each worker gets smaller.
The poorer performance for the 8 node cluster can be explained by the necessary trans-
fers of the actual arrays, and the associated serialisation, but a reasonable speedup of
12.4 is still achieved for 16 workers.

Listing 6.9: Source code for the k Nearest Neighbour search application where the
producer and consumer processes have been omitted. Figure 6.11 shows a visualised
trace of this application.
@process
def build_ring(proc, N, B, pargs):
channels=Channel(buffer=B) * N
processes=[]
for i in range(N):
processes.append(proc(*pargs,
ring_in=channels[i-1].reader(), ring_out=channels[i].writer(),
ring_size=N, ring_id=i))

Parallel(processes)
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@process
def kNN(job_ch, result_ch , D, k,

ring_in=None, ring_out=None,
ring_size=0, ring_id=0):

# channel -> channel end
job=job_ch.reader()
result=result_ch.writer()

work=data=job()

best = numpy.zeros((len(data), k))
for i in range(ring_size):
# Invoke a C impl.
kNN_in_C(data, work, best, D, k)
ring_out(work)
work=ring_in()

result(best)
retire(result)

job_ch=Channel(); result_ch=Channel()
Parallel(
producer(<N*D input array>, 4, job_ch.writer()),
build_ring(kNN, size=4, buffer=1, (job_ch, result_ch , D, k)),
consumer(result_ch.reader()))

6.4.3 Neutron Scattering Simulation
Neutron-based imaging is a powerful tool in several sciences, including solid state
physics and biology, where neutron imaging is used to produce high resolution non-
intrusive images of samples. However, neutron-based imaging is not as simple as using
an optical microscope or an x-ray imaging, and before a neutron image is produced the
imaging process must first be simulated to tune several parameters. This simulation is
hugely time-consuming and the quality of the simulation is often dictated by the avail-
able time for simulation. The de-facto standard tool for such simulations is McStas[54]
performing Monte Carlo simulations of neutron instruments. McStas comes with a
complicated Perl script that enables parallel execution with MPI. We replace this Perl
script with PyCSP to use a process-oriented model that executes on any number of grid
resources through many levels of parallism, and finally we merge the results and save
them for the user. The directed graph (Figure 6.13) is generated from a trace of an
actual execution. This is made possible by the compositional nature of CSP which is
easily traced and visualised using PyCSP.

The first task is to load the description of the experiment in a domain specific lan-
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Figure 6.12: Speedup of k Nearest Neighbour search (kNN). The sequential C imple-
mentation computed the result for 10.000 bodies in 23.6 seconds (avg. of three) on the
8 core host and for 60.000 bodies in 442.9 seconds (avg. of three) on the 8 node cluster.
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guage. This language is then compiled into a C source file which in turn is compiled
into an executable. This two-phase compilation is quite demanding and requires a non-
trivial installation of the McStas package.

To improve the productivity of the user we have enabled the possibility to move the
compilation to a service resource by putting it into a separate process. This allows the
user to configure the simulation without having to install McStas on the local computer.
The resulting executable is passed on to the worker (simulate) processes that run the
simulation numerous times over a set of parameters. The final merged result is sent
back to the user for presentation.

__main__ (Parallel)

orchestrate_network (Parallel)

simulate (Parallel)

screen

mcstas

paramspace

divide_jobs

simulate simulate simulate simulateexecute

merge

compile

Figure 6.13: Neutron scattering simulation with five worker (simulate) processes. A
dynamic orchestration of workload is in place to be able to adapt to uneven resources.

In Figure 6.14 we compare the MPI-enabled Perl wrapper with PyCSP. The PyCSP
speedup suffers slightly from the extra overhead of handling jobs. For the PyCSP exe-
cutions the work was divided into 50 jobs.

The benefit of having a dynamic orchestration of workload becomes apparent when
the executing resources differ. This is the case in grid computing, and by changing the
configuration of the worker processes as described in Listing 6.10 we can utilise many
more resources.

When executing a PyCSP network with processes submitted to a grid system the
workload must be split dynamically to cope with inactive processes, since it is un-
known when a worker process might be moved from ’queued’ to ’executing’ status.
One execution might experience that only half of the workers are executing the entire
simulation while another execution will have all the workers in ’executing’ state almost
immediately.
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Figure 6.14: Speedup of neutron scattering simulation (McStas). The sequential execu-
tion simulated 50.000.000 rays in 61.2 seconds (avg. of three) on the 8 core host.

Listing 6.10: Worker (simulate) process. The @grid process decorator configures the
process to behave as a grid process.
@grid_process(vgrid=’DCSC’, cputime=600)
def simulate(job_in, result_out , exec_file):
while True:
ncount, params = job_in()
cmd=tuple([’./’ + exec_file ,

’--ncount=’ + str(ncount),
] + params )

Parallel(
execute(cmd, retire_on_eof=False)

)
output=open(’mcstas.sim’).readlines()
result_out(output)

We have performed two large neutron simulations where one was performed on a
dual core laptop and the other was run from the same laptop but with up to 64 worker
(simulate) processes running in a grid system. From the execution times in Table 6.2
we demonstrate that the simulation finished in under 7 minutes instead of 1.5 hours.

The results produced by the three applications are not expected to scale linearly,
but even a decent speedup is a good result, since the cost for producing the PyCSP
application is limited and the scientist is still involved directly in the programming. It is
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Table 6.2: Execution times for running McStas using PyCSP and grid computing. These
numbers are indicative for grid executions but will vary greatly due to large variations
in resources, size of job queue and grid overhead.

System Simulated Rays Time (seconds)
dual core laptop
with 2 workers 2.5 ∗ 109 5928
grid with up to

64 workers 2.5 ∗ 109 411
grid with 1 worker

(expected overhead) 1 43

expected that all three applications scale to at least 64 workers for larger problem sizes.
The three applications presented in this section have demonstrated that PyCSP can

be used to model a scientific workflow, can use compilable languages for computational-
intensive parts and that, given enough concurrent processes, PyCSP is able to execute
such workflows on parallel architectures with an acceptable speedup.

6.5 The Dynamic Channel
Section 6.4 presented PyCSP as a means of creating scalable scientific software. The
scientific users of the PyCSP library should not have to think about whether they might
be sending a channel-end to a process that might be running in a remote location. Or
how they avoid using external choice on channels, that do not support external choice.
One of the powerful characteristics of CSP is that every process is isolated, which means
that we can move it anywhere and as long as the channels still work, the process will
execute correctly. The network-enabled PyCSP implementation is a prototype and uses
a single channel server to handle all channel traffic. The single channel server runs the
thread implementation of PyCSP internally, which creates a temporary thread for every
request. The server is a serious bottle-neck for the channel communication and has
limited the type of parallel applications implemented using PyCSP.

The interface of the dynamic channel resembles a single channel type. The idea is
that when the channel is first created it may be an any-to-any channel specialised for co-
routines. The channel is then upgraded on request, depending on whether it participates
in an alt (external choice) and on the number of channel-ends connected. The next
synchronisation level for the channel may be an optimised network-enabled one-to-
one channel with no support for alt. Every upgrade stalls the communication on the
channel momentarily while all active read or write requests are transformed to a higher
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synchronisation level. The upgrades continue until the lowest common denominator (a
network-enabled any-to-any channel with alt support) is reached. The network-enabled
any-to-any channel uses the distributed synchronisation model (Section 6.5.1) that does
not suffer from the bottle-necks of the former implementation.

The SPIN model checker [47] has been used to check the correctness of the dis-
tributed channel model and the transition model. Both models are described in detail
in [42] (Appendix A.8). In 1986 Vardi and Wolper [97] published the foundation for
SPIN; an automata-theoretic approach to automatic program verification. SPIN can
verify a model for correctness by generating a C program that performs an exhaustive
verification of the system state space. During simulation and verification SPIN checks
for the absence of deadlocks, livelocks, race conditions, unspecified receptions and un-
executable code. The model checker can also be used to show the correctness of system
invariants, find non-progress execution cycles and linear temporal constraints, though
these features have not been used here.

6.5.1 Distributed Channel Synchronisation
Communication between distributed processes is particularly challenging when imple-
menting any-to-any channels with support for both input and output guards. To ensure
the robustness and scalability of the implementation the distributed channel synchroni-
sation is based on the local channel synchronisation (Section 6.2.5).

The local channel synchronisation has a process waiting until a match has been
made. The matching protocol performs a continuous testing for all pairs, thus the state
of a waiting process is constantly being tried through shared memory. This method is
not possible in a distributed model with no shared memory, instead an extra process (a
process state server) is created to function as a remote lock, protecting updates of the
posted channel requests. Similar to the local channel synchronisation, it is necessary
to ensure the critical region that includes all processes depending on a selection for a
channel and retrieve the current process state from the two processes being tried. When
a match is found both processes are notified and their process states are updated through
the process state server. The state of the channel is also moved to a separate process, to
allow channels to post read and write request directly to a channel home. The location
of a channel must be known or found through a discovery service.

The CSP network (in Figure 6.15), consisting of five processes connected by four
channels, can now be distributed to multiple hosts by using the distributed channel syn-
chronisation model (see [42] in Appendix A.8). Figure 6.16 shows the internal process
dependencies when the CSP network (in Figure 6.15) is distributed on two hosts. The
thick gray lines in Figure 6.16 show the active dependencies in a communication be-
tween processes P2 and P3. In any communication only the affected channel home
server and the process state servers are activated, thus there are no bottle-necks for
concurrent communication between independent processes. A SPIN model of the dis-
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Figure 6.15: Sample CSP network

Host A Host B

P1 P2 P3 P4 P5

Channel 
Home Server 

(C1)

Channel 
Home Server 
(C2, C3, C4)

Process
State

Server

Process
State

Server

Discovery Service
C1, C2, C3, C4

Figure 6.16: Process dependency graph of the CSP network (Figure 6.15) distributed
on two hosts. The thick gray arrows show the active dependencies in a communication
on C2 between P2 and P3.
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tributed channel synchronisation is presented and model-checked successfully in Ap-
pendix A.8.

6.5.2 Dynamic Synchronisation Layer
The dynamic synchronisation layer allows channels to change the synchronisation mech-
anism on-the-fly. This means that a local channel can be upgraded to become a dis-
tributed channel. Activation of the upgrade may be caused by a remote process re-
questing to connect to the local channel. The model is presented and model-checked
successfully in Appendix A.8.

A feature of the dynamic synchronisation mechanism is that specialised channels,
such as a low-latency one-to-one channel, can be used, resulting in improved commu-
nication time and lower latency. The specialised channels may not support constructs
such as the alt operation, but if an alt operation occurs the channel can be upgraded.
The upgrade procedure adds an overhead, but since channels are often used more than
once this is an acceptable overhead.

Given the process layout in Figure 6.16 the use of a distributed channel is unneces-
sary and slow for the communication between processes P3, P4 and P5. If the scientific
user explicitly used a local channel for that link it would not be possible to use the alt
operation across multiple implementations. Processes P3, P4 and P5 must always run
in the same interpreter instance and termination signals must be handled explicitly. Us-
ing the dynamic synchronisation layer it is possible to change the process dependency
graph from Figure 6.16 to Figure 6.17.

The switching of synchronisation level works by notifying all processes which have
posted a communication request to the channel. The channel level is changed before
notifying processes. When a process either tries to enter wait or is awoken by the
notification it checks that the level of the posted request still matches the level of the
channel. If these levels do not match the transition is activated. During a transition the
process state is temporarily changed to SYNC, such that the request is not unintentionally
matched by another process.

The models presented in Appendix A.8 can be used separately for new projects or
can be combined to the following: a CSP library for a high-level programming language
where channel ends are mobile and can be sent to remote locations. The channel is
automatically upgraded, which means that the communicating processes can exist as co-
routines, threads and nodes. Specialised channel implementations can be used without
the awareness of the communicating processes.
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Figure 6.17: Process dependency graph of the CSP network (Figure 6.15) distributed
on two hosts. The dynamic channel synchronisation has upgraded the synchronisation
mechanism for the channels C1 and C2, while C3 and C4 can continue to communicate
through shared memory.
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Chapter 7

Future Work

This thesis presents PyCSP as a way for scientific users to create concurrent Python
applications, while maintaining a scientific workflow organisation. This Future Work
section is focused around issues that, if solved, would improve PyCSP for the scientific
user.

Models for channel synchronisation have been model-checked successfully in [42]
using the SPIN Model Checker [47]. This has shown that there are no dead-locks and
no race-conditions in the models, but it has not shown that the models were equivalent
to the CSP channels defined by Hoare [45]. Thus the equivalence between the dynamic
channel presented in this thesis and CSP channels, as defined in the CSP algebra, needs
to be verified, as it has been verified for JCSP [102].

7.1 The Dynamic PyCSP Library
The PyCSP synchronisation mechanisms presented in ([42] and Appendix A.8) are
the building blocks for a new PyCSP library, with a channel implementation that can
start out as a local channel and evolve into a distributed channel spanning multiple
nodes. This channel implementation will support mobility of channel ends, scheduling
of lightweight processes, distributed processes and a lookup service for locating chan-
nel homes. In this section it is discussed how these and other interesting functionalities
can be achieved. Mobility of channel ends is simple when all channels can be upgraded
to a distributed channel synchronisation mechanism. The only requirement is a lookup
service for locating a channel home. Initially this lookup service may be a simple name
server, providing the location of a channel home based on the channel id or name. If a
channel home has moved the name server must be updated and the old location must be
able to inform a channel request that the channel has moved.

I suggest selecting co-routines as the primary process type. Co-routines makes it
possible to allow for very large process networks and low overhead for communication
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between co-routines sharing a scheduler. Using PyCSP it must be possible to benefit
from the concurrent properties by allowing parallel execution. Thus it is necessary to
distribute co-routines to a process type that may execute multiple co-routines in parallel.
The options for Python are OS threads or OS processes, but since parallel execution of
threads is limited by the Global Interpreter Lock in Python, OS processes are the natural
choice. Co-routines distributed to multiple threads must also be able to communicate
on channels. Because of the transition layer, the co-routine channel can dynamically
be upgraded to a network-enabled channel. Figure 7.1 shows a process dependency
graph of the CSP network in Figure 6.15, where the co-routines have been distributed
to multiple OS processes, having one scheduler per OS process.

Host A Host B

Channel 
Home Server 

(C1)

Channel 
Home Server 

(C2)

Process
State

Server

Process
State

Server

Discovery Service
C1, C2, C3, C4

Scheduler
P4

P5

C4

Scheduler

P3
C3

Scheduler

P1 P2

Figure 7.1: Process dependency graph of the CSP network (in Figure 6.15) distributed
on two hosts. The processes P1, . . . , P5 are co-routines and split between OS processes
to allow parallel execution. A scheduler is handling the scheduling of co-routines inside
an OS process.

C++CSP2 [27] is another CSP library allowing a mixture of user-level and kernel-
level threads. C++CSP2 uses the kernel-level threads as the default process model and
has user-level threads as an option provided through the API. There are several reasons
for this choice: To allow the parallel execution of multiple processes by default. To
avoid novice users accidentally blocking the user-level scheduler through a blocking IO
call. The OS scheduler is capable of balancing the load of kernel-level threads onto the
cores of a multi-core processor.
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For PyCSP co-routines ( greenlets ) should be the primary process implementation.
Since all processes are co-routines any calls to blocking IO would have to be wrapped
in the IO decorator (Section 6.2.6). Standard operating systems are not made to handle
large amounts of OS processes, thus PyCSP would quickly be bounded by the OS if
the default process implementation was OS processes. To allow parallel execution co-
routines must be distributed to multiple OS processes (see Section 7.1.1).

7.1.1 Distributing Co-routines
This section exclusively concerns the challenge of how to balance the load of processes
(co-routines) between OS processes with the purpose of gaining from running on a
multi-core system or distributed system. The challenge is the same for OS processes
running on different hosts as the channel communication between OS processes uses
the distributed synchronisation mechanism (Section 6.5.1).

Each process is a black box, thus the only perfect solution is to distribute exactly
one CSP process per OS process. This requires as many OS processes as CSP pro-
cesses and forces all channels to be network-enabled. Finding the optimal distribution
is in the class of optimisation problems, but to benefit from optimisation algorithms
weights must be applied to processes and channels. Weights can be approximated by
running a profiling execution on a reduced set of input data, but such an approach is
very impractical and the weights may be very different from the weights based on real
data. Another method is to compute the weights during execution and continually re-
balance the distribution of CSP processes, but this requires mobile CSP processes (see
Section 7.1.1.2). A simpler approach is to record the utilisation for each of the available
resources and place new CSP processes on the least busy resources. This would also
allow for multiple users of the same cluster system to automatically share the resources.
The resources would be determined by a host list, e.g. containing the nodes in a cluster
system or eight entries of the local system.

As we have no knowledge of the weights for processes and channels the suggested
solution is to annotate the Parallel, Spawn and Sequence construct with hints as to how
the CSP processes should be distributed. Such as:

Parallel(processes..., hint=[local | strided | blocked | auto])
Spawn(processes..., hint=[local | strided | blocked | auto])
Sequence(processes..., hint=local)

The hints would have the following behaviour: local – Run CSP processes in cur-
rent OS process. strided – Distribute CSP processes in a round-robin fashion to the
resources. blocked – Distribute CSP processes in a blocked fashion, by cutting up the
list into chunks and place each chunk on a resource. auto – This would randomly dis-
tribute the CSP processes to a set defined by the least busy resources. The auto hint

68



would be default for the Parallel and Spawn constructs, but does not provide any guar-
antee of an optimal distribution.

Scientific applications need to access data files, interface with users and output re-
sults. All of these actions are tied in to a location, thus the constructs must also be able
to specify a host location and thus override any hints.

Parallel(processes..., host=[hostname/ip])
Spawn(processes..., host=[hostname/ip])
Sequence(processes..., host=[hostname/ip])

To assist the scientific user the PyCSP trace module (Section 6.2.7) should support
tracing the location and the CPU time for processes and display it in the PlayTrace
application (Figure 6.4). Users may then use this information to update Parallel and
Spawn constructs with specific hints if the current distribution of processes is unwanted.

7.1.1.1 CSP Topologies

The process patterns described in [84] solves many basic concurrency issues. For par-
allel computing where the desire is to spread the workload on multiple processes there
are a set of patterns that are particularly useful. These are line, ring, tree, star, mesh and
torus topologies and are commonly known in scientific computing. Such topologies
can be created using processes and channels in PyCSP, but by providing a special set of
topology constructs the use of such constructs provides additional information on how
processes should be distributed. Additionally, it simplifies the creation of topologies for
the user.

The kNN application code (in Listing 6.9) uses a ring topology for computation.
This ring topology is created using the process in Listing 7.1

Listing 7.1: Process constructing a ring topology
@process
def build_ring(proc, N, B, pargs):
channels=Channel(buffer=B) * N
processes=[]
for i in range(N):
processes.append(proc(*pargs,
ring_in=channels[i-1].reader(),
ring_out=channels[i].writer(),
ring_size=N, ring_id=i))

Parallel(processes)

The @ring decorator (Listing 7.2) is an example of how a special ring construct
may simplify creating advanced process patterns. The @ring adds hints to the process
distribution to facilitate a higher utilisation of available computing resources.
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Listing 7.2: Ring decorator constructing a ring topology
@ring(N, B)
def proc(pargs, ring_in, ring_out , ring_size , ring_id)
# ring node code

7.1.1.2 Mobile Processes

Mobile processes is the corner stone of the π-calculus [70] and enabling mobile pro-
cesses for PyCSP would broaden the possibilities. occam-π is currently the only CSP
implementation supporting mobile processes [21].

This is the situation for the future PyCSP library: Every PyCSP process is a greenlet
[93] (co-routine). The greenlets may be distributed to multiple OS processes or hosts.
Distributing the load of greenlets evenly on computing resources requires hints. If a
greenlet could be mobile it would be possible to redistribute greenlets in case the load
was unevenly distributed.

The Python Interpreter PyPy [80] (Section 5.1) provides a greenlet implementation
which allows running greenlets to be paused and serialised [12]. A serialised greenlet
instance is represented by a string that can be sent to another intrepreter instance where
it is unserialised and resumed. The interpreter is not yet stable, but it should be stable
enough to do experiments with mobile processes for PyCSP. Mobile processes introduce
a few problems, such as the active requests on channels that would also have to be
suspended during a process move. However, this problem can be easily avoided by
limiting the move of processes to the moment before a channel operation or after a
channel operation. As all channels are able to dynamically upgrade to network-enabled
channels and can be located through a lookup service it should not be necessary to
reinitialise a channel connection until a new channel operation is initiated. The move
of a mobile process can be activated through the explicit channel communication of a
running process or it may be a joint decision between a set of schedulers.

7.1.2 Process Wrappers
The neutron scattering simulation presented in Section 6.4.3 used a @grid_process dec-
orator, which wrapped a CSP process into a Grid job for execution in a Grid envi-
ronment. Similarly, it is possible to create other wrappers. It would be interesting to
experiment with a @ssh_process decorator and decorators for other Python interpreters,
such as @jython_process, @ironpython_process and @cython_process. Code wrapped in
a @jython_process and running in the Jython interpreter would be able to access Java
libraries.
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7.1.2.1 Emulating Greenlets

The greenlets library is only available for the primary Python intrepreter CPython and
for the PyPy interpreter. To support other Python interpreters a fallback mechanism
should load a greenlet emulator when the greenlets module is unavailable. Greenlets
can be emulated using operating system threads and conditions. The overhead would
be considerable, but for the purposes in Section 7.1.2 the overhead would still be ac-
ceptable.

7.2 Latency-hiding in a One-to-One Channel
In this section I suggest a specialised channel type: The network-enabled buffered one-
to-one channel. The distributed channel synchronisation in Section 6.5.1 handles one-
to-one communication, but performs poorly when communicating messages compared
to a standard point to point socket connection. The buffered channel suggested should
be semantically equivalent to a chain of CSP processes, except that it must be possible
to disable and enable buffering on-the-fly. The reason is that the dynamic synchronisa-
tion layer in Section 6.5.2 provides the means of changing the channel synchronisation
mechanisms during execution. However to support this the one-to-one buffered channel
must be able to export the buffer content to a more relaxed channel synchronisation (e.g.
the distributed channel synchronisation).

The latency-hiding of this one-to-one channel is obtained through the use of ac-
knowledgement tokens that are given to the sender. This enables the sender to accept
a message instantly by decreasing the tokens for every accepted message. Messages
are transferred asynchronously to the receiver, and for every message which the re-
ceiver delivers a new token is sent to the sender asynchronously. If the sender runs
dry of acknowledgement tokens it must block until new tokens have arrived. For the
latency-hiding to work the channel must be enabled with a buffer large enough to hide
the latency of the network layer.

Such a channel would allow scientific users to hide the latency of the network, even
though such results are normally reserved for experienced programmers using double
or triple-buffering techniques.

7.3 Forced Process Isolation
A common obstacle for non-trained programmers when implementing parallel applica-
tions is to avoid the use of global variables. I suggest adding a forced process isolation
for PyCSP, where access to any global variable is equal to accessing a non-existing
variable.
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The standard library in the Python programming language provides the inspect mod-
ule, which can extract source and byte code from the Python interpreter instance. This
would allow a PyCSP process to extract the source code of the process body and reeval-
uate it using a different set of globals.

As some variables in Python are mutable, they should also be protected such that
the sender process of a mutable variable do not access the variable after it has been sent
on a channel. Here I suggest making a deep copy of a variable communicated on a
channel.

7.4 Secure Channels
Many of the CSP libraries available do not include security measures to protect against
intruders on a channel. PyCSP could easily be used on unprotected public networks,
thus security measures should be developed for PyCSP. It should be investigated how
exposed or unprotected channel communication could be moved to SSL (Secure Socket
Layer).

7.5 Routing for Channel Communication
In distributing CSP networks it could be interesting to allow connecting hosts by a
PyCSP channel, even though the hosts are not able to connect directly to each other.
This case is especially relevant for mobile channel ends, as a channel end might, in rare
cases, be sent to a CSP process which is not able to connect directly to a channel home.

7.6 Stability in case of Host Failure
The behaviour of a channel communication failure or a faulted process must be defined,
such that failures can be handled. Rare errors are allowed to break execution while other
errors, such as a host being disconnected should only cause problems if other processes
are directly dependent on data from this host. The current PyCSP model breaks when
any host included in a CSP network fails.

7.7 CSP for Popular Scientific Workflow Systems
The scientific workflow systems (Section 2.2) are mature, stable and have a large user-
base, but more work is necessary to improve on their ability to execute scientific work-
flows on parallel architectures. This thesis have shown that CSP can be used for execut-
ing scientific workflows. Knime [88] and Taverna[49] are both very popular scientific
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workflow systems written in Java, it should be investigated whether it is possible to cre-
ate a CSP network using JCSP [101] where each of the tasks of the scientific workflow
is a single JCSP process.
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Chapter 8

Conclusion

The compositional nature of CSP enables any researcher to take any process of a CSP
network and optimise it in isolation, since all processes are isolated and have no side
effects. This brings huge benefits on cost and time since dedicated programmers can
be hired to optimise the bottle-necks in a workflow of any size. The scientific user still
has control of the rest of the application since it remains unchanged from the original
design. This results in an improved situation where the scientific user is still in control
and able to directly make changes to a high performance application, even if it is running
on multiple architectures and clusters at remote locations.

The close mapping between the graphical representation of CSP programs and the
PyCSP source code makes it easy to compare design documents and implementations,
helping scientific users manage the complexity that is often introduced by parallel ar-
chitectures. The neutron scattering simulation example showed how PyCSP can be used
to structure the execution of binaries into a concurrent Python application, which can
be traced and the process network visualised for a better understanding.

Experiments have been made on different process implementations for the CSP pro-
cess, resulting in a PyCSP where any application written in Python and using PyCSP
can change the concurrent execution model from threads to co-routines or processes
only by changing which PyCSP module is imported. Depending on a user’s domain
and application a user can choose to circumvent the CPython Global Interpreter Lock
by using processes. Alternatively, a user may want to speed up the communication time
by a factor of ten by using co-routines. Then again if the application is changed further
and the user wants to return to using threads, this is a simple task that does not require
the user to transfer code changes to an older revision.

The PyCSP with multiple process implementations had the issues that different CSP
processes could not communicate on CSP channels between implementations and that
the networked channel implementation did not scale at all. If PyCSP is to be used
on a larger scale, these issues must be solved. Thus this thesis presents the building
blocks for a dynamic CSP channel capable of transforming the internal synchronisation
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mechanisms during execution. The change in synchronisation mechanism is a basic
part of the channel and can come about at any time. Python is a dynamic language
and with the dynamic channel it is possible to create dynamic CSP networks where the
location of processes is irrelevant, as any process is allowed to connect to any channel
identified by id or name.

The SPIN model checker has been used to perform an automatic verification of three
models separately, that together make the new dynamic channel. During verification it
was checked that the communicated messages were transferred correctly using asser-
tions. All models were found to verify with no errors for a variety of configurations with
CSP networks. The full model of the dynamic channel has not been verified since the
large state-space makes it unsuited for exhaustive verification using a model checker.

The results from model-checking additionally showed that the synchronisation mech-
anism in the current PyCSP [40, 98] was model-checked successfully.

The external choice in PyCSP now supports output guards in addition to input
guards. This works with multiple readers and writers on a channel. The use of out-
put guards is a heavily debated issue in CSP as they are clearly not needed nor trivial
to implement. However, it is evident that the users of PyCSP find output guards a very
convenient feature and considerable work has been put into supporting output guards in
the external choice implementation in PyCSP.

In order to reduce the risk of race-conditions when using poison to terminate a CSP
network this version of PyCSP introduces the concept of retirement from a channel.
When all processes on one end of a channel retire their channel ends, the channel be-
comes retired. The effect is that the propagation of the retire signal is activated upon
the termination of the last process at a given channel end rather than the first as with the
poison operation.

Overall, the changes to PyCSP are well integrated and I believe that using PyCSP
is now easier for the non-trained user than with the previous version. The flexibility
of PyCSP has been demonstrated through executions in four different environments;
single-core, multi-core, cluster and grid. The dynamic channel for PyCSP is a candidate
to handling heterogeneous architectures effectively in a single application, since PyCSP
is portable and will run on most architectures and operating systems.
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Systems. In Peter H. Welch and Andrè W. P. Bakkers, editors, Communicating
Process Architectures 2000, pages 275–301, sep 2000.

[103] P.H. Welch and J.M.R. Martin. A CSP model for Java multithreading. In Software
Engineering for Parallel and Distributed Systems, 2000. Proceedings. Interna-
tional Symposium on, pages 114–122, jun 2000.

[104] Samuel Williams, John Shalf, Leonid Oliker, Shoaib Kamil, Parry Husbands, and
Katherine Yelick. The potential of the cell processor for scientific computing. In
CF ’06: Proceedings of the 3rd conference on Computing frontiers, pages 9–20,
New York, NY, USA, 2006. ACM Press.

84



[105] Peter Y. H. Wong. Towards A Unified Model for Workflow Processes. In 1st
Service-Oriented Software Research Network (SOSoRNet) Workshop, Manch-
ester, United Kingdom, June 2006.

[106] Peter Y. H. Wong and Jeremy Gibbons. A Process-Algebraic Approach to Work-
flow Specification and Refinement. In Proceedings of 6th International Sympo-
sium on Software Composition, March 2007.

85



Appendix A

Publications

All published papers have been peer-reviewed.

A.1 GPU Accelerated Likelihoods for Stereo-Based Ar-
ticulated Tracking

Paper presented at Computer Vision GPU (CVGPU 2010), ECCV 2010 Workshop, Her-
sonissos, Heraklion, Crete, Greece, September 11, 2010
Rune Møllegaard Friborg, Søren Hauberg, Kenny Erleben: GPU Accelerated
Likelihoods for Stereo-Based Articulated Tracking

86



GPU Accelerated Likelihoods for Stereo-Based
Articulated Tracking

Rune Møllegaard Friborg, Søren Hauberg, and Kenny Erleben

{runef, hauberg, kenny}@diku.dk,
The eScience Centre, Dept. of Computer Science, University of Copenhagen

Abstract. For many years articulated tracking has been an active re-
search topic in the computer vision community. While working solutions
have been suggested, computational time is still problematic. We present
a GPU implementation of a ray-casting based likelihood model that is
orders of magnitude faster than a traditional CPU implementation. We
explain the non-intuitive steps required to attain an optimized GPU im-
plementation, where the dominant part is to hide the memory latency ef-
fectively. Benchmarks show that computations which previously required
several minutes, are now performed in few seconds.

Keywords CUDA · GPU Computing · Articulated Tracking · Particle Filtering

Fig. 1. The type of articulated tracking for which we achieve a speed up factor of up
to 600 when using a GPU optimization. The images show stereo points with a super
imposed illustration of the skin model.

1 The Computational Problem of Articulated Tracking

Three dimensional articulated human motion tracking is the process of estimat-
ing the configuration of body parts over time from sensor input [1]. One approach
to this estimation is to use motion capture equipment where e.g. electromagnetic
markers are attached to the body and then tracked in three dimensions. While
this approach gives accurate results, it is intrusive and cannot be used outside
laboratory settings. Alternatively, computer vision systems can be used for non-
intrusive analysis such as the one shown in Figure 1. One standard approach
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is to use a particle filter [2] for finding a sequence of poses that match the ob-
served data well. From a practical point of view this means making many random
guesses of the current pose and comparing these to the observed data. In terms
of performance, the critical part is comparing each guess to the data. In this
paper, we present a GPU-based solution to this problem and show a substantial
increase in performance compared to a CPU-based implementation. Such perfor-
mance increases are essential in allowing us to build proper generative likelihood
models, that otherwise would be impractical.

Before dwelling into the details of this work, we briefly describe in Section 2
the general particle filter based framework for articulated tracking that forms
the foundation for this work. Next we consider related work in Section 3 and in
Section 4 we describe the likelihood model for our work. We focus on using the
GPU in Section 5 and results can be found in Section 6 before we conclude in
Section 7.

2 Particle Filtering for Articulated Tracking

The objective of articulated human tracking is to estimate the position and ori-
entation of each limb in the human body. This, as such, requires a representation
of the human body. The most common choice [1] is the kinematic skeleton which
is a collection of rigid bones organised in a tree structure (see Fig. 2(a)). Each
bone can be rotated at the point of connection between the bone and its parent.
We will refer to such a connection point as a joint.

(a) (b)

Fig. 2. (a) A rendering of the kinematic skeleton. Each bone position is computed by
a rotation and a translation relative to its parent. The joints are drawn as circles. (b)
A rendering of the skin model.

We model the bones as having known constant length (i.e. rigid), so the
direction of each bone constitute the only degrees of freedom in the kinematic
skeleton. The direction in each joint can be parametrised with a vector of angles,
noticing that different joints may have different number of degrees of freedom.
We may collect all joint angle vectors into one large vector θt representing all
joint angles in the model. The objective of the tracking system then becomes to
estimate this vector at each time step.
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At the heart of our articulated tracker is the well-known particle filter [2],
which we will briefly describe here. The particle filter is, in general, concerned
with estimating an unobserved state of a system from observations. In terms of
articulated tracking it is concerned with estimating the pose θt at each frame in
a video sequence. In terms of statistics, we seek p(θt|X1:t), where the subscript
denotes time and X1:t = {X1, . . . ,Xt} denotes all observations seen at time t.
This distribution is crudely represented as a set of samples that are propagated
through time by sampling from p(θt|θt−1). Each sample θ(j)

t is assigned a weight
according to its likelihood p(Xt|θ(j)

t ). Thus, at each time step t we compute

for j = 1 to J do
Sample θ(j)

t from p(θt|θ(j)
t−1) ;

wj ← p(Xt|θ(j)
t ) ;

end for

Usually it is computationally cheap to sample from p(θt|θ(j)
t−1), whereas it is

expensive to evaluate the likelihood p(Xt|θ(j)
t ). It is worth noting that the loop

can be executed in parallel as each sample is treated completely independent.
Once we have drawn new samples and assigned them weights, we can estimate

the current pose as the mean value of p(θt|X1:t). This can be approximated as

θ̄t ≈
J∑

j=1

wj∑J
l=1 wl

θ
(j)
t . (1)

3 Related Work on Computational Tracking

Most work in the articulated tracking literature falls in two categories. Either the
focus is on improving the image likelihoods or on improving the predictions. Due
to space constraints, we forgo a review of various predictive models as this paper
is focused on computational efficient likelihoods. For an overview of predictive
models, see the review paper by Poppe [1].

Most publications on likelihood models for articulated tracking are concerned
with finding descriptive image features. Sminchisescu and Triggs [3] showed suc-
cessful tracking using a combination of edge strength and horizontal flow in a
monocular setup. This approach is, however, bound to have difficulties due to
only having one viewpoint. One solution is to use multiple calibrated cameras
as, amongst others, was done by Deutscher et. al. [4] who used a combination of
edge strength and background subtraction. Due to the difficulties of calibration,
such approaches are, however, hard to use in non-laboratory settings. A possible
compromise is to use a pre-calibrated stereo camera as was done by Hauberg et.
al. [5]. Their solution did, however, not cope with limbs occluding each other.

While much work has gone into developing functional likelihood models, not
much has been published on efficient implementations on GPU hardware. Ex-
ceptions include the work of Bandouch et. al. [6] that use a simple colour based
appearance model in a multiple camera setup. By representing pixel colours as
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bitmasks they are able to make likelihood evaluations using only bitwise oper-
ations that can be efficiently implemented on the GPU. Cabido et. al. [7] use
a combination of background subtraction along with binary template matching
for a planar low-dimensional articulated model. They rephrase the entire opti-
misation as an application of textures on the GPU and as such get very high
frame rates.

4 Our Likelihood Model

In this section we define the likelihood model p(Xt|θt) used in this paper. We
use an off-the-shelf consumer stereo camera1, which provides us with a set of
points in 3D at each time step. We, thus, have Xt = {x1,t, . . . ,xI,t}, where I
denotes the number of points and each xi,t ∈ R3.

We will assume that each point generated by the stereo camera is independent
and is normally distributed around the skin of the pose. Thus, we have

p(Xt|θ(j)
t ) ∝

I∏

i=1

exp

(
−d

2
i (θ(j)

t )
2σ2

)
, (2)

where d2
i (θ(j)

t ) denotes the square Euclidean distance between the ith stereo
point and the skin of the pose parametrised by θ(j)

t . For numerical stability [2]
we implement the particle filter on a logarithmic scale and as such only need to
compute

log p(Xt|θ(j)
t ) = − 1

2σ2

I∑

i=1

d2
i (θ(j)

t ) + constant , (3)

where the constant term can be ignored. For this definition to be complete, we
need a definition of the skin model and a suitable metric.

