
lasse nielsen

R E G U L A R E X P R E S S I O N S A N D M U LT I PA RT Y S E S S I O N T Y P E S
W I T H A P P L I C AT I O N S T O W O R K F L O W B A S E D

V E R I F I C AT I O N O F U S E R I N T E R FA C E S

R E G U L A R E X P R E S S I O N S A N D M U LT I PA RT Y S E S S I O N T Y P E S
W I T H A P P L I C AT I O N S T O W O R K F L O W B A S E D V E R I F I C AT I O N

O F U S E R I N T E R FA C E S

lasse nielsen

department of computer science

    
      

    
      

Det Naturvidenskabel ige Fakultet , fakultetvers ion Faculty of Sc ience, fakulty vers ion

     
       

     
       

     
       

     
       

   

      

   

      

Pantone 431 U/CPantone 554 U/C Pantone 554 U/C Pantone 431 U/C

Principopsætning på publikationer

Principopsætning til andre formål end publikationer

Lodret variant med navnetræk placeret under logostregen.

Vandret variant med logo til højreVandret variant med logo til venstre

Placement of logo on publications

Use of logo for other purposes

Vertical version with logotype under the logo line

Horizontal version with logo to the leftHorizontal version with logo to the right

Ph.D. thesis

Lasse Nielsen: Regular expressions and multiparty session types with applications to
workflow based verification of user interfaces, Ph.D. thesis, © August 31, 2011

supervisors:
Fritz Henglein
Thomas Hildebrandt

location:
Copenhagen, Denmark

To the world and future generations in general, and my unborn son in particular.

A B S T R A C T

With the aim of producing a framework for clinical practice guideline modelling
and reasoning, we consider regular expressions and session types. We investigate
and develop their ability to express example guidelines, verify treatment com-
pliance, verify specification compliance and static verification of user interface
implementations.

R E S U M É

Under målsætningen at finde et framework til at modellere og resonere om ret-
ningslinjer for kliniske behandlinger, betragter vi regulære udtryk og session typer.
Vi undersøger og videreudvikler deres egenskaber til at repræsentere eksempler på
retningslinjer, kontrollere behandlinger, kontrollere behandlingsbeskrivelser samt
statisk kontrol af brugerflade-implementationer.

vii

P U B L I C AT I O N S

Multiparty Symmetric Sum Types [96]
Presented at: EXPRESS 2010 – 17th International Workshop on Expressiveness in
Concurrency
Included as Chapter 4

Regular Expression Containment:
Coinductive Axiomatization and Computational Interpretation [56]
Presented at: POPL 2011 – 38th ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages
Included as Chapter 2

Bit-coded Regular Expression Parsing [94]
Presented at: LATA 2011 – 5th International Conference on Language and Au-
tomata, Theory and Applications

Bit-coded Regular Expression Parsing [95]
Submitted to: International Journal of Computer Mathematics
Included as Chapter 3

ix

A C K N O W L E D G M E N T S

I would like to use this opportunity to express my appreciation to the following
people.

My advisors Fritz Henglein and Thomas Hildebrand for the guidance, cooperation
and inspiration they have provided.

The Danish Strategic Research Agency, for funding the TrustCare project (Grant
#2106-07-0019) which has enabled the presented work.

The people I visited during my stay abroad: Nobuko Yoshida, Kohei Honda and
the mobility reading group of Imperial College and Queen Mary University of
London, for being very welcoming and cooperative.

The (other) members of the APL group at DIKU who have provided the academic
network and environment necessary to do scientific research. Special mentions
goes to the lunch club.

Michael Nebel Nissen and Morten Ib Nielsen, who have been my project and study
partners through university.

The department of Urology at Rigshospitalet who allowed me to observe their
work. Special mentions goes to Line Lydom who helped arrange my visit.

Line Bie Pedersen and Jon Elverkilde who have chosen to write master theses
related to my work.

Claus Brabrand and Jacob G. Thomsen who has shown interest in, implemented
and given great feedback on parts of my work.

Finally my family and friends who have supported me and endured my negligence
during this project. Special mentions goes to my loving partner Mette Hansen.

– Thank you!

xi

C O N T E N T S

i introduction 1

1 introduction 3

1.1 Background 6

1.2 Contributions 10

1.2.1 Regular expressions 10

1.2.2 Session types 11

1.2.3 Workflow based verification 12

1.3 Existing workflow modelling frameworks 12

1.4 Regular expressions and session types as workflow models 15

1.4.1 Regular expressions 15

1.4.2 Session types 19

1.5 Field study 25

1.6 Related work 29

1.7 Future work 32

1.8 Conclusions 35

ii regular expressions 37

2 regular expression containment 39

2.1 Introduction 42

2.1.1 Contributions 43

2.1.2 Prerequisites 45

2.1.3 Notation and terminology 46

2.2 Regular expressions as types and coercions 46

2.2.1 Regular expressions as languages 46

2.2.2 Regular expressions as types 47

2.2.3 Regular expression containment as type coercion 49

2.3 Declarative coinductive axiomatization 50

2.3.1 Axiomatization 52

2.3.2 Soundness 54

2.3.3 Completeness 58

2.3.4 Examples 64

2.3.5 Parametric completeness 66

2.4 Application: Compact bit representations of parse trees 67

2.4.1 Bit coded strings 67

2.4.2 Bit code coercions 68

2.4.3 Tail-recursive µ-types 69

2.5 Discussion 74

xiii

xiv Contents

3 bit-coded regular expression parsing 79

3.1 Introduction 82

3.2 Regular expressions as types 83

3.3 Bit-coded parse trees 84

3.4 Parsing algorithms 85

3.4.1 Dubé/Feeley-style parsing 86

3.4.2 Frisch/Cardelli-style parsing 89

3.5 Empirical evaluation of algorithms 91

3.5.1 Backtracking worst case: (an : (a+ 1)nan) 91

3.5.2 DFA worst case (am+1 : (a+ b)�a(a+ b)n) 92

3.5.3 Practical examples 93

3.6 Transducer reduction 95

3.6.1 Transducer semantics 95

3.6.2 Reduction algorithm 98

3.6.3 Reduction correctness 102

3.7 Empirical evaluation of reduction 103

3.8 Conclusion 106

iii session types 109

4 multiparty symmetric sum types 111

4.1 Introduction 114

4.2 Processes with synchronisation 117

4.3 Symmetric sum types 119

4.4 From symmetric sum to conducted branching 125

4.4.1 Erasure definitions 125

4.4.2 Correctness 127

4.4.3 Encodability criteria 129

4.5 Verifying CPG descriptions 130

4.5.1 Implementation 133

4.6 Related and future work 133

5 multiparty symmetric sum types with assertions 137

5.1 Introduction 140

5.2 The process language 143

5.3 The type language 145

5.4 Implementation 150

5.5 Related and future work 151

5.6 Conclusions 151

iv appendix 153

a introduction 155

a.1 Process matrix 155

Contents xv

a.1.1 Oncology example 155

a.2 Session types 157

a.2.1 guisync rules 157

a.2.2 Oncology example 157

a.2.3 Urology example 183

b bit-coded regular expression parsing 205

b.1 Transducer reduction 205

b.1.1 Proof of transducer states lower bound (Lemma 59) 205

b.1.2 Proof of soundness of � (Lemma 60) 205

b.1.3 Proof of completeness of � (Lemma 61) 206

b.1.4 Proof of minimality of result (Theorem 62) 207

c multiparty symmetric sum types 209

c.1 Process congruence 209

c.2 Symmetric sum types 209

c.3 Subject reduction 209

c.4 Erasure definition 211

c.5 Type preservation 212

c.6 Congruence preservation 216

c.7 Erasure soundness 218

c.8 Erasure completeness 220

c.9 Encodability criteria 227

c.10 Healthcare example 231

c.11 Full abstraction 232

c.12 Implementation 234

c.12.1 Processes for example workflow 234

d multiparty symmetric sum types with assertions 245

d.1 Definitions 245

d.1.1 Process congruence 245

d.1.2 Symmetric sum types 245

d.2 Subject reduction 248

bibliography 251

Part I

I N T R O D U C T I O N

1
I N T R O D U C T I O N

Thank you xkcd.com for many excellent comics.
This one captures my feelings about healthcare software as well as geology.

3

xkcd.com

This introduction will underline the principal results, explain and demonstrate
some applications of the work that we have done during this project. Parts of the
results can be summarized in the following theses.

Thesis 1: It is possible to produce compact representations of parse-
trees efficiently, without explicitly materializing the represented parse-
trees.

Thesis 2: Multiparty asynchronous session types can be extended
with some types of social interactions, such that workflows can be
represented, and process compliance with the workflows can be verified
via type-checking.

Thesis 3: Programming languages can be integrated with formalised
clinical practice guidelines in a way that allows guideline compliance
verification of user interfaces by type checking.

6 introduction

outline

We will start by explaining the background and motivation for this project in
Section 1.1. We then list the contributions of the project in Section 1.2. We introduce
some existing workflow modelling frameworks in Section 1.3 before explaining
how the contributions of the project can be applied to workflow modelling and
reasoning in Section 1.4. In section 1.5 we report some of our observations from a
field study. In Section 1.6 and 1.7 we list related work and ideas for future work,
before concluding in Section 1.8.

1.1 background

A hospital is a hazardous place to be, not only because it is where you go when
you are sick and thus in risk of getting worse, but also because the treatments
you undergo can be dangerous or even deadly if the correct procedure is not
followed very strictly. Examples of these dangers include administering medicine
and performing surgery, and there is a wealth of possible errors spanning from
simple technical errors such as misreading the prescribed dose of medicine to
misdiagnosis from failure to notice or test for extra symptoms.Adverse events

According to the danish patient-security database [3] there were 41501 reports
of adverse events in Denmark during 2010. This number covers all events from
hospitals, nursing homes etc. and includes some unavoidable events like when a
patient falls over a rug. However 30% of the events occurred in the medication
process, 17% were caused by interruptions and 15% were due to miscommunication,
so many of these events could have been avoided.

The below examples illustrate that such errors occur. Specifically elements of
a treatment can be overlooked, whether they be administration of medicine or
investigation of symptoms.

Example 1 (Administration of antibiotics [111, Box 3, example 3]). After an operation
the patient must be administered antibiotics to avoid inflammation. In this case a woman
suffered salpingitis, after an abortion where she did not receive antibiotics.