For the skin of the jth sample we will use a collection of capsules Cj =
{cj1, . . . , cjK}. Specifically, we assign a capsule to each bone in the kinematic
skeleton, such that the capsule is aligned with the bone. The radius of the capsule
depends on the bone. We then define the skin of the skeleton as the union of
these capsules. This gives us skins such as the one in Fig. 2(b). This model is
very similar to the common model (see e.g. [8, 9]) where a cylinder is assigned
to each bone. Here, we use capsules for mathematical convenience.

To compute the distance between a point and the skin, we compute the
distance from the point to each capsule and pick the smallest, i.e.

d2
i (θ(j)

t ) = min
k
d2(xi,t, c

j
k) , (4)

where d2(xi,t, c
j
k) denotes the square distance from the ith stereo point to the kth

capsule of the jth sample. We will define this distance in terms of ray casting in

1 http://www.ptgrey.com/products/bumblebee2/
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the following. To avoid notational clutter, we will omit the time subscript from
our notation in the rest of the paper.

Let the capsule cjk be defined by the two bone end points a ∈ R3 and b ∈ R3

and the radius r ∈ R+. Consider the stereo point xi. This is a point seen by
the camera. Thus, xi must lie on a ray starting at the camera origin p ∈ R3

and casting in the direction of v = xi−p
‖xi−p‖ . We can therefore think of xi as a

function of the ray length parameter ∆. That is, we have the ray definition

xi(∆) = p+ v∆ ∀∆ ≥ 0 . (5)

From this definition we may define a measure indicating how well a given stereo
point xi fits with a given capsule. Let ∆ be the ray length of the stereo point
and let ∆min be the shortest ray length corresponding to an intersection point
between the ray and the capsules then intuitively a distance measure may be
taken as |∆−∆min|. This corresponds to rendering a depth map of the capsules,
and computing the absolute difference between this and the depth map from the
stereo camera.

Since stereo data contains outliers, both from other objects appearing in the
scene and from false matches, we need a robust metric. Here we simply truncate
the distance if it exceeds a given threshold

d(xi, c
j
k) =

{
|∆min −∆| if ∆min exists and |∆min −∆| ≤ τ .
τ otherwise.

(6)

For this metric to be computable, we need to be able to determine if a given
ray intersects the capsules and if so compute the distance ∆min. The details of
ray capsule intersection can be found in Appendix A. It is worth noting that the
basic model works for all skin models, though ray casting details will have to be
adapted.

5 Optimizing for the GPU

The algorithm presented in this paper achieves a major speedup when imple-
mented on the GPU. However, it requires careful planning in designing for the
massive parallelism in the GPU architecture. The first problem to be addressed
is how to block data and computations most efficiently with respect to perfor-
mance. The task is to minimize data communication and maximize the amount
of computations done by one block of threads. Our targeted GPU architectures
are the CUDA enabled Nvidia GPUs with compute capability from 1.1 to 1.3.

For our current applications we typically use in the order of I ≈ 50000 stereo
points, K ≈ 40 capsules and J ≈ 2000 samples. One simple approach would be
to create a 3D float array of dimension J×K×I where entry (j, k, i) would hold
the value of d(xi, c

j
k). This would result in a naive data parallel computation

where each thread would compute a single distance measurement. However, such
an array would require 2000× 40× 50000× 4 bytes ≈ 16 Gigabytes of memory.
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This clearly exceeds the maximum available device memory, so some tiling must
be applied to our problem.

Thus, we create a grid of thread blocks in such a way that each thread
block corresponds to one sample and one tile of stereo points and we launch a
measure kernel on this grid. During execution the measure kernel will loop over
samples in consecutive launches to avoid kernel time-outs. Additionally, support
for multiple GPU devices is performed by dividing the samples into one chunk
for each GPU. If multiple GPUs are available the same number of CPU worker
threads is created and then given a GPU to control. The overhead of launching
CPU threads is small and the effect will only be visible for small problem sizes
which are not the target for this paper. This orchestration results in the grid
setup illustrated in Figure 3. Using this approach we will have an intermediate
2D result array A consisting of J × POINTS_TILES computed measurements,
where POINT_TILES is set to I

POINTS_PER_BLOCK . The number of threads
in each block is identical to POINTS_PER_BLOCK, thus this value is tuned
to achieve the best occupancy for a given GPU.

Fig. 3. Illustration of the grid layout and kernel launches for a single GPU. A se-
quence of measure kernel launches is executed: one for each tile of samples where SAM-
PLE_TILES = SAMPLES_PER_GPU/SAMPLES_PER_KERNEL. Only a single
reduction kernel is launched prior to returning to the CPU thread handling the GPU.

Subsequently we will launch a partial sum reduction kernel. We execute the
reduction kernel on a grid where each thread block corresponds with one sample.
The kernel performs partial sum reduction on the result array A to produce
the final measurement set M. The jth component in set M holds the final
measurement value of the jth sample. Observe that partial sum reduction is a
well studied problem on the GPU and we will therefore not treat it further in this
paper. The NVIDIA CUDA SDK version 3.0 contains a sample with code [10]
and the next release of CUDPP will also contain sum reduction [11].

To perform the entire computation on the GPU we need to transfer the
stereo points X and the capsules {Cj}Jj=1 to the GPU device and then read
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back the set M from the GPU device. We also need to setup the intermediate
storage A. Since each capsule takes 7 floats to store and each stereo point 3
floats the total memory requirements on device memory is for our typical use:
7JK + 3I + J POINT_TILES + I ≈ 3 Megabytes. This is far from our upper
bound on global memory of 256 Megabytes and means that we can keep all
points, capsules and measurements in device memory during execution.

The problem that we have specified is memory bound, since it traverses
the set of capsules {Cj}Jj=1 for every stereo point in X while the computation
does not outweigh the latency of the memory. It is essential that we hide this
memory latency. The GPU is perfect for doing exactly this, if enough thread
blocks are active and the memory operations are handled with care. For optimal
performance it will be necessary to keep data aligned in host memory and ensure
coalesced access to host memory by using the 16 Kb shared memory available in
each SM (streaming multiprocessor)2. Seven threads are used to fetch the data of
one capsule (7 floats). In Figure 4 and Listing 1.1 we show how the stereo point
data, consisting of the coordinates x, y, and z for a single point, are handled in
a similar manner, where every set of three threads is working together to fetch
one stereo point (3 floats).

/∗ blockDim . x = POINTS_PER_BLOCK ∗/
__shared__ f l o a t Xds [ 3 ] [ blockDim . x ] ;
s i z e_t i = threadIdx . x ;
s i ze_t t o t a l = blockDim . x∗3u ;
s i ze_t o f f s e t = blockDim . x∗blockIdx . y∗3u ;
f o r ( s i ze_t i i = i ; i i < t o t a l ; i i += blockDim . x )

Xds [ i i %3][ i i /3 ] = Xd[ o f f s e t+i i ] ;

Listing 1.1. All threads in a warp of 32 threads will request data from aligned
neighboring addresses in device memory, Xd. This results in two coalesced
memory requests of maximum size (64 bytes). The data is then copied to shared
memory and organized as illustrated in Figure 4, to avoid bank conflicts.

Fig. 4. Ensuring coalesced memory transfers when transferring stereo points from GPU
device memory to shared memory. Data is fetched in blocks of 16 and thus aligned in
host memory.

2 The Nvidia Fermi architecture has 64 Kb of cache / shared memory reserved for
each SM.
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The reason for orchestrating the arrays coordinate-wise in shared memory is
to avoid bank conflicts [12]. The GPU is a SIMT (single instruction, multiple
thread) architecture and executes in an SM one instruction for a warp of 32
threads. When the 32 threads access a shared memory address, it is crucial
that they balance the requests onto all 16 banks. Since the shared memory is
organized in a round-robin fashion to the 16 banks, we can make sure that we
access neighbouring addresses.

When the GPU executes branch instructions all threads in a warp (32 threads)
follow the same branch. This means that if some threads in a warp follow one
branch and others follow another branch, all threads must visit both branches
and the instruction count goes up. With this in mind we have worked to minimize
the number of divergent branches, and where we knew there would be divergent
branches, conditional expressions were preferred instead, since both expressions
would be evaluated anyway.

The resulting measure kernel uses 24 registers, which means that we can run
up to 320 threads on devices with compute capability 1.1 or 1.2 (8192 registers)
and 640 threads on devices with compute capability 1.3 (16384 registers). 24
registers is not low enough to completely hide the memory latency, but to go
lower would require to split the measure kernel into multiple kernels which could
each use less registers. This task would require a huge temporary data set in
device memory and thus we concluded that 24 registers is the best we can do. The
block size used for the benchmarks in Section 6 is chosen so that the maximum
number of active blocks is 8 and can go to either 320 or 640 active threads.

6 Two Orders of Magnitude Speedup

To benchmark the implementation, it was run on the three systems listed in Table
1. For every benchmark, a sequential CPU implementation was also executed and
the result values compared for correctness. We varied the number of stereo points
and the number of samples to see how well the solution scales for up to 43000
stereo points and 3500 samples. The number of capsules was constant at 48. The
current GPU implementation is only limited by the maximum grid sizes and
the shared memory, thus it actually supports up to 4.194.240 stereo points and
65535 samples of 64 capsules, which can all fit inside 256Mb device memory.

Table 1. Benchmark systems

System 1 System 2 System 3
Intel Core 2 Quad @ 2.4Ghz Intel Core 2 Duo @ 2.33Ghz Intel Core 2 Duo @ 2.4Ghz
4Gb DDR2 800Mhz 4Gb DDR2 800Mhz 2Gb DDR2 667Mhz
Nvidia C1060 Tesla 4Gb 2 * Nvidia 9800GX2 1Gb Nvidia 8600M GT 256Mb
Compute cap. 1.3 Compute cap. 1.1 Compute cap. 1.1
240 cores @ 1.30Ghz 512 cores @ 1.50Ghz 32 cores @ 0.94Ghz
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When comparing the performance of the two 9800GX2 with the C1060, no-
tice that one 9800GX2 actually consists of 2 GPUs with hardware similar to a
8800GTX. This means that we are comparing a system with a total of 4 GPUs
with a system with 1 GPU, which gives a disadvantage to the system with 4
GPUs, since the benchmark results include the overhead of handling 4 threads.
The plots in Figure 5 clearly shows that the GPU implementation scales linearly
with an increasing number of stereo points or samples for both systems. The
effect of handling the extra threads can be seen for the smaller problems and we
expect that the C1060 will be fastest for small problems. For the largest prob-
lem the two 9800GX2 are 2.1 times faster than the C1060, but theoretically two
9800GX2 can actually execute 2.46 times more FLOPS than one C1060. The
two 9800GX2 are also more capable at hiding the memory latency, since they
can have 4 times 320 active threads, while the C1060 is limited to 512 active
threads for our implementation. System 3 was not included in these plots, since
the benchmark results was around 20 times slower.
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Fig. 5. Plots showing linear scaling for increasing number of stereo points or samples.
The number of capsules is kept constant at 48.

The speedup plot in Figure 6 is created using the CPU implementation in
Listing 1.2 as the reference. We have used the same input data set for the CPU
and the GPU benchmarks. The measurement function used in the CPU imple-
mentation (Listing 1.2) is identical to the measurement function used in the GPU
implementation (Listing 1.3), but the invocation of the measurement function in
listing 1.2 is purely sequential and thus only utilize one core. Since the problem
is memory bound, the one thread will have to wait on memory. We expect that
an optimized CPU implementation could execute twice as fast, compared to the
reference CPU implementation. On the GPU the memory latency has been suc-
cessfully hidden, which becomes apparent when looking at the speedup numbers
in Figure 6.
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f o r ( s i ze_t j = 0 ; j < J ; ++j )
{
M[ j ] = 0 .0 f ;
f o r ( s i ze_t i = 0 ; i < I ; ++i )
{

s i ze_t const i i = i ∗3u ;
f l o a t 3 const x_i = make_float3 (X[ i i ] ,X[ i i +1] ,X[ i i +2] ) ;
f l o a t va lue = MAX_DISTANCE;
f o r ( s i ze_t k = 0u ; k < K; ++k)
{

s i ze_t const kk = ( j ∗K + k) ∗7u ;
f l o a t 3 const a = make_float3 (C[ kk ] , C[ kk+1] , C[ kk+2] ) ;
f l o a t 3 const b = make_float3 (C[ kk+4] ,C[ kk+5] , C[ kk+6] ) ;
f l o a t const r = C[ kk+3] ;
va lue = min ( measurement ( x_i , r , a , b ) , va lue ) ;

}
M[ j ] += value ;

}
}

Listing 1.2. The CPU implementation used for benchmarking. This code is
executed in a single thread for the CPU.

/∗ Extracted from the body o f the measurement_kernel ∗/
f l o a t 3 const x_i=make_float3 (Xds [ 0 ] [ i ] , Xds [ 1 ] [ i ] , Xds [ 2 ] [ i ] ) ;
f l o a t va lue = Ads [ i ] ;
f o r ( s i ze_t k = 0u ; k<K; ++k)
{

f l o a t 3 const a = make_float3 (Cds [ 0 ] [ k ] , Cds [ 1 ] [ k ] , Cds [ 2 ] [ k ] ) ;
f l o a t 3 const b = make_float3 (Cds [ 4 ] [ k ] , Cds [ 5 ] [ k ] , Cds [ 6 ] [ k ] ) ;
f l o a t const r = Cds [ 3 ] [ k ] ;
va lue = min ( value , measurement ( x_i , r , a , b ) ) ;

}
Ads [ i ] = value ;

Listing 1.3. The GPU implementation, which computes results identical (apart
from rounding differences) to the CPU implementation in Listing 1.2. This code
is executed in J ∗ I threads for the GPU.

The 8600M GT achieves a stable speedup of ≈ 20, while the others increase
in speedup until reaching their maximum stage. The increase in speedup is ex-
plained by the overhead of running many kernels. For these benchmarks a kernel
was called for every 8 samples, thus the overhead of calling a kernel takes up a
larger proportion when the problem size is small and the GPUs are fast.

The fact that we see a correlation in Figure 6 between the speedup of the
GPUs and with the GPU hardware specifications, means that we can conclude
that the GPU implementation has succeeded to utilize the GPUs efficiently.
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Fig. 6. The speedup achieved when computing a data set of the specified size on a
GPU vs. the CPU. The number of capsules is kept constant at 48.

7 Conclusions and Future Work

In this work we have presented a tiling approach that results in a very efficient
GPU acceleration of the measurement process for articulated tracking with a
particle filter. The main causes to our two orders of magnitude speedup factor
lies in careful hiding memory latencies from device memory and avoiding memory
bank conflicts in the shared memory. We not only gain from the raw processing
power of the GPU, but also from its alternative memory layout.

Our future work involves benchmarking on small scale GPU clusters as this
may further interactive markerless computer vision based articulated tracking.
Besides this, the sampling process of the particle filter is currently implemented
in a naive consumer-producer scheme using a single CPU thread for each sample.
This appears to be the next performance bottleneck that we will investigate.
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A Computing the Ray–Capsule Intersection Point

To find the intersection between the ray and the capsule we first consider the
situation with an infinitely long capsule. Here we can find the point of intersection
by first finding the point yi on the line through a and b that is closest to the
ray xi(∆). By orthogonal projection we find this as

yi = a+
(

(xi(∆)− a)T
c
)
c (7)

where we have defined c = b−a
‖b−a‖ .

At the point of intersection between the ray and the infinite capsule we must
have

‖ xi(∆)− yi ‖2= r2 . (8)

Inserting the ray definition from Eq. 5 gives us

r2 =‖ p+ v∆− yi ‖2=‖ v⊥∆+ p⊥ ‖2 , (9)

where P =
(
I− ccT

)
and v⊥ = Pv and p⊥ = P (p− a). This is readily identi-

fied as a second order polynomial in ∆

Pc(∆) = vT
⊥v⊥∆

2 + 2vT
⊥p⊥∆+ pT

⊥p⊥ − r2 = 0 . (10)

If no roots to this polynomial exist then the ray does not intersect the infinite
long capsule. Otherwise we solve for the minimum positive root ∆cap which will
give us the intersection point on the infinite long capsule.
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In practice, the skeleton model does not have infinite long limbs and as such
we do not have infinite long capsules. The above approach thus needs to be
modified to cope with finite capsules. In the case where 0 ≤ cT (y − a) ≤ 1
the above analysis still holds. In all other cases we only need to see if the ray
intersects with the spheres of radius r centred in a and b. If the ray intersects
the sphere centred in a, we must have

‖ xi(∆)− a ‖2= r2 . (11)

Once again, this gives as a second order polynomial

Pa(∆) = vTv∆2 + 2vT (p− a)∆+ (p− a)T (p− a)− r2 = 0 . (12)

If this polynomial has no roots then the ray does not intersect the sphere centred
in a. If it does have roots, we find the intersection from the smallest positive
root. A similar treatment can be given to the sphere centred in b.

Thus, the ray intersection algorithm will solve three second order polynomials
Pa(∆), Pb(∆), and Pc(∆) and use some if -statements that will determine select
the proper smallest positive root as the ray intersection length.
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Abstract
Chromatin Immuno Precipitation (ChIP) profiling detects in vivo protein-DNA binding, and has 
revealed a large combinatorial complexity in the binding of chromatin associated proteins and their 
post-translational modifications. To fully explore the spatial and combinatorial patterns in ChIP-
profiling data and detect potentially meaningful patterns, the binding patterns must be aligned and 
clustered, which is an algorithmically and computationally challenging task. We have developed 
CATCHprofiles, a novel tool for exhaustive pattern detection in ChIP profiling data. 
CATCHprofiles is built upon a computationally efficient implementation for the exhaustive 
alignment and hierarchical clustering of ChIP profiling data. The tool features a graphical interface 
for examination and browsing of the clustering results. CATCHprofiles requires no prior knowledge 
about functional sites, detects known binding patterns "ab initio", and enables the detection of new 
patterns from ChIP data at a high resolution, exemplified by the detection of asymmetric histone 
and histone modification patterns around H2A.Z-enriched sites. CATCHprofiles’ capability for 
exhaustive analysis combined with its ease-of-use makes it an invaluable tool for explorative 
research based on ChIP profiling data. 
CATCHprofiles and the CATCH algorithm run on all platforms and is available for free through the 
CATCH website: http://catch.cmbi.ru.nl/ 
User support is available by subscribing to the mailing list catch-users@bioinformatics.org 



Author Summary
Tools for the alignment and clustering of biological data are invaluable in biological research. In 
recent years, a new type of data has become available: Chromatin Immunoprecipitation (ChIP) 
profiling data. This data contains the distribution of proteins, like histones or transcription factors, 
along the DNA. We have developed CATCHprofiles, a software tool for aligning and clustering 
such data, allowing the detection of new, potentially biologically relevant patterns in the binding of 
proteins on the DNA. With the aid of the CATCH clustering and alignment algorithm and the 
graphical user interface in CATCHprofiles, it is possible to detect and distinguish all the different 
patterns present in a ChIP dataset. We exemplify the use of our algorithm and tool by detection of 
new patterns in published data sets. 

Introduction
Chromatin Immuno Precipitation (ChIP) profiling techniques detect in vivo protein-DNA binding. 
The DNA bound by the protein of interest is co-immunoprecipitated using protein-specific 
antibodies (ChIP), and mapped to the genome either using a DNA microarray chip (ChIP-on-chip) 
or by sequencing (ChIP-seq), for a review see Collas et al.
ChIP profiling has been used not only to detect in vivo transcription factor binding sites[1-5] but 
also to map the epigenetic profile of the chromatin, e.g. histone occupancy and histone 
modifications[6-9]. ChIP profiling has revealed a high complexity of binding patterns, both for 
transcription factor binding sites and for epigenetic markers. The DNA-binding proteins show 
temporal variation in binding[9,7,10], as well as a combinatorial variation over different binding 
sites in the genome[11]. The various combinations of histone modifications are thought to instruct 
the cellular machinery[12] while the combinatorial presence of transcription factors could provide a 
mechanism to exert complex gene regulation[13].

The initial analysis of ChIP-profiling data is primarily concerned with detecting the binding sites in 
the genome and correlating regions that have specific combinations of chromatin modifications with 
other observables like gene expression. Such an exploration of the biological relevance of the 
spatial and temporal combinations of DNA-binding proteins and their modifications requires the 
clustering of similar ChIP profile regions. One approach is to discretize the data to a simple 
presence/absence call of each ChIP signal per region, and then classify regions by their binary 
presence/absence combinations[14,15]. However, this approach does not exploit the rich 
information of the individual signal shapes and relative positions within the regions. Another 
approach is to compile sets of genomic regions with similar annotated functions and determine their 
average ChIP signal pattern. This approach is easy to apply but does not allow the exploration of 
new patterns in unannotated regions. In general, a major challenge in the clustering of  ChIP 
patterns is to compare and cluster binding profiles to enable further  analysis of the identified 
clusters without a priori binning genomic locations of known functions such as transcription start 
sites, or reducing the complexity of the data by not including the relative positions and shapes of the 
ChIP signals. Not only does this call for an unsupervised clustering method that can manage high-
resolution ChIP profiling data, it also requires the method to account for the unknown relative 
positioning of novel patterns, necessitating the alignment of the ChIP profile regions. Furthermore, 
it requires a flexible organization and graphical presentation of the results to allow browsing and 
selecting the results for further analysis.

To meet this challenge we have developed the CATCH (Clustering and AlignmenT of ChIp profiles) 



algorithm and implemented it in the tool CATCHprofiles. The CATCH algorithm is designed to 
handle ChIP profiling data and accounts for variable positioning of significant patterns within 
profile regions by incorporating alignment in the profile comparison. CATCHprofiles supports the 
analysis workflow by an interactive graphical visualization of data and results. 

Two other analysis tools are currently available that include aligning of ChIP profile regions. The 
first one, ChromaSIG[16], implements a heuristic clustering and alignment based on Gibbs 
sampling[17]. The second, ArchAlign[18], performs exhaustive alignment using a similar approach 
to the CATCH algorithm, but does not perform clustering. The non-exhaustive and probabilistic 
search of  ChromaSIG  has an advantage in speed, but also the disadvantage of varying, non-
deterministic results. Also, the heuristic approach to alignment and clustering cannot guarantee 
sensitivity, and some patterns may go undetected. CATCHprofiles and ArchAlign circumvent this 
by performing an exhaustive comparison of all pairwise profile windows in the dataset. However, 
since ArchAlign does not perform clustering, but reports the average aligned pattern of a set of 
preselected profiles, it cannot be used for discovery of more than one pattern in the given data. Our 
CATCHprofiles tool presents advantages over both ChromaSIG and ArchAlign, since we include 
both hierarchical clustering and exhaustive alignment in a deterministic algorithm. Furthermore, the 
Java tool CATCHprofiles has an interactive graphical user interface to browse and export results 
and the CATCH core algorithm is implemented for parallel execution on multi-core machines. 

CATCHprofiles can be used to detect ChIP profile patterns in an unbiased approach, i.e. not based 
on functional annotation, as well as to extract new biological information from the alignment of 
individual patterns. We demonstrate the power of CATCHprofiles by genome-wide clustering of 
H2A.Z-enriched sites in a ChIP-seq dataset, revealing the H2A.Z context to contain various patterns 
of CTCF, RNA Polymerase II (PolII) and histone modifications. We also show how the orientation 
of the individual ChIP patterns  correlates with the orientation of genomic elements, namely how 
the relative orientations of the H2A.Z and CTCF peak patterns are correlated with the orientation of 
the CTCF binding motif. 

Results

The CATCH algorithm

We designed and implemented the CATCH algorithm to perform simultaneous alignment and 
clustering of ChIP profile patterns. To run the CATCH algorithm, the user must provide one or more 
ChIP profiling data sets along with the genomic regions to analyse, e.g. peak regions of interest. In 
the following, we use the shorthand 'profiles' refer to genomic regions of the ChIP profiling data, 
unless stated otherwise. Our implementation represents the profiles internally as multi-dimensional 
vectors of equidistant floating point values along their specified regions of the genome. 

The CATCH algorithm uses a hierarchical clustering approach combined with pairwise alignment: it 
keeps a pool of profiles from which it iteratively aligns all pairs and chooses the most similar pair. 
Initially, this pool is the set of all profiles in the data set. Each time the most similar profile pair (P1, 
P2) is chosen, P1 and P2 are merged to obtain P', the average profile of their alignment, and P1 and P2 

are replaced by P' in the profile pool. P' is then aligned to all the remaining profiles in the pool to 
determine their pairwise similarity. The sequence of merging events determines the topology of the 
tree. Conceptually this type of clustering is an unweighted pair-group centroid clustering[19]. As 
default similarity measure for comparing the profiles we use the sum of squared distances and every 



profile pair is compared in both forward and reverse (mirrored) direction. CATCH represents the 
profiles internally by a series of signals for fixed equidistant positions within the profile window, 
estimating missing values by linear interpolation of neighbouring signals, thereby allowing 
comparison of profiles with varying resolution. The CATCH algorithm and the options for the 
similarity measure and normalization are described in detail in Supplementary Methods: CATCH 
algorithm.

Visualization and graphical interface

CATCHprofiles is a stand-alone tool for ChIP profiling clustering analysis and visualization. The 
tool implements the CATCH algorithm, as described above, for the alignment and clustering of 
ChIP profiles. It takes as input selected areas from the ChIP profiling data, e.g. areas obtained from 
peak calling, or areas selected from annotation, such as promoter regions. Through the graphical 
user interface, the user can selectively load one or more ChIP profiling data sets, along with a bed 
format file defining the positions of the profiles to be analysed within the selected profiling data. 
When the data has been loaded into CATCHprofiles, the selected profiles are presented to the user 
in the Graph view with each included ChIP experiment plotted in a different colour for easy 
distinction (Supp.Figure 4). After alignment and clustering, the result is visualized in two different 
types of displays, the Cluster view (Supp.Figure 5) to explore the tree obtained by the clustering, 
and the Branch view to visualize and compare profile patterns at selected branches of the tree. The 
graphical interface allows the user to examine and select distinctive ChIP-profile patterns and the 
corresponding branches of the tree for further analysis. At any level in the tree the average profile 
patterns and the genomic positions of the profiles can be exported as plain text while clusters can be 
marked and saved for later browsing in CATCHprofiles. 

Computational efficiency

The exhaustive all-against-all comparison and alignment in the CATCH algorithm comes at a cost 
in computation time. Since the similarity score is calculated per track in the pairwise comparisons, 
adding more ChIP experiments (signal tracks) to the profiles adds linearly to the computation time. 
Adding more profiles, however, causes a quadratic increase in pair-wise profile comparisons and 
computation time. We have therefore implemented the CATCH clustering algorithm in C, 
optimizing for both memory efficiency and computation speed. Furthermore, we have enabled 
parallel computation of the comparison scores, so the computation time scales inversely with the 
number of available processors (see Supplementary Methods: Parallel Implementation). 

Clustering of PolII sites and alignment of promoters

We demonstrate the capability of CATCH for unbiased discovery by clustering regions of PolII 
binding in the ChIP-seq dataset of PolII, H2A.Z and a selection of histone modifications from Wang 
et al.[15] . In these data CATCHprofiles detects a cluster of 2093 profiles with a high signal for 
H3K4me3 and for almost all the histone acetylation marks under study, a profile pattern that has 
been reported for actively transcribed promoters[15] (Figure 1). We validated the positions of the 
profiles in the cluster to be enriched in promoters by comparing to annotation. Indeed, 81% of the 
profiles are within 1kb of annotated Ensembl TSS. From the remaining 19% more than half 
(253/389) were within 1kb of TSS predicted by Aceview[20] based on transcription data 
(Supplementary material: cluster12750.xls). 
We used the same dataset to study how the alignment changes the average profile of the promoters. 
We selected the active promoters (TSS) from ENCODE regions and used CATCHprofiles to align 
the H3K4me3 signals in the promoter regions. When disregarding the direction of transcription, the 
average TSS has a peak of H3K4me3 on both sides of the centre (Figure 2 A). However, the average 



profile patterns change when allowing both alignment and mirroring (Figure 2 B, C), revealing that 
the individual profile patterns are actually asymmetric around the TSS (Figure 2 D). 

Clustering of H2A.Z profiles

To demonstrate the power of CATCH for the discovery of new, potentially biologically relevant 
patterns in ChIP-seq data we analysed the chromatin modification patterns accompanying H2A.Z. 
H2A.Z is a histone variant that is found throughout the genome. In both yeast and human, H2A.Z 
occupies two consecutive nucleosomes around the nucleosome-free region at transcriptionally 
active promoters[21], but little is known about binding patterns at other H2A.Z sites and their 
functional relevance. 
We applied the CATCH algorithm and the CATCHprofiles tool to analyse the patterns around 
H2A.Z enriched sites using a genome-wide ChIP-seq dataset from human CD4+ cells of histone 
modifications, RNApolII and CTCF[15]. The dendrogram of the total 37456 ChIP-seq profile 
regions contained seven major clusters (Figure 3). Each of the clusters presented a unique 
combination and shape of binding patterns around the H2A.Z signal. The average profiles of the 
clusters were viewed and exported from the CATCHprofiles tool. 
One cluster pattern (cluster 35517) consisted of H2A.Z binding sites with no apparent PolII, CTCF 
or histone mark. Another cluster (cluster 37112) has an H2A.Z peak co-located with peaks for 
H3K4me and H3K9me. Two of the clusters (cluster 37163 and 36420) have patterns closely 
resembling the known pattern of active promoters[6,15], the main difference between them is that 
cluster 36420 has a CTCF peak immediately adjacent to the PolII peak while cluster 37163 has no 
CTCF. And finally, three clusters (cluster 36426, 36884 and 36899) have novel and asymmetric 
patterns with a CTCF peak flanking the H2A.Z and around them varying degrees of histone 
methylation (Figure 3 and Supp.Figure 6). 
For each cluster, we extracted and compared the genomic context of the regions in the cluster with 
the whole-genome distribution of H2A.Z sites to asses which cluster pattern was over-represented 
in genomic regions located at 5' end of genes, 3' end of genes, in introns, in exons and gene distant 
regions (see Methods). 
Gratifying, the two clusters that contain patterns resembling active promoters (cluster 37163 and 
36420) contained regions close to annotated promoter regions (83% and 80% were within 5kb of 
annotated TSS, respectively). 

CTCF/H2A.Z asymmetric patterns

Of particular interest are the three clusters in which the CTCF protein co-occurs with H2A.Z. Each 
of these three clusters is significantly over-represented in 3' regions of genes as compared to the 
complete set of H2A.Z sites (Supp.Figure 7). These clusters show a pattern of H2A.Z located 
asymmetrically near the CTCF binding sites. Instead of an H2A.Z double peak as is seen in the 
promoter pattern, H2A.Z is present only on one side of the CTCF and thus incorporated in only one 
of the two neighbouring nucleosomes. 
CTCF (CCCTC-binding factor) is a zinc finger protein that has been reported to be critical in 
regulation of gene expression[22]. The distinct positioning relative to the H2A.Z site uncovered by 
CATCHprofiles suggests a (possibly indirect) physical link between the CTCF binding site and the 
adjacent H2A.Z nucleosome. To corroborate the asymmetry of the CTCF/H2A.Z patterns we 
performed a CTCF motif detection for each profile region and correlated the motif orientation with 
the orientation of the profile in the CATCH alignment. The orientation of the CTCF/H2A.Z pattern 
has a highly significant correlation with the orientation of the CTCF motif for each of the clusters 
that feature the CTCF/H2A.Z peak pattern: cluster 36884 (0.33, P < e-32), cluster 36426 (0.39, P < 
e-19 ), cluster 36420 (0.29, P < e-5 ) while there was no correlation in the remaining clusters 
(Supp.Table 3). 



The CTCF binding affinity to the CTCF motif was investigated by Renda et al[23] who showed 
that of the eleven zinc fingers in the protein, only four are required for strong binding, and these 
zinc fingers (numbered ZF4 to ZF7) have a specific orientation with respect to the sequence motif. 
The correlation of the asymmetric CTCF/H2A.Z pattern with the CTCF binding motif indicates that 
the H2A.Z nucleosome is most likely to be found 3' of the CTCF motif that corresponds to the ZF4 
side of the bound CTCF protein (Figure 4). 
Two earlier studies on CTCF and nucleosome positioning that did not apply alignment did not 
report any asymmetric patterns, but instead showed that H2A.Z  is highly enriched in nucleosomes 
flanking the CTCF binding sites[24], and that H2A.Z has one major enrichment peak at the centre 
of intergenic CTCF-sites[25]. In their recent paper, Lai and Buck[18] did report an asymmetry in 
the nucleosome pattern as well as in the H2A.Z pattern when they aligned the signal in both forward 
and reverse direction around a preselected set of 1000 CTCF binding sites. However, in their study 
Lai and Buck did not find a correlation between the pattern orientation and the orientation of the 
underlying CTCF motif that links the asymmetry of the pattern to the orientation of the CTCF 
protein. 

Discussion
The analysis of ChIP profiling data aims to discover the functional relevance of DNA-binding 
proteins. A prerequisite for such discovery is to be able to either detect patterns in sites of known 
functionality, or the opposite, to interrogate and annotate the function of sites with specific patterns. 
Both of these approaches require a method for clustering the ChIP profile patterns, and for this 
purpose we developed CATCHprofiles - a ChIP profile clustering and alignment algorithm 
integrated in a Java tool to visualize and browse the results. 

We designed the CATCH algorithm specifically to handle the structure of ChIP profiling data, 
including taking advantage of the genome-wide coverage for unbiased discovery: Firstly, CATCH 
performs an exhaustive comparison and clustering based solely on the signal patterns in the profiles, 
thus eliminating the need to incorporate pre-existing knowledge, like the presence of Transcription 
Start Sites, into the search for patterns. Secondly, because the CATCH clustering includes alignment 
of the profiles, we do not need e.g. annotated Transcription Start Sites (TSS) to align the promoters, 
and we can actually improve the resolution of annotation-based profiles. When comparing, for 
known promoters, the average profile based on a TSS alignment with one based on a Chip-profile 
based alignment using CATCH, the resolution of the average profile improved markedly after 
CATCH alignment (Figure 2). Thirdly, because CATCH automatically mirrors profiles in the 
alignment procedure we can detect asymmetric patterns even if we have no prior knowledge about 
their direction, as shown for both promoters (Figure 2) and H2A.Z patterns (Figure 3). Fourthly, 
since the ChIP signal can vary between experiments depending on e.g. the difference in affinity of 
the various antibodies, CATCH incorporates options for normalizing the signal between the 
experiments included in the clustering to prevent the dominance of e.g. a single high signal track 
(Supp.Figure 3). Finally, Chip profiling data can have various resolutions and coverage  and the 
internal interpolation in CATCHprofiles allows seamless combination  of data of various resolution 
and coverage. 

Next to discovering and characterizing individual binding patterns, CATCH may also be applied to 
compare binding patterns between cell types. Or, within one cell type, to compare temporal 
variation in binding patterns by combining the ChIP experiments from different time points. It 
should thereby be noted that the CATCH algorithm is not limited to ChIP profiling data, but can just 
as easily be applied to e.g. DNA methylation or DamID[26] profiles. In fact, CATCHprofiles is not 



dependent on the platform used to produce the data, and the pattern analysis can be applied for any 
genomic data where shape and the relative genomic location of the signals adds to the biological 
interpretation of the result. 

The challenge for many high-throughput analysis techniques is the handling and visualization of the 
high-dimensional data. Often a viable solution is abstraction, as when plotting in the space of 
principal components when using principal component analysis[27] for clustering. But in the cases 
where representative and intuitive visualization is feasible, the tools that provide a graphical 
visualization often achieve the highest resonance in the scientific community, as was the case with 
the alignment program ClustalW which has had a full graphical interface since 1997[28]. 
CATCHprofiles provides the ChIP profiling community with an efficient implementation of an 
exhaustive alignment and clustering algorithm alongside an easy-to-use interactive graphical 
display of the results. 

CATCHprofiles - with example datasets and installation instructions - is available for download 
from http://catch.cmbi.ru.nl

Methods

Implementation

The CATCHprofiles tool is implemented using a combination of two programming languages; Java 
and C. The graphical user interface is implemented in Java, while the CATCH clustering and 
alignment algorithm is implemented in C as the CATCHprofiles clustering engine. To accommodate 
the computational load of large-scale analysis we have optimized the CATCHprofiles clustering 
engine for parallel efficiency and achieved a close to linear scaling with the number of cores 
(Supp.Figure 9). The speed-up plot was produced from benchmarks on an 8-core system. Based on 
the algorithm design and the parallel implementation, the running time of the CATCHprofiles 
clustering engine scales quadratically with the number of profiles and linearly with the number of 
signal tracks. A more detailed description of the parallel implementation is available in 
Supplementary Methods: Parallel implementation. 

H2A.Z enriched sites

The binding sites were defined by peak calling on the H2A.Z ChIP-seq data from Wang et 
al[15] using the peak calling program MACS with default settings resulting in a total of 37456 sites. 
We then defined the profiles for the analysis as the 5000bp windows around the H2A.Z sites and we 
selected 11 ChIP-seq tracks of histone modifications (H3K18ac, H3K9ac, H4K5ac, 
H4K8ac,H2BK5me1, H3K27me1,H3K4me1, H3K4me2, H3K4me3, H3K9me1, H4K20me1) 
together with H2A.Z, CTCF and PolII as input to the CATCH algorithm. The computation was 
executed in parallel on a 64-core machine. Determination of genomic context and the comparison of 
genomic distributions were done using the online tool PinkThing based on Ensembl NCBI 36 gene 
annotation (http://pinkthing.cmbi.ru.nl). 
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Figures

Figure 1: Example profile of PolII cluster with marks of active transcription. The average profile  
pattern of cluster 12750 (containing 2093 profiles) from the CATCH clustering of PolII binding  
sites. The profile pattern has a high signal for both H3K4me3 and all the histone acetylation marks,  
which are known to correlate with active transcription. 81% of the profiles are within 1kb of  
annotated Ensembl TSS, and of the remaining 389 regions, 253 were within 1kb of Aceview 
predicted TSS. 



Figure 2: The effect of CATCH alignment on H3K4me3 profile on a subset of ENCODE TSS. A set  
of 241 promoter regions with high H3K4me3 was selected from the CATCH analysis of ENCODE 
TSS. The H3K4me3 signal is shown (a) aligned by the genomic position of the TSS disregarding the  
direction of the TSS (b) aligned by TSS and allowing mirroring (c) by CATCH alignment without  
mirroring (d) by CATCH alignment and mirroring. The alignment becomes better and the average  
signal more localized when using both mirroring and CATCH alignment. 



Figure 3: Dendrogram with overview of H2A.Z clusters. The tree of the 37456 H2A.Z profiles has  
been collapsed to show only the relation and patterns of the seven main clusters. Cluster profile  
patterns are shown in detail in Supp.Figure 6.



Figure 4: The orientation of the CTCF/H2A.Z pattern is correlated with the orientation of the  
CTCF binding motif. (a) Of the eleven zincfingers in CTCF, only four are required for strong  
binding. The orientation of the binding with respect to the CTCF motif was determined by Renda et  
al[23]. (b) The dominant orientation of the CTCF/H2A.Z pattern with respect to the orientation of  
the underlying CTCF motif. (c) The CTCF motif as derived from motif detection in genome-wide  
CTCF peaks in the ChIP-seq dataset of Barski et al[6]. 



Supplementary Methods

The CATCH algorithm

The CATCH algorithm uses a standard hierarchical clustering approach: it keeps a pool of profiles 
from which it iteratively chooses the most similar pair, according to the chosen similarity measure. 
Initially, this pool is the set of input profiles. Each time a most similar pair P1 ,P2   is chosen, P1  
and  P2  are merged to a representative profile  P' , and  P1  and  P2  are replaced by P'  in the 

profile pool. The sequence of merging determines the topology of the dendrogram (Supp.Figure 2). 
When  running  CATCHprofiles,  it  is  possible  to  choose  between  different  similarity  scores, 
normalization methods, etc. These options are described in the following sections and summarized 
in Supp.Table 1.

Profile similarity measures

The choice of the alignment scoring measure will determine which type of signal similarity is given 
the  highest  score  and  thus  also  determine  the  sequence  of  clustering  of  the  profiles.  CATCH 
implements three different scoring schemes, described in detail in the sections below:  

• Cross Correlation (CC), which is used extensively in signal analysis, see e.g. Smith[29]. It 
is equivalent to the vector dot product, which is also sometimes called the inner product. 

• Pearson's Correlation Coefficient (PC), which measures the linear correlation between two 
signals. It can be seen as a normalized version of CC. 

• Sum of Squared Differences (SSD). 

The three scoring measures are all described in Gelder et al[30].
For two profiles containing multiple tracks of signal sequences, the scores are calculated per track, 
and the alignment score for the complete profile is computed as the average of the alignment score 
per track. 

The alignment of two signal sequences  S A [0 .. n A−1 ]  and S B [0 . .nB−1 ]  is characterised by an 
integer r . If r  is positive, S B  is shifted r  positions to the left, relative to S A . If r  is negative, 
S B  is shifted −r  positions to the right. The latter situation is illustrated in Supp.Figure 1.
  

Supp.Figure 1: Illustration of the shift r  and the numbers 
noverlap r   and n total r 



For a given score, CC, PC, or SSD, the  alignment score Score S A , SB ,r   is calculated for each 
shift r∈R=[−r max . .r max ] , where r max=p⋅min nA , nB   and p∈[ 0;1 ]  is a parameter that can be 
adjusted. The  similarity score of S A  and S B  is the alignment score of the best shift. Thus, if high 
values correspond to a good score, like PC and CC, the similarity score is calculated as 

Score S A , SB =max
r∈R

Score S A , SB ,r  

 and if low values correspond to a good score, like SSD, the similarity score is calculated as 

Score S A , SB =min
r∈R

Score S A , SB , r  

The following notation is used in the descriptions below (See  Supp.Figure 1 for more intuitive 
definitions). 
For  each shift  r ,  let  noverlap r   denote the number of  positions  in  the  alignment  where  both 
sequences are defined. Then, 

noverlap r ={min {n A−∣r∣, nB}, if r≤0

min {n A , nB−r}, otherwise }
Similarly, let  n total r   denote the total number of positions in the alignment, i.e.

n total r ={max {n A , nB∣r∣}, if r≤0

max {n Ar , nB}, otherwise}
Finally, let 

I overlap r ={[∣r∣. .noverlap r ∣r∣−1 ] , if r≤0

[0 ..noverlap r −1 ], otherwise }
and 

I total r ={ [ 0. .ntotal  r −1 ] , if r≤0

[−r . .ntotal  r −r−1 ] , otherwise }
Cross Correlation
The cross correlation alignment score is defined for sequences S A  and S B  as the sum of the signal 
products at all positions in the alignment where both sequences are defined: 

CC SA , SB , r= ∑
i∈I overlapr 

SA [i ]⋅SB[ ir ]

Large CC values correspond to good alignments, and low values correspond to bad alignments. The 
intuition is: If two similar signals are aligned correctly, high signal values are aligned with high 
signal values, and thus, the high values are amplified as much as possible. An advantage of the cross 
correlation score is that it is very noise insensitive.

Pearson's Correlation Coefficient
Pearson's correlation coefficient can be seen as a variant of the cross correlation coefficient, where 



the signals are first normalized by subtracting the mean and dividing by the standard deviation 
times the square root of the length of the signal. It measures linear correlation and is defined as 

PC SA , SB , r= ∑
i∈I overlapr 

S A [ i ]−Er [S A ]
σr [ S A ]

⋅
S B [ ir ]−Er [SB ]

σr [ SB ]

 where 

Er [SA ]=
1

noverlapr 
∑

i∈ Ioverlapr 

S A [ i ]

is the average value of S A  in the overlap with S B  and 

σ r [S A]= ∑
i∈ Ioverlapr

S A [ i ]−Er [S A ] 2

is noverlap r   times the standard deviation of S A  in the overlap with S B . Similarly, 

Er [SB]=
1

noverlapr 
∑

i∈Ioverlap r 

SB [ ir ]

is the average value of S B  in the overlap with S A  and 

σ r [SB]= 1
noverlap r

∑
i∈Ioverlap r 

SB [ ir ]−Er [ SB ]2

is noverlap r   times the standard deviation of S B  in the overlap with S A .
The possible values of Pearson's Correlation Coefficient lie between  −1  and  1 . A value of  1  
means that the two signals are perfectly linearly correlated, a value of  0  means that there is no 
linear relationship between the signals, and a value of −1  means that they are anticorrelated.

Sum of Squared Differences
When using the sum of squared differences as the scoring measure, one could decide to consider 
only positions where both sequences are defined, as with the CC score: 

∑
i∈ Ioverlapr 

S A [ i ]−SB [ ir ] 
2

However, this would generally favour alignments with very large shifts, since they would result in 
very few terms in the sum.
One solution to this could be to weight the sum by the ratio of the total number of positions in the 
alignment to the number of overlap positions: 

SSDoverlapS A , SB ,r =
ntotalr 

noverlap r 
∑

i∈ Ioverlapr
S A [ i ]−SB [ ir ] 

2

This is called weighted SSD. 

Another solution could be to consider the full alignment and represent missing signal values by 0: 



SSD totalS A , SB , r = ∑
i∈ I totalr

S A [ i ]−SB [ ir ] 
2

where S A [ i ]=0 , for i<0  or i≥n A , and S B [ i ]=0 , for i<0  or i≥nB . Thus, shifting high signal 
values of one signal past one end of the other signal is penalized significantly more than having 
small signal values sticking out. CATCH implements both options. 

Signal normalization
Depending on the choice of similarity measure, high signal values may be either favoured (CC) or 
disfavoured (SSD) in the calculation of the similarity score. By normalizing the profiles before 
calculating the alignment and similarity scores, the dependence on signal strength can be removed 
or weakened. It may be desirable to let the normalization factor depend on both signals. Thus, when 
comparing two signals S A  and S B , each signal value in S A  is divided by a normalization factor 
Norm S A , SB   depending on  S A  and possibly on  S B .  Similarly,  each signal value in  S B  is 
divided by a normalization factor  Norm S B , S A   depending on S B  and possibly on S A . 
With  Pearson's  Correlation  Coefficient,  additional  normalization  is  not  necessary,  since  the 
normalization is “built-in” in the measure. The built-in normalization ensures that the results lie 
between −1  and 1  and thus, in a sense, it improves the interpretation of the results. On the other 
hand, we do not have the flexibility of choosing between different normalizations. Thus, e.g. two 
signals that are identical except for a scaling factor will score the same as two signals that are  
exactly identical.

Sum of Values
Normalizing by the sum of values ensures that only the shape of the signal is evaluated in the 
similarity measure. However, this also entails that comparing two signal shapes S A  and S B  that 
are the same except for a scaling factor, will have the same similarity as comparing S A  with itself. 

NormSV S A , SB=∑
i=0

n A−1

S A [i ]

NormSV SB , SA=∑
i=0

n B−1

SB[ i ]

Largest Maximum Value
If it is desirable to take the scaling into account, so two identical signals will score higher than the 
same two signals differing by a scaling factor, it is an option to normalize by the maximum value of 
either sequence. Thus, 

NormMV S A , SB =NormMV SB , S A =max mA ,mB 

 
mA= max

0≤i≤nA−1
S A [ i ]  , mB= max

0≤i≤nB−1
 SB [ i ]

Largest Average Value
As a second way of taking the scaling into account, CATCH also implements normalization by the 
maximum average signal value of S A  and S B . 

Norm AV S A , SB =NormAV SB , S A =max a A , aB 



 

aA=

∑
i=0

nA−1

SA [ i]

nA

aB=

∑
i=0

nB−1

SB [i ]

nB

Representative profile of a cluster
Every time a pair of profiles is selected as the pair with the highest similarity score, the two profiles 
are merged to a new representative profile for the cluster. Each position in the representative profile  
is the (weighted) average of the corresponding positions in the two merged profiles. The merging of 
profiles has to take into account that the aligned pair may have positions where only one of the two 
profiles have defined values, possibly due to the shift  of the alignment.  The merging may also 
account for the number of original profiles represented by each of the two profiles.

Weighted merging
When merging two profiles, the number of original profiles represented by each of the two profiles 
may differ. 
If weighted merging is chosen, the new representative profile will be a weighted average of the two 
merged profiles, where the weights are defined per position by the total number of original profiles 
in each of the two merged profiles. 

Pruning the alignment
To determine the merged profile even when there are positions with undefined values for one of the 
two profiles in the alignment, there are two main options:  

1. Cut away the positions with undefined values, so the merged profile will contain only 
positions with defined values for both profiles 

2. Use the value of the profile that does have a value defined at that position 

CATCH will prune merged profiles from left and right until reaching a position where the weight is 
above a given threshold defined as a percentage of the maximum weight of the alignment. The 
threshold  can  be  set  as  a  parameter  (Supp.Table  1).  The  second  case  above  corresponds  to  a 
threshold of 0.

Options
A number of options and parameters can be set for adjusting the alignment and clustering. Available 
algorithm options are listed in Supp.Table 1. 



Parameter Default  Options 

Weighted merge * Yes

No 

Similarity Score  CC

*  SSD

 weighted SSD

 Pearson

Normalization None 

Sum of both

* Largest maximum value

Largest average value

Maximum pruning 1/15 (percentage) 
Minimum overlap 1/5  (percentage) 

Supp.Table 1: CATCH algorithm options.

Parallel implementation 

When activating a clustering of N selected profiles from the CATCHprofiles java application, the 
entire job description of data and user-selected parameters are compiled in JSON format and used 
as input to the CATCH engine written in C. The complete clustering result is then loaded into the 
java application for visualization.

The CATCHprofiles clustering algorithm has four main components: the initial comparison and 
similarity score computation for all profile pairs, the selection of the highest scoring profile pair, the 
merging of the selected pair into a representative profile, and the updating of the similarity score 
table (Supp.Figure 8: The clustering algorithm flow diagram). In Supp.Table 2 we show the time 
spent in each of these four main components for three different problem sizes. Increasing the 
number of tracks, requires more time for similarity score computation while reducing the 
percentage of time spent selecting the highest scoring profile pair. Increasing the number of profiles 
adds to the percentage of time spent selecting the highest scoring profile pair. Since both variations 
are equally important we must optimize for both cases.
We have written a threaded (parallel) implementation of both the pairwise score computations and 
the selection of the highest scoring profile pair. Since all the parts were contained in loops and we 
wanted the threaded code to be platform independent, the OpenMP (Open Multi-Processing) API 
was used to implement the threading. It handles creating and terminating threads, synchronization 
between threads, shared and local variables and dividing the workload between the created threads.



Profiling benchmark 
data set

Initial similarity 
score 
computation

Selecting the 
highest 
scoring 
profile pair

Updating 
similarity 
scores after 
merging

Merging 
profiles

Other

1480 profiles, 1 track 40.71% (27.6s)
4.51% 
(3.1s)

53.94% 
(36.5s)

0.75% (0.5s) 0.09% (0.1s)

1480 profiles, 2 tracks 42.19% (53.8s)
2.37% 
(3.0s)

55.15% 
(70.3s)

0.23% (0.3s) 0.06% (0.1s)

2960 profiles, 1 track
43.80% 
(110.0s)

9.11% 
(22.9s)

46.85% 
(117.7s)

0.19% (0.5s) 0.06% (0.1s)

Supp.Table 2: Time spent in the different parts of the CATCH algorithm as measured on three  
benchmark data sets. 

The running time of the CATCHprofiles clustering engine depends on the size of the input data, the 
user-specified parameters (see Supp.Table 2) and the available hardware. We benchmark the 
CATCHprofiles clustering engine using a test data set of 1480 profiles, 2960 profiles and 5920 
profiles, all with 8 tracks of 52 data points per profile. The test data sets of 2960 and 5920 profiles 
were generated by replicating the data set of 1480 profiles. The size of the data set varies with the 
number of profiles and tracks. The benchmarks are performed by executing the clustering engine in 
isolation, thus communication with the Java application is not included in the measurements. 

The CATCH executable outputs the processing time spent clustering profiles. For specifying the 
amount of threads, the environment variable OMP_NUM_THREADS is set to the desired 
threadcount. If OMP_NUM_THREADS is not set, then OpenMP automatically uses a threadcount 
that matches the available cores on a system. The benchmarks are executed on a computer with 8 
cores: two Intel Xeon E5310 Quad Core processors and 8 GB RAM running Ubuntu 9.04. The user-
specified parameters equal to the clustered results demonstrated in this paper are:

Weighted merge: Yes
Score method: Sum of squared differences
Normalization: Largest average value
Minimum pruning: 6,7%
Minimum overlap: 50%

We measured the total computation time for parallel execution on multiple cores and calculated the 
speedup gained by comparing to execution on a single core. The speedup plot (Supp.Figure 9) 
shows a close to linear speedup for up to 8 cores, when executing our benchmarks. The benchmark 
data set consisted of 5920 profiles, 8 tracks and a track length of 52. On the 8-core machine the 
CATCH algorithm required approximately 57 minutes to finish, illustrating the algorithm capacity 
for  clustering larger data sets within a reasonable running time.

The time spent on alignment of the profiles can be reduced by increasing the percentage minimum 
overlap of the aligned profiles. Setting the minimum overlap to 100%, requires the shortest of two 
profiles to be aligned 100%, and for profiles of equal length this corresponds to disallowing 
alignment. Decreasing the minimum overlap increases the computation time for the similarity score. 



The added cost of performing alignment of the profiles is less when the execution is running on 8 
cores vs. 1 core. Running time as a function of increasing the minimum overlap is shown for 1, 4 
and 8 threads in Supp.Figure 10. 



Supplementary Figures

Supp.Figure 2: Conceptual illustration of the CATCH clustering algorithm. Example of clustering  
four profiles with two tracks of ChIP data, plotted in red and blue respectively. All pairs of profiles  
are aligned to find the alignment of highest similarity. In each iteration, the profile pair of highest  
similarity is clustered and their cluster is represented by their average aligned profile. The  
hierarchical clustering continues until all profiles and clusters are included in the dendrogram. 



Supp.Figure 3: Normalization affects the clustering and the resolution of the patterns. (a) with  
normalization of the signal strength the profiles cluster by the intensity and shape of all tracks
equally, resulting in a clear split between patterns of active and inactive promoters as highlighted  
in the dendrogram with green and red respectively. The inactive promoters pattern is low signal for  
all the tracks shown. Within the cluster I of active promoters subclusters arise with variations of the  
active promoter pattern, e.g. cluster II. (b) Without the use of normalization, the intensity of the  
signals dominates the clustering. Most of the inactive promoter patterns of low signal intensity are  
still clustered together, highlighted in red. However, the biggest cluster with a pattern resembling  
the active promoter pattern is cluster I, and it is clustered separately from e.g. cluster II which  
differs mainly in signal intensity. Clustering using normalization is the recommended and default  
option for clustering in CATCH to avoid the dominance of high signal tracks in the clustering.





Supp.Figure 4: CATCH Graph view. After loading a data set of ChIP profiles, the Graph view 
shows plots of all profile regions. On the left the track names and colours can be adjusted for easy  
distinction. 



Supp.Figure 5: Screenshot CATCH cluster view. The result of the CATCH clustering algorithm is  
shown on the right as a dendrogram. The tree can be interactively browsed to examine the average  
profile patterns at any level in the tree. Individual profiles and subclusters can be exported by  
right-clicking on the cluster node in the tree. Below the tree, the average profile is shown for the  
currently selected cluster. 



Supp.Figure 6: Detailed view of the H2A.Z genome-wide cluster patterns. Each pattern represents  
the average profile pattern for the profiles in the cluster. The patterns of clusters 36420 and 37163 
contain high signals for PolII, methylation and acetylation marks correlating with active  
transcription. Four clusters (36420, 36426, 36884 and 36899) have a CTCF peak close to the  
H2A.Z. The genomic distributions corresponding to these clusters are shown in Supp.Figure 7. 



Supp.Figure 7: Genomic distributions of the seven clusters of H2A.Z binding sites. Each plot  
shows the distribution of the categories: exon, intron, 5'near, 5'far, 3'near, 3'far and distant. The 
limit for 'near' regions is 5kb, the limit for 'far' regions is 25kb. The categories are shown as  
numbers relative to the H2A.Z genomic distribution with p-values indicating significant  
differences per category. The clusters with CTCF, but no acetylation marks, e.g. clusters 36426,  
36884 and 36899, are all significantly enriched in the 3' regions of genes. 



Cluster name Brief description Cluster size CTCF Motif correlation

36899 Low H2A.Z + CTCF + H3K4me1 615 0.040

36884 H2A.Z + CTCF 2,618 0.326

35517 H2A.Z alone 12,206 0.098

37112 H2A.Z + met 10,793 0.075

37163 H2A.Z + Promoter 7,898 0.019

36426 H2A.Z + CTCF + met 1,244 0.390

36420 H2A.Z + Promoter + CTCF 1,192 0.285
Supp.Table 3: Correlation of pattern orientation with orientation of CTCF motif for each of the  
H2A.Z clusters. Only the CTCF containing patterns with a clear H2A.Z peak show correlation with  
the orientation of the CTCF motif. Promoter: Marks of active promoters including  PolII, histone  
acetylation and histone methylation marks. Met: Histone methylation. 



Supp.Figure 8: CATCH algorithm flow diagram indicating concurrent computation. Score 
computation: the initial comparison and similarity score computation for all profile pairs. Find  
highest score: the selection of the highest scoring profile pair. Merge i and j having the highest  
score: the merging of the selected pair into a representative profile. Dependencies are visualized by  
arrows and parallel parts marked with the order of concurrency available.



Supp.Figure 9: Speedup plot of the relative performance increase in the CATCHprofiles  
clustering engine. The parallel implementation of the CATCH clustering engine results in a near-
linear speedup of computation time with increased number of threads. The y-axis shows the  
speedup, and the x-axis the number of threads used. The profiles contain 8 tracks and the alignment  
was set to use a minimum overlap of 50%, the other parameters were set to default as listed in  
Supp.Table 1.



Supp.Figure 10: Running time dependence on alignment. Running time of clustering 1480 
profiles with 8 tracks, when the minimum overlap is varied. Results are shown for executions with  
1, 4 and 8 threads.
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Abstract. This paper introduces a framework for building CSP based applications,
targeted for clusters and next generation CPU designs. CPUsare produced with sev-
eral cores today and every future CPU generation will feature increasingly more cores,
resulting in a requirement for concurrency that has not previously been called for. The
framework is CSP presented as a scientific workflow model, specialized for scientific
computing applications. The purpose of the framework is to enable scientists to ex-
ploit large parallel computation resources, which has previously been hard due of the
difficulty of concurrent programming using threads and locks.
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Introduction

This paper presents a software development framework targeted for clusters and tomorrow’s
CPU designs. CPUs are produced with multiple cores today andevery future CPU generation
will feature increasingly more cores. To fully exploit thisincreasingly parallel hardware,
more concurrency is required in developed applications.

The framework is presented as a scientific workflow model, specialized for scientific
computing. The purpose of the framework is to enable scientists to gain access to large com-
putation resources, which have previously been off limits,because of the difficulty of con-
current programming — thethreads-and-locksapproach does not scale well.

The major challenges faced in this work include creating a graphical user interface to
create and edit CSP [1] networks, design a component system that works well with CSP and
Python, create an execution model of the designed CSP networks and run experiments on the
framework to find the possibilities and limitations. CSPBuilder can be downloaded from [2].

1. Background

Over the past few decades, companies producing CPUs have consistently increased processor
speeds in each new edition by decreasing the size of transistors and increasing the complexity
of the processor. The number of transistors on a chip have doubled every 2 years over the last
40 years, as declared by Moore’s Law [3]. However, doubling the number of transistors does
not automatically lead to faster CPU speeds, and requires additional control logic to manage
these. Speed and throughput have typically been increased by adding more control logic and
memory logic, in addition to increasing the length of the processor pipeline. Unfortunately
more pipelines mean more branch-prediction logic, with theeffect that it becomes very ex-



348 R.M. Friborg and B. Vinter / CSPBuilder

pensive to flush the pipeline when a branch is wrongly predicted. Many other extensions and
complexities, e.g. SIMD pipelines, have been added to the CPU design during the past 40
years to increase CPU performance.

Today, numerouswalls have been hit. The amount of transistors is still doubled every
two years, so Moore’s Law still applies. However, three problems have been raised: thepower
wall, the frequency walland thememory wall. According to Intel [4], heat dissipation and
power consumption increase by 3 percent for every 1 percent increase in processor perfor-
mance. Intel also explain that because of bigger relative difference between memory access
and CPU speeds, memory also becomes a bottleneck. Furthermore, the pipeline has become
too long, so the cost of flushing outweighs the performance gained by increasing the pipeline
length. All of these mean that we can go no further with current designs, and Intel suggest in
[4] that the next step is parallel computation.

With several processing units, thepower wall, frequency walland memory wallare
avoided, since there is no longer a need to increase the processor performance for a single
unit. Instead you must be aware of communication and synchronisation between threads,
which can cause overhead, deadlocks, livelocks and starvation if used wrongly.

Computers of tomorrow are getting more and more processing units, which can be uti-
lized by creating concurrent applications that will scale towards many processors. We are
already at 128+ cores in graphic processors, 9 cores in the CELL-BE processor from IBM,
SONY and TOSHIBA and recently Intel announced that they are experimenting with an 80-
core CPU [5].

1.1. Motivation

Many scientists (chemists, physicists, etc.) are not experienced programmers, but are able
to do scientific computing by programming sequential applications. So far they have been
relying on the hardware manufactures to produce hardware which has improved the perfor-
mance of their applications — allowing for more sophisticated and computationally intensive
science.

Due to the limitations of sequential computing already discussed, scientists must now
developconcurrentapplications, in order to take advantage of parallel hardware and to ad-
vance the science. The amount of difficulty involved in creating concurrent applications, de-
pends on the programming language and methodology. Traditional concurrent programming,
with threadsandlocks, makes it difficult to program even simple applications — adding more
parallelism to an already threaded program tends to result in problems, not solutions. As a di-
rect result, concurrent programming is seen ashard, and is generally avoided by the majority
of programmers.

We want to encourage scientists to develop concurrent programs using a CSP [6] based
approach, where applications are built as layered networksof communicating processes. Such
an approach isreliable, no unexpected surprises;scalable, to different numbers of processes
and processors; andcompositional, enabling processes to be ‘glued’ together to build increas-
ingly complex functionality.

A feature of CSP based designs is that every process can be completely isolated from the
global namespace, only interacting with other processes through well-defined mechanisms
such as channel inputs and outputs — processes arenotcontext sensitive. This in turn permits
a high level of code reuse within scientific communities, as previously built components can
be connected in different ways, corresponding to the data-flow of a particular computation.

Recent reports of using the GPU1 and CELL-BE for scientific computing, have reported
performance increases of up to 100-fold for some scientific algorithms. However, the diffi-

1Graphics Processing Unit– general-purpose graphics hardware found in high-end workstations, e.g. the
NVidia GeForce2.
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culty of programming on a GPU or the CELL-BE is evident, and wedesire a high level of
code reuse — i.e. algorithms written should be able to run on anumber of different archi-
tectures, without a significant porting effort. This includes within a single-processor system,
heterogeneous multi-core systems, and distributed over networks of machines. A CSP based
design, of communicating processes, allows us to mix and match processing architectures —
selecting the best performing implementations of processes for particular architectures.

While architectures have differing performance characteristics, programming in different
languages can also affect performance. Development in a high-level language such as Python
is usually faster, but produces code that runs slower than a similar implementation in a low-
level language, such as C. By programming the computation intensive parts in C, and using
Python as the ‘glue’, we optimize the execution time and avoid having to program the entire
application in C, saving development time.

When doing scientific work, which often relies on particularmathematics libraries to do
the “number crunching”, the functions provided are not necessarily all implemented in the
same language. By using tools such as SWIG [7] and F2PY [8] we hope to address this issue,
making it possible to use code from C, C++ and Fortran in a single scientific application.

Our solution is to provide a framework, written in Python, that assists scientists in cre-
ating concurrent applications based on a CSP design. The framework uses a graphical user
interface similar to otherflow-basedprogramming environments already available, and as
such, we hope that scientists will find our framework useful and accessible.

1.2. PyCSP

PyCSP [9] is the CSP [1] library for Python used in this paper.It is a new implementation and
is currently evolving into a stable library. At the moment itsupports four different channel
types, that can be used for connecting parallel processes:one-to-one, one-to-any, any-to-one
andany-to-any. Similar to occam, support for guarded choices is only available on the reading
ends ofone-to-oneandany-to-onechannels. When more than one process is attached to the
any end of a channel, only one process at that end is involved in the communication, and
queue in a FIFO. Communication on channels is synchronous — achannel output will not
complete until the inputting process has accepted the data.In the future, we hope to support
all types of guards for channel communication, as well as having full support for networked
channels, and the easy distribution of CSPBuilder applications across computer networks.

The syntax of PyCSP is fairly simple and works well in Python.When executing a CSP
network using PyCSP, all processes are created as kernel threads, though performance on
shared-memoryarchitectures is limited by theGlobal Interpreter Lock(see section 3.1.4).

1.3. Scientific Workflow Modelling and CSP

The purpose of a scientific application is usually to calculate a result based on input data. This
data flows through the application and is the basis of sub-problems and sub-solutions until
eventually a result, or several results, are found. With this in mind we use the term “workflow”
for the data-flow of a scientific application. We use the term “scientific workflow” for the
workflow of eScience applications, where “eScience” is usedto describe computationally
intensive science applications, normally run on shared-memory multi-processor hardware or
in distributed network environments.

A typical eScience application might be anything from complex climate modelling to a
simple n-body simulation. Generally, any application thatdoes a large number of computa-
tions to produce a result within a particular scientific field.

Only a few [10,11] have previously looked at CSP and thought that this might be a good
description for scientific workflows. In this paper we will produce an application that uses
some of the ideas from CSP algebra and the projects mentionedabove, combined in a frame-
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work that allows CSP based applications to be designed in a visual tool, and executed in a
variety of ways (depending on the hardware available). We stipulate that CSP is ideal for rea-
soning about the dataflow of eScience applications, particularly when the target environment
is concurrent execution. The compositional structure of a CSP network enables application
developers to reuse networks of components as top-level components themselves.

In section 5 we cover some of the other frameworks available.Some of these are very
popular today, and at the PARA ’08 event there was an entire day of workshops devoted to
scientific workflow modelling. The scientists there argued that they are able to understand
flow-based programming environments, and use them to develop scientific applications. The
future users of CSPBuilder are the same as for other frameworks, and by making CSPBuilder
operate in a similar fashion, we expect that those users willbe able to use the CSPBuilder
framework to construct applications.

One of the reasons for working with scientific workflows is to enable access to large
computation resources. The model presented in this paper, in addition to support for remote
channels, will make it possible to divide scientific workflowapplications from a small number
of CPU cores, to hundreds of nodes on different LANs — provided that the application is
designed in a way that supports this; a design method that is promoted by the CSPBuilder
framework.

1.4. Summary of Contributions

A new framework is implemented, tested and benchmarked in this paper. This framework
consists of a visual tool to build applications and a tool to execute the constructed applica-
tions. The framework is implemented in Python and supports to use C, C++ and Fortran code
by providing ‘wizards’ to access these languages. The framework is called CSPBuilder and
incorporates extensive use of the CSP algebra.

The visual tool provides an “easy to use” graphical user interface, enabling users to
construct applications using the ideas of flow-based programming [12] to produce a CSP [1]
network. In our experiments we show that the visual tool is capable of handling large and
complex applications.

Applications that are constructed with CSPBuilder can be executed successfully on a
single computer, combining routines from a number of different programming languages.
With the future introduction of remote channels in PyCSP it will be possible to execute the
applications on any number of hosts.

The framework encourages code reuse by constructing applications from reusable com-
ponents. This has proven very useful during the experimentation phase.

The primary advantages of this framework lie in code reuse and constructing complex
scientific applications focusing on the workflow. CSP ideas underpin the concurrency mecha-
nisms employed in constructed applications, enabling the automatic deconstruction of whole
systems into individual concurrent components.

2. The Visual Tool

This section describes a user-friendly application that can model a CSP network using a
layout similar to flow-based programming [12]. This layout is required to resemble the CSP
network for a scientific workflow model. Figure 1 shows an application modelled using our
visual tool.

In CSPBuilder every application starts with a blank canvas,where processes and chan-
nels can be inserted. Processes appear as named boxes, with their external connections la-
belled. Channels are shown as lines connecting the processes. To simplify things, any in-
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Figure 1. A CSPBuilder application that generates incrementing natural numbers.

bound or outbound connection will only accept one channel going in or out, depending on
the connection type.

A number of connected processes are known as a process network, as shown in figure 1.
This network could be used as a component in another application, described in section 2.1.

The remainder of this section describes the component system, connecting components
with channels and connection points. Saving and loading CSPapplications to and from files
are then described, followed by details on component configuration and replication. These
parts are necessary to construct an application, and are parts of the framework that make it
possible to build CSP networks that can be run efficiently in adistributed environment.

2.1. Component System

The design of the component system is based on the following requirements:

• We need to be able to link the Python code of each process in an easy to understand
framework, to make it simple to add or remove components.

• The organisation of the process network needs to be scalable, which means that the
user should be able to handle large and complex applications, without losing control
or an overview of the whole system.

• The user should quickly and easily be able to group parts of the process network into
components, that appears and function like other processes.

• Components should be stored in a library for reuse.
• An application built with CSPBuilder must be targetable to different hardware, and

have a performance better than or equal to an equivalent application written entirely in
Python.

These requirements are examined in more detail in the following sections.

2.1.1. Scalable Organisation

Consider a network of 2000 processes. To handle this many processes, and even more chan-
nels, it is necessary to group parts of the network into smaller compositional processes. This
can be done by allowing the user to select a group of connectedprocesses and condense them
into a single component. If this new component has unconnected inbound or outbound con-
nections, these are added to its interface, in addition to channels that already cross the group
boundary. From an external perspective, this new componentlooks like any other component
in the system.

Collecting together components in groups, and using these to form other components,
leads naturally to a tree structure, whose leaves are component implementations. Each level
of the tree is assigned an increasingranknumber, with leaf processes having a rank of 1. This
is used to prevent cyclic structures.
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2.1.2. Components

Components are the most important part of CSPBuilder. A component is a CSPBuilder appli-
cation that has been stored in the component library. These stored components are available
for use in other applications, and come in two different forms:

1. The component is a process network consisting entirely ofprocess instances of other
components and includes no actual code implementations.

2. The component includes at least one process that containsa process implementation.
This process implementation has a link to a Python function that implements the
process. A simple example of a process in CSPBuilder is “IDProcess”, shown in
listing 1, that simply forwards data received on its input channel to its output channel.

1 from common import *
2
3 def CSP_IdProcessFunc(cin, cout):
4 while 1:
5 t = cin()
6 cout(t)

Listing 1. Example CSP process implementation – the IDProcess

To make it as easy as possible for the user to create components, we specify that to cre-
ate a component, you just have to copy or move your CSPBuilderapplication to a “Compo-
nents” directory. When the CSPBuilder application reloadsthe library, it discovers this new
component and makes it available for use in new applications.

Functions specific to building components are also incorporated. These include naming
unconnected channel-ends and naming the main application.When creating components, the
application name is used for the new component. Unconnectedchannel-ends for the compo-
nent’s input and output are named in similar ways.

2.1.3. Component Library

To aid in component management, each component requires a package name. This is to make
it easier to find the desired component, for example, a “statistics” package containing relevant
statistical components. For CSPBuilder to be an effective tool, it will need a wide variety of
components, offering a range of different functionalities.

2.1.4. A Wizard for Building Components

A developer should be able to reuse code made by others, or reude code made earlier in
another application. Reusing older code is made easier withcomponents and the component
library, so to increase the ease of creating new components a‘wizard’ has been implemented
that guides the developer through the process of creating a component.

A quick search on the Internet will show that large online archives of scientific code
are available for free use. It is desirable to be able to easily use a function written in any
language, and currently it could be argued that it is possible just by having the components
implemented in Python. The developer can use SWIG [7] to import code from C or C++, and
most programming languages are able to build libraries thatcan be used from C or C++. This
therefore makes it possible to extend Python with code written in all kinds of languages. A
project named F2PY [8] can import Fortran 77 and Fortran 90 code into Python.

The wizard guides the user through the process of creating components written in
Python, C, C++, Fortran 77 and Fortran 90. These languages were chosen because of the
numerous scientific libraries that use these. As mentioned earlier, most languages can build a
library that is accessible from C or C++.
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Figure 2. One2AnyChannel formed by connecting three processes to a single connection point, single out-
putting process, multiple inputters.