Example 2 (Investigation of symptoms [111, Box 3, example 4]). In this case a patient
was treated and discharged. During the treatment, a symptom unrelated to the treated
disorder was observed, but this was not investigated before discharging. Three months
later the patient was readmitted, and had to undergo surgery to treat the cause of this
symptom.

Clinical
Practice

Guidelines
Errors are unavoidable, as all people make mistakes. There are of course many

security measures to minimize the frequency of such errors, and clinical practice
guidelines (CPGs) is one of the main approaches for this. CPGs are essentially

1.1 background 7

detailed descriptions of medical treatments. A CPG is produced by a group of
doctors specialized in the concerned disorder, maintained regularly and explains
how to diagnose and treat the disorder. They are used as guidelines for hospitals,
to ensure that patients receive the same treatment at all hospitals, and that this is
the best known treatment based on the current research and experience. Since a
CPG is usually just a text document, it is hard to specify exactly what information
is in a CPG. The content is very diverse, even when considering CPGs within a
single database. Many CPGs include information about how to diagnose an illness,
how to treat it, and a long appendix including the empirical evidence for the
treatment described. A lot of the diagnose and treatment information in CPGs can
be understood as workflow descriptions, and some CPGs even include summaries
in the form of workflows [42], even though the form and content of these workflows
is very diverse as well, spanning from checklist/timeline based explanations to
complicated control-flow descriptions. CPG adoption

As Example 1 and 2 shows, the CPGs are not always followed due to human
mistakes, but another problem is to ensure that the correct CPG is used. New
research or experiences means that sometimes the best treatment is revised. Either
a problem is found with the used treatment, or a new and better treatment is
discovered. In this case the CPG is updated, and the new practice should be
adopted at the hospitals. The adoption of new CPGs happens by the doctors
reading the new CPGs and manually adjust their treatments accordingly. This is a
very liberal approach, which can result in slow adoption of new CPGs [45]. Some
reasons for this may be that doctors are very busy, and have to prioritize treating
patients over finding and reading CPG updates, and some doctors choose to use
the original treatments because they do not believe in the newest treatments. This
defeats the purpose of CPGs, because patients will receive different treatments
depending on which doctor they are assigned. Paper forms

and checklistsMost treatments are currently conducted involving paper forms and checklists
which are added to the patients journal. The forms and checklists can be viewed
as derivatives of the CPGs, where filling out the forms requires the tests required
by the CPGs to be performed, and the checklists include the steps in the CPGs to
ensure that no steps are missed. In this way the forms and checklists are means to
ensure that the CPGs are followed. The forms and checklists allow the treatments to
be conducted without too much overhead, and they do help to avoid many mistakes.
A good example of this was the introduction of a specific surgical checklist, where
a large WHO study estimated the impact to decrease the deathrate of the observed
surgeries by up to 50%, and inpatient complications by 35% [53].

These results motivate the use of tools such as paper forms and checklists to
cultivate the adherence to CPGs. There are however limits to what can be obtained
using paper forms and checklists. For example it is not possible for a paper form
to express that one action excludes another action, which is often the case in

8 introduction

CPGs. These limits are due to the simple nature of paper forms and checklists,
and it is necessary to use more expressive tools in order to represent and cultivate
these types of workflow constraints. One way to cultivate more complex workflow
constraints in treatments is to use software systems in stead of or in addition to the
paper forms and checklists.Healthcare

Software Over the recent years software has been introduced to hospitals in many ways.
The complex instruments need software to function, and software systems have
been used to improve the efficiency of many technical tasks such as operation
scheduling, dictation and exchange of testresults between different wards. Software
systems are also used to help avoid some of the simple technical errors in the
treatment processes. Examples of such systems include medication prescription and
administration systems, electronic patient journals and decision support systems.
These systems are also partially designed from the CPGs. Such software systems
should be used with caution, because the quality of the used software is at least as
critical as the tasks it is used to perform. This is illustrated by the examples below.

Example 3 (Therac-25 software error [82]). The Therac-25 was a radiation therapy
machine, where software errors caused the machine to malfunction and expose the patient
to a beam of radiation so intense, that it caused the tissue to wither away resulting in
multiple deaths and permanent disabilities. It took years to discover that the software was
to blame. When the software was analysed, the cause of the malfunctions was discovered to
be two different software errors. One was an inconsistent update of the state, and the other
was a byte-overflow error.

Example 4 (Electric turning aid [5]). In a nursing home, a patient is placed in bed on
a disabled electric turning aid. After some time the patient is found facing the mattress.
The patients is blue in the face and breaths weakly. The patient is treated with oxygen, and
regains conciousness. Due to a technical error the electric turning aid had started by itself,
and caused the patient to be turned around.

Example 5 (Software crash [5]). In this situation, a patient in a nursing home needs to
be hospitalized quickly. The patients data should be printed and sent with the patient, but
the electronic patient journal crashes displaying error messages, so only parts of the data
is successfully printed and sent with the patient.

The danish department of healthscience (DSI) investigation of adverse events from
2010 [70] mentions that software crashes increase the risk of adverse events. It also includes
several comments from the questioned staff, expressing that such crashes occur frequently
in practice.

Therefore it is very important that software systems for the healthcare sector is
of high quality, and in particular they should comply with the CPGs. This raises
the question of what it means for a software system to comply with a CPG. If
the system performs actions autonomously, then these actions should of course

1.1 background 9

Figure 1 Illustration of CPG language constraints

Doctors Programmers

Formal

Verification

CPG

DSL

be allowed by the CPG. However most software systems for the healthcare sector
does not perform actions autonomously, but allows the users to register or perform
actions using user interfaces (UIs). In this case compliance means that the actions
that can be registered and performed using the UI must be allowed by the CPG,
and this is the compliance we have set out to formalize and verify. Constraints for

a CPG DSLThere is a communication problem, when developing and testing software sys-
tems that must comply with CPGs. The software is written by programmers, and
not doctors and domain specialists who can better understand the CPGs. This raises
the question if the produced systems actually comply with the CPGs they were
meant to, because even if the system is well written and tested, the programmers
and testers may have misread the CPGs. In order for the communication to succeed,
the CPGs must be written in a domain specific language (DSL) that both the doctors
and programmers understand.

Even though the programmer understands the CPGs, there is the possibility
of bugs as in all software, that may cause the software to violate the CPGs. In
the healthcare area the consequences of such bugs may be dire, as observed in
Example 3, 4 and 5. One way to ensure that the guidelines are followed, is by using CIGs

computer interpretable guidelines (CIGs). With CIGs the guidelines are written
in a DSL which can be interpreted directly by a computer. This means that it
is not necessary to write the software systems to use, as the guidelines provide
these systems directly by interpretation. This requires the guideline description
to contain all the information used in a software system, which may cause the

10 introduction

guideline language to be cumbersome, or the UIs to be too simplistic and limited.Compliance
verification Another way to ensure that the written software will not violate the CPGs is to

formally verify the CPG compliance of the software. This requires the CPG DSL to
be understandable by both doctors and programmers, and have a formal semantics
that can be used to verify UI implementations, as illustrated in Figure 1. Such a
language may be too restrictive to describe all the details of a CPG, but the aspects
that can be expressed in the formal language, could then be ensured in the software
systems. Verifying software manually is a tedious and error prone task, so in order
for the verification to be practically applicable, it is often necessary to make the
verification automatic.

Using automatic verification of CPG compliance, the problems with the expres-
siveness of paper forms, the communication between doctors and programmers
and the adoption of new CPGs can be reduced. It is our hope, that the verification
of software systems for the healthcare sector to comply with the CPGs can bring
a whole new level of reliability and maintainability to healthcare software. This
would mean that software systems could finally be trusted to cultivate the com-
pliance with CPGs in the same way as paper forms and checklists are used today,
enabling a much richer level of details from the CPGs. This would mean a partial
realization of trustworthy software for the healthcare sector.

1.2 contributions

We will now briefly summarize the main results of our work. The results below
have been divided into the three categories: regular expressions, session types and
workflow based verification.

1.2.1 Regular expressions

In Chapter 2 we have observed the direct correspondence between the values of
regular expressions as types and parse trees for regular expressions as grammars.
This is not explicitly pointed out by neither the works on regular expressions as
types [46] nor the works on regular expressions as grammars [22, 36].

In Chapter 2 we have developed a compact bit coding of parse trees for regular
expressions, that allows efficient processing, by applying the oracle based coding
of proofs [89] to proofs of string membership of regular expressions.

In Chapter 3 we have used the efficient representation of parse trees to simplify
and optimize the known regular expression parsing methods, which allows us to
generate the bit coded parse-trees efficiently without explicitly materializing the
represented parse-trees.

1.2 contributions 11

In Chapter 3 we have implemented the optimized regular expression parsing al-
gorithms, and used the implementations to compare the efficiency of the different
parsing methods.

In Chapter 3 we have adapted Mohris [87] algorithm for minimizing sequential
transducers, to minimize the generated output-deterministic transducers, and cap-
tured the effects of the prefix form step of the algorithm semantically.

In Chapter 3 we have implemented the transducer minimization, and used it to
measure the effect on the generated transducers and enhanced DFAs, measure the
effect of the prefix form step and to optimize the memory footprint and runtime of
the transducer based regular expression parser algorithms.

In Chapter 2 we have created a new axiomatization of language inclusion for
regular expressions. The new axiomatization is based on a general coinduction rule,
and has an operational interpretation as coercions translating parse-trees for one
regular expression to parse-trees of the other regular expression.

In Chapter 2 we have formalized the relation between coercion totality and ax-
iomatization soundness, and created two syntactic conditions that ensure coercion
totality and thus soundness of the axiomatization.

In Chapter 2 we have encoded the existing axiomatizations of language contain-
ment, which provides an operational interpretation to these axiomatization, and
reveals the difference in how the axiomatizations ensure soundness.

1.2.2 Session types

In Chapter 4 we have observed that some workflow constructs cannot be repre-
sented naturally in the multiparty asynchronous session types [61].

In Chapter 4 we have extended the multiparty asynchronous session types with
a simple type of social interaction called symmetric sum types, in a way that pre-
serves subject reduction, and proved by example that workflows can be represented
in a natural way using the extension.

In Chapter 4 we have studied the extensions effects to the expressiveness of well
type terms by encoding well typed processes in the extended type-system as well
typed processes in the original type-system, and proved semantic soundness and
completeness of the encoding, despite the fact that the encoding does not enjoy full
abstraction.

In Chapter 4 we have adapted Gorlas [51] encodability criteria to the setting of
typed processes, and proved our encoding fulfills the adapted criteria.

In Chapter 5 we have merged the symmetric sum types extension with another

12 introduction

extension of multiparty asynchronous session types called assertions [20], such that
the type-system still ensures subject reduction.

We have implemented an interpretor for the asynchronous π-calculus with mul-
tiparty sessions, symmetric synchronization and a type-checker for multiparty
asynchronous session types with symmetric sum types and assertions [1].

1.2.3 Workflow based verification

In Section 1.4.1 we have represented a real world CPG as a regular expressions,
which allows treatment verification via regular expression based matching, and
guideline verification via language inclusion.

In Section 1.4.2 and 1.5 we have represented real world CPGs as multiparty asyn-
chronous session types, which enables verification of automated participants im-
plemented in the asynchronous π-calculus with symmetric synchronization via
type-checking.

We have added and implemented UI primitives to the asynchronous π-calculus
with multiparty sessions, symmetric synchronization and assertions [1], which
enables the implementation of UIs in the asynchronous π-calculus, and verification
of the implemented UIs compliance with CPG workflows represented as multi-
party asynchronous session types with symmetric sum types and assertions via
type-checking.

In Appendix A.2.2 and A.2.3 we have implemented the UIs for the modelled CPG
workflows and verified that they comply with the represented workflows via type-
checking. This is to our knowledge the first time UI implementations have been
statically verified to comply with real world CPG workflows via type checking.

1.3 existing workflow modelling frameworks

Before we describe the applications of our contributions, we introduce some of the
many related frameworks. This is to provide the reader with a description of the
state of the art in the field, but also because some of the examples and workflow
descriptions we use require a basic understanding of some of these frameworks,
in particular the Process Matrix. For each of the selected models, we will give
a short description of the models and show the representation of an example
workflow. The example workflow we will use is very simple, and represents a
standard treatment paradigm. The described workflow is activated, when a patient
is admitted. First two tests are executed, possibly in parallel. Then, depending on
the result of the tests, either the patient is discharged directly, or the patient is
treated before discharging. In this workflow the treatment consists of administering

1.3 existing workflow modelling frameworks 13

Figure 2 Example BPMN workflow

Admit
+

Test1

Test2

+ �

Administer

�
Discharge

not ok

ok

a drug to the patient. The workflow is ended, when the patient is discharged. CIGs

There are many workflow based software frameworks, which offer some of the
properties that we are interested in. The systems that offer UIs are based on a
formalism of computer interpretable guidelines (CIGs), which is a formal language
used to define workflows, such that computers can interpret the workflows and
the performed actions to aid the further treatment. This requires the UI design and
implementation to be included in the model. BPMN and

BPELThe best known framework is probably the business process modelling notation
(BPMN) [124]. BPMN is a graphical notation similar to flowcharts for describing
business processes, and there are tools for creating and executing BPML diagrams
[67], by translating the BPMN model to the business process execution language
(BPEL) [9]. A BPEL program consists of a set of interacting web services. The
recently released BPMN version 2 [6] includes more advanced interaction specifica-
tions such as choreographies which can be seen as binary session types without
delegation. Since business processes are basically workflows similar to CPGs,
BPMN is also useful for CPG modelling, and allows the modelled CPGs to be
executed. There is however no guarantee that the specified processes are deadlock
free or have communication safety. The BPMN model of the example workflow is
in Figure 2. UML activity

diagramsUML activity diagrams (UML-ADs) [106] is a graphical representation of work-
flows similar to flowcharts. There are no tools for executing models represented
as UML-ADs, but there is a petri-net based standard semantics, so it should be
possible to interpret UML-AD guidelines in the same way as the other guideline

Figure 3 Example UML-AD workflow

Test1

Test2

Administer

Discharge

[not ok]

[ok]

14 introduction

Figure 4 Example GLIF workflow

Admit BRANCH

Test1

Test2

SYNC(2) is ok?

Administer

SYNC(1)

Discharge

no

yes

representations. The UML-AD model of the example workflow is in Figure 3.The guideline
interchange

format
The guideline interchange format (GLIF) [97] is a modelling framework with

three levels of abstractions. At the conceptual level, a model is simply a flowchart,
describing the control flow of the modelled treatment. At the computable level – also
known as the GLIF model – the workflow is represented in an object oriented
structure, where each guideline, action, criterion and piece of data is represented
by an object of the respective class. The implementable level – also known as the
GLIF syntax – can be used to provide additional information to the models. For
example the structure of the data can be specified, which helps the integration
between systems that use the same or overlapping guidelines. GLIF models can be
executed using a guideline execution engine [122]. The GLIF model of the example
workflow is in Figure 4.Process matrix

The process matrix [85] is a representation of workflows as a table, with one row
for each action. Each action can be performed multiple times in the same execution
of a workflow, and the workflow terminates when all the actions are in an executed
(or inactive) state. The process matrix has some fixed columns and one extra column
for each participant role. The fixed columns describe action information such as
its name, but also sequential and logical precedence between the actions. If for
example an action B has another action A as a sequential predecessor, then B
cannot be executed unless A has already been performed (is in an executed state).
Similarly, if B has A as a logical predecessor, then B cannot be executed unless A
has already been executed, but additionally B is reset when A is performed (set
to not executed), and thus B must be re-executed after A in order to complete

Figure 5 Example process matrix workflow

ID Name � � � Seq Log Condition Input

1.1 Tests

1.1.1 Test1 � � � result1

1.1.2 Test2 � � � result2

1.2 Treatment 1.1

1.2.1 Administer � � � result1 _ result2

1.3 Discharging 1.2

1.3.1 Discharge � � �

1.4 regular expressions and session types as workflow models 15

the workflow. Each action can also have an activity condition, which is a boolean
expression that determines if the activity should be included in the workflow. When
the activity condition of an action is false (the action is inactive) then the activity is
ignored in the workflow until the state is changed in a way that causes the activity
condition to become true again. The column for each participant describes the
permissions of the participant, if the cell in the row of an action contains an N,
then that user has no permissions for that action, meaning he cannot execute the
action, and cannot read the data entered when other participants executes it. If
it contains an R, then the user has read permissions. If it contains a W then the
user has read permissions and can execute the action. Finally, the actions can be
arranged in groups, which can be considered as stages in the workflow. As soon
as all the actions in a group are in an executed (or inactive) state, the group is
terminated, which means that none of the actions in the group can be executed
again.

All the other CIGs investigated represent workflows in a way similar to flowcharts,
and thus the process matrix stands out, because concurrent execution of actions does
not have to be explicitly allowed. In stead concurrency must be explicitly limited
using the sequential and logical predecessor constraints and activity conditions.
The process matrix for the example workflow is in Figure 5. Special purpose

systemsBesides the CIGs there is a myriad of special purpose systems, offering decission
support systems [44], real time reminders [65], medication prescription and admin-
istration management, electronic patient journals, operation scheduling and so on,
but these are not as related to our work as CIGs.

1.4 regular expressions and session types as workflow models

We will now explain how the studied frameworks can be used as DSLs to express
CPG workflows and work with CPGs formally.

1.4.1 Regular expressions

It may be surprising to some people that we have studied regular expressions [33] as
a workflow model, because they are mostly used for string matching. It is however
a kleene algebra over sequences of events, and the application to string matching is
obtained by restricting the considered events to chars. If we do not assume that Representation

of CPGsthe events are chars, regular expressions can be used to express regular sets of
sequences of events in a simple and intuitive way. Since CPG workflows essentially
describe the allowed sequences of events in a treatment, regular expressions enable
a simple and intuitive representation of some CPGs, and the development of regular
expression theory and reasoning allows the same reasoning about the workflows
represented in this way.

16 introduction

Figure 6 Actions and participants in the oncology administration workflow

Action Abbreviation

Register basic patient information bi

Register lab results lr

Register patient history ph

Calculate dose of chemotherapy cd

Sign order calculation so

Verify order vo

Reject order ro

Make preparation mp

Sign preparation sp

Verify preparation vp

Reject preparation rp

Checkout preparation cp

Check order and preparation match cm

Sign administration sa

Administer the preparation ad

Participant Abbreviation

Doctor D

First nurse N1

Second nurse N2

Controlling pharmacist CP

Pharmacist assistant PA

Regular expressions are generally well know, and are formally defined in Part ii.
Please note that we use the operator + for alternation as opposed to 1 or more
iterations which is the normal interpretation.

In order to illustrate how CPGs can be represented by regular expressions, we

Figure 7 Regular expression representing the oncology administration workflow

// Register Patient Info

(D+N1)bi (D+N1)lr (D+N1)ph

// Order and Prepare

(Dcd Dso CPro)* // Rejected orders

Dcd Dso (CPvo + CPro Dvo) // Verified order

(PAmp PAsp CPrp)* // Rejected preparations

PAmp PAsp (CPvp + CPrp PAvp) // Verified preparation

CPcp(N1cm N2cm + N2cm N1cm) // Check correct patient

(D+N1)sa // Approve administration

// Administer Medicine

(N1+N2)ad

1.4 regular expressions and session types as workflow models 17

Figure 8 Regular expression representation including permutations

// Register Patient Info

(D+N1)bi (D+N1)bi* ((D+N1)lr ((D+N1)bi+(D+N1)lr)* (D+N1)ph+

(D+N1)ph ((D+N1)bi+(D+N1)ph)* (D+N1)lr)+

(D+N1)lr (D+N1)lr* ((D+N1)bi ((D+N1)bi+(D+N1)lr)* (D+N1)ph+

(D+N1)ph ((D+N1)lr+(D+N1)ph)* (D+N1)bi)+

(D+N1)ph (D+N1)ph* ((D+N1)bi ((D+N1)bi+(D+N1)ph)* (D+N1)lr+

(D+N1)lr ((D+N1)lr+(D+N1)ph)* (D+N1)bi))

give a regular expression for the real workflow used to administer chemotherapy
[84].

Example 6 (Administration of chemotherapy [58, 84]). This workflow has five par-
ticipants: a doctor, two nurses, a controlling pharmacist and a pharmacist assistant, not
counting the patient who is obviously a participant but not included because he does not
perform any actions. The workflow has three stages. First the patient information is reg-
istered. Then the chemotherapy medicine dose is calculated, verified, prescribed, prepared
and the preparation is verified. Finally the chemotherapy medicine is administered to the
patient. The paper describing the workflow [84] uses the process matrix included in Ap-
pendix A.1.1 to specify the workflow. We have added an extra column to the matrix, where
the input for each action is specified.