Figure 3. Any2OneChannel formed by connecting three processes to a single connection point, single inputting
process, multiple outputters.

Figure 4. Any2AnyChannel formed by connecting four processes to a single connection point, multiple in-
putting and outputting processes.

The inclusion of other programming languages is expected tohave a positive effect on
application performance in CSPBuilder. Python uses theGlobal Interpreter Lock(see sec-
tion 3.1.4) to access Python objects. This means that only one Python thread is allowed to
access Python objects at any one time, limiting any advantage of running threads that are not
dependent on each other in parallel. This lock can be freed when executing external code im-
ported into Python, making it efficient to have certain partswritten in other languages. Also,
compiled languages are typically faster than interpreted languages, which further improves
performance.

2.2. Channels and Connection Points

Processes connected by channels form a process network. Thedifferent types of channels
available and how they work in PyCSP were introduced earlier. The types of channels are
One2OneChannel, One2AnyChannel, Any2OneChannel and Any2AnyChannel.

The One2OneChannel is simple, because it can be representedby a single line going
from one process to another. Representing the other types ofchannel is more complex. To
address this issue, we introduce connection points. These can have any number of inbound
and outbound connections, to processes or other connectionpoints, enabling visualisation
of all channel types and for the ‘bending’ of channels. Examples of these can be seen in
figures 1, 2, 3 and 4.

Before any code can be generated, or process networks constructed, the connection graph
for each channel is reduced to contain at most one connectionpoint. Starting with each con-
nection point, or node, that node’s neighbours are examined. If that neighbour is another
node, as opposed to a process, the connections there are moved to the current node. This is
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done recursively, until only single connection points remain, and runs inO(n) time, wheren
is the number of connection points.

The visual tool does not currently indicate the type of data carried on a channel, but the
channels are typed (in Python). When trying to execute a mis-connected network, the tool
will generate an error.

2.3. Configuring a Component

When working with the visual tool some components will need to be configured. These com-
ponents should have their individual configuration functionality specialised for their specific
purpose. A method is provided for the user to configure the component and save this set-
ting in the.csp file, for later execution. A typical example of component configuration is
something that allows the user to specify the name of a data file. To handle this, a structure is
defined that a component has to implement in order to provide aconfiguration functionality.

We will now focus on the three issues of configuring a component:

1. Activate the configuration process.
2. Save the new configuration.
3. Load saved or default configuration on execution.

As mentioned in section 2.1.2, the Python implementation ofa component is a file that
we import, with its own name-space. If this name-space has a function namedsetup(),
we call this function when the user configures the component.If the function does not exist,
the user will not be able to configure the component. To save the configuration, any structure
returned by thissetup() function is serialized and saved in the component’s.csp file.
When executed, the component’s top-level function is provided with the previously saved
unserialized data structure. An example of a small configurable component is shown in list-
ing 2.

It is left to the individual component programmer to decide what user interface will be
used to configure the component. In the example shown in listing 2, awxWindows file dialog
is used to acquire input from the user.

The configuration data may be saved on several levels. When working with CSPBuilder a
configuration can be saved on the working level or on any lowerlevel, down to the rank where
the process implementation is located. As standard all saved information from setting up
components is saved in the working process and not in the process with the implementation.
This gives the possibility for different setups for every application, and necessary to create
components that are as general as possible. Saved configurations are attached to the process
instance.

Configuration data with a higher rank will override any configuration data with a lower
rank. This has the desired effect: that any configured process instance of a component will
use the most recent configuration, as long as it is activated in the main application, and not as
part of any other component.

2.4. Process Replication

When building applications for concurrent scientific computing, a common way to organize
the calculations, if the algorithms allow it, is to divide the calculation into different jobs and
process these concurrently with workers. An application that use 50 workers would quickly
become cumbersome in CSPBuilder because of the 50 process instances in the visual tool.
To address this issue, a process multiplier is created. Whenenabling the process multiplier
on a process instance, the user must enter the desired numberof replications.
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1 configurable = True
2 from common import *
3 import pylab
4
5 default_data = None
6
7 # Configuration (called from builder.py)
8 def setup(data = default_data):
9 import wx

10 import os
11 wildcard = "PNG (*.png)|*.png|" \
12 "All files (*.*)|*.*"
13
14 saveDir = os.getcwd()
15
16 dlg = wx.FileDialog(
17 None, message="Choose an image file, containing the data",
18 defaultDir=os.getcwd(),
19 defaultFile="",
20 wildcard=wildcard,
21 style=wx.OPEN | wx.CHANGE_DIR
22 )
23
24 if dlg.ShowModal() == wx.ID_OK:
25 paths = dlg.GetPaths()
26 data = paths[0].replace(saveDir + ’/’, ’’)
27
28 os.chdir(saveDir)
29 dlg.Destroy()
30 return data
31
32 # CSP Process (called from execute.py)
33 def ReadFileFunc(out0 , data = default_data):
34 img = pylab.imread(str(data))
35 out0(img)

Listing 2. An example of a component that has configuration enabled

Any channels connected to a process instance where a multiplier has been set, can be
thought of as being multiplied by the corresponding amount.The addition of extra channels
and processes is handled in the execution step.

On execution, a multiplierx will cause the specified process instance to be created inx
exact copies. If the process instance is an instance of a process network this network will be
multiplied in x exact copies, creatingx times the number of processes and channels in the
process network. When a process is multiplied, all connections are multiplied as well and
will be turned into One2AnyChannels, Any2OneChannels or Any2AnyChannels.

3. Concurrent Execution

In this section we describe how a data structure, constructed by the visual tool and saved to
.csp files, is executed successfully. This is done by converting the data structure into a struc-
ture resembling a CSP process network. The PyCSP library is used to construct processes
and their connections, and finally to execute those processes.

All functionality presented by the visual tool in section 2 must be handled in the execu-
tion step. Here we will focus on the requirements relevant when executing on a single system.
The non-trivial functionalities required include: channel poisoning; multiplication of com-
ponents and their connections; importing external code; and releasing theGlobal Interpreter
Lock.
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3.1. Building and Executing a Process Network

The overall goal is to build a network that will have a performance similar to a network im-
plemented entirely in Python using PyCSP. This means that all parsing and network building
needs to be done before execution and cannot be done on demand. To improve performance,
the tree data-structure describing processes is first flattened, as shown in figure 5.

Figure 5. Data structures. In the left figure the tree data-structure is illustrated, which represents the structure of
the CSP network when the.csp files are parsed. The black dots are a process structure and the lines represent
any number of connection structures. This data-structure is converted into the flat data-structure illustrated in
the right figure. This is a one-way conversion and can not be reversed.

An important feature in the construction of CSPBuilder has been to resemble the CSP
algebra in the visual tool. During execution it is equally important to execute the CSPBuilder
application exactly as it was built, and to ensure that everything is executed correctly. Here
we focus on guards, channel poisoning, importing external code and releasing theGlobal
Interpreter Lock, which comprise the difficult parts of executing a CSPBuilder application.

3.1.1. Multiplying Processes

Multiplying a process only makes sense in cases where a computation is embarrassingly
parallel, meaning that the problem state can be sent to a process and the process can compute
a result using this state data, with no dependencies, and send the partial result to a process that
collects all partial results into a final result. This designis usually called a producer-worker or
a producer-worker-collector setup and works best with embarrassingly parallel problems. A
dynamic orchestration of processes is used where the amountof workers can be varied easily
and you can have many more jobs than workers, making it easierto utilize all processes. If a
computation can not be done in a dynamic orchestration design, then it does not make sense
to use this multiplier flag. Instead a static design can be built with specialized components
for doing a parallel computation with2, 4, 8, ... processes.

Another design where multiplying processes will be applicable is in process networks
handling streams. Imagine 4 processes connected in serial,doing different actions on a
stream. If one of these steps is more time-consuming than anyof the others, it will slow down
the entire process. Multiplying this process is simple and if hardware is available for the extra
process, it improves the overall performance of the processnetwork.

3.1.2. Channel Poisoning

In CSP, without channel poisoning, a process can only terminate once it has fulfilled its
task. This creates a problem when a process does not know whenit has fulfilled its task.
When constructing a network of communicating processes most of the processes will be
the kind that will never know when they have fulfilled their task. They will read from their
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input channels, compute and send the resulting data to theiroutput channels. These processes
combined will compute advanced problems and loop forever. One might add a limit saying
that a process will do 500 loops and it can consider its task fulfilled. In some applications this
is possible, but most applications can not define the needed loops prior to execution. Also
one might construct an extra set of channels that will communicate a signal to the processes
letting them know that their task is fulfilled, and initiate ashut-down. Channel poisoning is a
clever method to do just that, but uses communication the channels that already exist. PyCSP
has support for channel poisoning, which is based on channelpoisoning in JCSP [13,14].

Channel poisoning is implemented in PyCSP by raising an exception in process execu-
tion, when a channel connected to this process is poisoned. The exception is caught by the
PyCSP library and poisons all other channels connected to this process. After poisoning all
channels connected to the process, the process terminates.This will eventually terminate all
processes and cause the entire application to exit as desired.

If a process is currently waiting on a non-poisoned channel,then nothing will happen in
the process until it reads or writes from one of its poisoned channels. This might happen if a
process is waiting for an action and it is another process that has poisoned the network and
desires that the application terminates. The application will stall until the action happens and
the process writes or reads to the poisoned network.

For this reason when constructing CSPBuilder applicationsit is important to consider
how an application is poisoned if the user wants the application to terminate at some point.

3.1.3. Importing External Code

The wizard for CSPBuilder described in section 2.1.4 provides an easy method for building
a component that calls into C, C++ or Fortran code. In this section the framework for using
external code in CSPBuilder is described.

Using the import statement in Python it is possible to importmodules. A module can be
a Python script, package or it can be a binary shared library,as in this case where we want to
use code from other programming languages.

For importing Fortran code the F2PY [8] project is used, which is capable of compiling
Fortran 77/90/95 code to a binary shared library, making it accessible for Python. To import
C or C++ code the SWIG [7] project is used to compile to binary shared libraries, similar
to F2PY. Both projects are wrappers that make it relatively easy to handle data conversion
between Python and other languages.

All external code will reside in theExternal folder in the CSPBuilder directory. A
module name specifies a sub-directory inExternal, where all source and interface files
are located. When compiled, the generated module will be saved as a ‘.so’ file with the
module name as its file name in theExternal directory. AMakefileis created for every
component and for the entireExternal directory, so that all modules can be compiled by
executingmake in theExternal directory. This is necessary when applications are moved
to different machines, where the architecture and shared library dependencies may vary.

3.1.4. Releasing the GIL

PyCSP [9] uses the Pythontreading.Threadclass to handle the execution of processes in
a CSP network. This class uses kernel threads to implement multi-threading which should
enable PyCSP to run concurrently on SMP systems. Unfortunately concurrent execution of
threads is prohibited by the GIL. The GIL (Global Interpreter Lock) is a lock that protects ac-
cess to Python objects. It is described in the documentationof Python threads [15]. Accessing
Python objects is not thread-safe and as such cannot be done concurrently.

To be able to utilize the processors in an SMP system we will release the GIL while
doing computations outside the domain of Python. In section3.1.3 it was explained how
external code can be imported into Python. When calling intoFortran code using F2PY the
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GIL is released automatically and acquired again when returning to Python. With C and C++
the situation is different, because here it is possible to access Python objects by using the
API declared inpython.h. It is the responsibility of the component developer to not access
Python objects while the GIL is released. Releasing and acquiring is done with the following
macros defined inpython.h:

// Release GIL
Py_BEGIN_ALLOW_THREADS

// Acquire GIL
Py_END_ALLOW_THREADS

The effects of releasing the GIL can be seen in section 4.1 where experiments are carried
out on an SMP system. We have now covered relevant issues in the building and execution of
a process network and can construct a CSP network from the.csp files created in the visual
tool.

3.2. Performance Evaluation

A classic performance test for CSP implementations includes the Commstime [16] test, which
is commonly used for benchmarking CSP frameworks. This computes the time spent on a
single channel communication. In this test we will compare the performance of the Comm-
stime test written in “Python with PyCSP”, with the CSPBuilder created “Commstime” ap-
plication shown in figure 6. The CSPBuilder Commstime creates a CSP network in PyCSP
and should perform the same, with perhaps only a slight overhead of having to create the ex-
tra DataValueprocess. In table 1 the result of the tests are shown. When comparing, there is
a slight difference where theDataValueprocess is concerned, but this process is necessary to
initialise the network and cannot be removed from the application. In “Python with PyCSP”
this data-value is a simple integer.

Figure 6. Commstime. A CSPBuilder application that resembles the Commstime performance test.

Table 1. CSPBuilder Commstime. A comparison of the channel communication time when using CSPBuilder
vs. only Python and PyCSP. The Commstime tests were executedon a Pentium 4 2Ghz CPU.

Test Avg. time per. chan (µs)

Python and PyCSP 91.43

CSPBuilder 96.30
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The results of CSPBuilder are as expected. The performance of Python and PyCSP are
not competitive to many other CSP implementations, especially compilable languages. How-
ever, Python has many other advantages that in our case outweigh the poor performance:

• Easy to use and very flexible.
• Can interact with most languages.
• Many scientists already know Python.
• Faster development cycle.
• Encourages programmers to write readable code.
• Compute intensive parts can be written in compilable languages.

4. Experiments

In this section we test the performance of CSPBuilder using asimplePrime Factorisation
experiment. The tests will be performed with a varied amountof workers in the application.
Workers are the processes that, because of the design of the process network, are meant to be
identical, run concurrently and compute sub-problems of a larger problem.

The experiments show that CSPBuilder is capable of executing applications on an 8 core
SMP system. On the 8 core SMP system the GIL is released to be able to utilize all cores
successfully.

4.1. Prime Factorisation

As a test case for executing applications in CSPBuilder,Prime Factorisationwas chosen.
It is simple and the computation problem can easily be changed to run for varying times.
In the book by Donald Knuth [17], 5 different algorithms for doing prime factorisation are
explained. The simple one is the least effective and is basedon doingtrial division2. Trial
division is used in thedirect search factorisation3 algorithm. The simple prime factorisation
algorithm was chosen for the following reasons:

• Parts of the algorithm can to be written in both C and Python. The simplicity of the
algorithm is an advantage here.

• The nature of the algorithm makes it possible to use themultiplier functionality in
CSPBuilder. The algorithm is easy to divide into jobs that can be computed by workers.

• With a simple algorithm it will be easier to identify the aspects that do not perform
well.

• The algorithm has limited communication, but still enough to test various cases,
e.g. distributed vs. one machine.

A serialized Python implementation of thedirect search factorisationalgorithm can be
found at PLEAC4 (the Programming Language Examples Alike Cookbook). This implemen-
tation is extended and adapted to a parallel version that we implement in the CSPBuilder
framework.

4.1.1. Implementation Details

The prime factorisationproblem is built as a component reading a number as input and
outputting a result. Sincedirect search factorisationis an embarrassingly parallel problem,
the processing can be divided into jobs and handed over to a set of workers as illustrated in
figure 7.

2Trial division:http://mathworld.wolfram.com/TrialDivision.html
3Direct search factorisation:http://mathworld.wolfram.com/DirectSearchFactorization.html
4PLEAC:http://pleac.sourceforge.net/pleac python/numbers.html



360 R.M. Friborg and B. Vinter / CSPBuilder

Figure 7. PrimeFac Component, consisting of a controller and a workermultiplied 6 times.

On initialisation, the worker process sends an empty resultto the controller, to indicate
that it is ready for more work. The controller loops until allprimes have been found, sending
jobs to and collecting results from workers. If a non-empty result is received, the controller
waits for all workers to finish and, if any other workers also had a non-empty result, the best
result is picked and the computation resumes.

If n is the number we are factorizing into primes, then all primeshave been found when
d >=

√
n, where[2 . . . d] are the divisors tested. All the prime factorisations ofn can be

found in[2 . . .
√

n].
Numbers that are particularly interesting to factorize into primes are those larger than

the representation available generally in compilers (e.g.32-bit and 64-bit). To work with
unsigned integers larger than18446744073709551615, which is the limit for64bit registers,
some special operations are needed. Numbers larger than this need software routines for
doing basic operations such as addition, subtraction, multiplication and division.

Python has internal support for large numbers which makes the task of implementing
prime factorisation in Python much simpler. Creating the C version is a bit more tricky. An
external component is created using the wizard described insection 2.1.4. To test the imple-
mentation, a version working with numbers less than64bits is created. All basic mathemati-
cal operations are then replaced with function calls to the library “LibTomMath”5, which han-
dles large numbers. For transferring large numbers betweenPython and C a decimal string
format is used.

Finally we add a release for the GIL as described in section 3.1.4, which enables us to
maximize concurrent execution in the application.

4.1.2. Performance Evaluation

For our experiments the Mersenne6 number2222 − 1 is used. This number was picked by
trial and error, with the purpose to find a number where the prime factorisations could be
computed within 30 minutes for the least effective run. All tests have solved the problem:

n = 2222 − 1

= 6739986666787659948666753771754907668409286105635143120275902562303

= 32 ∗ 7 ∗ 223 ∗ 1777 ∗ 3331 ∗ 17539 ∗ 321679 ∗ 25781083

∗ 26295457 ∗ 319020217 ∗ 616318177 ∗ 107775231312019

In the performance test we compare the two implementations,one with the worker writ-
ten in Python and one with the worker as an external componentwritten in C which also
releases the GIL. In the C implementation we use the large number library LibTomMath.
This large number implementation is actually slower than the large number implementation

5LibTomMath:http://math.libtomcrypt.com/
6Mersenne number:http://mathworld.wolfram.com/MersenneNumber.html
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in Python, shown in the tests where the “Python only” versionoutperforms the “Python and
C” version for the case with only one worker. We base this conclusion on the fact that the
sequential test for “Python and C” finishes in 1547 minutes, while the “Python only” version
finishes in 1005 minutes. Both implementations spend all of the execution time in the worker
loop with very little communication between processes.

To compare the effects of adding more workers we examine tests with 1, 2, 4, 6 and 8
workers, shown in figure 8. The “Python and C” version performs well, and by looking at the
speedup in figure 9, we see that performance scales almost linearly. This means that adding
double the amount of workers on a system with double the capacity doubles the performance
and halves the run-time. The speedup shown in figure 9 is not quite linear. The drop in
performance is caused by having to flush the workers every time a result is found. Time is
then spent sending new jobs to workers. This overhead increases with the number of workers,
but is largely acceptable given the advantages and benefits of this approach. All benchmarks
were run on an 8 core SMP system.

The increase in run-time, when adding workers to the “Pythononly” version in figure 8,
is caused by the unnecessary context-switching and communication, since the added workers
will only steal CPU time from the first worker. The reason thatthe run-time only increases
by a little even though many workers are added, is that the other workers are starved and
therefore will never ask for a job to compute.
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Figure 8. Prime factorisation of the Mersenne number2222 − 1.

The sequential benchmark is based on single worker execution. This is arranged by set-
ting the job size to1016 iterations, which causes only one job to be sent to the singleworker
waiting. This benchmark provides a baseline reference for sequential execution speed in CSP-
Builder, and is used as the basis when calculating the speedup of the parallel benchmark
shown in figure 9.

These results show us that when constructing a scientific workflow in CSPBuilder, it
is possible to get a reasonable performance and avoid the GIL, by programming the com-
putationally intensive components in compilable languages. CSPBuilder is usable for both
coarse-grained and fine-grained construction of whole systems. With a coarse-grained pro-
cess network, we require the computation intensive components to execute concurrently in-
ternally, if a reasonable performance is desired. With a fine-grained process network, internal
concurrency in the components is not necessary. Theprime factorisationimplementation is
somewhere in between a coarse-grained and fine-grained network.
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Figure 9. Speedup of prime factorisation of the Mersenne number2222 − 1.

5. Related Work

Several different frameworks exist that can handle scientific workflows in different ways. To
mention some of the more common, there areThe Kepler Project7 [18], Knime8, LabVIEW9,
FlowDesigner10 andTaverna11. The graphical tool of CSPBuilder is a quite similar to these
frameworks, though currently less functionality is available in CSPBuilder. CSPBuilder dif-
fers by having a basic graphical tool, that assists in constructing a CSP network and manages
a component library. The power of the CSPBuilder framework lies in the communication
model based on CSP.

On the CSP side, Hilderink [19] has created a graphical modelling language, GML, in
which CSP networks can be defined.

6. Conclusions and Future Work

In this paper we have presented a graphical framework for designing and building concurrent
applications based on CSP. Ideally suited to current and future multi-processor and multi-
core machines, CSPBuilder provides a simple and intuitive means for designing concurrent
applications. The graphical tool compiles directly to Python using PyCSP, and supports trans-
parent integration of C, C++ and Fortran functions. Experiments have shown that near linear
speedup can be obtained on embarrassingly parallel applications, which demonstrates that
the CSPBuilder tool dos not impose any significant overheads.

This paper has hinted at the distribution of CSPBuilder applications on networks of
workstations and other distributed memory architectures.Although PyCSP does support net-
worked channels, some modifications to the basic channel code in PyCSP have been made as
part of the work presented here. Similar changes will need tobe made to the network channel
code in PyCSP before CSPBuilder is able to target these architectures.

It might also be interesting and useful to add more descriptive visual representations of
channels, inspired by Hilderink, such as identifying guarded choice on channel inputs to a
process.

7The Kepler Project:http://www.kepler-project.org/
8Knime:http://www.knime.org/
9LabVIEW: http://www.ni.com/labview/
10FlowDesigner:http://flowdesigner.sourceforge.net/
11Taverna:http://taverna.sourceforge.net/
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Although CSPBuilder is at a relatively early stage of development, we hope that it will
grow and flourish, eventually becoming a useful tool to aid scientists in constructing scientific
workflows, as well as for the programming of CSP based concurrent applications generally.
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Abstract. PyCSP was introduced two years ago and has since been used by a num-
ber of programmers, especially students. The original motivation behind PyCSP was
a conviction that both Python and CSP are tools that are especially well suited for
programmers and scientists in other fields than computer science. Working under this
premise the original PyCSP was very similar to JCSP and the motivation was simply
to provide CSP to the Python community in the JCSP tradition. After two years we
have concluded that PyCSP is indeed a usable tool for the target users; however many
of them have raised some of the same issues with PyCSP as with JCSP. The many
channel types, lack of output guards and external choice wrapped in the select-then-
execute mechanism were frequent complaints. In this work we revisit PyCSP and ad-
dress the issues that have been raised. The result is a much simpler PyCSP with only
one channel type, support for output guards, and external choice that is closer to that
of occam than JCSP.

Keywords. Python, CSP, PyCSP, Alternation, Concurrency

Introduction

When PyCSP was introduced in 2007 [1] it was a CSP [2] library in the JCSP [3,4,5] tradition
and primarily targeted pedagogical purposes. After having worked with PyCSP for another
two years the authors decided to evaluate the experiences made and decide on the future of
PyCSP. The outcome of the evaluation had three potential conclusions:

1. PyCSP was a nice exercise but of little or no practical use and the project should be
stopped

2. PyCSP is a success as it is and no further work is needed, thus the research should be
stopped

3. PyCSP has shown potential but needs more work and/or alternative approaches

Having included PyCSP in the Extreme Multiprogramming class at the University of Copen-
hagen three years in a row with a combined number of students in excess of 200, we did
have a sizable set of inputs on PyCSP. On the upside the students claimed to like PyCSP for
a number of reasons:

• It is Python and thus perceived to be easier to work with than most other languages2

• The fact that PyCSP channels are type indifferent3 is convenient when changing the
functionality in an application

On the downside, a number of students also had reservations with PyCSP:

1Corresponding Author: Brian Vinter, Department of Computer Science, University of Copenhagen, DK-2100
Copenhagen, Denmark. Tel.: +45 3532 1421; Fax: +45 3521 1401; E-mail: vinter@diku.dk.

2This may only be true in the context of this class where the focus is on scientific applications.
3The type indifference is easy because Python is dynamically typed.
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• The many channel types make code less intuitive and any-to-any was the de-facto
choice, though it does not support external choice

• No real parallelism unless functionality is written in C

Going through the final reports for the last exam, we discovered that more than 80% of the
students had chosen PyCSP for their solution, second was JCSP, then followed C++CSP. A
single report used occam. While some of the success of PyCSP is bound to be due to venera-
tion for a locally developed system, there is little doubt that the students do like PyCSP: Java
is the usual language of choice in other classes. It was especially interesting that students with
a non-CS background, such as math, physics, nano-science and biology, all chose PyCSP,
which indicates that our original intention of making a system for multi-core programming
for scientists is within reach.

We decided that option 3, “PyCSP has shown potential but needs more work and/or
alternative approaches”, was the conclusion of our evaluation and went on to address the
input we have gotten from the many users.

The most frequent comment we received was disappointment that true parallelism could
not be obtained using pure Python code. This is because Python uses a global interpreter lock,
GIL, which means that threads in Python are useful only if a thread calls outside Python or
to handle asynchronous events. To address this, the new implementation supports operating
system processes in addition to threads. Strictly speaking this could be done with no changes
to PyCSP and a new process-based implementation could transparently replace the old one.
However, a number of other comments we received addressed the syntax and semantics of
PyCSP and we thus decided to revisit the design. The work on the new implementations is
presented in another paper [6].

It was also decided to make changes to the PyCSP API. Originally, PyCSP had been
inspired by the other CSP libraries – most importantly JCSP – but it was evident that many
students found the compact expressions in occam, especially the representation of external
choice, attractive. While students easily understood why external choice on output channels
is not needed in CSP, they still, rightly, claimed that they would be convenient. Finally, ter-
mination through poisoning was easily understood but also claimed to be inconvenient. Thus
we decided to change PyCSP in four major ways:

1. There should be only one channel type, any-to-any, and it must support external
choice

2. The channels should support both input and output guards for external choice
3. PyCSP should provide a mechanism for joining and leaving a channel with support

for automatic poisoning of a network
4. The expressive power in Python should be used to make PyCSP look more like occam

where possible

In the following we describe the new PyCSP library based on the above four design criteria.
The result is a PyCSP implementation that follows the decisions and, in our own opinion,
makes PyCSP programs even more readable and maintainable.

1. The New PyCSP

1.1. Processes

Just as in the original PyCSP, processes are wrapped in a process decorator, i.e. they are not
merely implementations of a Process class as in JCSP or C++CSP. The advantage of this ap-
proach is partly that processes will be easily recognizable in the source code, and that it gives
great flexibility for the PyCSP runtime environment to handle processes in different ways.
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The constructor used is @process, and a hello world example could look like the following
example:

@process
def hello_world(msg):

print "Hello world , this is my message " + msg

Usually one or more channel ends will be part of the parameters for a process. Defining a
process as above will not instantiate or execute any code: it is simply defined as a process to
be used in a network at a later time.

1.2. Process Sets

Once a process is defined, a set of processes may be instantiated and executed using the
Parallel or Sequential constructs similar to the old version. However, in order to accommodate
variable size networks a process set may now include lists of processes as well as individual
processes.

Parallel(
source(),
[worker () for i in range (10)] ,
sink()

)

In the above example source, worker and sink have all been defined as processes and the
parallel construct will run one source, ten workers and one sink process in parallel and return
once all processes have terminated. Naturally the example makes little sense without the use
of channels for communication; these will be introduced below. Apart from the support for
mixing scalars and vectors of processes, the Parallel and Sequential constructs work as in the
previous version and should be intuitive to anybody with any CSP experience.

1.3. Channels

PyCSP originally based much of its design on JCSP, continuing the use of specialized channel
types: One2One, One2Any, Any2One and Any2Any. The type names designate how many
writer and reader processes were allowed to be attached to the respective channel ends.

The main reason for the specialized channel types was that the implementation of the
Alternative construct, which allowed external choice, was based on the JCSP version and
placed strict limitations on the use of channels: only one process could safely use an Alter-
native construct with a given channel end. To safeguard against misuse, only the reading end
of channel types that were restricted to one reader could be used as guards in an external
choice. Limitations such as these can be cumbersome to work around when designing your
CSP application and even more so for newcomers to PyCSP.

1.3.1. New Channel Type

There is only one channel type in the new PyCSP. The channel is similar to the previous
Any2Any channel, but with the difference that both input and output channel ends support
external choice. The use of external choice is described in section 1.4.

Retrieving channel ends for use in processes has also changed in PyCSP. Previously, a
programmer would grab a channel end by calling the read() or write() method of the chan-
nel. This has been replaced with the channel.reader() and channel.writer() functions which
also have a role in channel poisoning described below. As an experiment a shorthand for
channel.reader() and channel.writer() is introduced as -channel and +channel; whether this
more compact notation introduce more confusion than it is worth is left to future observa-
tions.
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1.3.2. Channel Poison

The concept of poisoning channels with the purpose of shutting down an application was
introduced in C++CSP [7] and later investigated in some detail by Bernhard Sputh [8]. A
channel is poisoned and all subsequent reads or writes on this channel will throw an excep-
tion. This exception can be caught and used as a shut-down procedure or just to shut down
that single channel. In the following example we create two processes, source and sink, and
a channel to connect them. The source process finally poisons the channel to terminate the
network, which will happen since the sink process does not catch the exception.

@process
def source(chan_out ):

for i in range (10):
chan_out("Hello world")

poison(chan_out)

@process
def sink(chan_in ):

while True:
print chan_in ()

chan = Channel ()
Parallel(source(chan.writer ()), sink(chan.reader ()))

Since all channels now support multiple readers and writers it is easy to add more readers
and writers:

Parallel(source(chan.writer ()), sink(chan.reader ()),
source(chan.writer ()), sink(chan.reader ()),
source(chan.writer ()), sink(chan.reader ()),
source(chan.writer ()), sink(chan.reader ()),
source(chan.writer ()), sink(chan.reader ()))

or

Parallel ([ source(chan.writer ()) for i in range (5)],
[sink(chan.reader ()) for i in range (5)])

Both versions produce five source and five sink processes, however the created network will
not do what the user may intuitively think it does. One of the sources is bound to finish first
and it will then poison the channel, which will terminate the network before all the expected
messages have been printed. The problem is extremely common in producer-consumer class
applications, and users end up with complex solutions for terminating the network.

To address this we introduce a poison mechanism similar to reference counting. Creating
channel ends and retiring from them updates a counter of how many readers or writers we
have on a channel, and the leave method may perform automatic poisoning when no readers
or no writers are left.

The reader() and writer() methods automatically join the respective ends of a chan-
nel, returning a unique reference to that channel end. A new function, retire(), is used to
leave a channel end. All subsequent requests to this channel end reference will raise an ex-
ception. When all readers or writers have retired a channel, the other end of the channel is
also retired. This is similar to how poison is propagated in the previous versions of PyCSP,
but with one important difference: with a poisoned channel any reference to that channel will
trigger a ChannelPoisonException which is caught in the Process class that wraps all PyCSP
processes. The exception handler then poisons all the other channels that were passed to the
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process upon initialization. With a retired channel, the ChannelRetireException is thrown
and the other channel ends are retired rather than poisoned, implementation wise the two are
identical apart from the name of the exception that is raised. This can remove some potential
race conditions when terminating networks, as seen in the Monte Carlo Pi example in section
3 and in the example below.

The following code demonstrates how the retire expression can be used instead of the
poison expression. The network will now be poisoned by the last source process to finish,
rather than the first. This feature hugely simplifies many networks.

@process
def source(chan_out ):

for i in range (10):
chan_out("Hello world")

retire(chan_out)

1.4. External Choice

One of the criticisms that the original PyCSP attracted was the way that external choice was
implemented, which had more in common with UNIX socket programming using select than
the more compact occam ALT operation. After executing an external choice (Alternative) you
are required to read from the selected channel. Failing to do so would break the rules for the
choice construct in CSP. Thus we decided to simplify the usage of Alternative by combining
select with a custom-defined action on the guard, similar to the occam ALT. Based on this,
we introduce a new choice named Alternation.

Alternation has changed significantly from Alternative, partly to make it more like oc-
cam, partly to support output guards. A guard set is now represented as a list of Python dictio-
naries where the keys can be channels from which to read, or two-tuples where the first entry
is a channel and the second the value that should be written to that channel. The value of each
dictionary entry is a function of type choice which may be executed if the guard becomes
true. If the guard is an input guard then the choice function will always have the parameter
__channel_input available which is the value that was read from the channel. Alternation also
supports other guard types, inheriting from a common Guard class. Alternation has two calls:

• Execute – which waits for a guard to complete and then executes the associated choice
function, similar to the occam ALT instruction

• Select – which returns a two-tuple: the guard that was chosen by Alternation and, if
the guard was an input-guard, the message that was read. This is equivalent to the
original Alternative

Note that the execute call in alternation always performs the guard that was chosen, i.e. chan-
nel input or output is executed within the alternation, so even the empty choice or a choice
function where the results are simply ignored still performs the guarded input or output.

The code that is executed within a guard may be specified in two ways, either as a func-
tion that is defined using a choice decorator, similar to processes, or as a string containing
code to be executed. The latter is easy to use but becomes quite slow since runtime compila-
tion is required. A choice function is defined as follows:

@choice
def action(__channel_input=None):

print __channel_input

It is not possible to change the name of __channel_input in a choice function since it is passed
as a keyword argument when it is the result of a selected input guard. Once the choice is
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defined, a process may perform an alternation on a set of channel ends. In the following
example the same guarded code, action, is called independently of which channel becomes
ready. This is an option but naturally not a requirement.

@process
def par_reader(cin1 , cin2 , cin3 , cin4):

Alternation ([
{ cin1:action () },
{ cin2:action () },
{ cin3:action () },
{ cin4:action () }

]). execute ()

An action might alternatively be passed as a string. This string is then evaluated with a copy
of the current namespace. All mutable types can be updated from the evaluation of this string.
In Python, the list, dict and set types are built-in mutable types.

@process
def counter(cin0 , cin1):

try:
cnt = [0, 0] # use mutable type
while True:

Alternation ([
{ cin0: ’cnt[0] += 1’ },
{ cin1: ’cnt[1] += 1’ }

]). execute ()
except ChannelPoisonException:

print ’Counted:’, cnt

Guards are prioritized in the order they occur in the guard list, while guards in a dictionary
are unordered. This gives us the option to model both an ordinary external choice and a
prioritized external choice. It is important to note that priority only makes real sense in the
scenario where more than one guard is ready when the alternation is entered, which guard
is woken first if no guards are immediately available may be down to race-condition or the
priority order of another guard statement.

Ordinary external choice is obtained by a list with just one dictionary holding guards.
The entries in the dictionary are then treated in an non-prioritized way:

[{
cin1:action(),
cin2:action(),
cin3:action ()

}]

On the other hand, prioritized external choice is obtained by providing a list of dictionaries
with guards. These are then prioritized in the way the dictionaries appear in the list.

[
{ cin1:action () },
{ cin2:action () },
{ cin3:action () }

]

It is fully possible to mix the two models, i.e. a prioritized list with dictionaries of non-
prioritized guards. This option should only be used for special purposes.



B. Vinter et al. / PyCSP Revisited 7

PyCSP provides four built-in guard types to use with external choice. The first three of
them are well known to the CSP community:

• Channel input
• Timeout - A counter relative to current time, when it expires, it will become true and

allow the alternation to complete
• Skip - Always true, and often used to define a default alternative
• Channel output

The fourth is new in PyCSP, although thoroughly discussed throughout the years and previ-
ously seen in Communicating Java Threads [9]. It is well understood by most programmers
that use process algebra that output guards are not needed from a CSP point of view, and one
may with relative ease construct equivalences for any type of output guard using only input
guards. However, output guards are convenient for the user of PyCSP and equivalences are
hard to construct for users that are not professional programmers, thus we provide the output
guard as a primitive in PyCSP. All guard types supported can be interrupted by channel poi-
soning or retiring. PyCSP channels may be guarded in both ends, i.e. an output guard can be
matched by an input guard.

The following code example shows how non-blocking writes and input with timeouts
can be modelled using the new Alternation construct:

# Non -blocking write
Alternation ([

{ (cout , datablock ): None }, #Try to write to a channel
{ Skip (): "print ’skipped!’" } #Skip the alternation

]). execute ()

# Input with timeout
Alternation ([

{ cin: "print __channel_input"},
{ Timeout(seconds =1): "print ’timeout!’" }

]). execute ()

2. Implementation

This section introduces only highlights of the implementation. An in depth description of the
implementation details of PyCSP may be found in [6].