The first thing to consider when representing a workflow is what events can occur, and
how to represent them. An event in this workflow consists of a participant performing an
action. The participants and possible actions are given in the original paper, but we list
them in Figure 6 including abbreviations. We will use the abbreviations for the participants
and actions as Σ, and a workflow event is expressed as the participant event followed by
the action event. For example the event "The first nurse administers the preparation"
would be represented by the two atoms N1ad.

Now that we can represent each event, the workflow can be represented by the regular
expression in Figure 7, although we have cheated a little because the actions for registering
the patient information can be permuted freely, and repeated until all the information has
been registered. In order to allow this freedom the regular expression would become quite
elaborate, because each permutation has to be allowed explicitly. This is at the cost of
the simplicity and elegance of the regular expression. We have included the full regular
expression of the patient information registration in Figure 8.

Although we have not formalized the encodings, it seems the expressive power of
the process matrix and regular expressions is the same, but the regular expression
representation may be exponential in size compared to the process matrix. There
are still advantages to using regular expressions. The first advantage can be seen

18 introduction

directly from the used example. When the same action has to be performed twice,
it is necessary to define the same action twice in the process matrix. For example
the action "Check order and preparation match" is defined twice because both of the
nurses has to perform this check. This is not necessary with regular expressions,
where we can simply write N1cmN2cm+N2cmN1cm to represent that both nurses should
perform the check (in any order). Regular expressions are very simple, they have
a very intuitive semantics and are already used in many areas such as biology
and string processing. Therefore it is very likely that doctors can learn how to
express the desired workflows using regular expressions, and many programmers
already understand them and thus if regular expressions allow formal verification
of implementations, it would make a good candidate as a CPG workflow DSL.
Finally regular expressions have been thoroughly studied, which means they have
a formal semantics and allows formal reasoning using the semantics, rewritings
and finite automaton theory.Treatment

verification Once a workflow has been expressed as a regular expression, it allows the same
reasoning as any other regular expression. In particular it means that a sequence of
events (a treatment) can be matched against the regular expression (the workflow).
This allows us to automatically check if a treatment complies with a workflow,
because we can match the performed sequence of events with the regular expression
representing the workflow, and if it matches, then the treatment has been performed
as the workflow specifies, and if it does not match then the treatment breaks the
workflow.

It is very useful to get a descriptive error message when the verification fails,
because this enables us to determine which action broke the workflow and thus
who is to blame. If the treatment is matched, it is also useful to get a proper
description of how the treatment was matched. This is for example useful when
debugging the workflow. In case a matched treatment was intended to break the
workflow, the matching information is important because it allows us to understand
how the treatment was matched and thus if it is an error in the workflow and if
so, how it can be corrected. This is where the commonly used tools for regular
expression matching are a bit lacking, because most matching algorithms return
incomplete information about how the data was matched.

The work we have done on this problem can be separated into three parts. In the
first part of Chapter 2 we define a representation called bit-codes of the parse-trees
we wish to find. The bit-codes are compact while allowing efficient manipulation
of the parse trees. In the first part of Chapter 3 we have investigated, refined,
implemented, benchmarked and compared the existing matching algorithms that do
return the full matching information, in order to find the most viable method. Many
of the performed optimizations are the result of using the bit-code representation
in favour of the different original representations which results in a more compact
result, noticeably simplified algorithms which use less memory and are more

1.4 regular expressions and session types as workflow models 19

efficient. In the second part of Chapter 3 we have focused on the most efficient
parsing method found in the first part, and optimizes it by adapting Mohris [87]
minimization algorithm for sequential transducers, such that it can be applied to
the generated output-deterministic transducers. Specification

verificationCPGs are sometimes refined to match the facilities at a specific hospital. If a hospi-
tal for example cannot afford to have the doctor register the patient information, the
workflow could be restricted to N1biN1lrN1ph(DcdDsoCPro)*... where only the
nurse is allowed to register the patient information. However, the workflow used
at the hospital should comply with the general CPG, and this means in practice
that any treatment that complies with the local workflow, should also comply with
the global workflow. This is what is usually called language inclusion for regular
expressions. In Chapter 2 we develop a new axiomatization of language inclusion
for regular expressions. There are many benefits to the new axiomatization, as it
enables a deeper understanding of the existing axiomatizations while inheriting
some of their properties such as proof-searching methods via encodings (an earlier
version [55] includes a coercion synthesis method inspired by the proof search in
Grabmayers axiomatization [52]). Summary

We have now illustrated that regular expressions can be used as a language to
communicate workflows between doctors and programmers and that they allow
the reasoning necessary to validate treatments and specifications. Some may argue
that the representation of workflow events as the conjunction of the participant
and action is unnatural because it is possible to write regular expressions that
does not represent any workflow, but it is simple and allows for example for easy
specification when multiple participants can perform the same action as seen in
the example.

The properties that we have not investigated for regular expressions is the ability
to formally verify that UI implementations comply with a workflow represented by
a regular expression. This would be a sizeable task, because there is no existing
way to represent UI implementations in relation to regular expressions. Therefore
regular expressions require a lot of basic work before UI verification can even
be considered. Instead we have investigated session types, because they already
support reasoning that resembles UI verification.

1.4.2 Session types

Session types are not as well known, intuitive or elegant as regular expressions,
but processes (in the asynchronous π-calculus) can be formally verified to comply
with session types via type checking, and therefore it is interesting to investigate if
there is a way to represent CPG workflows as session types and UIs as processes,
such that the session type compliance exactly corresponds to CPG compliance.
Since session types describe the messages that are passed between processes it

20 introduction

should also be possible to describe the information that is exchanged at different
points of the CPG workflows, and thus ensure that the necessary information is
communicated.Multiparty

asynchronous
session types

We have chosen the multiparty asynchronous session types [61] to model work-
flows, because we wish to represent CPG workflows with more than two partic-
ipants. Binary session types are substantially more simple than multiparty asyn-
chronous session types, and it is possible to express some sessions with more than
two participants by combining binary session types, but the properties guaranteed
by the verification are stronger when only one session is used, and the example
CPG workflows we are representing does use the additional expressiveness offered
by multiparty asynchronous session types.No

representation
of CPGs

Session types are designed to represent network protocols, and type-checking
verifies that the communication performed by processes does not break the specified
protocol. Expressing CPG workflows as session types, and UIs as processes can
thus enable a formal verification for UI compliance with CPGs by using the existing
type-checking. This turned out not to be as straight forward as hoped. The existing
processes had no constructs for expressing UIs, but the real problem was how to
express workflows as session types. Since network protocols are described by the
allowed sequences of messages and choices, it seems like a good way to represent
workflows, but even with the expressiveness of multiparty asynchronous session
types, it turns out that many CPG workflows cannot be represented. We found the
reason for this to be that some types of interactions in workflows does not occur in
network protocols, and therefore the session types cannot express interactions of
these types. One of the elements that are missing from session types (and the typed
processes) can intuitively be described as initiative. Initiative is a vague description,
so let us consider a specific simple workflow to better materialize the problem.

Example 7. Consider a workflow with two participants 1 and 2, where each participant
has to perform one action A and B respectively. If we wish to describe this workflow as a
multiparty asynchronous session type, we have to represent each action as a type atom,
specificly A can be represented by 1 sending a string to 2 (1=>2:1<String>), while B can be
represented by 2 sending a string to 1 (2=>1:1<String>). Since both of these actions has to be
performed, do we represent the workflow as 1=>2:1<String>;2=>1:1<String>;Gend or 2=>1:1<

String>;1=>2:1<String>;Gend? They are essentially different, because the first expresses A

before B and the other expresses B before A. We can express that one of the types is selected
as a branching type, but which of the types below do we use?

1.4 regular expressions and session types as workflow models 21

1=>2:1

{^Afirst: 1=>2:1<String>;2=>1:1<String>;Gend,

^Bfirst: 2=>1:1<String>;1=>2:1<String>;Gend

}

2=>1:1

{^Afirst: 1=>2:1<String>;2=>1:1<String>;Gend,

^Bfirst: 2=>1:1<String>;1=>2:1<String>;Gend

}

The difference is whether 1 or 2 decides if A or B is performed first, but neither case rep-
resents the desired workflow, as it is not decided by just one of them. This is what we
intuitively referred to as initiative, because we need to express that both 1 and 2 are able
to make the first step and perform their action.

Extension
Since most CPG workflows cannot be represented by multiparty asynchronous

session types, we have extended the session types and the processes with one
construct each. The operation we have added is an abstraction of the procedure
to reach a decision by common agreement. In Chapter 4 we formally define the
multiparty asynchronous session types with the new type construct, the π-calculus
with multiparty sessions with the new process construct and study how to use the
session types to model CPGs, how to use the processes to implement workflows,
how to verify workflow compliance by type-checking and how the extension affects
the expressiveness of the typed process language. Representing

CPGsThe new type construct is called a symmetric sum type and is written as a set of
branches (using curly brackets around comma separated elements). Each branch
consists of an identifier (called a label) followed by a colon and a type expressing
how the session proceeds if this choice is used. Unlike the existing session type
constructs, there is no sender and receiver and therefore it is symmetric because it
looks the same to each participant. To represent the workflow from Example 7 we
write:

{^A: 1=>2:1<String>; {^B: 2=>1:1<String>;Gend},

^B: 2=>1:1<String>; {^A: 1=>2:1<String>;Gend}

}

The workflow is represented by a choice. If A is selected, then the action A is
performed before a new choice where B must be selected and performed. If B is
selected, then the action B is performed before a new choice where A must be
selected and performed. In this way both A and B are performed, they can be
performed in any order, and the decision is not made by a single participant but by
common agreement. Common agreement is not exactly the same as initiative. If a
participant wishes to perform an action the difference is whether the remaining
participants have to actively accept this action, or actively reject the action. Since
the difference is in the default choice of acceptance for the passive participants this
difference can be compensated by the UI implementation.