The only implementation detail that is non-trivial is the support for output guards and
channels with multiple processes at either end. The implementation is quite complex and
uses more than a hundred lines of Python code. The overall design is based on each alterna-
tion being represented by a request structure, called a handle in the pseudocode below, that
includes a lock which ensures mutual exclusion. When a new alternation is activated it will
traverse the guards in the choice list by priority, and for each guard it will look for a waiting
handle that matches the handle for the alternation, i.e. a read matches a write and vice versa.
If no match is found, the handle is added to the set of waiting handles for that channel. Please
note that the pseudocode is heavily simplified and the actual implementation relies on global
ordering of events to avoid livelocks; for details refer to [6].

handle = new_request_handle ()
for guard in choice:

lock(guard.channel)
if handle match registered_handle in guard.channel:

perform communication
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make_active(handle , registered_handle)
else:

guard_channel.registered_handle.add(handle)
unlock(guard.channel)

waitfor active(handle)

This is the procedure for every channel communication possible. Whenever a match is tried,
two locks are required: one owned by the reading end and one owned by the writing end. In
the case of alternation, this lock is shared between all guards to ensure the integrity of the
alternation. A diamond design where every process alternates on an input and an output end
could look similar to the example code below.

@process
def P(id , c1 , c2):

while True:
Alternation ([{(c1, True): None , c2: None }]). select ()

c = [Channel(str(i)) for i in range (4)]

Parallel(
P(1,c[0]. writer(), c[1]. reader ()),
P(2,c[1]. writer(), c[2]. reader ()),
P(3,c[2]. writer(), c[3]. reader ()),
P(4,c[3]. writer(), c[0]. reader ())

)

Without acquiring the locks in perfect order, this code eventually results in a deadlock. Two
processes have both acquired one of the alternation owned locks and are waiting to acquire
the other in opposite order. To acquire the locks in order, we always acquire the lock with the
lowest memory address first. This ensures the same lock order for all processes.

We are synchronizing input and output guards without the Oracle process used in JCSP
[10]. The Oracle process was introduced in JCSP to handle external choice on barriers and
output guards. The new PyCSP views all communication requests as an offer and all offers are
protected by individual locks. One lock per offer eliminates the need for an Oracle process,
because it is guaranteed that an offer is only matched while it is active. The purpose of the
Oracle process is to ensure that an offer is still active, when it is matched.

3. Examples

Some of the changes in PyCSP refer to either performance and implementation, or pure syn-
tactical presentation of the concepts. In the following, we show two examples that motivate
the three semantic changes that have been introduced: retire as an alternative to channel poi-
soning, output-guards, and support for alternation with channels that have multiple readers
and/or writers. The purpose of the examples is to demonstrate why PyCSP becomes easier to
use after the introduced changes.

3.1. Monte Carlo Pi

In the original PyCSP we did not have the retire feature, which meant that most producer-
consumer programs tended to look like the example in figure 1.
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Producer Worker Consumer

Worker

Worker

Figure 1. Producer-consumer program forwarding termination criteria between producer and consumer.

from pycsp import *
from random import random

@process
def producer(term_out , job_out , bagsize , bags):

term_out(bags)
for i in range(bags): job_out(bagsize)
poison(job_out)

@process
def worker(job_in , result_out ):

try:
while True:

cnt = job_in () #Get task
sum = reduce(lambda x, y: x+( random ()**2+ random ()**2 <1.0) ,

range(cnt))
result_out ((4.0* sum)/cnt) #Forward result

except ChannelPoisonException:
pass #When done , _don’t_ forward poison

@process
def consumer(term_in , result_in ):

cnt = term_in () #Get number of results
sum = 0
for i in range(cnt):

sum += result_in () #Get result
print sum/cnt #We are done - print result

jobs = Channel ()
results = Channel ()
term = Channel ()

Parallel(producer(term.writer(), jobs.writer(), 1000, 10000) ,
[worker(jobs.reader(), results.writer ()) for i in range (10)] ,
consumer(term.reader(), results.reader ()))

Listing 1: Implementation of producer-consumer program forwarding with an explicit termi-
nation channel between producer and consumer.

A simple Monte Carlo simulation of the design in figure 1 is implemented in listing 1. This
approach is simple to implement but suffers from two complexities: first of all, the termina-
tion criterion (number of bags) must be sent from the producer to the consumer, bypassing
the workers. Secondly, the workers must explicitly avoid forwarding the channel poison in
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the network as the consumer will otherwise die before all results are received and processed.
The complexity of the solution grows even further if the setup has multiple producers or
consumers.

With the new retire operation, termination of the network can be handled in a more
straightforward way. When the producer retires the job_out channel end, the channel is not
poisoned, but the retire operation is forwarded to the other end of the channel in a similar way
to poisoning. The main difference is that when the channel is retired and job_in() terminates
the worker process, the workers channels are retired rather than poisoned. This will delay
termination propagation along those channels until all workers have retired, and the consumer
will not be prematurely terminated.

Figure 2 shows the new network, which no longer needs to forward a termination cri-
terion between the producer and consumer process. Multiple producers can also be plugged
into the network without changing more than the parallel construct. Note that the consumer
in listing 2 catches a ChannelRetireException, which allows it to terminate cleanly and print
out the results before terminating.

Producer Worker Consumer

Worker

Worker

Figure 2. Producer-consumer program using retire, avoiding termination criteria forwarding between producer
and consumer.

from pycsp import *
from random import random

@process
def producer(job_out , bagsize , bags):

for i in range(bags): job_out(bagsize)
retire(job_out)

@process
def worker(job_in , result_out ):

while True:
cnt = job_in () #Get task
sum = reduce(lambda x, y: x+( random ()**2+ random ()**2 <1.0) ,

range(cnt))
result_out ((cnt , sum)) #Forward result

@process
def consumer(result_in ):

cnt , sum = 0, 0
try:

while True:
c, s = result_in () #Get result
cnt , sum = cnt+c, sum+s

except ChannelRetireException:
print 4.0* sum/cnt #We are done - print result
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jobs = Channel ()
results = Channel ()

Parallel(producer(jobs.writer(), 1000, 10000) ,
[worker(jobs.reader(), results.writer ()) for i in range (10)] ,
consumer(results.reader ()))

Listing 2: Producer-consumer using retire, avoiding termination criteria forwarding between
producer and consumer

3.2. Branch-and-bound

Branch-and-bound algorithms in CSP are easy [11] but associated with some complex deci-
sions with regards to how and when to update the bound variable. The challenge in the bound
update is to balance the communication and work: if the bound variable is updated too rarely
the parallel work will perform more work than necessary. If the bound is updated too often,
it will result in too frequent communication. Basically, three approaches exist:

1. Update the bound only when a job is finished. Submitting a bound equals requesting
a job

2. Update the bound as soon as you find it. A special bound value identifies a job request
3. Update the bound as soon as you find it. Jobs are requested independently

The first approach is simple and a common choice; however, the infrequent update of the
bound results in slower overall execution. The second approach is complex and requires
parsing of the input to determine if an incoming message requires an outgoing job. The third
is easy but requires output guards.

To keep this section from growing too large we only present the code required for re-
ceiving bound variables and passing on jobs.

Solution 1 is the trivial case, where the master sends a new job back when receiving a
result from a worker. We don’t need an alternation in this case since all channels are any-to-
any. When there are no more jobs to be executed, the master retires the job channel which
will terminate workers trying to read from it. The master continues to receive results until all
workers have retired which will retire the result channel. This will in turn throw a Channel-
RetireException in the master, which can be caught to print out the final result.

bound = 10e10
while jobs:

next = jobs.pop()
bid = results_in ()
bound = best(bid , bound) #Best is an optimization specific function
jobs_out ((next , bound ))

#Without retire the code becomes even more complex
retire(jobs_out)

try:
while True:

bound = best(results_in (), bound)
except ChannelRetireException:

print bound

Listing 3: Solution 1
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Solution 2 allows workers to submit new bound variables before the job is finished by sending
an update message over the request channel. This allows the bound variable to be updated
faster and thus potentially reduces the total work that must be done. The solution is almost
identical to solution 1, except that messages from workers are parsed to know if the message
is an update. Updates should not trigger a blocking write of a new job to the jobs channel.
Termination is identical to solution 1.

bound = 10e10
while jobs:

next = jobs.pop()
request , bid = results_in ()
if request == ’Update ’: #Update means don’t send new job

bound = best(bid , bound) #Best is an optimization specific function
else:

jobs_out ((next , bound ))

#Without retire the code becomes even more complex
retire(jobs_out)

try:
while True:

bound = best(results_in ()[1] , bound)
except ChannelRetireException:

print bound

Listing 4: Solution 2

Solution 3 uses output guards to eliminate parsing of the incoming messages. Instead, the
alternation accepts either an incoming result or an outgoing job to a worker. Once there are
no more jobs, the solution terminates like the other solutions.

It should be noted that this design, which is as simple as solution 1 and as efficient as
solution 2, also provides simpler initialization of the workers since they are not required to
submit a bogus result to trigger the delivery of the first job.

#A Python limitation requires a mutable type here
my_locals = {

’bound’: 10e10 ,
’next’ : jobs.pop() #We require at least two jobs to start with !!!

}
while jobs:

Alternation ([{
results_in:

"my_locals[’bound ’] = best(__channel_input , my_locals[’bound ’])",
(jobs_out , (next , my_locals[’bound ’)) :

"my_locals[’next ’] = jobs.pop()"
}]). execute ()

#Without retire the code becomes even more complex
retire(jobs_out)

try:
while True:

my_locals[’bound’] = best(results_in (), my_locals[’bound ’])
except ChannelRetireException:

print bound

Listing 5: Solution 3
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If one wishes the workers to update their knowledge of the bounds, this may easily be done in
solution 3 by adding a dedicated channel for propagating the bound and letting the workers
do a blocking input from that channel as frequently as desired. The server then adds another
output guard that at any time is ready to write the best known bound.

4. Future Work

The new version of PyCSP provides a very convenient means of writing concurrent appli-
cations for non-computer scientists, allowing them to use CSP for parallel and concurrent
programming. Initial response on the new version has been quite positive and we thus plan
to continue the work.

An extension to alternation in JCSP is the concept of fairSelect, which can be used to
avoid starvation. This would be of interest also to PyCSP users, probably as default with the
truly random alternation becoming an option for special purposes.

Network construction is still fairly complex in PyCSP, and the only improvement that
the new version offers is the option of mixing single processes and lists of processes in one
Parallel constructor. We are working on a library of network constructors that will allow
users to easily specify networks of processes in rings, meshes, fully interconnected and other
common process-oriented design patterns.

The previous version of PyCSP was extended with a module that allowed processes to be
executed on Grid when channel communication can be represented as a synchronous event,
i.e. input;execute;output, the Grid enabled processes cannot support all channel communi-
cations, i.e. alternation or patterns as input;execute;input;execute;output cannot be used but
classic, client-server patterns fits will with Grid execution. This feature is desired for very
demanding jobs and would be relevant to reintroduce in the new version of PyCSP.

While the type indifference of channels in PyCSP is highly praised by students there are
scenarios where type matching is equally attractive. Future plans include adding support for
type-checking channels.

Conclusions

The original PyCSP borrowed heavily from JCSP to get semantics and functionality correct
while still attempting to make the solution native to Python. It was quite well received, es-
pecially amongst students and scientists who often find Python a productive programming
environment. After exposing more than 200 students to PyCSP, we did however receive some
negative feedback. One of the central complaints was about the many channel types and es-
pecially the hardship of changing between them in an existing application. Another frequent
complaint was the lack of support for output guards and channels with multiple readers and/or
writers in alternation. In addition to the feedback from the users, the authors identified two
shortcomings in the original version of PyCSP: first, students frequently demonstrated race-
conditions when terminating a network by use of poisoning, and second, it is desired to make
PyCSP look more like occam.

The complaints and identified shortcomings resulted in an evaluation that confirmed the
need for the following major changes to PyCSP. All channels are now any-to-any which
greatly simplifies design changes since a user may add more readers or writers to a chan-
nel that previously had only one. Since external choice is central to CSP, these any-to-any
channels are naturally supported in the alternation implementation of external choice.

PyCSP external choice now supports output guards in addition to input guards. This
works with multiple readers and writers on a channel. The use of output guards is a heavily
debated issue in CSP as they are clearly not needed nor trivial to implement. However, it is
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evident that the users of PyCSP find output guards a very convenient feature and considerable
work has been put into supporting output guards in the alternation implementation in PyCSP.

External choice has also been modified to more closely mimic occam so that a guard and
the associated code can be expressed in one statement. This brings PyCSP much closer to
conventional CSP than the previous model where a ready guard was first identified and then
read from.

In order to reduce the risk of race-conditions when using poison to terminate a CSP
network, this version of PyCSP introduces the concept of retirement from a channel. When
all processes on one end of a channel retire their channel ends, the channel becomes retired.
The effect is that the propagation of the retire signal is activated upon the termination of the
last process at a given channel end rather than the first as with the poison operation.

Overall, the changes to PyCSP are well integrated and we believe that using PyCSP is
now easier for the unsophisticated users than with the previous version. The newest version
may be found as PyCSP under Google-code [12].
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Abstract. In this work we motivate and describe three unique implementations of
processes for PyCSP: process, thread and greenlet based. The overall purpose is to
demonstrate the feasibility of Communicating Sequential Processes as a framework
for different application types and target platforms. The result is a set of three imple-
mentations of PyCSP with identical interfaces to the point where a PyCSP developer
need only change which implementation is imported to switch to any of the other im-
plementations. The three implementations have different strengths; processes favors
parallel processing, threading portability and greenlets favor many processes with fre-
quent communication. The paper includes examples of applications in all three cate-
gories.

Keywords. Python, CSP, PyCSP, Concurrency, Threads, Processes, Co-routines

Introduction

The original PyCSP [1] implemented processes as threads, motivated by an application do-
main with scientific users and the assumption that these applications would spend most
of their time in external C calls. While the original PyCSP was well received, users often
aired two common complaints. First and foremost programmers were disappointed that pure
Python applications would not show actual parallelism on shared memory machines, most
frequently multi-core machines, because of Python’s Global Interpreter Lock. The second
common disappointment was the limited number of threads supported, typically an operat-
ing system limitation in the number of threads per process, and the overhead of switching
between the threads.

In this paper we present a new version of PyCSP that addresses these issues using three
different implementations of its concurrency primitives.

PyCSP

The PyCSP library presented in this paper is based on the version of PyCSP presented in
[2] which we believe reduces the complexity for the programmer significantly. It is a new
implementation of CSP constructs in Python, that replaces the original PyCSP implemen-
tation from [1]. This new PyCSP uses threads like the original PyCSP, but introduces four
major changes and uses a better and simpler approach to handle the internal synchronization
of channel communications. The four major changes are: simplification to one channel type,
input and output guards, automatic poisoning of CSP networks and making the produced
Python code look more like occam where possible.

1Corresponding Author: Rune Møllegaard Friborg, Department of Computer Science, University of
Copenhagen, DK-2100 Copenhagen, Denmark. Tel.: +45 3532 1421; Fax: +45 3521 1401; E-mail:
runef@diku.dk.
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When we refer to the threads implementation of PyCSP, we are referring to the new
PyCSP presented in [2] and referenced in this paper as pycsp.threads. This is used as our
base to implement the alternatives to threading presented in this paper.

1. Motivation

We have looked at three underlying mechanisms for managing tasks and concurrency: co-
routines, threads and processes. Each provide different levels of parallelism that come with
increasing overhead. All of them are available in different forms, and in this paper we define
them as follows:

Co-routines provide concurrency similar to user-level threads and are scheduled and
executed by a user-level runtime system. One of the main advantages is very low
overhead.
Threads are kernel-level threads scheduled by the operating system, has a separate
execution stack, but share a global address space.
Processes are operating system processes and data can only be shared through explicit
system calls.

When programming a concurrent application, it is necessary to choose one or several of
the above. If the choice turns out to be wrong, then the application needs to be rewritten. A
rewrite is not a simple task, since the mechanisms are very different by design.

Using Python and PyCSP, we want to simplify moving between the three implementa-
tions. The intended users are scientists that are able to program in Python and who want to
create concurrent applications that can utilize several cores. Python is a popular programming
language among scientists because of a simple and readable syntax and the many scientific
modules available. It is also easy to extend with code written in C or Fortran and does not
require explicit compilation.

1.1. Release of GIL to Utilize Multi-Core Systems

Normally PyCSP is limited to execution on a single core. This is a limitation within the
CPython1 interpreter and is caused by the Global Interpreter Lock (GIL) that ensures ex-
clusive access to Python objects. It is very difficult to achieve any speedup in Python from
running multiple threads unless the actual computation is performed in external modules that
release the GIL. Instead of releasing and acquiring the GIL in external modules it is possi-
ble to use multiple processes that run separate CPython interpreters with separate GILs. In
Python 2.6 we can use the new multiprocessing module [3] to handle processes, enabling us
to compare threads to processes. The comparison in Table 1 shows the result of computing
Monte Carlo pi in parallel using threads and processes.

Table 1. Comparison of threads and multiprocessing on a dual core system with Python 2.6.2

Workers 1 2 3 4 10
Threads 0.98s 1.52s 1.56s 1.55s 1.57s
Processes 1.01s 0.57s 0.54s 0.54s 0.56s

The GIL is to blame for the poor performance for threads illustrated in Table 1. It is
possible to obtain good performance for threads, but to do this you must compute in an
external module and manually release the GIL. The unladen-swallow project [4] aims to
remove the Global Interpreter Lock entirely from CPython.

1CPython is the official Python interpreter.
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1.2. Maximum Threads Available

On a standard configured operating system, the maximum number of threads in a single
application is limited to around 1000. In PyCSP, every CSP process is implemented as a
thread. Thus, there can be no more CSP processes than the maximum number of threads. We
want to overcome this and give PyCSP the ability to handle CSP networks consisting of more
than 100000 CSP processes, by using co-routines.

We thus decided to address these issues by providing two additional implementations,
one that provides real parallelism for multi-core machines and one that does not expose the
processes to the operating system. All versions should implement the exact same interface,
and a programmer should need only to change the code that imports PyCSP to change be-
tween the three different versions. Having a common interface for three implementations of
PyCSP has another purpose besides being a fast and effective method for changing the con-
current execution platform. It is also an easy method for students to learn what consequences
it has to run a specific PyCSP application with co-routines, threads or processes. PyCSP is
often chosen by students in the Extreme Multiprogramming Class, which is a popular course
at the University of Copenhagen teaching Communicating Sequential Processes [5].

2. Three Implementations of PyCSP

The three implementations of concurrency in PyCSP – pycsp.threads, pycsp.processes
and pycsp.greenlets – are packaged together in the pycsp module. Although packaged
together these are completely separate implementations sharing a common API. It is pos-
sible to combine the implementations to produce a heterogeneous application with threads,
processes and greenlets, but the support is limited since the choice (Alternation) construct
does not work with channels from separate implementations and when communicating be-
tween implementations only channels from the processes implementation are supported. The
primary purpose of packaging the three implementations in one module is to motivate the
developer to switch between them as needed. A common API is used for all implementations
making it trivial to switch between them, as shown in Listing 1. A summary of advantages
and limitations for each of the implementations are listed at the end of this section.

Listing 1: Switching between implementations of the PyCSP API
# Use threads # Use processes
from pycsp.threads import * from pycsp.processes import *

When switching to another implementation, the PyCSP application may execute very
differently as processes may be scheduled in another order and less fair. Hidden latencies
may also become more apparent when all other processes are waiting to be scheduled. In
the following sections we present an overview of the implementations in order to understand
how they affect the execution of a PyCSP application.

2.1. pycsp.threads

This implementation uses the standard threading module in Python, which implements
kernel-level threads. All threads access the same memory space, thus when communicating
data only the reference to the data is copied. If the data is a mutable Python type it can be
updated from multiple threads in parallel, though it is not recommended to do so since it
might cause unexpected data corruption and does not fit with the CSP programming model.

Details of pycsp.threads are presented in [2] and is a remake of the original
PyCSP [1].
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2.2. pycsp.greenlets

Greenlets are lightweight (user-level) threads, and all execute in the same thread. A simple
scheduler has been created to handle new greenlets, dying greenlets and greenlets that are
rescheduled after blocking on communication. The scheduler has a simple FIFO policy and
will always try to choose the first greenlet among the greenlets ready to run.

The PyCSP API has been extended with an @io decorator that can wrap block-
ing IO operations and run the operations in a separate thread. In pycsp.threads and
pycsp.processes, this decorator has no function while in pycsp.greenlets an Io object
is created. It is necessary to introduce this construct because the greenlets are all running in
one thread, and if one greenlet blocks without yielding control to the scheduler, all greenlets
in this thread are blocked. For threads and processes, this is not a problem because the op-
erating system can yield on IO and use time slices to interrupt execution, thus rescheduling
new threads or processes. Greenlets are never forced to yield to another greenlet. Instead,
they must yield execution control by themselves.

Invoking the __call__ method on the Io object will create a separate thread running
the wrapped function. After the separate thread has been started, the greenlet yields control
to the scheduler in order to schedule a new greenlet. Listing 2 provides an example of how to
use @io. Without @io, the greenlet would not yield, thus blocking all other greenlets ready to
be scheduled. This would serialize the processes, and the total runtime of Listing 2 would be
around 50 seconds instead of the expected 10 seconds.

Listing 2: Yielding on blocking IO operations
@io
def wait(seconds ):

time.sleep(seconds)

@process
def delay_output(msg , seconds ):

wait(seconds)
print msg

Parallel(
[delay_output(’%d second delay ’ % i, i) for i in range(1, 11)]
)

Communicating on channels from outside a PyCSP greenlet process is not supported,
since the scheduler needs to work on a greenlet process to coordinate channel communica-
tion. This means that you can not communicate with the main greenlet at the top-level envi-
ronment. Calls to pycsp.greenlets functions from a @io thread will fail for the same rea-
son. Calls to the pycsp.threads or pycsp.processes implementations are recommended
to be wrapped with the @io decorator, otherwise they could block the scheduler and cause a
deadlock.

2.3. pycsp.processes

This implementation uses the multiprocessing module available in Python 2.6+. Processes
started with the multiprocessing module are executed in separate instances of the Python in-
terpreter. On systems supporting the UNIX system call fork, starting separate Python in-
terpreters with a copy of all objects is trivial. On Microsoft Windows, this is much more
challenging for the multiprocessing module, since no equivalent of fork is available. The
multiprocessing module simulates the fork system call by starting a new Python interpreter,
loading all necessary modules, serializing / unserializing objects and initiating the requested
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function. This is very slow compared to fork, but it still works in lack of a better alternative
for Windows.

When an application is written in pure Python and PyCSP, it is now possible with
pycsp.processes to utilize multi-core CPUs. For most cases all PyCSP applications will be
able to run without any changes, but if the data communicated does not support serialization,
the application will fail. An example of such data is an object containing pointers initialized
by external modules, fortunately this type of data is not very common in Python applications.

pycsp.processes uses shared memory pointers internally and must allocate everything
before any processes are forked. For this reason, it might in extreme cases be necessary to
tweak a set of constants for pycsp.processes. To do this, a singleton Configuration class is
instantiated as shown in the example (Listing 3). New constants must be set before any other
use of pycsp.processes, since everything is allocated on first use.

Listing 3: Example of setting and getting a constant.
from pycsp.processes import *
Configuration ().set(PROCESSES_SHARED_CONDITIONS , 50)
Configuration ().get(PROCESSES_SHARED_CONDITIONS) # returns 50

Using this configuration class it is possible to change the size of shared memory and
the amount of shared locks and conditions allocated on initialization. The allocated shared
memory is used as buffers for channel communication, which means that the size of data
communicated on channels at any given time can never exceed the size of the buffer. The
default size of the shared memory buffer is set to 100MB, but can easily be increased by
setting the constant PROCESSES ALLOC MSG BUFFER.

2.4. Summary of Advantages and Limitations

The following is a summary of the advantages (+) and limitations (-) of the individual imple-
mentations before moving on to the Implementation and Experiments section:

Threads:

+ Only references to data are passed by channel communication.
+ Other Python modules usually only expect threads.
+ Compatible with all platforms supporting Python 2.6+.
- Limited by the Global Interpreter Lock (GIL), resulting in very poor performance for

code not releasing the GIL.
- Limited in the maximum number of CSP processes.

Greenlets:

+ More optimal switching between CSP processes, since we can limit the context
switches to the point where they are blocking. Performance does not decrease with
more CSP processes competing for execution.

+ Very small footprint per CSP process, making it possible to run a large number of
processes, only limited by the amount of memory available.

+ Fast channel communications (≈ 20µs).
- No utilization of more than one CPU core.
- Unfair execution, since execution control is only yielded when a CSP process blocks

on a channel.
- Requires that the developer wraps blocking IO operations in an @io decorator to yield

execution to another CSP process.

Processes:
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+ Can utilize more cores, without requiring the developer to release the GIL.
- Fewer processes possible than pycsp.threads and pycsp.greenlets.
- Windows support is limited, because of lack of the fork system call.
- All data communicated are serialized, which requires the data type be supported by

the pickle module.
+ A positive side-effect of serializing data is that data is copied when communicated,

rendering it impossible to edit the received data from the sending process.

3. Implementation

When processes communicate through external choice at both the reading and writing end
a number of challenges must be addressed to avoid live-lock and dead-lock problems, this
is well researched in [6,7,8]. The PyCSP solution introduces what we believe to be a new
algorithm for this problem. The algorithm is very simple and quite fast in the common case.

Every channel has two queues associated with it, one for pending read-operations and
one for pending write-operations. Every active choice (Alternation) is represented with a
request structure, this request has a lock, to ensure mutual exclusion on changes to the request,
an unique id, a status field, and the actual operation, i.e. read or write with associated data.
When an Alternation is run a reference to the request structure is added to the queue it belongs
to, i.e. input-requests (IR) and output-requests (OR), on every channel in the choice. Then all
requests are tested against all potentially matching requests on all involved channels. When
a match is found the state of the request structure is changed to Done to ensure that the
request is matched only once. When the arbitration function comes across an inactive request
structure it is evicted from the queue.

Listing 4: The double lock operation in pseudo code
def double_lock(req_1 , req_2):

if req_1.id < req_2.id:
lock(req_1.lock)
lock(req_2.lock)

else:
lock(req_2.lock)
lock(req_1.lock)

Live-lock is avoided by using blocking locks only, so if a legal match exists it will always
be found the first time it is available. Deadlock is avoided by using the unique id of a request
to sort the order in which locks are acquired, thus we have an operation, double lock (Listing
4), that acquires two individual locks in order and returns once both locks are obtained. If
two threads attempt to lock the same requests they will always do so in the same order and
thus never deadlock.
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Listing 5: The arbitration algorithm

for w in write_queue:
for r in read_queue:

double_lock(w, r)
match(w, r)
unlock(w, r)

The arbitration algorithm in Listing 5 then performs the protected matching by acquir-
ing locks with the double lock operation. For every Alternation, read or write action there is
exactly one request and this request is always enqueued on the destination channel queues
before the arbitration algorithm is run. It may seem unnecessarily expensive at first glance,
but it is important to remember that if we do not enqueue the request before matching against
potential matches, then there exists a scenario where a read-operation and a matching write-
operation may be arbitrated in step-lock without detecting each other. An example of a cor-
rectly committed Alternation is shown in figure 1.

Channel A

Channel B

Active
IR

Done, Fail
Active

OR

Done, Ok
IR

Done, Ok
OR

Requests

1

2

3

4

cin = A.reader()
id = cin()

cout = A.writer()
cout(id)

cout = B.writer()
cout(new_id)

cout = A.writer()
cin = B.reader()
Alternation([
  { cin:received_id() },
  { (cout, id):send_id(id) }
]).execute()

Figure 1. Snapshot of synchronization with two channels and four communicating processes. Channel B has
found a match between two request structures; one in the input request queue (IR) and one in the output request
queue (OR). Next, channel A will match the two active requests on channel A’s request queues.

The presented algorithm for handling synchronization in PyCSP is relevant for pycsp.threads
and pycsp.processes, while the pycsp.greenlets does not need this to ensure correct-
ness. The algorithm is a main feature of the new PyCSP, if interested in other features of
pycsp.threads then the description of these can be found in [2]. Next we will focus on the
implementation details for pycsp.processes and pycsp.greenlets.

3.1. pycsp.greenlets

For co-routines, the greenlet module [9] was chosen because it is a very small module, easy
to install, provides full control (no internal scheduler) and allows yielding from nested func-
tions. Python’s own generators which make it possible to create a co-routine-like API, do not
allow yielding from nested functions, which would not allow us to yield when blocked on
a channel communication. Another option was to use Stackless Python [10] for our imple-
mentation. Stackless Python was originally based on the greenlet design and has since then
matured. It is slightly faster than the greenlet module and allows a larger number of allocated
co-routines. However, having to install an extra Python interpreter to make the co-routine
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implementation run was found unacceptable, leaving the greenlet module as the only valid
choice left.

A limitation with co-routines is that everything runs in a single thread, which means that
a blocking call will block all other co-routines as well. This is especially a problem with IO
operations, since the blocking action might happen in a system call, which we are not able
to detect in the Python environment. The @io decorator attempts to solve this by wrapping a
function into a run method on an Io thread object. This Io thread object is created on-the-fly
and yields execution to the scheduler after starting the thread. When the thread’s run method
finishes, the return value is saved and the calling co-routine is moved onto the scheduler’s
next queue. Wrapping a function in an @io decorator introduces an overhead of starting and
stopping a thread. We carried out a test, to see whether this overhead could be minimized
by using a thread worker pool. The overhead was found to be similar to the time needed to
start and stop a thread, thus the idea of a thread worker pool was abandoned. The idea of
delegating a blocking system call to a separate thread was presented by Barnes [11] for the
Kent Retargetable occam-π Compiler. occam-π implements a set of channels keyboard and
screen that can be used to communicate to processes reserved for these IO operations. This
could also be an option for PyCSP, but it was decided that the @io decorator would provide
more flexibility for the programmer.

The channel communication overhead is much lower for greenlets than the other two
implementations because we can avoid the conditions and locks when synchronizing.

To optimize for fast switching on channel communications, a central queue of blocked
greenlets is not used when handling synchronizations. Whenever a greenlet blocks on channel
communication, it saves a self-reference together with the channel communication request.
Since channel communication requests are located in queues on channels these can be viewed
as wait queues, from where a request is matched with an offer for communication. It is now
the responsibility of another greenlet that matches this channel communication request to
place the blocking greenlet on the scheduler’s next queue. The scheduler uses a simple FIFO
policy, thus choosing the first element of the next queue for execution. The next queue is
usually short as most greenlets will be blocked on channel communication.

Listing 6: Blocking and scheduling a new greenlet CSP process
# Reschedule , without putting this process on either
# the next[] or a blocking [] list.
def wait(self):

while self.state == ACTIVE:
self.s.getNext (). greenlet.switch ()

When switching, we switch directly from CSP process to CSP process without spending
any time on having to switch to a scheduler process. The code in Listing 6 is the wait method,
which is executed when a CSP process blocks on channel communication. The method is
responsible for scheduling the next CSP process. The self.s attribute is a reference to the
scheduler, which is implemented as a singleton class. If the next and new queues are empty,
then getNext() will return a reference to the scheduler greenlet which will then be activated.
The scheduler greenlet will then investigate whether there are any current Timeout guards or
@io threads active. In case all queues are empty it will terminate since everything must have
been executed.

3.2. pycsp.processes

Using processes instead of threads requires that we run separate Python interpreters. For fast
communication we can choose among several existing inter-process communication tech-
niques, which includes message passing, synchronization and shared memory. Which tech-
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niques are available and how they are implemented differs between platforms. In order to
have cross-platform support we construct the pycsp.processes implementation on top of
the multiprocessing module available in Python 2.6. The multiprocessing module presents a
uniform method of creating processes, shared values and shared locks. When Python objects
are communicated through shared values, they are serialized using the pickle module [12].
Some Python objects cannot be serialized, shared values and locks are two examples of these.
This requires us to initialize everything at startup, so that references can be passed to new
processes as arguments. A singleton ShmManager class maintains all references to shared val-
ues and locks. This instance is automatically located in the memory address space of newly
created processes.

Every channel instance requires a lock to protect critical regions, and every channel com-
munication requires a condition linked to the channel request offered to processes to ensure
that this request is updated in a critical region and can be signaled when updated. This usage
of locks and conditions can be a problem when having many processes and channels. The
total number of available locks and conditions in shared memory is much lower for the mul-
tiprocessing module than for the threading module. The solution was to let the ShmManager
class maintain a small pool of shared conditions and locks. The size of the lock pool needs
to be large enough to prevent a delay when entering a critical region. Likewise the size of the
condition pool should be large enough to avoid waking up to many false processes, causing
an overhead in context switches. 20 locks and 20 conditions seem to be enough for most
situations possible with pycsp.processes, though a small performance increase is possible
for the micro benchmark experiments by using more conditions.

Sending data around in a CSP network requires a method to actually transfer data from
one process to another. Since all references to shared memory have to be initialized and
allocated at startup a message buffer is allocated in shared memory. Unfortunately Python
only supports allocating shared memory through the multiprocessing module, thus we will
have to handle the memory management in PyCSP by calling get and set methods on objects
allocated using the multiprocessing module. A large shared string buffer is allocated and
partitioned into blocks of a static size. To handle the allocation of the required number of
blocks for a channel communication and freeing them again afterwards, a dynamic memory
allocator is implemented. The memory allocator uses a simple strategy that resembles the
next-fit strategy:

init A list of free blocks is initialized with one entry that equals the entire message
buffer.

alloc Any size is allocated by searching the list of free blocks for an entry that has
enough space. The needed blocks are then cut from this entry and an index to the first
block is returned.

free Allocated blocks are freed by appending an entry containing the index and size of
the free blocks list.

Every new allocation will fragment the message buffer into smaller sections. If at some
point we cannot find a partitioned area large enough, a step of combining free blocks is exe-
cuted. This solution makes it possible to send both large messages and very small messages.
If necessary, the buffer and block size can be tweaked using the Configuration().set()

functionality.
We do not expect this dynamic memory allocator to affect the performance of parallelism

in general, even though the allocation of a buffer is protected by a shared lock. The amortized
cost of allocating buffers is low, since most allocations will be able to allocate blocks from
the first entry in the list of free blocks and while the more rare and expensive action of
reassembling blocks introduces a delay, it is a delay that will not affect the overall execution
much. In the micro benchmarks (Section 5.1) and in the Mandelbrot experiment (Section 5.3)
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we successfully communicate small and larger data sizes.

4. Related Work

Communicating Sequential Processes (CSP) was defined by Hoare [5] in 1978, but it is during
the last decade that we have seen numerous new libraries and compilers for CSP. Several
implementations are optimized for multi-core CPUs that are becoming the de-facto standard
when buying even small desktop computers. occam-π [13] and C++CSP2 [14] are two CSP
implementations which stand out by being able to utilize multiple cores and use user-level
threads for fast context switching. User-level threads are more efficient and provides greater
flexibility than kernel-threads. They exists only to the user and can be made to use very little
memory. It is possible to optimize the scheduling of threads to fit with the internal priority
in the application, because the scheduler is in user code and the operating system is not
involved. occam-π implements processes as user-level threads and uses a very robust and
optimized scheduler that can handle millions of processes. The utilization of multiple cores
is handled automatically by the scheduler and is described in detail in [15]. This is different
from C++CSP2, where it is necessary to specify whether processes should be run as user-level
threads or kernel-level threads.

Several libraries exist for Python that enable the Python programmer to manage tasks or
threads, but they do not enable the programmer to easily change from threads to co-routines.
Some of these libraries are Stackless Python [10], Fibra [16] and the multiprocessing mod-
ule [3] and they provide an abstraction that uses the concept of processes and channels re-
sembling a subset of the constructs available in the CSP algebra. Stackless Python is a branch
of the standard CPython interpreter and provides very small and efficient co-routines (green-
lets), bidirectional channels and a round-robin scheduler. Fibra is based on Python genera-
tors that are similar to co-routines, but it is impossible to hide the fact that a co-routine is a
Python generator since the keyword yield is the only method to switch between generators.
In Fibra, co-routines communicate through tubes by yielding values to a scheduler. The mul-
tiprocessing module in Python 2.6 provides a method of using operating system processes,
shared memory and pipes for buffered communication. Operating system processes are heavy
processes requiring a large amount of memory, but contrary to threads they are not affected
by the Global Interpreter Lock (GIL).

However, no libraries exist for Python that provide the functionality of the choice con-
struct that makes it possible to program with non-deterministic behaviour in the communica-
tion between processes.

5. Experiments

We have run three different experiments, to show the strengths and weaknesses of the PyCSP
implementations. The first experiment consists of two micro benchmarks where one is show-
ing how the implementations handle an increasing amount of processes until reaching the
maximum possible amount. The other micro benchmark is showing how well an implementa-
tion copes with performing an increasing amount of concurrent communications in a network
of static size. After the micro benchmarks, we generate primes using a simple PyCSP appli-
cation as a case for when it is convenient to be able to switch from threads or processes to
co-routines. Finally, a benchmark computing the Mandelbrot set is used to compare speedup
on an 8-core system. The Mandelbrot set is computed twice using two different strategies and
producing two very different speedup plots. One has the Global Interpreter Lock (GIL) re-
leased during computation by computing in an external module and one was computed using
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the numpy module [17]. All benchmarks are executed on a computer with 8 cores: two Intel
Xeon E5310 Quad Core processors and 8 GB RAM running Ubuntu 9.04.

5.1. Micro Benchmarks

The results of these micro benchmarks provides a detailed view of how the implementations
behave when they are stressed. The benchmarks are designed with the purpose of measuring
the channel communication time including the necessary time required to context switch.
Extra unnecessary context switches may be added by the operating system and is related to
the PyCSP implementation used.

Initiate token
and

destroy token

...

...

Figure 2. Ring of variable size
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Figure 3. Micro benchmark measuring the channel communication time including the overhead of context
switching for an increasing number of CSP processes.

Using the ring design in Figure 2, we run a benchmark that sends a token around a ring
of increasing size. The ring benchmark was inspired from a similar micro benchmark in [15].
N elements are connected in a ring and every element passes a token from the previous ele-
ment to the next. This challenges the PyCSP implementations ability to handle an increasing
amount of processes and channels. The time measurements does not include startup and shut-
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down time and each measured run is divided by the size of the ring to compute an average
channel communication time.

The test system has been tweaked to allow a larger number of threads and processes than
the default. The results for our test system (in Figure 3) show that we can reach 512, 16384
and 262144 CSP processes depending on the PyCSP implementation used. It is obvious that
pycsp.processes should only be used for applications with few CSP processes because
of the exponential increase in latency, though it is possible to configure pycsp.processes

using Configuration().set(PROCESSES_SHARED_CONDITIONS, 50) and achieve marginally bet-
ter performance. As expected, pycsp.greenlets is able to handle a large number of CSP
processes with only a small decrease in performance.

Investigating the performance in a different perspective, we use four rings of static size
N and then send 1 to N-1 tokens to circle concurrently. In the previous benchmark there was
only one communication at a time, which is a rare situation for an actual application. With
this benchmark we see pycsp.processes performs much better, since it can now utilize
more cores. Based on the results in Figure 4 we can conclude that pycsp.processes has a
higher throughput of channel communications than pycsp.threads when enough concur-
rent communications can utilize several cores.
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Figure 4. Micro benchmarks measuring the average channel communication time including the overhead of
context switching for an increasing number of concurrent tokens in four rings of size 8, 16, 32 and 64.

Looking at the results for the four rings of size N in Figure 4, an interesting pattern
is observed whenever the number of concurrent tokens comes close to N. For N-1 concur-
rent tokens the performance of pycsp.threads are almost equal to the performance of one
concurrent token. The reason for this behaviour is explained by the blocking nature of CSP,
because when all processes but one has a token, then only this one is able to receive. This
behaviour mimics the behaviour of the test with one token and explains why the results in
Figure 4 are mirrored around the center.
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From these micro benchmarks we can see that, pycsp.threads performs consistently in
both benchmarks. pycsp.processes does poorly in Figure 3 where the cost of adding more
processes is high, but perform better in Figure 4 where a number of concurrent tokens are
added. Finally pycsp.greenlets has proved able to do fast switching and many processes,
regardless of the amount of concurrent tokens.

5.2. Primes

This is a simple and inefficient implementation of prime number generation found in [18].
The CSP design of the implementation is shown in Figure 5. It adds one CSP process for
every computed prime, which sets a limit on how many primes can be calculated using this
design. The maximum number of primes equals the maximum amount of CSP processes
or channels possible. The latency involved in spawning new CSP processes and performing
context switches varies when swapping between threads, processes and greenlets.

Natural number 
generator

...If number mod 2 == 0
Then skip
Else pass to next process

If number mod 3 == 0
Then skip
Else pass to next process

If number mod 5 == 0
Then skip
Else pass to next process

Spawn new 
worker process 

and take the 
role of a worker

Producer Workers Printer

Print incoming 
prime numbers

Figure 5. Primes CSP design
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Figure 6. Results of primes experiment.

We run a benchmark computing primes, plotting the runtime results in Figure 6. The
processes implementation failed with the message “maximum recursion depth exceeded”
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after creating 90 processes. This is a limitation in the Python multiprocessing module which
is only apparent when spawning new processes from child processes.

This primes benchmark does not compare to a simple implementation in pure Python,
which would be orders of magnitude faster than the implementation using PyCSP. This
benchmark is meant as a method to compare one aspect of the PyCSP implementations and
it proves why greenlets is an important player compared to threads and processes. Running
for an entire day (86400s) would produce ≈ 16000 primes using the threads implementation
and ≈ 60000 primes using the greenlets implementation. Also 16384 threads is close to an
upper limit for threads, while greenlets has no real upper limit on the amount of greenlets.

5.3. Computing the Mandelbrot Set

This experiment is a producer-consumer-worker example that tests PyCSP’s ability to utilize
multiple cores. It produces the image in Figure 7 at a requested resolution. The image requires
up to 5000 iterations for some pixels and is located in the Mandelbrot set at the coordinates:

xmin = -1.6744096758873175
xmax = -1.6744096714940624
ymin = 0.00004716419197284976
ymax = 0.000047167062611931696

The simple CSP design in Figure 7 communicates jobs from the producer-consumer to
the workers using the Alternation in Listing 7. Workers can request and submit jobs in any
order they like.

Listing 7: Producer-Consumer: Delegating and receiving jobs
while len(jobs) > 0 or len(results) < jobcount:

if len(jobs) > 0:
Alternation ([{

workerIn: received_job ,
(workerOut , jobs [ -1]): send_job

}]). execute ()
else:

received_job(workerIn ())

Producer / 
Consumer

Worker...Worker

Figure 7. The Mandelbrot CSP design and the computed Mandelbrot set.

The experiment is divided into two different runs. They differ by using two different im-
plementations of the worker process. One releases the GIL during computation by using the
ctypes module [19] to call compiled code contained in an operating system specific dynamic
library. Executing external code using ctypes is advanced, but does also provide a perfor-
mance improvement over the other method which is using the numpy module [17] to manipu-
late and compute on matrices. The numpy module is a package used for scientific computing
and provides a N-dimensional array object including tools to manipulate this array object.
The numpy module also releases the GIL on every call, but this is much more fine-grained
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than the course-grained release and acquire used in the ctypes module, thus a larger overhead
is expected for the numpy module.
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Figure 8. Speedup plots of computing the Mandelbrot set displayed in Figure 7. The resolution is 1000 ∗ 1000
and the work is divided in 100 jobs. The run time for the case with a single worker is used as the base for
the speedup calculation and was 592.5 seconds for the numpy benchmark and 10.6 seconds for the ctypes
benchmark.

The results in Figure 8 clearly shows that pycsp.processes is superior in this applica-
tion by attaining a good speedup in both runs. It is interesting that pycsp.processes is able
to compete with pycsp.threads when using the ctypes worker, since pycsp.processes

for every communication includes an extra overhead of serializing data to a string format, al-
locating a message buffer, copying the string data to the message buffer, retrieving the string
data from the message buffer, freeing the message buffer and finally unserializing the string
data into a copy of the original data. As expected we have no multi-core speedup at all from
using pycsp.greenlets. We could have wrapped the computation in the @io decorator and
gained a speedup for the ctypes benchmark, but this is not the purpose of the @io decorator
and would encourage wrong usage of the new PyCSP library.

Based on the experiments performed, the three implementations have different strengths;
processes favors parallel processing, threading favors portability and applications that release
the GIL and greenlets favor many processes and frequent communication.

6. Conclusions

With the PyCSP version presented in this paper, any application written in Python and using
PyCSP can change the concurrent execution model from threads to co-routines or processes
just by changing which module is imported. Depending on a user’s domain and application a
user can choose to circumvent the Global Interpreter Lock by using processes, provided that
the application does not create more than the maximum allowed processes for the operating
system. Alternatively, a user may want to speed up the communication time by a factor of
ten by using greenlets. Then again if the application is changed further and the user suddenly
wants to return to using threads, this is a simple task that does not require the user to transfer
code changes to an older revision.

Using pycsp.processes it is now possible to utilize all cores of an 8-core system with-
out requiring the computation to take place in an external module. This is important for pro-
grammers who want to utilize more cores when the performance of pycsp.threads is lim-
ited by the Global Interpreter Lock. Additionally, running more than 262144 processes in a
single PyCSP application is made possible using pycsp.greenlets. This amount is smaller
than what is possible with occam-π [13] or C++CSP2 [14], but it does open up to the possi-
bility of developing more fine-grained CSP-designs using PyCSP.
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PyCSP is available at Google-code using the project name pycsp [20].

6.1. Future Work

The obvious next step would be to create pycsp.net, a distributed version of PyCSP that
connects processes by networked channels. pycsp.net would be required to be fully com-
patible with the current API, so that any PyCSP application can be transformed into a dis-
tributed application, just by changing the imported module. Channels could be given names
so that they could be registered on a nameserver and identified from different hosts.

Using pycsp.net and running the Mandelbrot benchmark application from the Experi-
ments section would allow us to utilize multiple machines. The producer-consumer would be
started on one host, and starting additional worker processes on other hosts would be trivial,
since they would request the correct channel reference from the nameserver by a known name
and automatically start requesting jobs.
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Abstract 
Producing readable and correct programs while at the same time taking advantage of multi-core 

architectures is a challenge. PyCSP is an implementation of Communicating Sequential Processes 

algebra (CSP) for the Python programming language, that take advantage of CSP’s formal and 

verifiable approach to controlling concurrency and the readability of Python source code. We describe 

PyCSP, demonstrate it through examples and demonstrate how PyCSP compares to Pthreads in a 

master-worker benchmark. 

 

Keywords: Python, Concurrency, CSP 

 

1. Introduction 
 

Maintaining scientific code is a well-known challenge; many applications are written by scientists 

without any formal computer science or software engineering qualifications, and are usually grown 

“organically” from a small kernel to hundreds of thousands of code-lines. These applications have 

traditionally targeted simple single core systems and have still grown to a complexity where the cost of 

maintaining the codes is prohibiting, and where the continued correctness of the code is often 

questionable.  This problem is being addressed today by training scientists in some kind of structured 

program development. However, emerging architectures, which are massively parallel and often 

heterogeneous, may again raise the complexity of software development to a level where non computer 

scientists will not be able to produce reliable scientific software. 

 

1.1. Motivation 
 

PyCSP [1] is intended to help scientists develop correct, maintainable and portable code for 

emerging architectures.  Python is highly suited for scientific applications. While it is interpreted and 

thus very slow, scientific libraries efficiently utilize the underlying hardware.  CSP provides a formal 

and verifiable approach to controlling concurrency, fits directly into scientific workflows, and maps 

directly onto many graphical tools that present scientific workflows such as Taverna[2], Knime[3] and 

LabView[4]. 

CPUs are produced with multiple cores today and every announced future CPU generation[5] seems 

to feature an ever increasing number of cores. As single core performance increase very slowly, 

researchers are required to exploit this parallel hardware for increased performance. To this end a 

number of parallel libraries like BLAS and programming tools like Intel Parallel Studio[6] are 

appearing. Unfortunately parallel libraries are often not enough to achieve acceptable speed and even 

with advanced tools parallel programming remains a source of added complexity and new bugs in 

software development. 

The intended users for PyCSP are not computer scientists, but scientists in general. General 

scientists can not be expected to learn CSP as formulated by Hoare [7], thus the approach to controlling 

concurrency in this paper is based on CSP, but does not require any knowledge of CSP. The key 

elements of controlling concurrency using PyCSP is presented in section 3. 

 

1.2. Related Work 
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During the last decade we have seen numerous new libraries and compilers for CSP. Several 

implementations are optimized for multi-core CPUs that are becoming the de-facto standard when 

buying even small desktop computers. Occam-π [8], C++CSP [9] and JCSP [10] are three robust CSP 

implementations of CSP. C++CSP and JCSP are libraries for C++ and Java, while Occam-π uses CSP 

inherently in the programming language. 

 

2. CSP 
 

The Communicating Sequential Processes algebra, CSP [7], was introduced more than 25 years ago 

and while it was highly popular and thoroughly investigated in its first years, interest dropped off in the 

late 1980 because the algebra appeared to be a solution in search of a problem, namely modelling 

massively concurrent processes and providing tools to solve many of the common problems associated 

with writing parallel and concurrent applications. 

CSP provides many attractive features with respect to the next generation processors; it is a formal 

algebra with automated tools to help prove correctness, it works with entirely isolated process spaces, 

thus the inherent coherence problem is eliminated by design, and it lends itself to being modelled 

through both programming languages and graphical design tools. 

Another attractive feature of CSP, which has so far not been investigated, is the fact that it should 

lend itself towards modelling heterogeneous systems. This is important for the next generation 

processors since heterogeneity has already been introduced: the CELL-BE processor features two 

architectures on the core, while the Tesla processors require a classic processor for managing the 

overall system and the scalar portions of an application. 

 

3. PyCSP 
 

PyCSP provides an API that can be used to write concurrent applications based on CSP. PyCSP was 

introduced in 2007 [1] and revised in 2009 [11]. The API is implemented in four versions: Threads, 

processes, greenlets and networked. All four versions are packed in a single module, to motivate the 

developer to switch between them as needed. A common API is used for all implementations making it 

trivial to switch between them, as shown in table 1. When switching to another implementation, the 

PyCSP application may execute very differently as processes may be scheduled in another order and 

less fair. Hidden latencies may also become more apparent when all other processes are waiting to be 

scheduled. Having several implementations sharing one API was presented in [12]. 

 

The four implementations are: 

• pycsp.threads - A CSP process is implemented as an OS thread. The internal synchronization is 

handled by thread-locking mechanisms. This is the default implementation. Because of the Python 

Global Interpeter Lock
1
, this is best suited for applications that spend most of their time in external 

routines that release the GIL. 

 

• pycsp.processes - A CSP process is implemented as an OS process. The internal synchronization is 

more complex than pycsp.threads and is built on top of the multiprocessing module available in Python 

2.6. This implementation is not affected by the Global Interpreter Lock, but has some limitations on a 

Windows OS and generally has a larger communication overhead than the threaded version. 

 

• pycsp.greenlets - This implementation uses co-routines instead of threads.  Greenlets [13] is a 

simple co-routine implementation available as a Python module. It provides the possibility of creating 

100.000 CSP processes in a single CSP network. This version is optimal for single-core architectures 

since it provides the fastest communication, but with no parallelism. 

                                                           
1
 Python uses a Global Interpreter Lock, the GIL, to protect the interpreter when multiple threads 

execute Python code. The GIL limits concurrency when executing Python code, but libraries 

commonly mitigate the problem by releasing the GIL when executing external code. 
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• pycsp.net - A proof-of-concept network enabled implementation based on pycsp.threads. All 

synchronization is handled in a single process. This provides the same functionality as pycsp.threads, 

but adding a larger cost and a bottleneck by introducing a server process. It uses Pyro [14] for 

communication. 

 

Table 1. Switching between implementations of the PyCSP  API 

pycsp.threads pycsp.processes 
import pycsp.threads as pycsp 

 

@pycsp.process 

def P(msg): 

    print msg 

 

pycsp.parallel(P(“Hello World”)) 

import pycsp.processes as pycsp 

 

@pycsp.process 

def P(msg): 

    print msg 

 

pycsp.parallel(P(“Hello World”)) 

 

3.1. Processes 
 

A process in PyCSP is an isolated unit of execution, not physically isolated as an operating system 

process, but by design should not share objects with other processes. A process is specified by using 

the @process decorator as depicted in table 2. Applying this decorator to the increment function, 

creates an increment factory, which produces increment process instances. Executing the process is 

covered in section 3.3. 

 

3.2. Networks of Processes 
 

The only allowed methods to communicate between processes are to either pass arguments when 

creating processes or by sending messages over channels. All channel communications are blocking 

operations and are guaranteed to be sent exactly once and received by exactly one process. A channel is 

created using the Channel class and can have any number of writing processes and any number of 

reading processes. 

 
A = pycsp.Channel(“A”) 

 

Processes are usually passed their input and output channels as parameters which can then be used 

to communicate with other processes. An example of this usage is shown in table 2. 

 

Table 2. Example procress with IO 

@pycsp.process 

def increment(cin, cout,  inc_value=1): 

   while  True: 

      cout(cin() +  inc_value) 

 

To communicate on a channel, an application is required to get a hold of an input or output end of 

the channel. A reference to a channel end is acquired by using the chan.reader() or chan.writer() 

channel methods, which will return a ChannelEnd object that can be used to read and write on the 

channel respectively. Acquiring a channel end object will also join the actual channel. This adds 

information to the channel, letting it know how many readers and writers that are connected to it. The 

number of readers and writers is used to automate poisoning explained in section 3.5. To create an 

increment instance P and provide it with channel ends we do the following: 

 
P = increment(a.reader(), b.writer()) 

 

Communicating on a channel end is performed by invoking cin() or cout(msg) when the 

channel ends have been connected like this: cin =  a.reader() or cout =  a.writer().  
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Usually channel ends are provided as arguments to new processes as shown in the example of the 

increment instance P. 

 

3.3. Concurrency 
 

Creating a process will simply instantiate a copy of the process but not execute or start it in any way. 

A set of processes may be executed using one of three ways, Sequence, Parallel or Spawn. Sequence 

and Parallel are synchronous and will only terminate once all processes in their parameter list are 

terminated. Sequence executes the processes one at a time while Parallel executes all the processes 

concurrently. Spawn starts the set of processes in the background and then returns, one may view it as 

an asynchronous version of Parallel. 

 

 Table 3. Initiating processes for execution 

a,b =  pycsp.Channel() * 2 

pycsp.Parallel( 

    counter(a.writer()), 10), 

    increment(a.reader(), b.writer()), 

    printer(b.reader()) 

) 

 

The code in table 3 completes when the counter, increment and printer processes have completed. 

Section 3.5 explains how to provoke a termination of the Parallel(processes) execution. 

 

3.4. Nondeterminism 
 

When an input or output channel end is invoked, as explained in section 3.2, the executing process 

are committed to this channel until this communication has completed. This complicates writing 

processes that need to respond to one of several communication events that may come in any order. 

Using the AltSelect construct, it is possible to commit to waiting for one of several conditions, 

called guards, to become true. Channel ends automatically have guards that become true when 

communication can be completed on that end. This allows a process to wait for one of several 

communication events to become ready, and automatically select and execute one of them (Figure 1). 

 

 
Figure 1. Selecting from mbultiple communication events 

 

To do this, the programmer constructs a guard set, which is represented as a prioritized list of guards 

where a guard is a Guard object and can be initialized with an attached action. An action is a function 

of type choice and is executed if the guard is selected. If the guard is an input guard then the choice 

function will always be handed the parameter channel_input which is the message that was read 

from the channel. AltSelect will also always return the tuple (guard, msg). The returned guard is the 

guard that was chosen by AltSelect. If the guard was an input guard, msg is the message that was read 

from the chosen channel, otherwise msg has the value None. If a guard action was defined then it will 

be executed before AltSelect returns. 

Note that AltSelect always performs the guard that was chosen, i.e. channel input or output is 

executed within the AltSelect, so an AltSelect execution with no declared choice, or a choice where the 

results are simply ignored, still performs the guarded input or output. An example of AltSelect usage is 

shown in table 4. 
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Table 4. AltSelect 

@pycsp.choice 

def read_action(info,  channel_input): 

    print info,  channel_input 

 

@pycsp.choice 

def write_action(): 

    print  ’W’ 

 

@pycsp.process 

def par_in_out(cin1,  cin2, cout3, cnt): 

    for i in range(cnt): 

        pycsp.AltSelect( 

            pycsp.InputGuard(cin1, read_action(info="received  on  cin1")), 

            pycsp.InputGuard(cin2, read_action(info="received  on  cin2")), 

            pycsp.OutputGuard(cout3, i, write_action()) 

        ) 

 

The guard types included in the distribution are: 

• InputGuard - channel end input 

• OutputGuard - channel end output 

• TimeoutGuard(seconds) - when expired, it will commit. 

• SkipGuard() - at first change it will commit. 

 

The order of guards in a guard set is important. A guard set having a skip guard as the first item will 

always commit to this skip guard, thus skip is usually used as the last item in a guard set.  A timeout 

guard will try to commit when the defined seconds have passed. An example usage of timeout is shown 

in table 5. 

 

Table 5. AltSelect with timeout 

(guard_selected, msg) = pycsp.AltSelect( 

    pycsp.InputGuard(cin), 

    pycsp.TimeoutGuard(seconds=1) 

) 

 

if isinstance(guard_selected,  pycsp.TimeoutGuard): 

    print ’timeout!’ 

 

3.5. Termination 
 

A controlled shutdown of a CSP network (set of processes connected by channels) can be performed 

by using  poisoning [15].  Poisoning of a network may happen in one of two ways, either as an explicit 

poison which will propagate the entire network instantly and cause a fast termination, or as an 

incremental retirement which allows all  processes to finish their current work before termination.   An 

explicit poison is performed using the  poison(channel/channelend) call.   The less intrusive 

poison can be performed by using the retire(channelend) call. Calling retire will cause a 

decrement of an internal counter inside a channel. When a retire() call causes a channel to have 0 

readers or 0 writers left, the channel is permanently retired and any access will raise an exception as 

described below. 

Upon the permanent retirement or poisoning of a channel, all processes that access the channel will 

raise a ChannelRetireException() or ChannelPoisonException() respectively. Any 

following reads or writes on same channel will also raise an exception. Whether this exception is 

caught inside the process or passed on is left to the programmer. The default behaviour is that the 

Process class will catch the exception and then, depending on whether it is poisoned or retired, the 

following occurs: all channels and channel ends in the argument list of the poisoned process are 

poisoned, thus propagating a poison signal through all known channels. All channel ends in the 
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argument list of the retired process are retired, thus retiring the local channel ends from all known 

channels. In table 6 a ChannelRetireException() is caught inside a process. 

 

Table 6. Controlling termination 

@pycsp.process 

def printer(cin): 

    try: 

        i = 0 

        while True: 

            print cin() 

            i +=  1 

    except pycsp.ChannelRetireException: 

        print ’Printed’,  i, ’values’ 

 

To initiate termination, we poison the network nicely by calling retire in table 7. This propagates a 

retire signal when all output ends of a channel are retired. Instead of retire(), poison() could be 

used which poisons the channel instantly.  Without the ability to poison or retire channels, a 

programmer would have to create the extra control flow necessary for controlling the shutdown of 

processes. Poisoning and retiring channels are compact and simple ways to shut down processes and 

saves the programmer from the work of creating the extra control flow necessary for a controlled 

shutdown of a group of processes. 

 

Table 7. Initiating termination 

@pycsp.process 

def counter(cout,  N): 

    for i in range(N): 

        cout(i) 

    pycsp.retire(cout) 

 

4. Examples 
 

The first example is an application that computes the Mandelbrot set. This example is also used in 

section 5 to compare PyCSP performance to Pthreads. It consists of a manager process and a number of 

worker processes. The design is modelled in figure 2. The manager divides the computation into jobs 

and loops on the AltSelect in table 8, until all jobs have been computed. 

 

Table 8. Manager process: Deliver and receive loop 

while jobs or len(results) < jobcount: 

    if jobs: 

        pycsp.AltSelect( 

 

            # If selected, a job is read 

            # from workerIn. 

            pycsp.InputGuard(workerIn, action=received_job()), 

  

            # If  selected, the job at the 

            # end of the jobs list is 

            # written to workerOut. 

            pycsp.OutputGuard(workerOut, msg=jobs[-1], action=send_job()) 

        ) 

    else: 

        # No more jobs left to send. Retrieve remaining results. 

        # Invoke received_job action on input from worker. 

        received_job()(workerIn()) 

 

This AltSelect handles all synchronization between the manager and the workers. For every loop, 

one of two things will occur. Either a new job is sent to a worker asking for a job, or a new job result is 
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received from a worker finished computing. When all jobs are computed and received, they are glued 

together and the computation has ended. 

 

 
Figure 2. Mandelbrot PyCSP design 

 

The second example is a simple webserver that runs a set of services. In figure 3 we demonstrate 

how easily this implementation can be mapped into a model consisting of connected processes. A 

service can register itself by sending an output channel end to the dispatcher. This is then entered into a 

service dictionary inside the dispatcher. When an incoming request is received it is sent to a matching 

service if one exists. A popular service might register several processes to handle a greater load. The 

dispatcher is able to listen for both new services registering and incoming requests by using AltSelect 

on input guards. 

 

 
Figure 3. Webserver PyCSP design 

 

An example of a hello world service is shown in table 9. It performs a self-registering step and then 

goes into a loop. In this loop requests are received and bundled together with an output channel end. 

When returning the result for a request, the result is sent on cout, which communicates directly to the 

HTTPSocket process handling the client connection. 

 

Table 9. HelloWorld service 

@pycsp.process 

def HelloWorld(register): 

    req_chan = pycsp.Channel() 

    cin = req_chan.reader() 

    register((’/hello.html’, req_chan.writer())) 

    while  True: 

        (req_str, cout) = cin() 

        cout("Hello  World") 

 

The simple webserver has one bottleneck, the dispatcher. All other processes can be multiplied in 

numbers, to do loadbalancing. When a request is dispatched to a service, the dispatcher is free to 

handle other requests and is not required to wait for any services to finish. 
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The final example combines processes allocated for user input and output with performing a 

stochastic search for a local minimum in parallel. The PyCSP design is shown in figure 4 and maps 

directly to the actual code. A version of the code necessary to perform this search in parallel, excluding 

the actual worker, is shown in table 10. This simple network shows how a concurrent interactive 

application can be made using PyCSP. The UserIn process can easily parse inputs from the keyboard 

and perform actions depending on the input. In this example when the user enters an input, the network 

is terminated with a poison call. 

 

 
Figure 4. Stochastic Minimum Search PyCSP design 

 

Table 10. Stochastic Minimum Search 

@pycsp.process 

def Control(kbd, scr,  workers_i): 

    best =  9999 while  True: 

    guard_selected, candidate = pycsp.AltSelect( pycsp.InputGuard(kbd), 

                                                 pycsp.InputGuard(workers_i) 

                                ) 

    if guard_selected == workers_i: 

        if candidate < best: 

            best = candidate 

            scr(best) 

  

@pycsp.process 

def UserIn(kbd): 

    raw_input("Terminate") 

    poison(kbd) 

 

@pycsp.process 

def UserOut(scr): 

    while  True: 

    print scr() 

 

pycsp.Parallel( 

    UserIn(kbdChan.writer()), 

    UserOut(scrChan.reader()), 

    Control(kbdChan.reader(), scrChan.writer(), 

            updateChan.writer(), workerChan.reader()), 

    Worker(updateChan.reader(), workerChan.writer()) * 4 

) 

 

As long as the application is running the workers will search for a new local minimum, constantly 

updating the Control process with new candidates which are printed to the screen by UserOut. Upon 

termination the poison signal is propagated to all processes and the application quits. 

 

5. Performance 
 

To compare the overhead of using PyCSP with a C program using Pthreads, we run a benchmark 

that computes the Mandelbrot set. The benchmarks both execute the same C function for computing the 

points in the Mandelbrot set. The PyCSP version calls the C function using the standard Python ctypes 

library. Since the computation time for each region of the computed set is irregular, we use a bag-of-
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tasks scheme to provide automatic load-balancing. Each worker thread retrieves a task description from 

a task queue protected with a lock (C version) or a manger process using channels (PyCSP version), 

computes the subset requested in that task description, and stores the results before fetching a new task. 

The benchmarks are executed on a computer with 8 cores: two Intel Xeon E5310 Quad Core 

processors and 8GB RAM running Ubuntu 9.04. We use PyCSP version 0.7.0 with Python 2.6.2. 

The measured time for each run includes the startup and completion time for the worker threads or 

PyCSP processes, but not the startup time of the main program. 

 

5.1. Results 
 

Figure 5 shows the speedups of the PyCSP and Pthreads implementations of the benchmark when 

run using various problem sizes. The number of tasks is kept constant at 100, while the size of the 

total problem is varied from 10x10 points to 2560x2560 points. 

 

 
 

 
Figure 5. Speedup of PyCSP and Pthreads Mandelbrot computations 

 

As expected, the Pthreads version approaches linear speedup earlier than the PyCSP version:  the 

640x640, 1280x1280 and 2560x2560 problems are close to linear, while in the PyCSP version only the 

two largest problems are close to linear. The execution time for the largest problem with a single 

worker is similar in both versions: 49.48 seconds for PyCSP and 49.36 seconds for Phtreads. For 8 

workers, the numbers are 6.45 seconds for PyCSP and 6.28 seconds for Pthreads. 
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The main difference between the versions is the overhead of the interpreted Python language, and 

also that the PyCSP workers need to wake up and interact with a manager process, while in the 

Pthreads version, workers only need to grab and release a lock. 

The results shows that for this benchmark, PyCSP and the choices made in the PyCSP solution add 

a small overhead compared to the Pthreads version, but that the overhead is not overly large: the 

smallest problem size that approaches linear speedup is 4 times larger for the PyCSP version than the 

Pthreads version. 

 

6. Conclusions 
 

We have described PyCSP, an implementation of Communicating Sequential Process algebra (CSP) 

for the Python programming language. PyCSP takes advantage of CSP’s formal and verifiable 

approach to controlling concurrency.  The close mapping between the graphical representation of CSP 

programs and the PyCSP source code makes it easy to compare design documents and implementations, 

helping programmers manage the complexity that is often introduced when introducing parallel 

architectures. 

In this paper we show that using PyCSP, we can get fairly close to the efficiency of a Pthreads 

implementation of a Mandelbrot benchmark. The smallest problem size that provides a near linear 

speedup with PyCSP using 8 CPU cores is four times the smallest problem size that provide a near 

linear speedup with the Pthreads version. This is close enough that we believe PyCSP to be usable for 

scientific computations. 
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in mind. This paper suggests using Python and PyCSP to structure scientific software through Communi-
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1. Introduction

This paper describes a Python library for building and execut-
ing scientific applications that utilize parallel architectures, from
multi-core machines to full grid systems. The driving motivation
is to give scientists that are not Computer Science majors the pos-
sibility to build correct, efficient, modular, reusable and scalable
applications.

It is a well-known challenge to maintain scientific codes; many
applications are written by scientists without any formal computer
science or software engineering qualifications, and have usually
grown “organically” from a small kernel to hundreds of thousands
of code-lines. Such applications have traditionally targeted simple
single-core systems and have still grown to a complexity where the
cost of maintaining the codes is prohibiting, and where the contin-
ued correctness of the code is often questionable. This problem is
being addressed today by training scientists in design patterns and
good practice in program development. However, emerging archi-
tectures, which are massively parallel and often heterogeneous,
may again raise the complexity of software development to a level
where scientific users (non-computer scientists) are no longer able
to produce reliable scientific software.

We use the term scientific users quite loosely to mean program-
mers that are scientists, but not computer scientists. Scientific users
of computing is in itself a diverse group, one extreme is scientists

∗ Corresponding author. Tel.: +45 26297742.
E-mail address: runef@diku.dk (R.M. Friborg).

that use existing applications, commercial or community codes,
where they change configurations and input data, but in general
do not change the code itself. The other extreme are scientists that
primarily do program development, often the persons behind large
community codes. The approach we promote here targets the set
in between the two extremes, scientists that express the model
they work on directly as a computer program, but where the pro-
gramming is still a means to an end, and not the primary focus of
the research. This kind of computational-scientist typically changes
the code frequently, and the code is most often shared with a small
number of co-researchers, typically within a research group. Thus
we fundamentally target scientific users of computers that do their
own programming and change their program frequently to match
the development in their research. They are interested in better
performance of their applications, but productivity and time to
solution are the critical measures in their program development.

The classic approach to parallel programming involves threads,
shared memory and locks, but this requires that the program-
mer identifies all critical regions and dependencies correctly
without resulting in serialized executions, caused by large com-
putational parts in critical regions. Scientific users usually avoid
this kind of programming and use OpenMP1 to add paral-
lelization. OpenMP is mostly used for loop parallelization and
requires identifying all critical regions within a loop. Another
approach is to use parallelized libraries like BLAS,2 but these

1 OpenMP: http://openmp.org/.
2 BLAS: http://www.netlib.org/blas/.

1877-7503/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
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are often not enough and are limited to shared memory sys-
tems.

Scientific users must be encouraged to write maintainable and
well-structured code. Several tools like the Intel Parallel Studio3 or
Microsoft Parallel Computing4 exist that aim to aid programmers in
producing parallel programs, but these tools are not flexible enough
for scientific applications and do not interface well with code pro-
duced during the past 30 years which is still in use. Most scientists
have access to many different kinds of computing resources, thus
the produced code must also be portable and must run on single-
core, multi-core, cluster or grid systems. Graphical workflow sys-
tems as Knime [1,2] and Taverna [3,4] are helping scientists to struc-
ture code, but they lack sufficient support for parallel execution.

We present PyCSP as a Python module with a small API, that
enables scientists to write concurrent applications based on a
process algebra. The CSP (Communicating Sequential Processes)
algebra allows the programmer to formally verify the correctness of
an application, but even without formal verification CSP provides
a set of design rules that, if followed, guarantees a correct paral-
lel model. The applications built using Python and PyCSP are not
intended to perform with perfect speedups, but any speedup is far
better than what scientific users would see with sequential code.

This paper shows three scientific applications that use PyCSP
and benchmarks them against a corresponding C implementa-
tion. The results show that the overhead introduced from a mixed
Python-C-PyCSP is a small price to pay compared with the benefits
from gaining a flexible, concurrent and compositional applica-
tion. Notice that to reduce the overhead from Python and PyCSP
we require a somewhat coarse-grained concurrency and must
write compute intensive parts in a compilable language. Python
is a dynamic language and for scientific applications it is gain-
ing acceptance, since the ease of programming makes it ideal for
high productivity while it is shown that high performance can be
achieved.

2. Related work

We want to combine parallel programming with enabling the
scientific users to program by stitching ready-made components
together or using a high-level language for higher productivity.

The following graphical workflow tools enable scientists to
construct advanced applications using Java: Knime [1,2] and Tav-
erna [3,4]. They have a large amount of ready-made components
and are able to utilize multi-core systems as well as interface
with execution in a grid system. LabView5 and Simulink6 are
two commercially available products which offer a similar level
of functionality. For parallel computation, they all use a task-
based approach with a single master handling the control-flow and
dependencies between processes. A task-based system does not
scale sufficiently with the number of processes and workers. Using
a task-based system it is difficult to implement applications that
are robust towards concurrent events and to handle such, special
components must be implemented for each type of events.

CSP can handle concurrent events. A scalable implementation
of Communicating Sequential Processes allows processes to exe-
cute and communicate in parallel, if no dependencies disallow it.
Programming for non-deterministic behavior is simple with CSP,
since it is inherent in the model. See Section 4.4 for an example of
non-deterministic behavior with PyCSP. CSP provides a formal and

3 Intel Parallel Studio: http://software.intel.com/en-us/intel-parallel-studio-
home/.

4 Microsoft Parallel: http://msdn.microsoft.com/en-us/concurrency/default.aspx.
5 LabView: http://www.ni.com/labview/.
6 Simulink: http://www.mathworks.com/products/simulink/.

verifiable approach to controlling concurrency, fits directly into sci-
entific workflows, and maps into these graphical tools that present
scientific workflows.

The P-GRADE [5] project prove that CSP style programming can
be used for creating distributed scientific applications. The project
combines low-level programming and a graphical workflow tool
with a CSP-like communication model. Applications created with
this tool are compiled to MPI or PVM and can deal with grid sys-
tems. A later project named P-GRADE portal [6] presents a platform
for handling dependencies between grid jobs and enables a sin-
gle application to use multiple grid middleware architectures. The
P-GRADE portal has left the CSP style programming and is now
using directed acyclic graphs for workflow programming. The first
P-GRADE system had to be implemented in C or C++, which are high
performance languages, but also difficult to learn. Python which is
a high-level programming language with a dynamic type system
has been designed to be easy to learn for newcomers and flexible
enough for the expert. The large amount of scientific libraries avail-
able for Python also shows that Python is often used for producing
scientific applications.