22 introduction

The new process construct is called symmetric synchronization and is written as
the keyword sync with a subscript containing an integer (the number of participants
in the synchronization) and a session, followed by a set of labelled processes (curly
brackets containing comma separated elements), where a labeled process is written
as a label followed by a colon and a process expressing what to do if this choice is
used. Processes implementing the example workflow are in Figure 9a.UI

Specification Figure 9a specifies the process for each participant, but they do not specify the
UIs for these decisions. Thus the choices are not be made by a user but by the
synchronization implementation. This is reflected in the process semantics where
the decisions are made randomly. Because we are interested in specifying and veri-
fying UIs we have extended the described synchronization with UI specifications.
The processes already specifies the choices in each decision, so the information
needed to specify the UIs is the input fields for each choice for each participant.
This extension results in a new synchronization process construct called guisync

and is a very simple extension to the sync construct, which allows the process to
specify input fields for each choice. The guisync construct is very similar to the
sync construct, but takes an extra argument p which is the participant number of
the session (used to identify the UI), and each branch has a (possibly empty) list
of simply typed arguments which are used as the UI input fields. The stepping
and typing rules of guisync are also very similar to the rules for sync, except that
the given participant number is checked, and the input values are type-checked.
Also the stepping rule has a sidecondition (:) which should state that the user for
each participant p has accepted the chosen branch (h) and given the used input ṽhp.
The rules for guisync are given in Appendix A.2.1. Finaly we have added a simple
process constructor guivalue which can be used to add information to the UIs.

Using the described guisync and guivalue constructs, the user interfaces for the
simple workflow can be specified as in Figure 9b, and the initial user interfaces for
both participants are illustrated in Figure 9c.

In order to illustrate the representation of workflows and UIs for real CPGs, we
include the representation of the workflow from Example 6 and the UI for each
participant.

Example 8. In Chapter 4 we describe how the session type and processes can be automat-
ically generated from the process matrix used to specify the workflow. The result would
consist of a single session and thus the type checking would be able to guarantee deadlock
freedom. The result would however be too large to include.

With the given workflow, it is possible to design the session type in a more modular way,
where the workflow is divided into sub-workflows for each ward, which are combined by the
porters and receptions using delegation. This design is more intuitive, because the workflow
is divided into the groups that actually work together, and the used porters are modelled
directly. This representation is the result of manually reading the workflow description,

1.4 regular expressions and session types as workflow models 23

Figure 9 The relation between synchronization and UI specification

// User One

sync(2,s)

{^A:

s[1]<<"A...";

sync(2,s)

{^B:

s[1]>>x;

end

},

^B:

s[1]>>x;

sync(2,s)

{^A:

s[1]<<"A...";

end

}

}

| // User two

sync(2,s)

{^A:

s[1]>>y;

sync(2,s)

{^B:

s[1]<<"B...";

end

},

^B:

s[1]<<"B...";

sync(2,s)

{^A:

s[1]>>y;

end

}

}

guivalue(2,s,1,"User","One");

guisync(2,s,1)

{^A(msg:String="A..."):

s[1]<<msg;

guisync(2,s,1)

{^B():

s[1]>>x;

guivalue(2,s,1,"x",x);

end

},

^B():

s[1]>>x;

guivalue(2,s,1,"x",x);

guisync(2,s,1)

{^A(msg:String="A..."):

s[1]<<msg;

end

}

}

| guivalue(2,s,1,"User","Two");

guisync(2,s,2)

{^A():

s[1]>>y;

guivalue(2,s,1,"y",y);

guisync(2,s,2)

{^B(msg:String="B..."):

s[1]<<msg;

end

},

^B(msg:String="B..."):

s[1]<<msg;

guisync(2,s,2)

{^A():

s[1]>>y;

guivalue(2,s,1,"y",y);

end

}

}

User: "One"

A:
msg: A...|

Accept

B:
Reject

User: "Two"

A:
Reject

B:
msg: B...|

Accept

a) Synchronization b) UI Specification c) Initial UIs

and expressing the workflow aspects of it as a multiparty asynchronous session type. It is
therefore not formally a semantically equivalent encoding.

The implementation containing the session types and UI implementations is in Ap-
pendix A.2.2.

24 introduction

Used
paradigms

The implemented workflow uses a number of objects such as flowcharts (not to be
confused with the flowchart notation for workflows), workslips and drugs, that can
be created and should be handled in a certain way, where some of the restrictions
are specified directly in the workflow. For example a drug should first be prepared,
then checked a certain number of times before being admitted to a patient. In an
object oriented language, these objects would be specified by classes, allowing the
objects to be created with the new command, but some restrictions such as requiring
a drug object to be checked a certain number of times before being admitted to
a patient are very hard to represent in this way. In our framework, we have to
specified the objects with session types and implement a service which basically
corresponds to the class implementation in an object oriented language. This allows
new objects to be created as sessions by connecting to the implemented service. In
Example 8 the drug service is implemented on line 1 to 126, the workslip service is
implemented on line 668 to 743, while the flowchart service is implemented on line
128 to 436.

The workflow can be specified by one large session type, but this has some
disadvantages. If for example the workflow for the pharmacy is changed, all
participants have to update to the new session type and re-verify that the workflow
is respected. In this way it becomes a global problem to make a local changes.
It is also very intuitive to describe the workflow for the oncology ward and the
pharmacy separately, as they are in different places and involve different people.
Finally it may be more efficient to describe the workflows separately, both in the size
of the type because the combined workflow may have a lot more non-determinism,
in the size om the implementation because the actions in the other workflows
does not have to be handled, and in the execution because each synchronization
may require less communication. In Example 8 the specification of the oncology
ward workflow is on line 174 to 199 and 510 to 524, while the specification of the
pharmacy workflow is on line 745 to 851.

In order to describe how the separately described workflows interact, we simply
simulate the interaction that occurs in real life. For example when the pharmacy
has prepared and verified a drug, the drug is transported to the oncology ward
by a porter. Therefore we implement a porter service, such that the people at the
pharmacy can connect to this service to get a porter session (they look for an
available porter), they can then give the drug to the porter using delegation, and
the porter will connect to the oncology ward to deliver the drug. In Example 8 the
porter transporting the drug is implemented on line 493 to 507. This also shows
the power provided by delegation, as it can be used to describe the exchange of
objects and responsibilities.Assertions

We have now represented a real world workflow as a session type, and expressed
the UIs of each participant in a way such that it can be automatically verified to

1.5 field study 25

comply with the workflow in Example 8.
We believe however, that there are many workflows where it is not practically

feasible to use the described representation. The reason why this workflow can
be represented is that it is relatively deterministic, meaning that at each point, the
workflow has relatively few choices. Just like we observed with regular expressions,
each allowed path through a workflow has to be allowed explicitly, and therefore
workflows with a high level of non-determinism can become very large.

The session types allow the workflow specification to include what information
is exchanged at different points in the workflow, but only the types of the message
can be specified. In some cases it would be very useful to specify more than just the
type. For example when a doctor prescribes some medication to a patient, it would
be very useful to specify that the prescribed dose should be less than the lethal
amount. A simpler constraint could be when the same information is given to two
participants, we would like to specify that the sent messages are actually identical.
In Chapter 5 we investigate the existing work on assertions in the context of session
types [20] and merge this work with our own symmetric synchronization. Apims imple-

mentationThe asynchronous pi-calculus with multiparty sessions and symmetric synchro-
nization (aπms) and its typesystem forms a theoretic foundation that can be used
to express UI implementations, and verify by type-checking that they comply with
the workflows in CPGs. This is however purely theoretical, and the expressed UIs
cannot be executed without transferring them from the mathematical model (aπms)
to an executable language. The more the destination language differs from aπms,
the more complicated it is to define such a translation and ensure that the semantics
is preserved. Therefore we have defined Apims, an ascii language which is closely
related to aπms.

We have implemented a parser, a type checker and an interpretor for Apims [1].
This enables automatic verification and execution of the UIs defined in aπms.

1.5 field study

In the first week of November 2010, the yellow team at the section of urology at
Rigshospitalet was kind enough to allow us to observe their work. This has served Objectives

many purposes in the presented project. First of all we believe it is important to get
acquainted with the domain we are designing models and frameworks for. This
field study has allowed us make simple observations like what tasks are performed,
the way work is coordinated, what and how information is exchanged and finally
what tools (including software) that are currently used and how. Finally the field
study has provided us with a real world workflow, we can model in the developed
framework to test its capabilities.

26 introduction

the workflow We start by giving a rough description of the observed work-
flow, as this provides a context for the other observations. The ward has a number
of rooms with two beds in each, a reception and a shared office with desktop
computers. There are also different supply rooms, and in particular a medication
storage with a designated workspace for preparing the medication, with a computer
connected to the medication prescription and administration system. Each day is
divided into three work-shifts from 7am to 3.15pm, from 3pm to 11.15pm and from
11pm to 7.15am. The shifts overlap by 15 minutes, to allow the nurses from the
ending shift to give the nurses from the starting shift an update on each patient,
special overview tables with one row for each patient are used for this. We observed
the shift from 7am to 3.15pm, because we believe this is where the most interesting
parts of the workflow occur.

The overall structure of the shift is as follows

7.00 Work shift

• Delegation of patients

• Nurse rounds (breakfast is served and registered)

• Morning medicine administration

8.30 Doctors arrive

• Doctors are updated

• Doctors rounds (todays actions are planned)

• Journals are updated

10.00 Doctors leave

• Nurse rounds (todays actions are performed)

14.00 Afternoon medicine administration

• Nurse rounds (Prepare overview for next shift)

15.00 Work shift

observations Our observations are too numerous to include them all. This
is unfortunate, especially because the small details are some of the most valuable
observations, as they are usually omitted from the explanations of workflows, and it
is hard to know what details to ask about in interviews. We can only recommended
that such a field study is considered by all who plans to develop such frameworks.
We have selected some of the key observations that we made during the field

1.5 field study 27

Figure 10 Example of delegation planning notation

Room Patient Nurse Comments

1a p1

} n1

1b p2 operation at 2pm

2a p3

2b p4 discression ..., discharged

3a p5 } n33b p6

} n2

4a p7

4b p8

p9 operation at 10am - on the way back

p10 discharged

p11 n3 arrival 3pm

p12 n3 arrival 3pm

study, which we will discuss as they give an extra insight into the challenges, and
applications for the frameworks. The observations that are not included have still
played a vital role in designing the created frameworks, discovering and prioritizing
future work. Delegation of

patientsIn the office of the ward, the nurses have a whiteboard with a permanent table.
The table has two rows for each room on the ward (one for each bed), and some
extra rows for incoming patients and patients in the hall (in case there are not
enough rooms). The table has columns that allows the patient name, the attending
nurse and comments to be assigned to each row. An example of such a table is given
in Figure 10. The comments contain the plans, appointments and other important
information, some examples are given in the table. In the beginning of every shift,
the nurses divide the patients between them, and writes the agreed division in the
Nurse column. This deserves special attention, as this is not a simple assignment
of nurses. The reason for this is that some shifts are overlapping, and some nurses
have to take breaks for education and other duties. Therefore the nurses have to
plan who takes over in the periods where a nurse is absent. In the given table, it
could be the situation that the shift starts at 7am, but nurse n3 arrives later (for
example 10am). The other nurses (n1 and n2) have divided the patients between
them (except the new patients that are due to arrive after nurse n3), and when
nurse n3 arrives she will take over the patients p5, p6 and p7. We can consider how
to model the nurse assignment. If the treatmen of each patient is represented as a
session, then the nurse assignment describes the delegations that should be carried