The following programming languages have support for CSP:
Java (JCSP7 and CTJ8), Haskel (CHP9), C++ (C++CSP210), Python
(PyCSP11), Google Go12 and Occam-�13. Other programming lan-
guages with message-passing functionality similar to CSP, but not
compatible with the formal CSP defined by Hoare [7] are: Erlang14

and Microsoft Axum15. Scientific applications have been devel-
oped in all of these languages. The research group COSMOS is
investigating using process-oriented programming for agent-based
simulation [8]. They focus on using the concurrent properties from
CSP to enhance the simulation, where we use CSP as a coarse-
grained method to model and execute the scientific workflow.

Parallel programming in Python is possible through the use of
many different libraries. There are fork-based systems similar to
Python’s built-in map function. Classic systems like the built-in
threading or multi-processing library provide basic support with
synchronization structures such as locks, monitors and queues.
Common for those libraries are the use of shared data-structures,
which may hide dependencies between processes. Such depen-
dencies easily cause data-hazards, while use of locks can result in
dead-locks or race-conditions. Shared memory, locks and monitors
are difficult constructs to get right in parallel programming.

Most high-level approaches to parallel programming have been
implemented for Python. There is task based systems administering
a pool of workers. Data-parallel systems parallelize vector or matrix
operations. Message-passing libraries similar to MPI enable fast and
advanced communication between processes.

Creating an application based on a scientific workflow can be a
reasonably complex project, if the parallel library does not support
it. None of the above libraries are good at handling compositional
structures, while such a thing is essential in a process-oriented
approach with message-passing. A process-oriented approach for
Python is Candygram16 (implementation of Erlang concurrency
primitives), but since Erlang uses asynchronous communication,
it is not compatible with the CSP algebra. PyCSP is based on CSP
and can thus benefit from the CSP algebra.

7 JCSP: http://www.cs.kent.ac.uk/projects/ofa/jcsp/.
8 CTJ: http://www.ce.utwente.nl/javapp/.
9 CHP: http://www.cs.kent.ac.uk/projects/ofa/chp/.

10 C++CSP2: http://www.cs.kent.ac.uk/projects/ofa/c++csp/.
11 PyCSP: http://code.google.com/p/pycsp/.
12 Google Go: http://golang.org/.
13 Occam-�: http://www.cs.kent.ac.uk/projects/ofa/kroc/.
14 Erlang: http://www.erlang.org/.
15 Microsoft Axum: http://msdn.microsoft.com/en-us/devlabs/dd795202.
16 Candygram: http://candygram.sourceforge.net/.
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The Papy [9] library is specifically designed to handle a flow-
based programming paradigm (limited to directed acyclic graphs)
in Python and enables the construction and deployment of dis-
tributed workflows. CSP is not only limited to directed acyclic
graphs.

3. Communicating Sequential Processes

The Communicating Sequential Processes algebra, CSP [7], was
invented more than 25 years ago and while it was highly popular
and thoroughly investigated in its first years, interest dropped in the
late 1980s because the algebra appeared to be a solution in search of
a problem, namely modelling massively concurrent processes and
providing tools to solve many of the common problems associated
with writing parallel and concurrent applications. In 1980 C.A.R.
Hoare, the father of CSP, wrote the following:

“There are two ways of constructing a software design. One way is
to make it so simple that there are obviously no deficiencies. And
the other way is to make it so complicated that there are no obvious
deficiencies”

The Emperor’s Old Clothes – C.A.R. Hoare
CSP provides many attractive features with respect to the next

generation processors; it is a formal algebra with automated tools
to help prove correctness, it works with entirely isolated pro-
cess spaces, thus the inherent coherence problem is eliminated
by design, it results in a design where dependencies are explicit
and it lends itself to being modelled through both programming
languages and graphical design tools.

Another attractive feature of CSP, which has so far not been
investigated, is the fact that it should lend itself towards mod-
elling heterogeneous systems. This is important for the next
generation processors since heterogeneity has already been intro-
duced: the coupling between the classic multi-core processor and
co-processors in the form of GPUs, FPGAs or Cell-SPEs. Several
manufactures are currently looking into producing chips with
everything on a single silicon die.

4. PyCSP

PyCSP is a library to support CSP style programming in Python.
It was first introduced in 2007 [10] and revisited in 2009 [11,12].
As in all process-oriented systems, the central abstractions offered
by PyCSP are the process and the channel. In PyCSP, processes
are available in three variants: as user-level threads, kernel-level
threads or OS processes. A PyCSP program is composed of multi-
ple processes communicating by sending messages over channels.
All communication in PyCSP is synchronous, thus a channel opera-

from pycsp import *

@process
def source(chan_out):
    for i in range(10):
        chan_out("Hello (%d)\n" % (i))
    
    # Signals that the channel
    # has one less writer
    retire(chan_out) 
                     
@process
def sink(chan_in):
    # The loop will terminate on the
    # signal that announces that all
    # writers have retired
    while True:
        sys.stdout.write(chan_in())

chan = Channel()

# Run in parallel
Parallel( 
    # Five source processes
    5 * source(chan.writer()),
    # Five sink processes
    5 * sink(chan.reader())
)

Listing 1. A simple PyCSP example demonstrating the concurrent nature in CSP
upholding to unbounded non-determinism and protected against race conditions
during termination.

tion is always blocking until a single matching pair consisting of a
reader and writer is found. An example is shown in Listing 1. When
executed, a trace of the communication can be recorded and later
visualized as shown in Fig. 1.

4.1. Processes

A process in PyCSP is an isolated unit of execution, not physi-
cally isolated as an operating system process, but by design should

Fig. 1. Screenshot of the PyCSP trace visualizer performing a playback of a recorded trace. The processes with gray background are actively involved in communication.
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@process
def increment(cin, cout, inc_value=1):
    while True:
        cout(cin() + inc_value)

Listing 2. Example process with IO.

not share objects with other processes. A process is specified by
using the @process decorator as depicted in Listing 2. Applying this
decorator to the increment function, creates an increment factory,
which produces increment process instances. Starting the process
is covered in Section 4.3.

4.2. Networks of processes

The only allowed methods to communicate between processes
are to either pass arguments when creating processes or by sending
messages over channels. All channel communications are blocking
operations and are guaranteed to be sent exactly once and received
by exactly one process. A channel is created using the Channel class
and can have any number of writing processes and any number of
reading processes.

a = Channel(‘A’)

Processes are passed their input and output channels as param-
eters which can then be used to communicate with other processes.
An example of this usage is shown in Listing 2.

To communicate on a channel, an application is required to get
a hold of an input or output end of the channel. A reference to a
channel end is acquired by using the chan.reader() or chan.writer()
channel methods, which will return a channel end object. Acquir-
ing a channel end object will also join the actual channel. This adds
information to the channel, registering how many readers and writ-
ers that are connected to it. The number of readers and writers is
used to automate termination explained in Section 4.5. To create
an increment instance P and provide it with channel ends we do
the following:

P = increment(a.reader(), b.writer())

Communicating on a channel end is performed by
invoking cin() or cout(msg), where cin = a.reader() or
cout = a.writer(). Usually channel ends are provided as argu-
ments to new processes as shown in the example of the increment
instance P.

4.3. Concurrency

Creating a process will simply instantiate a copy of the pro-
cess but not execute or start it in any way. A set of processes
may be executed using one of the three constructs, Sequence, Par-
allel or Spawn. Sequence and Parallel are synchronous and will
only terminate once all processes in their parameter list are termi-
nated. Sequence executes the processes one at a time while Parallel
executes all the processes concurrently. Spawn starts the set of pro-
cesses in the background and then returns, one may view it as an
asynchronous version of Parallel.

The code in Listing 3 completes when the counter, increment
and printer processes have completed. Section 4.5 explains how to
initate a termination of the Parallel(processes) execution.

a,b = Channel('A'), Channel('B')
Parallel(
    counter(a.writer()), 10),
    increment(a.reader(), b.writer()),
    printer(b.reader())
)

Listing 3. Initiating processes for execution.

Fig. 2. Selecting from multiple concurrent events.

4.4. Nondeterminism

When an input or output channel end is invoked, the executing
process is committed to the channel until the communication has
completed. This complicates writing processes that need to respond
to one of several communication events that may come in any order.

Using the AltSelect construct, it is possible to commit to waiting
on multiple channel ends. This allows a process to wait for one of
several communication events to become ready, and automatically
select and execute one of them (Fig. 2). An example of AltSelect
usage is shown in Listing 4.

4.5. Termination

A controlled shutdown of a CSP network (set of processes con-
nected by channels) can be performed by using poisoning [13].
Poisoning of a network may happen in one of the two ways,
either as an explicit poison which will propagate the entire net-
work instantly and cause a fast termination, or as an incremental
retirement which allows all processes to finish their current work
before termination. An explicit poison is performed using the poi-
son(channel/channelend) call. The less intrusive poison can be
performed by using the retire(channelend) call. Calling retire
will cause a decrement of an internal counter inside a channel.
When a retire() call causes a channel to have 0 readers or 0 writ-
ers left, the channel is permanently retired and any access will raise
an exception as described below.

Upon the permanent retirement or poisoning of a channel,
all processes that access the channel will raise a ChannelRe-

@process
def par_in_out(cin1, cin2, cout3, cnt):
    for i in range(cnt):
        g, msg = AltSelect(
          InputGuard(cin1),
          InputGuard(cin2),
          OutputGuard(cout3, msg=i)
        )
        if g == cin1 or g == cin2:
          print 'Received', msg

Listing 4. AltSelect.
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@process
def printer(cin):
    try:
        i = 0
        while True:
            print cin()
            i += 1
    except ChannelRetireException:
        print 'Printed', i, 'values'

Listing 5. Controlling termination.

tireException() or ChannelPoisonException() respectively.
Whether this exception is caught inside the process or passed on is
left to the programmer. The default behavior is that the Process
class will catch the exception and then, depending on whether
it is poisoned or retired, the following occurs: all channels and
channel ends in the argument list of the poisoned process are
poisoned, thus propagating a poison signal through all known chan-
nels. All channel ends in the argument list of the retired process are
retired, thus propagating a retire signal through all known channel
ends. In Listing 5 a ChannelRetireException() is caught inside
a process.

Without the ability to poison or retire channels, a programmer
would have to create the extra control flow necessary for control-
ling the shutdown of processes. Poisoning and retiring channels are
compact and simple ways to shut down processes and save the pro-
grammer from the work of creating the extra control flow necessary
for a controlled shutdown of a group of processes.

5. PyCSP in a scientific context

The purpose of a scientific application is usually to produce a
result based on input data. The input data initiates a flow through
the application which is viewed as sub-problems that result in sub-
solutions until eventually a final result is returned. We use the
term “scientific workflow” for the data-flow of computationally
intensive scientific applications, normally run on shared-memory
multi-processor hardware or in distributed network environments.
An application with a scientific workflow might be anything
from complex climate modelling to a simple n-body simula-
tion. Generally, any application that performs a large number of
computations in order to produce a result within a particular
scientific field.

We find that CSP is ideal for reasoning about the concurrent
aspects in scientific workflows. In particular this is true when
the target environment is parallel architecture. The compositional
structure of a CSP network enables application developers to
reuse networks of components, i.e. libraries that are represented
as top-level components themselves. Since CSP guarantees iso-
lation we can also guarantee that library functions produce no
side-effects within a process. This is important since it allows a
programmer to produce a function for parallel execution which in
itself includes parallel components. Such hierarchical parallelism
is often not correct, or at least not recommended, in other library
systems.

It is the compositional structure of CSP that makes it ideal for
heterogeneous and emerging architectures. Scientific users can
focus their performance improvements on processes, that may ben-
efit from executing on specific architectures and leave everything
else as is. This together with Python’s broad support for different
architectures provides a very flexible library, where processes can
be run in a grid system or on dedicated clusters.

from pycsp.net import *
from pycsp.net.grid import *

# Declaring a grid process
# with the vgrid (VO) setting
@grid_process(vgrid='DIKU')
def source(chan_out):
  for i in range(10):
    chan_out("Hello (%d)\n" % (i))
  retire(chan_out)

GridInit()

# Start PyCSP channel server
server.start(host=public_ip)

chan = Channel()
Spawn(100 * source(chan.writer()))

# Read
cin = chan.reader()
try:
  while True:
    cin()
except ChannelRetireException:
  print "Received 1000 HelloWorld."

Listing 6. A PyCSP application communicating with 100 processes in a grid system.

5.1. Execute processes in a grid

The support for grid architectures is not fully transparent, rather
a special grid process decorator must be used instead of the stan-
dard process decorator. To enable sending a PyCSP to a grid system
for execution, we add this decorator. An example with grid pro-
cesses is shown in Listing 6.

The supported grid system at this time is the Minimum intrusion
Grid [14] (MiG), but support for other grid middleware systems can
easily be added. The requirement for PyCSP to work on a grid mid-
dleware is a command-line interface for performing file operations
on a grid user account, submitting jobs and querying of job states.
Most grid middlewares offer such a command-line interface.

The PyCSP channel communication with remote processes is
running on top of the Pyro17 Python module, which uses sock-
ets for communication. To enable a more broad support, we have
implemented an alternative carrier for communication with grid
in mind, to enable grid resources with restricted access to perform
channel communications through HTTPS to a single hosted chan-
nel server via XML-RPC. This feature makes PyCSP feasible for most
grid resources.

6. Scientific applications

To demonstrate the flexibility and diversity of target architec-
tures that PyCSP support, this section describes three different
applications using PyCSP to enable concurrent execution. The cho-
sen problems for this section are: stochastic minimum search [15],
k-nearest-neighbour search [16] and McStas [17]. They show three
different usages of PyCSP, a master–worker design, a ring design

17 Pyro: http://pyro.sourceforge.net/.
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and a network that combines master–worker with a set of utility
processes.

All PyCSP solutions to the mentioned problems are bench-
marked and compared with an optimal solution. For stochastic
minimum search and kNN this means that we compare the speedup
with a sequential solution written in C, thus the speedup from the
PyCSP solutions will include the overhead of PyCSP, Python and the
ctypes Python module for switching between Python and C. The
approach to writing the compute intensive parts in C or another
compilable language as Fortran is described in [18] and believed
to be within the capabilities of non computer scientists. Program-
ming skills for sequential C and Fortran code have been taught to
many non computer scientists. Some scientific problems will have
libraries that can perform the computational tasks, thus reducing
the use of a compilable language.

McStas is an entirely different challenge and comes with a Perl
wrapper for a large code-base that contains C code and supports
MPI. For McStas we replace the Perl wrapper with our own PyCSP
wrapper and use channel communications instead of MPI. The
PyCSP solution for McStas is compared with the packaged solution
using MPI for inter-process communication.

The applications are benchmarked on three different systems:
a multi-core system with two Intel Xeon E5310 (8 cores total), a
cluster system with eight Intel Core 2 Quad Q9400 (32 cores total)
interconnected with one gigabit ethernet and an Intel Core 2 Duo
2.4 Ghz (2 cores total) with workers running in a grid system on
various systems. Stochastic minimum search and kNN are bench-
marked on the eight-core system and the cluster system. McStas
is benchmarked on the eight-core system and on the dual-core
system with workers running in a grid system.

Every benchmark was executed three times and then the aver-
age value was used for computing the speedup plots. The sequential
C reference benchmark used for computing the speedup plots
was executed on all architectures, making the speedup plots
comparable.

6.1. Stochastic minimum search

The PyCSP network for stochastic minimum search [15] is given
a function as input and uses a Monte Carlo approach to produce
a suggestion for a global minimum value of that function within a
user specified window. The Monte Carlo algorithm is run in parallel
in a set of processes. Each process runs independently of the oth-
ers and tests internally for a new minimum local to this process.
Whenever a new local minimum is found, it is sent to a master.
The master feeds a filter that decides when a result is a new best
global minimum and decides when to terminate the remaining net-
work. A subset of the code required to create the network in Fig. 3

@process
def gmin(chin,chout, loops):
  fname = chin()
  res = min(
   [compute_in_C() for j in xrange(loops)]
  )
  chout(res)
  retire(chin, chout)

@process
def master(filter, workers_o,
           workers_i, n_workers, f):
  for i in range(n_workers): workers_o(f)
  while True: filter(workers_i())

to_worker=Channel();
from_worker=Channel()

Parallel(
  master(<filter channel>,
         to_worker.writer(),
         from_worker.reader(),
         nprocs, <target function> ),
  nprocs * gmin(to_worker.reader(),
                from_worker.writer(),
                loops))

Listing 7. Source code for the stochastic minimum search application where the
userout and filter process have been omitted. Fig. 3 shows a visualized trace of this
application.

is shown in Listing 7 to demonstrate what lines are necessary to
create a parallel stochastic minimum search.

The results from running the application on a multi-core and a
cluster system are presented in Fig. 4. The extra overhead intro-
duced by Python and PyCSP is the reason we only get a speedup
of 0.6 for the multi-core execution with 1 worker process. This is
caused by the application that continuously sends new local results,
which add channel communication and thus requires the processes
to switch between Python and C. The cluster execution adds an
extra overhead for network communication, thus the speedup is
0.5 with 1 worker process. For 8 worker processes, the speedup
compared to a sequential C solution is 5.0 for an 8-core host. On
an 8-node cluster with 16 workers we get a speedup of 9.6. The
speedup improves as searches run for longer periods, since the

__main__ (Parallel)

userout

filter_minimum

master

gmin gmin gmin gmin gmin

Fig. 3. An extracted snapshot of the stochastic minimum search CSP network with five processes executing the Monte Carlo algorithm.
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Fig. 4. Speedup of stochastic minimum search. The sequential C implementation
executed 500,000 approximations in 38.4 s (avg. of three) on the 8 core host and
5,000,000 approximations in 221.2 s (avg. of three) on the 8 node cluster.

amount of channel communication goes down, as the occurrence
of new minimums decrease.

6.2. k nearest neighbour search

The k nearest neighbour search problem [16] consists of finding
the k nearest neighbours of each target point in a set of N targets
with D dimensions. This is used in machine learning for finding
the k nearest neighbours to a sample among a large set of posi-
tive and negative targets. If the k nearest neighbours to a sample is
primarily positive, then the algorithm would give the result that a
sample is positive together with a likelihood value. Any measure-
ment of the distance between each target can be used, but for this
benchmark we have used the Euclidian distance in the space with
D dimensions. To compute the distances the brute force approach
is used, which has the complexity of O(N2D) but is easy to paral-
lelize. To compute in parallel the targets are split into T sets and
divided among T worker processes connected in a ring. The CSP
network in Fig. 5 shows the workers connected in a ring, where
every worker is given a local set which it will pass around the ring.
In each pass the worker executes a kNN algorithm on the local
set and the received set, until finally all results are collected and
joined to the end result. Listing 8 shows the code for creating the
ring network and how to compute the result for each worker. The
ring approach is too fine-grained for a grid architecture but is well
suited for a closely connected parallel architecture such as cluster-
computers.

In Fig. 6 we have plotted the speedup for computing the 5 nearest
neighbours in 72 dimensions in a set of 10,000 targets (8 core host)
and a set of 60,000 targets (8 node cluster). For the 8 core host we
get a speedup of 9.0 with 8 workers, which is caused by the better
cache usage when the local set-size for each worker gets smaller.
The poorer performance for the 8 node cluster can be explained
by the necessary transfers of the actual arrays, and the associated

@process
def build_ring(proc, N, B, pargs):
  channels=Channel(buffer=B) * N
  processes=[]
  for i in range(N):
    processes.append(proc(*pargs,
      ring_in=channels[i-1].reader(),
      ring_out=channels[i].writer(),
      ring_size=N, ring_id=i))
  Parallel(processes)

@process
def kNN(job_ch, result_ch, D, k,
        ring_in=None, ring_out=None,
        ring_size=0, ring_id=0):
        
  # channel -> channel end
  job=job_ch.reader()       
  result=result_ch.writer()
    
  work=data=job()
  
  best = numpy.zeros((len(data), k))
  for i in range(ring_size):
    # Invoke a C impl.
    kNN_in_C(data, work, best, D, k) 
    ring_out(work)
    work=ring_in()
  result(best)
  retire(result)

job_ch=Channel(); result_ch=Channel()
Parallel(
  producer(<N*D input array>, 4,
           job_ch.writer()),
  build_ring(kNN, size=4, buffer=1,
             (job_ch, result_ch, D, k)),
  consumer(result_ch.reader()))

Listing 8. Source code for the k nearest neighbour search application where the
producer and consumer process have been omitted. Fig. 5 shows a visualized trace
of this application.

serialization, but a reasonable speedup of 12.4 is still achieved for
16 workers.

6.3. Neutron scattering simulation

Neutron based imaging is a powerful tool in several sciences,
including solid state physics and biology, where neutron imaging

Fig. 5. Nearest neighbour search with four worker (kNN) processes connected in a ring.
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Fig. 6. Speedup of nearest neighbour search (kNN). The sequential C implementa-
tion computed the result for 10,000 bodies in 23.6 s (avg. of three) on the 8 core host
and for 60,000 bodies in 442.9 s (avg. of three) on the 8 node cluster.

is used to produce high resolution non-intrusive images of sam-
ples. However, neutron based imaging is not as simple as using
an optical microscope or an X-ray imaging and before a neutron
image is produced the imaging process must first be simulated to
tune several parameters. This simulation is hugely time-consuming
and the quality of the simulation is often dictated by the available
time for simulation. The de-facto tool for such simulations is McStas
[17], performing Monte Carlo simulations of neutron instruments.
McStas comes with a complicated Perl script that enables paral-
lel execution with MPI. We replace this Perl script with PyCSP, to
use a process-oriented model, that executes on any number of grid
resources through many levels of parallism, and finally we merge
the results and save them for the user. The directed graph (Fig. 7)
is generated from a trace of an actual execution. This is made pos-
sible by the compositional nature of CSP which is easily traced and
visualized using PyCSP.

The first task is to load the description of the experiment in a
domain specific language. This language is then compiled into a C
source file which in turn is compiled into an executable. This two-
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Fig. 8. Speedup of neutron scattering simulation (McStas). The sequential exe-
cution simulated 50,000,000 rays in 61.2 s (avg. of three) on the 8 core
host.

phase compilation is quite demanding and requires a non-trivial
installation of the McStas package.

To improve the productivity of the user we have enabled the
possibility to move the compilation to a service resource by putting
it into a separate process. This allows the user to configure the sim-
ulation without having to install McStas on the local computer.
The resulting executable is passed on to the worker (simulate)
processes that run the simulation numerous times over a set of
parameters. The final merged result is sent back to the user for
presentation.

In Fig. 8 we compare the MPI enabled Perl wrapper with PyCSP.
The PyCSP speedup suffers slightly from the extra overhead of han-
dling jobs. For the PyCSP executions the work was divided into 50
jobs.

The benefit of having a dynamic orchestration of workload
becomes apparent when the executing resources differ. This is the
case in grid computing, and by changing the configuration of the
worker processes as described in Listing 9 we can utilize many more
resources.

__main__ (Parallel)

orchestrate_network (Parallel)

simulate (Parallel)

screen

mcstas

paramspace

divide_jobs

simulate simulate simulate simulateexecute

merge

compile

Fig. 7. Neutron scattering simulation with five worker (simulate) processes. A dynamic orchestration of workload is in place to be able to adapt to uneven resources.
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@grid_process(vgrid='DCSC', cputime=600)
def simulate(job_in, result_out,
             exec_file):
  while True:
    ncount, params = job_in()
    cmd=tuple(['./' + exec_file, 
               '--ncount=' + str(ncount),
              ] + params )         
    Parallel(
      execute(cmd, retire_on_eof=False)
    )
    output=open('mcstas.sim').readlines()
    result_out(output)

Listing 9. Worker (simulate) process. The @grid process decorator configures the
process to behave as a grid process.

Table 1
Execution times for using grid computing. These numbers are indicative for grid
executions, but will vary greatly due to large variations in resources, size of job
queue and grid overhead.

System Simulated rays Time (s)

Dual core laptop with 2 workers 2.5 × 109 5928
Grid with up to 64 workers 2.5 × 109 411
Grid with 1 worker 1 43

When executing a PyCSP network with processes submitted to
a grid system, the workload must be split dynamically to cope with
inactive processes, since it is unknown when a worker process
might be moved from ‘queued’ to ‘executing’ status. One execution
might experience that only half of the workers are executing the
entire simulation while another execution will have all the workers
in ‘executing’ state early on.

We have performed two large neutron simulations where one
was performed on a dual core laptop and the other was run
from the same laptop but with up to 64 simulate processes run-
ning in a grid system. From the execution times in Table 1 we
demonstrate that the simulation finished in under 7 min instead
of 1.5 h.

The results produced by the three applications are not expected
to scale linearly, but even a decent speedup is a good result, since
the cost for producing the PyCSP application is limited and the sci-
entist is still involved directly in the programming. We expect that
all three applications scale to at least 64 workers for larger problem
sizes.

7. Conclusion

If an application is organized into concurrent sequential Python
processes with a reasonable work to communication ratio, we
have shown that an application can scale on both multi-core
and cluster systems. The degree of scaling requires a certain
work to communication ratio, to hide the overhead of ≈0.1 ms
per local communication and ≈2 ms per remote communica-
tion.

The flexibility of PyCSP has been demonstrated through
executions in four different environments; single-core, multi-
core, cluster and grid. We argue that PyCSP is a candidate
to handling heterogeneous architectures in a single applica-
tion, since PyCSP is portable and can run on most architectures
and operating systems, e.g. the Nvidia Tegra running Android
OS.

The close mapping between the graphical representation of CSP
programs and the PyCSP source code makes it easy to compare

design documents and implementations, helping scientific users
manage the complexity that is often introduced by parallel archi-
tectures. The neutron scattering simulation example shows how
PyCSP can be used to structure the execution of binaries into a con-
current Python application, which can be traced and visualized for
a better understanding.

To organize a scientific application into processes, we suggest
using the scientific workflow as a starting step and then evolve a
CSP network from there. It is at all times possible to generate a
trace of a PyCSP execution and subsequently replay this trace with
a visual representation, as illustrated in this paper. This may be
used to view the behavior of the CSP network and thus help to
debug.

The compositional nature of CSP enables any researcher to take
any process of a CSP network and optimize it in isolation, since all
processes are isolated and have no side effects. This has huge ben-
efits on cost and time since dedicated programmers can be hired to
optimize the bottle necks in a workflow of any size. The scientific
user still has control of the rest of the application since it remains
unchanged from the original design. This results in an improved
situation, where the scientific user is still in control and able to
make real changes to the high performance application, even if it
is running on multiple architectures and clusters at remote loca-
tions.

We believe that we present a strong tool for the scientific user
to be able to produce software for the varying parallel hardware
available today, and more importantly will run on new upcoming
hardware.
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Abstract. This paper presents the central elements of a new dynamic channel leading
towards a flexible CSP design suited for high-level languages. This channel is sep-
arated into three models: a shared-memory channel, a distributed channel and a dy-
namic synchronisation layer. The models are described such that they may function as
a basis for implementing a CSP library, though many of the common features known
in available CSP libraries have been excluded from the models. The SPIN model
checker has been used to check for the presence of deadlocks, livelocks, starvation,
race conditions and correct channel communication behaviour. The three models are
separately verified for a variety of different process configurations. This verification is
performed automatically by doing an exhaustive verification of all possible transitions
using SPIN. The joint result of the models is a single dynamic channel type which
supports both local and distributed any-to-any communication. This model has not
been verified and the large state-space may make it unsuited for exhaustive verifica-
tion using a model checker. An implementation of the dynamic channel will be able to
change the internal synchronisation mechanisms on-the-fly, depending on the number
of channel-ends connected or their location.

Keywords. CSP, PyCSP, Distributed Computing, Promela, SPIN.

Introduction

Most middleware designers experience situations where they need to choose between gen-
erality and performance. To most experienced programmers this dilemma is natural since
high performance implementations are typically based on assumptions that from the usage
point translates into limitations. The PyCSP project has since the beginning had a strict fo-
cus on generality, attempting to present the programmer with only one channel type and one
process type. The single channel type has succeeded while the single process type has been
attempted through individual PyCSP packages with separate process types. These process
types are: greenlets (co-routines), threads and processes, as seen from the operating system
view. The reason for the three different packages were to enable PyCSP applications to have
up to 100,000 CSP processes (co-routines), posix threads for cross-platform support and OS
processes executing in parallel while not being limited by the CPython Global Interpreter
Lock [1].

We would like to reach the point of only one process type and one channel type, but
for this to be possible we need a channel type which preserves the qualities of the previous
channel type, i.e. be of the kind any-to-any and support external choice in both directions as
well as offer both channel poisoning and retirement like the existing PyCSP channels. The
new channel must support three possible process locations: within the same PyCSP process,

1Corresponding Author: Rune Møllegaard Friborg, eScience Center, University of Copenhagen, DK-2100
Copenhagen, Denmark. Tel.: +45 3532 1421; Fax: +45 3521 1401; E-mail: runef@diku.dk.



on a different PyCSP process within the same compute-node and, finally, a different PyCSP
process on a different compute-node. It is of course trivial to make a common channel type
based on the lowest common denominator, i.e. a networked channel, since this will also
function within a compute-node and even within a process. However, the downside is self-
evident since the overhead of deploying an algorithm based on shared-nothing mechanisms
is much slower than algorithms that can employ shared state.

The solution to the proposed problem is a channel that can start out with the strongest
possible requirements, i.e. exist within a single process, and then dynamically decrease the
requirements as needed, while at the same time employing more complex, and more costly,
algorithms.

The present work is a presentation of such a dynamic channel type. The algorithms that
are employed grow quite complex to ensure maximum performance in any given scenario,
thus much work has been put into verifying the different levels a channel may reach. Using
the SPIN model checker, we perform an exhaustive verification of the local and distributed
channel levels for a closed set of process configurations. These include any-to-any channels
with input and output guards in six different combinations.

Background

PyCSP is currently a mix of four implementations providing one shared API, such that the
user can swap between them manually. The four implementations do not share any code and
the different channel implementations can not function as guards for a single external choice,
since they are not compatible.

Listing 1. A simple PyCSP example demonstrating the concurrent nature in CSP upholding to unbounded
non-determinism and protected against race conditions during termination.

# S e l e c t i m p l e m e n t a t i o n
i m p o r t pycsp . t h r e a d s as pycsp
# ( a l t e r n a t i v e s : pycsp . p r o c e s s e s , pycsp . g r e e n l e t s , pycsp . n e t )

@pycsp . p r o c e s s
d e f s o u r c e ( c h a n o u t , N ) :

f o r i i n r a n g e (N ) :
c h a n o u t ( ” H e l l o (%d )\ n ” % ( i ) )

pycsp . r e t i r e ( c h a n o u t ) # The c h a n n e l has one l e s s w r i t e r

@pycsp . p r o c e s s
d e f s i n k ( c h a n i n ) :

# The loop t e r m i n a t e s on t h e s i g n a l t h a t announces t h a t a l l
# w r i t e r s have r e t i r e d
w h i l e True :

s y s . s t d o u t . w r i t e ( c h a n i n ( ) )

ch = pycsp . Channel ( )
pycsp . P a r a l l e l ( # Run i n p a r a l l e l

5 * s o u r c e ( ch . w r i t e r ( ) , 1 0 ) , # F ive s o u r c e p r o c e s s e s
5 * s i n k ( ch . r e a d e r ( ) ) # F ive s i n k p r o c e s s e s

)

In listing 1, we show a simple application using the current PyCSP where channels are
any-to-any, synchronous and uni-directional. Processes can commit to reading or writing
from single channels or they can commit to a set of distinct channels using the alt (external
choice) construct. Committing to the alt construct means that exactly one of the channel



operations will be accepted and all others are ignored. The alt construct allow a mix of read
and write operations. The first model, which we present in section 2.1, is a model of the
current channel implementation for threads in PyCSP.

In [2] we presented PyCSP for scientific users as a means of creating scalable scientific
software. The users of a CSP library should not have to think about whether they might be
sending a channel-end to a process that might be running in a remote location. Or how they
work around an external choice on channels, that does not support it. One of the powerful
characteristics of CSP is that every process is isolated, which means that we can move it
anywhere and as long as the channels still work, the process will execute. Because of this,
processes can easily be reused, since all the inputs and outputs are known.

The network-enabled PyCSP implementation is a prototype and uses a single channel
server to handle all channel traffic. The single channel server runs the thread implementation
of PyCSP internally, which creates a temporary thread for every request. The server is a seri-
ous bottle-neck for the channel communication and has limited the type of parallel applica-
tions implemented in PyCSP. In this paper we present a distributed channel model and check
its correctness using the SPIN Model Checker.

Promela and the SPIN Model Checker

Promela (Process Meta Language) is a process modeling language whose purpose is to verify
the logic in concurrent systems. In Promela models, processes can by created dynamically
and can communicate through synchronous or asynchronous message channels. Also the pro-
cesses are free to communicate through shared memory. If variables or channels are created
globally, then they are available through shared memory to all Promela processes. Promela
has a basic set of types for variables: bit, bool, byte, mtype (similar to enum), short and int.
The models presented in this paper use shared memory when modeling internal communica-
tion, and message channels when modeling distributed communication.

In Promela, every statement is evaluated to one of two states, it is either enabled or
blocked. Statements as assignments, declarations, skip or break are always enabled, while
conditions evaluated to false are blocked. When a statement is blocked, the execution for that
process halts until the statement becomes enabled. The following is an example of a blocked
statement following an enabled statement:

v a l u e = 1 ; / * e n a b l e d * /
v a l u e == 0 ; / * b l o c k e d * /

When executing (simulating) a Promela model, the statements in concurrent processes
are selected randomly to simulate a concurrent environment. To allow modeling synchroni-
sation mechanisms, a sequence of statements can be indicated as atomic, by using the atomic
keyword and enclosing the statements in curly brackets:

atomic {
/ * The f i r s t s t a t e m e n t i n an a t omi c r e g i o n i s a l l o w e d t o b l o c k . * /
p r o c e s s l o c k == 0 ;
p r o c e s s l o c k = 1 ;

}

To organise the code in Promela we use inline functions. When declaring inline func-
tions, the parameters in the parameter list have no types. The inline functions are exclusively
used as a replace-pattern, when generating the complete model with a single body for each
thread. All values passed to an inline function is pass-by-reference. There is no return con-
struct in Promela, thus values must be returned by updating variables through the parameter
list.



Control flows in Promela can be defined using either if .. fi or do ..od constructs. The
latter executes the former repeatedly until the break statement is executed. Listing 2 shows
two examples of the constructs. The first where else is taken only when there is no other
enabled guards and another where an always enabled condition might never be executed.

Listing 2. Example of control flows in Promela.

i f
: : (A == t rue ) −> p r i n t f ( ”A i s t r u e , B i s unknown ” ) ;
: : (B == t rue ) −> p r i n t f ( ”B i s t r u e , A i s unknown ” ) ;
: : e l s e −> p r i n t f ( ”A and B a r e f a l s e ” ) ;
f i

do
: : ( sk ip )−>

p r i n t f ( ” I f A i s a lways t r u e , t h e n t h i s may n e v e r p r i n t e d . ” ) ;
break ; / * b r e a k s t h e do loop * /

: : (A == t rue ) −>
p r i n t f ( ”A i s t r u e ” ) ;
i = i + 1 ;

od

If the SPIN model checker performs an automatic verification of the above code, then
it will visit every possible state until it aborts with the error: “max search depth too small”.
The reason is that, there is no deterministic set of values for i, thus the system state space
can never be completely explored. It is crucial that all control flows have a valid end-state
otherwise SPIN can not verify the model.

The SPIN model checker can verify models written in Promela. In 1986, Vardi and
Wolper [3] published the foundation for SPIN, an automata-theoretic approach to automatic
program verification. SPIN [4] can verify a model for correctness by generating a C program
that performs an exhaustive verification of the system state space. During simulation and ver-
ification SPIN checks for the absence of deadlocks, livelocks, race conditions, unspecified
receptions and unexecutable code.

The model checker can also be used to show the correctness of system invariants, find
non-progress execution cycles and linear time temporal constraints, though we have not used
any of those features for the model checking in this paper.