28 introduction

out. When the shift starts, the patient sessions are delegated from the nurses of the
previous shift to the assigned nurses in the new shift, and when nurse n3 arrives
the patients p5 p6 and p7 are delegated from nurse n1 and n2 respectively.Preparation of

medicine The medicine preparation is a highly sensitive step, where small mistakes can
have grave consequences. Therefore many precautions have been made in this
process. As mentioned there is a specific workplace for the preparation, where
all the necessary drugs, manuals and tools are collected. Before a nurse goes to
prepare the medicine, she ensures that she has no tasks in the immediate future,
and asks a coworker to cover her patients in case something should happen. These
precautions are to ensure that there will be no interruptions in the preparation, as
studies have shown one of the main causes for adverse events to be interruptions
[3]. The effort to avoid interruptions is observed for other tasks as well, where the
nurse starts by collecting all the necessary items on a cart, so they can be brought
to where the task is performed. A software system can help by alerting the nurse if
she selects to prepare the medicine while she has pending actions in the immediate
future, and the system could list the items necessary to perform each task, so they
can be collected before initiating the task. In this way the software can help avoid
the interruptions that are suspected of causing many adverse events.Updating

journals When the doctor has visited a patient in the doctor rounds, he updates the
journal. To save time he does not write the changes manually, in stead he dictates
the changes on a software system. After the doctor rounds, the journals are then
carried to the medical secretaries who updates the journals based on the dictations
they can find in the dictation system. This means that the updates are sent using
a software system, while the journals to be updated are physically carried to the
secretaries and back. This is one place where the digitalization of journals can
potentially increase the efficiency, as there would be no need to carry the journals
forth and back.Task

automation Our observations revealed a number of tasks that could be automated if the
workflow was digitalized. For example the fluid and energy balance of the patients
are monitored, which means the amount of fluid the patients drink (and in some
cases the amount of fluid excreted) is logged in a form. The form has room for a
week, so each week the data is transfered to another form, by summarizing the
numbers on the form. This is done manually often using a calculator, and this step
could easily be automated if the data was entered directly in a it-system. After the
data is transferred, the original form is destroyed to avoid it from being included
twice.Discharging

requirements An interesting restriction when modelling the workflow is that patients should
not be discharged until they have sucessfully gone to the toilet. This is of course
because the patients are in this ward because they have problems in this region and
it is possible – especially if people have undergone surgery – that the passage can
be blocked. This is easily ruled out if the patient can successfully go to the toilet,

1.6 related work 29

and therefore this is a requirement before discharging the patient to ensure that
such problems are discovered. Specialized

systemsThe last observation we will mention is on the software that is currently used.
The ward uses a collection of specialized software systems, each performing a very
specific task. Examples of these systems are the medicine prescription and admin-
istration system, the operation room scheduling system, the blood test ordering
system and the dictation system. This is probably a good idea for developing the
software, as each project has a limited size, but it is a problem to use when the
systems do not interact well. For example the nurses and doctors have to log out of
the old system and log on to the new system every time they change task. This was
obviously frustrating for the staff, and it seemed there were many planned projects
on better integration between the different systems.

model and implementation We have used the observed workflow to test
the modelling capabilities of Apims, and the result is in Appendix A.2.3. We have
used the extension with assertions from Chapter 5 extensively in this representation,
as it would have been infeasible to describe the types (and processes) without
assertions, there is simply too much non-determinism in the workflow to describe
each allowed path explicitly. We have used the same paradigms as mentioned in
Section 1.4.2, for example the patient journal is implemented as a session that can
be created by connecting to a journal service. The doctors and nurses have been
implemented to wait for a connection where they receive the patients journal, after
which they will execute the workflow. In this setting the receptionist of the ward
can be implemented by waiting for a patient, when a patient arrives, a journal can
be created using the information provided by the patient, then the receptionist
connects to the doctor and the nurse to create a treatment, sends the journal to the
nurse, and delegates the obtained treatment to the patient. This illustrates the use
of delegation, and in this way it can provide the receiver with a guarantee, in this
case the patient is guaranteed a treatment when the treatment session is delegated
to him. The implementation of the receptionist is on line 763 to 783 and is included
in Figure 11, and a screenshot of the receptionist UI for an example patient is in
Figure 12. A graphical illustration of the enrolment process is on the titlepage of
Chapter 5.

1.6 related work

regular expressions Regular expressions may seem very limited as a work-
flow language, but the representation of workflows we have illustrated extends to
more expressive frameworks like context free grammars [74]. Also many frame-
works (such as regular expression types [64] and session types [61] are essentially
extensions of regular expressions, and therefore the development of regular ex-

30 introduction

Figure 11 Implementation of receptionist

def Receptionist=

link(2,sReception,s,2);
s[2]»name;
s[2]»cpr;
s[2]»symptoms;
guivalue(2,s,2,"Name:",name);
guivalue(2,s,2,"CPR:",cpr);
guivalue(2,s,2,"Symptoms:",symptoms);
guisync(2,s,2)
{ Enroll(room="Room12a": String):

link(2,journal,j,1);
j[1]«name;
j[1]«cpr;
j[1]«room;
j[1]«symptoms;
link(3,treatment,b,1);
b[3]«j;
s[1]«b;
Receptionist()

}
in Receptionist()

// Receptionist service

// implementation

// Wait for new patients

// Receive data from paitent

// Display data in UI

// Enroll the patient

// Create journal

// Find doctor and nurse

// Give journal to nurse

// Delegate treatment

// Wait for new patients

pression reasoning is the first step in developing the same reasoning for such
frameworks.

There is more related work for regular expressions in Section 2.5.

multiparty asynchronous session types The type verification we offer
does not guarantee progress for multi session processes, because deadlocks are
possible. Progress is very desirable, and there are two lines of work that can help
guarantee deadlock freedom. The first is a more restrictive typing judgement for
multiparty asynchronous session types [17], that can guarantee progress, and the
other is a process analysis to verify deadlock freedom [75], although this currently
only works for binary sessions.π-calculus im-

plementations There are existing implementations of the asynchronous π-calculus and session
types. Prominent examples are Pict [100], Mobility workbench [120], SJ [66] and
Occam-pi [123]. We are however not aware of any implementations which allow
multiparty sessions or verification of multiparty asynchronous session types.join-calculus

1.6 related work 31

Figure 12 Screenshot of receptionist GUI

There are many variants of the π-calculus. One that is particularly interesting in
our optic is the join-calculus. It has been designed to be efficient while preserving
the expressiveness of the asynchronous π-calculus, but the interesting part is
the way it extends the message reception which is of particular relevance to our
objective. The extension allows a process to wait for messages on a set of channels
in stead of a single channel. If we recall Example 7 the problem in expressing the
UIs was exactly that the UI process needs to be able to express initiative, which may
be related to being able to listen to multiple channels simultaneously. Therefore
it would be interesting to investigate if the UIs can actually be represented in the
join-calculus, although it is unlikely that they can be represented as compact and
elegantly as they can using the symmetric synchronization extension. As there is
no version of multiparty session types for the join-calculus, there is no obvious
way to represent the workflows in the same way as we do using multiparty session
types with symmetric sum types. The only type-system for the join-calculus that
we are aware of is an ML-like type-system which has no notion of sessions [43]. As
the join-calculus has been designed for efficient implementation, it is not surprising
that there are a lot of implementations out there, including JoCaml [31], Parallel C#
[4] and Boost.Join [2]. Multicore

utilizationThe reason why we have chosen the asynchronous π-calculus to express the
UI processes is that it allows each participant to be described as an individual
process, and allows all the processes to work together to obtain a common goal
which is to perform the treatment of a patient. This property can be used for other
purposes than to verify workflow coherence, and the most popular application is
to write programs that efficiently utilizes multiple cores, processors or servers. This
is becoming an increasingly popular and even inevitable programming feature and
many frameworks exists to allow this efficiency. The most popular is probably MPI

32 introduction

[54] which again has many implementations where OpenMP [19] is believed to be
the most efficient and thus the most used.

There is more related work for session types in Section 4.6 and 5.5.

workflow models There are many existing workflow models, some of which
are introduced in Section 1.3. There are similarities between the existing models
and the presented session type model, but all the investigated models are built on
the CIG principle, which means that the guideline can be interpreted directly, and
thus the UI design and implementation has to be injected into the model somehow.
We have separated the UI specifics from the workflow model by using the model to
verify an implementation as opposed to executing the model directly. None of the
investigated models allow static verification of processes or UI implementations
via type-checking. In stead they either offer no safety, or they interpret the model
directly which of course ensures that the implementation complies with the model
as the implementation and the model is the same thing.

We believe that the separation of the workflow model in the types from the UI
implementation and design in processes allows a greater flexibility and expressive-
ness in the UIs while the workflow design remains uncluttered by the UI specifics,
and the static verification provides almost the same safety that is guaranteed by
direct model interpretation.YAWL

Yet another workflow language (YAWL) [116] is a language aimed at business
process implementation. In many ways YAWL is comparable to BPEL, but where
BPEL is developed by an industry standard committee, YAWL is the academic
counterpart. The key difference in functionality is that YAWL has a formal seman-
tics, and this enables some static analysis. Woflan [119] is a tool to statically verify
workflows modelled in YAWL. The analysis is based on the petri net semantics of
YAWL. The errors found are not model compliance errors but possible deadlocks
and similar errors, however the analysis is not complete in the way that some errors
are not detected.

1.7 future work

Regular
expressions as

types
regular expressions A promising application of our work on regular ex-
pressions is to use regular expressions as datatypes. The types denoted by regular
expressions can be considered as string variants. The use of bit-codes can ensure a
compact representation of the program data and thus a small memory footprint,
while data can still be processed efficiently and for example allow efficient pattern
matching. The structure of regular expressions can allow programs to express
string processing in an intuitive way like in Perl [121], and by using the developed
coercions, data can be translated between types efficiently, such that the type that
allows the most intuitive description of the program can be used.

1.7 future work 33

combining regular expression and session type theory In the pre-
sented work, the results for regular expressions may seem completely unrelated to
the work we have done on session types, but they are related in many ways and
some of them could be explored in future work. Uniting the

typesystemsOne application of our work on regular expressions in session types is simply
to allow regular expressions as types in the simple types S used in the multiparty
asynchronous session types. Besides the possibilities mentioned above, these types
allows the types expressed to be more specific, so they can express the structure of
the strings communicated. The compact bit-codings can also be used when sending
and receiving messages, so the bandwidth used could also be reduced by this
union of the type-systems. Subtyping for

session typesThere is currently no proper notion of subtyping for multiparty asynchronous
session types. We have allowed some flexibility by allowing optional labels in the
symmetric sum types, and the original types uses a very basic notion of subtyping
by label set inclusion. Some papers define subtyping for binary session types [48],
other variants of multiparty session types [98] or other kinds of subtyping for
multiparty asynchronous session types [88], but to our knowledge there is no
existing definition or subtyping algorithm for the multiparty asynchronous session
types we have extended. It would therefore be very useful to give a proper notion
of semantic subtyping, and an algorithm to decide subtyping. Such work could be
based on the method in Chapter 2 where we do the same for regular expressions.
In case the subtyping results in changes in the messages the coercions that are
provided by our method could result in translating agents working as a proxy
translating messages between the more general and the more specific protocol.

If we want to do a quick and dirty subtyping, we can convert the session types
to regular expressions using an erasure like the one defined below.

REJp1 Ñ p2 : kxMy;GK = REJGK

REJp1 Ñ p2 : ktl : GlulPLK = ΣlPLlREJGlK

REJtl : GlulPM;OK = ΣlPMYOlREJGlK

REJµX.GK = µX.REJGK

REJXK = X

REJendK = 1

This erasure produces a tail-recursive µ-term which can then be converted to
an equivalent regular expression. This allows us to use a decision algorithm for
language inclusion of regular expressions to find if the results are related. The
result will not correspond to semantic subtyping of session types because parts
of the session types are lost in the erasure, but the procedure will decide if the
possible sequences of choices in one session type are also possible in the other
session type. Moreover this process can be used to relate regular expressions to

34 introduction

session types. This is particularly useful because session types are too technical
to expect doctors and domain experts to write the desired CPGs as session types,
but regular expressions are simple enough to allow this. Therefore if the CPG is
expressed as a regular expression, but the implementation is verified to comply
with a session type, then we are interested in verifying that compliance with the
session type means that only the sequences of choices allowed by the RE describing
the CPG are possible, and the suggested erasure combined with regular expression
language inclusion might allow this verification.

apims develompent Our experience with modelling and implementing the
example workflows (and many other programs) in Apims is that many errors
are found by the type-checker. Apims is a prototype language, and thus it is not
very intuitive or easy on the eye. This means that many programming errors
were made during the implementation which meant it took some time to get the
implemented processes to type-check. Once an implementation had been verified
it actually worked, and we have executed many simulations on the implemented
workflows in search of errors that were undetected by the type-checker, but we
did not find any. There are however some pitfalls that Apims programmers should
be cautious to avoid, and these pitfalls could be targeted by future work. First of
all the global types used have to be linear and coherent. The coherence is checked
by Apims when a global type is projected, but linearity is currently not checked.
There is no profound problems in checking linearity, but until it is implemented
programmers should ensure manually that the used global types are linear. Even
though type-checking verifies that the messages sent are of the correct type, there is
no guarantee that the message contains the correct value. Using assertions this can
be ensured for boolean messages, but otherwise one has to be careful, especially
not to swap two messages of the same type. Consider for example the type 1Ñ

2:1xStringy;1Ñ3:2xStringy;end. In this case participant one should be careful not
to send the message for participant 2 to participant number 3 and vice versa.
As the type-checking does not ensure progress for multi-session processes, the
programmer has to avoid deadlocks manually. One error that is easy to make is to
declare a service, but forgetting to implement it. In this case any process trying to
use the service will be stuck waiting for the service to accept its connection. Finally
the type-checking relies on a cooperative setting. This means for example that a
process is not forced to send the message it is expected to by the session type. The
type-checking guarantees that the process cannot terminate before it has sent its
pending messages, but it can just go into an infinite loop. It is however unlikely
that a programmer would implement this behaviour by accident, and thus these
errors only occur in an adversarial setting.UI Usability

The UI implementations are currently very simple. They can display information
and allow a set of actions with typed input fields. It should be possible to extend

1.8 conclusions 35

the UI functionality to allow specification of the visualization without affecting the
UI verification. This could increase the usability by emphasizing important actions,
or build a menu system for navigating in case of many possible actions. One way
to do this could be by applying activity based computing (ABC) [16]. The current
UI module receives the information about sessions, participants and their choices,
so the users can see the session they participate in, and for each session get a list of
possible actions to execute. The basic idea of ABC would be that the users in stead
of a list of sessions would get a list of activities, and for each activity they would
get a list of actions (across all sessions) that can be performed in that activity. There
could for example be an activity called medicine administration and one called
doctor rounds. This way the usual activities can be performed without having to
use a lot of time to switch between the different session UIs and find the desired
action in a long list of possible actions. This could result in a UI that is easier and
faster to use, which is vital for the frameworks to be used without wasting the time
of the clinical staff.

Deadlines

workflow extensions The field study revealed that many actions have real
time constraints. The medication administration, doctors rounds and other actions
are performed at specific times of the day, and it would be advantageous to be able
to model this with deadlines and other real-time constraints. There is a problem
enforcing deadlines in UI implementations, as there can be no guarantee the user
will act within a given deadline. This means deadlines for UIs cannot be statically
verified, but by including deadlines and other real-time constraints in the session
type and processes, these constraints could at least be visualized in the UIs.

1.8 conclusions

We will now draw some conclusions, based on the results of the project. We start
by considering the theses from the abstract. Thesis 1

In Chapter 3 we have modified multiple algorithms for regular expression parsing,
to produce compact bit-codes without explicitly materializing the parse-trees. As
observed in Chapter 3 the original algorithms were asymptotically efficient, and
the modifications simplify and optimize the algorithms. Therefore Thesis 1 has
been substantiated. Thesis 2

In Chapter 4 we have extended the multiparty asynchronous session types with
symmetric sum types, which represents a specific type of social interaction, and
showed by example that some workflows can be represented by the extended
type-system, and that processes can be verified to comply with the workflow by
type checking. Therefore Thesis 2 has been substantiated. Thesis 3

In Section 1.4.2 and 1.5 we have showed by example, that workflows in general
and in particular some real world CPGs can be represented as session types

36 introduction

extended with symmetric sum types and assertions, and that UI implementations
can be verified to comply with the represented workflows via type checking.
Therefore Thesis 3 has been substantiated.

Regular expressions are simple, elegant and intuitive, and this make them ideal
for communicating with non-computer scientists. We have demonstrated that
regular expressions can be used to express workflows. The reasoning regular
expressions provide for CPG workflows is treatment verification via matching, and
specification verification via language inclusion. There is however currently no way
to verify UI compliance for regular expressions.

Multiparty asynchronous session types however, are rather technical and unintu-
itive, but we have showed that using the extensions with symmetric sum types and
assertions, they can represent CPG workflows, and UI implementations as well as
automated processes can be verified to comply with the represented workflows via
type checking.

In Section 1.7 we have suggested an investigation to combine regular expressions
and session types to achieve the best of both worlds.

In this project, we have presented many theoretic results and applied them to
verification of CPG workflow compliance. We have also implemented the developed
algorithms and languages, which has enabled us to test the developed theory.

The list of academic contribution of this project is in Section 1.2.

Part II

R E G U L A R E X P R E S S I O N S

2
R E G U L A R E X P R E S S I O N C O N TA I N M E N T:
COINDUCTIVE AXIOMATIZATION AND COMPUTATIONAL
INTERPRETATION

Authors:
Fritz Henglein - University of Copenhagen,
Lasse Nielsen - University of Copenhagen

Presented at:
POPL 2011 – 38th ACM SIGACT-SIGPLAN Symposium on Principles of Pro-
gramming Languages

39

We present a new sound and complete axiomatization of regular expression
containment. It consists of the conventional axiomatization of concatenation, al-
ternation, empty set and (the singleton set containing) the empty string as an
idempotent semiring, the fixed-point rule E� = 1+ E� E� for Kleene-star, and a
general coinduction rule as the only additional rule.

Our axiomatization gives rise to a natural computational interpretation of reg-
ular expressions as simple types that represent parse trees, and of containment
proofs as coercions. This gives the axiomatization a Curry-Howard-style construc-
tive interpretation: Containment proofs do not only certify a language-theoretic
containment, but, under our computational interpretation, constructively transform
a membership proof of a string in one regular expression into a membership proof
of the same string in another regular expression.

We show how to encode regular expression equivalence proofs in Salomaa’s,
Kozen’s and Grabmayer’s axiomatizations into our containment system, which
equips their axiomatizations with a computational interpretation and implies
completeness of our axiomatization. To ensure its soundness, we require that the
computational interpretation of the coinduction rule be a hereditarily total function.
Hereditary totality can be considered the mother of syntactic side conditions: it
“explains” their soundness, yet cannot be used as a conventional side condition in
its own right since it turns out to be undecidable.

We discuss application of regular expressions as types to bit coding of strings and
hint at other applications to the wide-spread use of regular expressions for substring
matching, where classical automata-theoretic techniques are a priori inapplicable.

Neither regular expressions as types nor subtyping interpreted coercively are
novel per se. Somewhat surprisingly, this seems to be the first investigation of
a general proof-theoretic framework for the latter in the context of the former,
however.

42 regular expression containment

2.1 introduction

What is regular expression matching? In classical theoretical computer science it is
the problem of deciding whether a string belongs to the regular language denoted
by a regular expression; that is, it is membership testing. In this sense, abdabc
matches ((ab)(c|d)|(abc))*, but abdabb does not. This interpretation is used
for most theoretical computer science results: NFA-generation, DFA-generation by
subset construction, DFA-minimization, the Myhill-Nerode Theorem, the Pump-
ing Lemma, closure properties, the Star Height Problem, Brzozowski derivatives,
fast regular expression equivalence algorithms and matching algorithms, coal-
gebraic characterizations, bisimulation, etc. If membership testing is all we are
interested in, regular expressions and finite automata denoting the same language
are completely interchangeable. In that case we may as well implement regular
expression matching using a state-minimized DFA and forget about the original
regular expression.