1. Related Work

Various possibilities for synchronous communication can be found in most network libraries,
but we focus exclusively on network-enabled communication libraries that support Hoare’s
CSP algebra [5,6]. Several projects have investigated how to do CSP in a distributed envi-
ronment. JCSP [7], Pony/occam-π [8] and C++CSP [9] provide network-enabled channels.
Common to all three is that they use a specific naming for the channels, such that channels are
reserved for one-to-one, one-to-any, network-enabled and so on. JCSP and C++CSP2 have
the limitation that they can only do external choice (alt) on some channel types.

Pony enables transparent network support for occam-π. Schweigler and Sampson [8]
write: “As long as the interface between components (i.e. processes) is clearly defined, the
programmer should not need to distinguish whether the process on the other side of the inter-
face is located on the same computer or on the other end of the globe”. Unfortunately the pony
implementation in occam-π is difficult to use as basis for a CSP library in languages like C++,
Java or Python, as it relies heavily on the internal workings of occam-π. Pony/occam-π does



not currently have support for networked buffered channels. The communication overhead in
Python is quite high, thus we are especially interested in fast one-to-one buffered networked
channels, because they have the potential to hide the latency of the network. This would, for
large parallel computations, make it possible to overlap computation with communication.

2. The Dynamic Channel

We present the basis for a dynamic channel type that combines multiple channel synchroni-
sation mechanisms. The interface of the dynamic channel resembles a single channel type.
When the channel is first created, it may be an any-to-any specialised for co-routines. The
channel is then upgraded on request, depending on whether it participates in an alt and on
the number of channel-ends connected. The next synchronisation level for the channel may
be an optimised network-enabled one-to-one with no support for alt. Every upgrade stalls
the communication on the channel momentarily while all active requests for a read or write
are transformed to a higher synchronisation level. The upgrades continue, until the lowest
common denominator (a network-enabled any-to-any with alt support) is reached.

This paper presents three models that are crucial parts in the dynamic channel design.
These are: a local channel synchronisation model for shared memory, a distributed synchro-
nisation model and the model for on-the-fly switching between synchronisation levels. We
have excluded the following features to avoid state-explosion during automatic verification:
mobility of channel ends, termination handling, buffered channels, skip / timeout guards and
a discovery service for channel homes. Basically, we have simplified a larger model as much
as possible and left out important parts, to focus on the synchronisation model handling the
communication.

The different models are written in Promela to verify the design using the SPIN model
checker. The verification phase is presented in section 3 where the three models are model-
checked successfully. The full model-checked models are available at the PyCSP reposi-
tory [10]. After the following overview, the models are described in detail:

• the local synchronisation model is built around the two-phase locking protocol. It pro-
vides a single CSP channel type supporting any-to-any communication with basic read
/ write and external choice (alt).

• the distributed synchronisation model is developed from the local model, providing the
same set of constructs. The remote communication is similar to asynchronous sockets.

• the transition model enables the combination of a local (and faster) synchronisation
model with more advanced distributed models. Channels are able to change synchro-
nisation mechanisms, for example based on the location of channel ends, making it a
dynamic channel.

For all models presented we do not handle operating system errors that cause threads to
terminate or lose channel messages. We assume that all models are implemented on top of
systems that provide reliable threads and message protocols.

2.1. Channel Synchronisation with Two-Phase Locking

The channel model presented here is similar to the PyCSP implementation (threads and pro-
cesses) from 2009 [11] and will work as a verification of the method used in [11,12]. It is a
single CSP channel type supporting any-to-any communication with basic read / write and
external choice (alt).

In figure 1 we show an example of how the matching of channel operations comes about.
Four processes are shown communicating on two channels using the presented design for
negotiating read, write and external choice. Three requests have been posted to channel A



and two requests to channel B. During an external choice, a request is posted on multiple
channels. Process 2 has posted its request to multiple channels and has been been matched.
Process 1 is waiting for a successful match. Process 3 has been matched and is going to
remove its request. Process 4 is waiting for a successful match. In the future, process 1 and
process 4 are going to be matched. The matching is initiated by both, but only one process
marks the match as successful.

Channel A

Channel B

READY
Read queue

SUCCESS(B)
READY

Write queue

SUCCESS(B)
Read queue

SUCCESS
Write queue

Requests

1

2

4

3

Process 1
Read value from 
channel A

Process 4
Write value to 
channel A

Process 3
Write value to 
channel B

Process 2
External choice (alt) on 
the channel operations:
▪ Read from B
▪ Write value to A

Figure 1. Example of four processes matching channel operations on two channels.

Listing 3. Simple model of a mutex lock with a condition variable. This is the minimum functionality, which
can be expected from any multi-threading library.

t y p e d e f p r o c e s s t y p e {
mtype s t a t e ;
b i t l o c k ;
b i t waitX ;

} ;

p r o c e s s t y p e p roc [THREADS ] ;

i n l i n e a c q u i r e ( l o c k i d ) {
atomic { ( p roc [ l o c k i d ] . l o c k == 0 ) ; p roc [ l o c k i d ] . l o c k = 1 ; }

}
i n l i n e r e l e a s e ( l o c k i d ) {

p roc [ l o c k i d ] . l o c k = 0 ;
}
i n l i n e w a i t ( l o c k i d ) {

a s s e r t ( p roc [ l o c k i d ] . l o c k == 1 ) ; / * l o c k must be a c q u i r e d * /
atomic {

r e l e a s e ( l o c k i d ) ;
p roc [ l o c k i d ] . waitX = 0 ; / * r e s e t w a i t c o n d i t i o n * /

}
( p roc [ l o c k i d ] . waitX == 1 ) ; / * w a i t * /
a c q u i r e ( l o c k i d ) ;

}
i n l i n e n o t i f y ( l o c k i d ) {

a s s e r t ( p roc [ l o c k i d ] . l o c k == 1 ) ; / * l o c k must be a c q u i r e d * /
p roc [ l o c k i d ] . waitX = 1 ; / * wake up w a i t i n g p r o c e s s * /

}

We use the two-phase locking protocol for channel synchronisation. When two processes
are requesting to communicate on a channel, we accept the communication by first acquiring



the two locks, then checking the state of the two requests and if successful, updating and
finally the two locks are released. This method requires many lock requests resulting in a
large overhead, but it has the advantage that it never has to roll-back from trying to update a
shared resource.

To perform the local synchronisation between threads, we implement the simple lock
model shown in listing 3. This is straight-forward to model in Promela, as every statement in
Promela must be executable and will block the executing thread until it becomes executable.
The implemented lock model is restricted to single processes calling wait. If multiple pro-
cesses called wait, then the second could erase a recent notify . For the models in the paper,
we never have more than one waiting process on each lock.

Now that we can synchronise processes, the process state proc[ id ]. state can be protected
on read and update. When blocked, we wait on a condition lock instead of wasting cycles
using busy waiting, but the condition lock adds a little overhead. To avoid deadlocks, the
process lock must be acquired before a process initiates a wait on a condition lock and before
another process notifies the condition lock. The process calls wait in write (Listing 4) and is
blocked until notified by offer (Listing 6). The offer function is called by the matching algo-
rithm, which is initiated when a request is posted. To provide an overview, figure 2 shows a
pseudo call graph of the model with all inline functions and the call relationship. A process
can call read, write or alt to communicate on channels. These then posts the necessary re-
quests to the involved channels and the matching algorithm calls offer for all matching pairs.
Eventually a matching pair arrives at a success and the waiting process is notified.

Communicating process

Channel.read Channel.write

Channel.post_writeChannel.remove_write Channel.post_readChannel.remove_read

Initialise request and
then post the request to all 

involved channels
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Channel.match -  
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Lock.wait - Sleep if 
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made
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involved channels Request.state: READY
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Figure 2. Pseudo call graph for the local channel synchronisation.

In write (Listing 4), a write request is posted to the write queue of the channel and again
removed after a successful match with a write request. The corresponding functions read,
post read and remove read are not shown since they are similar, except that remove read returns
the read value.



Listing 4. The write construct and the functions for posting and removing write requests. The process index
pid contains the Promela thread id.

i n l i n e w r i t e ( c h i d , msg ) {
p roc [ p i d ] . s t a t e = READY;
p o s t w r i t e ( c h i d , msg ) ;
/ * i f no s u c c e s s , t h e n w a i t f o r s u c c e s s * /
a c q u i r e ( p i d ) ;
i f

: : ( p roc [ p i d ] . s t a t e == READY) −> w a i t ( p i d ) ;
: : e l s e sk ip ;

f i ;
r e l e a s e ( p i d ) ;
a s s e r t ( p roc [ p i d ] . s t a t e == SUCCESS ) ;
r e m o v e w r i t e ( c h i d )

}
i n l i n e p o s t w r i t e ( c h i d , m s g t o w r i t e ) {

/ * a c q u i r e c h a n n e l l o c k * /
atomic { ( ch [ c h i d ] . l o c k == 0) −> ch [ c h i d ] . l o c k = 1 ; }

<add p r o c e s s id , m s g t o w r i t e t o ch [ c h i d ] . wqueue>
match ( c h i d ) ;
ch [ c h i d ] . l o c k = 0 ; / * r e l e a s e c h a n n e l l o c k * /

}
i n l i n e r e m o v e w r i t e ( c h i d ) {

/ * a c q u i r e c h a n n e l l o c k * /
atomic { ( ch [ c h i d ] . l o c k == 0) −> ch [ c h i d ] . l o c k = 1 ; }

<remove p r o c e s s id , msg from ch [ c h i d ] . wqueue>
ch [ c h i d ] . l o c k = 0 ; / * r e l e a s e c h a n n e l l o c k * /

}

When matching read and write requests on a channel we use the two-phase locking
protocol where the locks of both involved processes are acquired before the system state is
changed. To handle specific cases where multiple processes have posted multiple read and
write requests, a global ordering of the locks (Roscoe’s deadlock rule 7 [13]) must be used to
make sure they are always acquired in the same order. In this local thread system we order the
locks based on their memory address. This is both quick and ensures that the ordering never
changes during execution. An alternative index for a distributed system would be to generate
an index as a combination of the node address and the memory address.

Listing 5. Matching pairs of read and write requests for the two-phase locking.

i n l i n e match ( c h i d ) {
w = 0 ; r = 0 ;
do / * Matching a l l r e a d s t o a l l w r i t e s * /
: : ( r<ch [ c h i d ] . r l e n ) −>

w = 0 ;
do
: : (w<ch [ c h i d ] . wlen ) −>

o f f e r ( c h i d , r , w ) ;
w = w+1;

: : e l s e break ;
od ;
r = r +1;

: : e l s e break ;
od ; }



The two-phase locking in offer (Listing 6) is executed for every possible pair of read and
write requests found by match (Listing 5). The first phase acquires locks and the second phase
releases locks. Between the two phases, updates can be made. Eventually when a matching
is successful, three things are updated: the condition lock of both processes is notified, the
message is transferred from the writer to the reader and proc[ id ]. state is updated.

One disadvantage of the two-phase locking is that we may have to acquire the locks
of many read and write requests that are not in a ready state. The impact of this problem
can easily be reduced by testing the state variable before acquiring the lock. Normally, this
behaviour results in a race condition. However, the request can never change back to the
ready state once it has been committed and remains posted on the channel. Because of this,
the state can be tested before acquiring the lock, in order to find out whether time should be
spent acquiring the lock. When the lock is acquired, the state must be checked again to ensure
the request is still in the ready state. PyCSP [10] uses this approach in a similar offer method
to reduce the number of acquired locks.

Listing 6. The offer function offering a possible successful match between two requests.

i n l i n e o f f e r ( c h i d , r , w) {
r p i d = ch [ c h i d ] . r q ue ue [ r ] . i d ;
w pid = ch [ c h i d ] . wqueue [w ] . i d ;
i f / * a c q u i r e l o c k s u s i n g g l o b a l o r d e r i n g * /
: : ( r p i d < w pid ) −>

a c q u i r e ( r p i d ) ; a c q u i r e ( w pid ) ;
: : e l s e sk ip −>

a c q u i r e ( w pid ) ; a c q u i r e ( r p i d ) ;
f i ;
i f / * Does t h e two p r o c e s s e s match ? * /
: : ( p roc [ r p i d ] . s t a t e == READY && proc [ w pid ] . s t a t e == READY) −>

p roc [ r p i d ] . s t a t e = SUCCESS ;
p roc [ w pid ] . s t a t e = SUCCESS ;

/ * T r a n s f e r message * /
ch [ c h i d ] . r q ue ue [ r ] . msg = ch [ c h i d ] . wqueue [w ] . msg ;
ch [ c h i d ] . wqueue [w ] . msg = NULL;
p roc [ r p i d ] . r e s u l t c h = c h i d ;
p roc [ w pid ] . r e s u l t c h = c h i d ;

n o t i f y ( r p i d ) ;
n o t i f y ( w pid ) ;

/ * break match lo op by u p d a t i n g w and r * /
w = LEN; r = LEN;

: : e l s e sk ip ;
f i ;
i f / * r e l e a s e l o c k s u s i n g r e v e r s e g l o b a l o r d e r i n g * /
: : ( r p i d < w pid ) −>

r e l e a s e ( w pid ) ; r e l e a s e ( r p i d ) ;
: : e l s e sk ip −>

r e l e a s e ( r p i d ) ; r e l e a s e ( w pid ) ;
f i ;

}

The alt construct shown in listing 7 is basically the same as a read or write, except that
the same process state is posted to multiple channels, thus ensuring that only one will be
matched.

The alt construct should scale linearly with the number of guards. For the verification of
the model we simplify alt to only accept two guards. If the model is model-checked success-



fully with two guards we expect an extended model to model-check successfully with more
than two guards. Adding more guards to the alt construct in listing 7 is a very simple task, but
it enlarges the system state-space and is unnecessary for the results presented in this paper.

Listing 7. The alt construct.

i n l i n e a l t ( c h i d 1 , op1 , msg1 , c h i d 2 , op2 , msg2 , r e s u l t c h a n , r e s u l t ) {
p roc [ p i d ] . s t a t e = READY;
r e s u l t = NULL;
i f : : ( op1 == READ) −> p o s t r e a d ( c h i d 1 ) ;

: : e l s e p o s t w r i t e ( c h i d 1 , msg1 ) ;
f i ;
i f : : ( op2 == READ) −> p o s t r e a d ( c h i d 2 ) ;

: : e l s e p o s t w r i t e ( c h i d 2 , msg2 ) ;
f i ;
a c q u i r e ( p i d ) ; / * i f no s u c c e s s , t h e n w a i t f o r s u c c e s s * /
i f : : ( p roc [ p i d ] . s t a t e == READY) −> w a i t ( p i d ) ;

: : e l s e sk ip ;
f i ;
r e l e a s e ( p i d ) ;
a s s e r t ( p roc [ p i d ] . s t a t e == SUCCESS ) ;
i f : : ( op1 == READ) −> r e m o v e r e a d ( c h i d 1 , r e s u l t ) ;

: : e l s e r e m o v e w r i t e ( c h i d 1 ) ;
f i ;
i f : : ( op2 == READ) −> r e m o v e r e a d ( c h i d 2 , r e s u l t ) ;

: : e l s e r e m o v e w r i t e ( c h i d 2 ) ;
f i ;
r e s u l t c h a n = proc [ p i d ] . r e s u l t c h ;

}

2.2. Distributed Channel Synchronisation

The local channel synchronisation described in the previous section has a process waiting
until a match has been made. The matching protocol performs a continuous two-phase lock-
ing for all pairs, thus the waiting process is constantly being tried even though it is passive.
This method is not possible in a distributed model with no shared memory, instead an ex-
tra process is created to function as a remote lock, protecting updates of the posted channel
requests. Similar to the local channel synchronisation, we must lock both processes in the
offer function and retrieve the current process state from the process. Finally, when a match
is found, both processes are notified and their process states are updated.

In figure 3, an overview of the distributed model is shown. The communicating pro-
cess can call read, write or alt to communicate on channels. These then post the necessary
requests to the involved channels through a Promela message channel. The channel home
(channelThread) receives the request and initiates the matching algorithm to search for a suc-
cessful offer amongst all matching pairs. During an offer, the channel home communicates
with the lock processes (lockThread) to ensure that no other channel home conflicts. Finally, a
matching pair arrives at a success and the lock process can notify the waiting process.

In listing 8 all Promela channels are created with a buffer size of 10 to model an asyn-
chronous connection. We have chosen a buffer size of 10, as this is large enough to never get
filled during verification in section 3. Every process communicating on a channel is required
to have a lock process (Listing 9) associated, to handle the socket communication going in
on proc * chan types.
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Figure 3. Pseudo call graph for the distributed channel synchronisation.

Listing 8. Modeling asynchronous sockets.

/ * D i r e c t i o n : communica t ing p r o c e s s −> channe lThread * /
chan ch cmd chan [C] = [ 1 0 ] of {byte , byte , byte } ; / * cmd , pid , msg * /
# d e f i n e POST WRITE 1
# d e f i n e POST READ 2
# d e f i n e REMOVE WRITE 3
# d e f i n e REMOVE READ 4

/ * D i r e c t i o n : channe lThread −> communica t ing p r o c e s s * /
chan proc cmd chan [ P ] = [ 1 0 ] of {byte , byte , byte } ; / * cmd , ch , msg * /
# d e f i n e REMOVE ACK 9

/ * D i r e c t i o n : channe lThread −> l o c k T h r e a d * /
chan p r o c a c q u i r e l o c k c h a n [ P ] = [ 1 0 ] of {byte } ; / * ch * /

/ * D i r e c t i o n : l o c k T h r e a d −> channe l Thread * /
chan c h a c c e p t l o c k c h a n [C] = [ 1 0 ] of {byte , byte } ; / * pid , p r o c s t a t e * /

/ * D i r e c t i o n : channe lThread −> l o c k T h r e a d * /
chan p r o c r e l e a s e l o c k c h a n [ P ] = [ 1 0 ] of {byte , byte , byte } / * cmd , ch , msg * /
# d e f i n e RELEASE LOCK 7
# d e f i n e NOTIFY SUCCESS 8



The lockThread in listing 9 handles the remote locks for reading and updating the process
state from the channel home thread. The two functions remote acquire and remote release are
called from the channel home process during the offer procedure. The lockThread and the
communicating process use the mutex lock operations from listing 3 for synchronisation.

Listing 9. The lock process for a communicating process.

proctype l o c k T h r e a d ( byte i d ) {
byte c h i d , cmd , msg ;
byte c h i d 2 ;
b i t l o c k e d ;
do
: : p r o c a c q u i r e l o c k c h a n [ i d ] ? c h i d −>

c h a c c e p t l o c k c h a n [ c h i d ] ! id , p roc [ i d ] . s t a t e ;
l o c k e d = 1 ;
do
: : p r o c r e l e a s e l o c k c h a n [ i d ] ? cmd , c h i d 2 , msg ; −>

i f
: : cmd == RELEASE LOCK −>

a s s e r t ( c h i d == c h i d 2 ) ;
break ;

: : cmd == NOTIFY SUCCESS −>
a s s e r t ( c h i d == c h i d 2 ) ;
a c q u i r e ( i d ) ; / * mutex l o c k op * /
p roc [ i d ] . s t a t e = SUCCESS ;
p roc [ i d ] . r e s u l t c h = c h i d 2 ;
p roc [ i d ] . r e s u l t m s g = msg ;
n o t i f y ( i d ) ; / * mutex l o c k op * /
r e l e a s e ( i d ) ; / * mutex l o c k op * /

f i ;
od ;
l o c k e d = 0 ;

: : p roc cmd chan [ i d ] ? cmd , c h i d , msg −>
i f
: : cmd == REMOVE ACK −>

p roc [ i d ] . w a i t i n g r e m o v e s −−;
f i ;

: : t imeout −>
a s s e r t ( l o c k e d == 0 ) ;
a s s e r t ( p roc [ i d ] . w a i t i n g r e m o v e s == 0 ) ;
break ;

od ;
}
i n l i n e r e m o t e a c q u i r e ( c h i d , l o c k p i d , g e t s t a t e ) {

p r o c a c q u i r e l o c k c h a n [ l o c k p i d ] ! c h i d ;
c h a c c e p t l o c k c h a n [ c h i d ] ? id , g e t s t a t e ;
a s s e r t ( l o c k p i d == i d ) ;

}
i n l i n e r e m o t e r e l e a s e ( c h i d , l o c k p i d ) {

p r o c r e l e a s e l o c k c h a n [ l o c k p i d ] ! RELEASE LOCK , c h i d , NULL;
}



The offer function in listing 10 performs a distributed version of the function in listing 6.
In this model we exchange the message from the write request to the read request, update
the process state to SUCCESS, notifies the condition lock and release the lock process, all in
one transmission to the Promela channel proc release lock chan . We may still have to acquire
the locks of many read and write requests that are not in ready state. Acquiring the locks are
now more expensive than for the local channel model and it would happen more often, due
to the latency of getting old requests removed. If an extra flag is added to a request the offer
function can update the flag on success. If the flag is set, we know that the request has already
been accepted and we avoid the extra remote lock operations. If the flag is not set, the request
may still be old and not ready, as it might have been accepted by another process.

Listing 10. The offer function for distributed channel communication.

i n l i n e o f f e r ( c h i d , r , w) {
r p i d = ch [ c h i d ] . r q ue ue [ r ] . i d ;
w pid = ch [ c h i d ] . wqueue [w ] . i d ;
i f / * a c q u i r e l o c k s u s i n g g l o b a l o r d e r i n g * /
: : ( r p i d < w pid ) −>

r e m o t e a c q u i r e ( c h i d , r p i d , r s t a t e ) ;
r e m o t e a c q u i r e ( c h i d , w pid , w s t a t e ) ;

: : e l s e sk ip −>
r e m o t e a c q u i r e ( c h i d , w pid , w s t a t e ) ;
r e m o t e a c q u i r e ( c h i d , r p i d , r s t a t e ) ;

f i ;
i f / * Does t h e two p r o c e s s e s match ? * /
: : ( r s t a t e == READY && w s t a t e == READY) −>

p r o c r e l e a s e l o c k c h a n [ r p i d ] !
NOTIFY SUCCESS , c h i d , ch [ c h i d ] . wqueue [w ] . msg ;

p r o c r e l e a s e l o c k c h a n [ w pid ] !
NOTIFY SUCCESS , c h i d ,NULL;

w = LEN; r = LEN; / * break match loop * /
: : e l s e sk ip ;
f i ;
i f / * r e l e a s e l o c k s u s i n g r e v e r s e g l o b a l o r d e r i n g * /
: : ( r p i d < w pid ) −>

r e m o t e r e l e a s e ( c h i d , w pid ) ;
r e m o t e r e l e a s e ( c h i d , r p i d ) ;

: : e l s e sk ip −>
r e m o t e r e l e a s e ( c h i d , r p i d ) ;
r e m o t e r e l e a s e ( c h i d , w pid ) ;

f i ;
}

Every channel must have a channel home, where the read and write requests for com-
munication are held and the offers are made. The channel home invokes the matching algo-
rithm for every posted request, as the post * functions did in the local channel model. In this
model every channel home is a process (Listing 11). In another implementation there might
only be one process per node maintaining multiple channel homes through a simple channel
dictionary.



Listing 11. The channel home process.

proctype c h a n n e l T h r e a d ( byte c h i d ) {
DECLARE LOCAL CHANNEL VARS
do
: : ch cmd chan [ c h i d ] ? cmd , id , msg −>

i f
: : cmd == POST WRITE −>
<add p r o c e s s id , msg t o ch [ c h i d ] . wqueue>
match ( c h i d ) ;

: : cmd == POST READ −>
<add p r o c e s s id , msg t o ch [ c h i d ] . rqueue>
match ( c h i d ) ;

: : cmd == REMOVE WRITE −>
<remove p r o c e s s id , msg from ch [ c h i d ] . wqueue>
proc cmd chan [ i d ] !REMOVE ACK, c h i d , NULL;

: : cmd == REMOVE READ −>
<remove p r o c e s s id , msg from ch [ c h i d ] . rqueue>
proc cmd chan [ i d ] !REMOVE ACK, c h i d , NULL;

f i ;
: : t imeout −> / * c o n t r o l l e d shutdown * /

/ * read and w r i t e queues must be empty * /
a s s e r t ( ch [ c h i d ] . r l e n == 0 && ch [ c h i d ] . wlen == 0 ) ;
break ;

od ;
}

The functions read, write and alt are for the distributed channel model identical to the
local channel model. We can now transfer a message locally using the local channel model
or between nodes using the distributed channel model.

2.3. Dynamic Synchronisation Layer

The following model will allow channels to change the synchronisation mechanism on-the-
fly. This means that a local channel can be upgraded to become a distributed channel. Acti-
vation of the upgrade may be caused by a remote process requesting to connect to the local
channel. The model presented in this section can not detect which synchronisation mech-
anism to use, it must be set explicitly. If channel-ends were part of the implementation, a
channel could keep track of the location of all channel-ends and thus it would know what
mechanism to use.

A feature of the dynamic synchronisation mechanism is that specialised channels can be
used, such as a low-latency one-to-one channel resulting in improved communication time
and lower latency. The specialised channels may not support constructs like external-choice
(alt), but if an external-choice occurs the channel is upgraded. The upgrade procedure adds
an overhead, but since channels are often used more than once this is an acceptable overhead.

Figure 4 shows an overview of the transition model. In the figure, the communicating
process calls read or write to communicate on channels. These then call the functions enter ,
wait and leave functions. The enter function posts the request to the channel. The wait func-
tion ensures that the post is posted at the correct synchronisation level, otherwise it calls the
transcend function. The leave function is called, when the request has been matched success-
fully. The model includes a thread that at any time activates a switch in synchronisation level
and thus may force a call to the transcend function.
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Figure 4. Pseudo call graph for the dynamic synchronisation layer.

To model the transition between two levels (layers) we set up two groups of channel re-
quest queues and a synchronisation level variable per channel. Every access to a channel vari-
able includes the channel id and the new synchronisation level variable sync level . Every com-
municating process is viewed as a single channel-end and is provided with a proc sync level .
This way the communicating process will know the synchronisation level that it is currently
at, even though the sync level variable for the channel changes. The synchronisation level of
a channel may change at any time using the switch sync level function in listing 12.

The match and offer functions from section 2.1 have been extended with a sync level
parameter used to access the channel container. The post * functions update the proc sync level
variable to the channel synchronisation level before posting a request, while the remove *
functions read the proc sync level variable and uses the methods of that level to remove the
request. Other than that, the functions match, offer , post * and remove * are similar to the ones
from the local channel model.

The switching of synchronisation level in listing 12 works by notifying all processes
with a request for communication posted to the channel. The channel sync level variable is
changed before notifying processes. In listing 14 when a process either tries to enter wait
or is awoken by the notification, it will check that the proc sync level variable of the posted
request still matches the sync level variable of the channel. If these do not match, we activate
the transcend (Listing 13) function. During a transition, the proc state variable is temporarily
changed to SYNC, so that the request is not matched by another process between release and
leave read . The leave read function calls remove read which uses the proc sync level variable to
remove the request and enter read calls post read which uses the updated channel sync level
variable.



Listing 12. Switching the synchronisation level of a channel.

i n l i n e s w i t c h s y n c l e v e l ( c h i d , t o l e v e l ) {
byte SL ;
byte r , w, r p i d , w pid ;
SL = ch [ c h i d ] . s y n c l e v e l ;
atomic { ( ch [ c h i d ] . l v l [ SL ] . l o c k == 0) −>

ch [ c h i d ] . l v l [ SL ] . l o c k = 1 ; } / * a c q u i r e * /
ch [ c h i d ] . s y n c l e v e l = t o l e v e l ;

/ * N o t i f y c o n n e c t e d p r o c e s s e s * /
r = 0 ;
do
: : ( r<ch [ c h i d ] . l v l [ SL ] . r l e n ) −>

r p i d = ch [ c h i d ] . l v l [ SL ] . rq u e u e [ r ] ;
a c q u i r e ( r p i d ) ;
i f
: : p r o c s t a t e [ r p i d ] == READY −>

n o t i f y ( r p i d ) ; / * N o t i f y p r o c e s s t o t r a n s c e n d * /
: : e l s e −> sk ip ;
f i ;
r e l e a s e ( r p i d ) ;
r = r +1;

: : e l s e break ;
od ;
w = 0 ;
do
: : (w<ch [ c h i d ] . l v l [ SL ] . wlen ) −>

w pid = ch [ c h i d ] . l v l [ SL ] . wqueue [w ] ;
a c q u i r e ( w pid ) ;
i f
: : p r o c s t a t e [ w pid ] == READY −>

n o t i f y ( w pid ) ; / * N o t i f y p r o c e s s t o t r a n s c e n d * /
: : e l s e −> sk ip ;
f i ;
r e l e a s e ( w pid ) ;
w = w+1;

: : e l s e break ;
od ;
ch [ c h i d ] . l v l [ SL ] . l o c k = 0 ; / * r e l e a s e * /

}

Listing 13. The transition mechanism for upgrading posted requests.

i n l i n e t r a n s c e n d r e a d ( c h i d ) {
p r o c s t a t e [ p i d ] = SYNC;
r e l e a s e ( p i d ) ;
l e a v e r e a d ( c h i d ) ;
e n t e r r e a d ( c h i d ) ;
a c q u i r e ( p i d ) ;

}

In listing 14 the read function from the local channel model (Section 2.1) is split into an
enter, wait and leave part. To upgrade blocking processes we use the transition mechanism
in listing 13 which can only be used between an enter and a leave part. We require that all
synchronisation levels must have an enter part, a wait / notify state and a leave part.



Listing 14. The read function is split into an enter, wait and leave part.

i n l i n e e n t e r r e a d ( c h i d ) {
p r o c s t a t e [ p i d ] = READY;
p o s t r e a d ( c h i d ) ;

}
i n l i n e w a i t r e a d ( c h i d ) {

/ * i f no s u c c e s s , t h e n w a i t f o r s u c c e s s * /
a c q u i r e ( p i d ) ;
do
: : ( p r o c s y n c l e v e l [ p i d ] == ch [ c h i d ] . s y n c l e v e l ) &&

( p r o c s t a t e [ p i d ] == READY) −>
w a i t ( p i d ) ;

: : ( p r o c s y n c l e v e l [ p i d ] != ch [ c h i d ] . s y n c l e v e l ) &&
( p r o c s t a t e [ p i d ] == READY) −>

t r a n s c e n d r e a d ( c h i d ) ;
: : e l s e break ;
od ;
r e l e a s e ( p i d ) ;

}
i n l i n e l e a v e r e a d ( c h i d ){

a s s e r t ( p r o c s t a t e [ p i d ] == SUCCESS | |
p r o c s t a t e [ p i d ] == SYNC ) ;

r e m o v e r e a d ( c h i d ) ;
}
i n l i n e r e a d ( c h i d ) {

e n t e r r e a d ( c h i d ) ;
w a i t r e a d ( c h i d ) ;
l e a v e r e a d ( c h i d ) ;

}

The three models presented can be used separately for new projects or they can be com-
bined to the following: a CSP library for a high-level programming language where channel-
ends are mobile and can be sent to remote locations. The channel is automatically upgraded,
which means that the communicating processes can exist as co-routines, threads and nodes.
Specialised channel implementations can be used without the awareness of the communi-
cating processes. Any channel implementation working at a synchronisation level in the dy-
namic channel, must provide six functions to the dynamic synchronisation layer: enter read ,
wait read , leave read , enter write , wait write and leave write .

3. Verification Using SPIN

The commands in listing 15 verify the state-space system of a SPIN model written in Promela.
The verification process checks for the absence of deadlocks, livelocks, race conditions,
unspecified receptions, unexecutable code and user-specified assertions. One of these user-
specified assertions checks that the message is correctly transferred for a channel commu-
nication. All verifications were run in a single thread on an Intel Xeon E5520 with 24 Gb
DDR3 memory with ECC.

Listing 15. The commands for running an automatic verification of the models.

s p i n −a model . p
gcc −o pan −O2 −DVECTORSZ=4196 −DMEMLIM=24000 −DSAFETY \\

−DCOLLAPSE −DMA=1112 pan . c
. / pan



The local and the distributed channel models are verified for six process configurations
and the transition model is verified for three process configurations. The results from running
the SPIN model checker to verify models is listed in table 1. The automatic verification of
the models found no errors. The “threads in model” column shows the threads needed for
running the configuration in the specific model. The number of transitions in table 1 does
not relate to how a real implementation of the model performs, but is the total amount of
different transitions between states. If the number of transitions is high, then the model allows
a large number of statements to happen in parallel. The SPIN model checker tries every
transition possible, and if all transitions are legal the model is verified successfully for a
process configuration. This means that for the verified configuration, the model has no dead-
locks, no livelocks, no starvation, no race-conditions and do not fail with a wrong end-state.

The longest running verification which completed was the distributed model for the con-
figuration in figure 5(f). This configuration completed after verifying the full state-space in 9
days. This means that adding an extra process to the model would multiply the total number
of states to a level where we would not be able to complete a verification of the full state-
space. The DiVinE model checker [14] is a parallel LTL model checker that should be able
to handle larger models than SPIN, by performing a distributed verification. DiVinE has not
been used with the models presented in this paper.

Table 1. The results from using the SPIN model checker to verify models.

Model Configuration Threads in model Depth Transitions
Local Fig. 5(a) 2 91 1217
Local Fig. 5(b) 2 163 10828
Local Fig. 5(c) 3 227 149774
Local Fig. 5(d) 4 261 2820315
Local Fig. 5(e) 3 267 420946
Local Fig. 5(f) 3 336 2056700
Distributed Fig. 5(a) 5 151 90260
Distributed Fig. 5(b) 6 245 28042640
Distributed Fig. 5(c) 7 326 18901677
Distributed Fig. 5(d) 9 446 1.1157292e+09
Distributed Fig. 5(e) 8 406 6.771875e+08
Distributed Fig. 5(f) 8 532 1.2102407e+10
Transition sync layer Fig. 5(a) 3 162 43277
Transition sync layer Fig. 5(c) 4 346 18567457
Transition sync layer Fig. 5(d) 5 467 3.9206391e+09

The process configurations in figure 5 cover a wide variety of possible transitions for the
local and distributed models. None of the configurations check a construct with more than
two processes, but we expect the configurations to be correct for more than two processes.
The synchronisation mechanisms are the same for a reading process and a writing process
in the presented models. Based on this, we can expect that all the configurations in figure 5
can be mirrored and model-checked successfully. The local one-to-one communication is
handled by the configuration in figure 5(a). Configurations in figure 5(c) and figure 5(d)
cover the one-to-any and any-to-any cases, and we expect any-to-one to also be correct since
it is a mirrored version of a one-to-any. The alt construct supports both input and output
guards, thus figure 5(b) presents an obvious configuration to verify. In CSP networks this
configuration does not make sense, but the verification of the configuration in figure 5(b)
shows that two competing alts configured with the worst-case priority do not cause any live-
locks. We must also model-check when alt communicates with reads or writes (Figure 5(e)).
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Figure 5. Process configurations used for verification.

Finally, the configuration in figure 5(f) verify when alts are communicating on one-to-any
and any-to-one. These configurations cover most situations for up to two processes.

4. Conclusions

We have presented three building blocks for a dynamic channel capable of transforming
the internal synchronisation mechanisms during execution. The change in synchronisation
mechanism is a basic part of the channel and can come about at any time. In the worst case,
the communicating processes will see a delay caused by having to repost a communication
request to the channel.

Three models have been presented and model-checked: the shared memory channel syn-
chronisation model, the distributed channel synchronisation model and the dynamic synchro-
nisation layer. The SPIN model checker has been used to perform an automatic verification
of these models separately. During the verification it was checked that the communicated
messages were transferred correctly using assertions. All models were found to verify with
no errors for a variety of configurations with communicating sequential processes. The full
model of the dynamic channel has not been verified, since the large state-space may make it
unsuited for exhaustive verification using a model checker.

With the results from this paper, we can also conclude that the synchronisation mecha-
nism in the current PyCSP [11,12] can be model-checked succesfully by SPIN. The current
PyCSP uses the two-phase locking approach with total ordering of locks, which has now been
shown to work correctly for both the shared memory model and the distributed model.

4.1. Future Work

The equivalence between the dynamic channel presented in this paper and CSP channels, as
defined in the CSP algebra, needs to be shown. Through equivalence, it can also be shown
that networks of dynamic channels function correctly.

The models presented in this paper will be the basis for a new PyCSP channel, that can
start out as a simple pipe and evolve into a distributed channel spanning multiple nodes. This
channel will support mobility of channel ends, termination handling, buffering, scheduling
of lightweight processes, skip and timeout guards and a discovery service for channel homes.
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