In programming, however, membership testing is rarely good enough: We do not
only want a yes/no answer, we also want to obtain proper matches of substrings
against the constituents of a regular expression so as to extract parts of the input for
processing. In a Perl Compatible Regular Expression (PCRE)1 matcher, for example,
matching abdabc against E = ((ab)(c|d)|(abc))* yields a substring match for
each of the 4 parenthesized subexpressions: They match abc,ab, c, and ε (the empty
string), respectively. If we use a POSIX matcher [37] instead, we get abc, ε, ε,abc,
however. How is this possible? The reason is that ((ab)(c|d)|(abc))� is ambiguous:
the string abc can match the left or the right alternative of
(ab)(c|d)|(abc), and returning substring matches makes this difference observable.
In a membership testing setting ambiguity is not observable and thus not much
studied.

An oddity and limitation of Perl-style matching is that we only get one match
under Kleene star, the last one. This is why we get a match of abc above, but not
abd. Intuitively, we would like to get the list of matches under the Kleene star, not
just a single one. This is possible, with regular expression types [64]: Each group can
be named by a variable, and the output may contain multiple bindings to the same
variable. For a variable under two Kleene stars, however, we cannot discern the
bindings between the different level-1 Kleene-star groups. An even more refined
notion of matching is thus regular expression parsing: Returning a parse tree of the
input string under the regular expression read as a grammar.

A little noticed fact is that the parse trees for a regular expression are isomorphic
to the elements of the regular expression read as a type; e.g. the type interpretation
T[[E]] of regular expression E = ((ab)(c|d)|(abc))� is ((a� b)� (c+ d) + a� (b�

c)) list with a,b, c,d being singleton types identified with the respective values

1 See http://www.pcre.org.

2.1 introduction 43

a,b, c,d they contain. The values p1 = [inl ((a,b), inrd), inr (a, (b, c))] and
p2 = [inl ((a,b), inrd), inl ((a,b), inl c)] are elements of ((a�b)� (c+d)+a� (b�

c)) list, representing two different parse trees of the same type. Since their flattening
(unparsing) yields the same string abdabc, this shows that ((ab)(c|d)|(abc))� is
grammatically ambiguous.

When we have a parsed representation of a string we sometimes need to trans-
form it into a parsed representation of another regular expression. Consider for
example Ed = (ab(c|d))*, which is equivalent to E. Ed corresponds to a DFA that
can be used to match a string efficiently. But what if we need a parsed represen-
tation of the string with respect to E? We need a coercion, a function that maps
parse trees under one regular expression (here Ed) into parse trees under another
regular expression (here E) such that the underlying string is preserved. Since E is
ambiguous there are different coercions for doing this. The choice of coercion thus
incorporates a particular ambiguity resolution strategy; in particular, we may need
to make sure that it always returns the greedy left-most parse, as in PCRE matching,
or the longest prefix parse, as in POSIX matching. Also, we will be interested in
favoring efficient coercions over less efficient ones amongst extensionally equivalent
ones; e.g., for coercing E to E, we prefer the constant-time coercion that copies a
reference to its input instead of the linear-time coercion that traverses its input
and returns a copy of it. Even if coercions are not used to transform parse trees,
they are useful for regular expressions under their language (membership testing)
interpretation: The existence of a well-typed coercion from L[[E]] to L[[F]] is a proof
object that logically certifies that E is contained in F. Once it is constructed, it can
be checked efficiently for ascertaining that E is contained in F instead of embarking
on search of a proof of that each time the containment needs to be checked.2

The purpose of this paper is to develop the basic theory of regular expressions
as types with coercions interpreting containment as a conceptual and technical
framework for regular expression based programming where the classic language-
theoretic view is insufficient.

2.1.1 Contributions

Before delving into the details we summarize our contributions.

Regular expressions as types

The interpretation of regular expressions as types built from empty, unit, singleton,
sum, product, and list types was introduced by Frisch and Cardelli [46] for the
purpose of regular expression matching. We allow ourselves to observe and point

2 The size of a coercion will necessarily be exponential in the sizes of E and F for complexity-theoretic
reasons in the worst case, but it may be small in many cases.

44 regular expression containment

out that the elements of regular expressions as types correspond exactly to the
parse trees of regular expressions understood as grammars. Frisch and Cardelli
refer to types as describing “a concrete structured representation of values”, but
do not verbalize that those representations are essentially parse trees. Conversely,
Brabrand and Thomsen [22] as well as other works define an inference system for
parse trees, but do not make explicit that that is tantamount to a type-theoretic
interpretation of regular expressions.

Proofs of containment by coercion

We observe that containment can be characterized by finding a coercion, a function
mapping every parse tree under one regular expression to a parse tree with same
underlying string in the other regular expression.

This means that proving a containment amounts to finding a coercion for the
corresponding regular types, allowing us to bring functional programming intu-
itions to bear. For example, E� E� ¤ E� � E for all E can be proved by defining the
obvious function f

fun f : ’a * ’a list -> ’a list * ’a

that retains the elements in the input.
The idea of a coercion interpretation of an axiomatically given subtyping relation

is not new. Our observation expresses something more elementary and “syntax-
free”, however: The existence of a coercion between regular types, however specified,
implies containment of the corresponding regular expressions. Note the direction
of reasoning: from existence of coercion to containment.

Coinductive regular expression containment axiomatization with computational interpre-
tation

We give a general coinductive axiomatization of regular expression containment
and show how to interpret containment proofs computationally as string-preserv-
ing transformations on parse trees. Each rule in our axiomatization corresponds
to a natural functional programming construct. Specifically, the coinduction rule
corresponds to the principle of definition by recursion, where the side condition
guarantees that the resulting function is total.

We show that the derivations of the axiomatizations by Salomaa [108], Kozen [76]
and Grabmayer [52] can be coded as coercion judgements in our inference system.
This provides a natural computational interpretation for their axiomatizations.

As far as we know, no previous regular expression axiomatization has explic-
itly been given a sound and complete computational interpretation, where all
derivations are interpreted computationally. Sulzmann and Lu [113] come close,

2.1 introduction 45

however. They provide what can be considered the first coercion synthesis algo-
rithm, implemented in an extension of Haskell. They show how to construct an
explicit coercion for each valid regular expression containment by providing a
computational interpretation of Antimirov’s algorithm [12, 13] for deciding regular
expression containment. They show that their treatment is sound [113, Lemma A.3],
and state that it is complete. We observe that, being based on the construction of
deterministic linear forms, their work can be thought of as implementing a proof
search using Antimirov’s algorithm in Grabmayer’s axiomatization.

Parametric completeness

Let us define E[X1, . . . ,Xm] ¤ F[X1, . . . ,Xm] if the containment holds for all sub-
stitutions of Xi with (closed) regular expressions. Our axiomatization is not only
complete, but parametrically complete for infinite alphabets:
If E[X1, . . . ,Xm] ¤ F[X1, . . . ,Xm] for all regular expressions X1, . . . ,Xm then there
exists c such that $ c : E[X1, . . . ,Xm] ¤ F[X1, . . . ,Xm]. As a consequence, a
schematic axiom such as E� E� ¤ E� � E is derivable, not just admissible in our
axiomatization: we can prove it once and use the same proof for all instances of E.

We observe that Kozen’s axiomatization [76] is also parametrically complete, but
neither Salomaa’s [108] nor Grabmayer’s [52] appear to be so: In Salomaa’s case we
need to make a case distinction as to whether the regular expression E substituted
for X has the empty word property; and in Grabmayer’s case the proofs use the
derivatives of E, which are syntax dependent.

Application: Bit coding

We believe regular expressions as types with coercions have numerous applications
in programming, both conceptually – how to think about regular expressions –
and technically. We sketch one potential application: how bit coding can be used
to compactly represent parse trees and thus strings. This can be thought of as a
regular expression specific string representation that often can be compressed more
than the original string. A thorough investigation of this and other applications
requires separate treatment, however.

2.1.2 Prerequisites

We assume basic knowledge of regular expressions as in Hopcroft and Ullman [62],
and denotational semantics as in Winskel [125].

46 regular expression containment

2.1.3 Notation and terminology

A denotes an alphabet, a possibly infinite set of symbols taiuiPI. The strings over
A is the set of finite sequences ts, t, . . .u with elements from A. The length of a
string s is denoted by |s|1. The n-ary concatenation of s1, . . . , sn is denoted by their
juxtaposition s1 . . . sn; for n = 0 it denotes the empty string ε.

We use inl and inr as the tags distinguishing the elements of a disjoint sum of
two sets such that
X+ Y = tinl v | v P Xu Y tinrw | w P Yu. We treat recursive types iso-recursively,
where (fold�1, fold) denotes the isomorphism between a recursive type and its
unrolling. In particular, we define the list type X� by µY.1+X� Y. The empty list
[] is an abbreviation for fold (inl ()); and cons (x,y) stands for fold (inr (x,y)). The
list notation [x1, . . . , xn] is syntactic sugar for cons (x1, . . . , cons (xn, [])).

We say a unary predicate P universally implies another unary predicate Q if
@x.(P(x)ñ Q(x)).

2.2 regular expressions as types and coercions

In this section we show that a regular expression E can be interpreted as an ordinary
type and regular expression containment as the existence of a coercion between such
types. The elements of the types correspond to proofs of membership of strings in
the regular language denoted by E, which in turn are the parse trees for E viewed
as a right-regular grammar. A coercion then is any function that transforms parse
trees without changing the underlying string.

Definition 9 (Regular expression). The set of regular expressions RegA are defined
by the following regular tree grammar:

E, F,G,H ::= 0 | 1 | a | E+ F | E� F | E�

where a P A.

In anticipation of our interpretation of regular expressions as types we write �
instead of the more customary juxtaposition or � for concatenation. Our notational
convention is that �,�,+ bind in decreasing order; e.g. a+ a� b stands for a+

(a� b).

2.2.1 Regular expressions as languages

The language interpretation of RegA maps regular expressions to regular languages
[73]. This is also called the standard interpretation of RegA since it is isomorphic to
the free Kleene algebra over A [76].

2.2 regular expressions as types and coercions 47

Definition 10 (Language interpretation). The language L[[E]] is the set of strings
compositionally defined by:

L[[0]] = H

L[[1]] = tεu

L[[a]] = tau

L[[E+ F]] = L[[E]]YL[[F]]

L[[E� F]] = L[[E]] �L[[F]]

L[[E�]] =
�
i¥0(L[[E]])

i

where S � T = ts t | s P S^ t P Tu, E0 = tεu,Ei+1 = E � Ei.
We write |= s P E if s P L[[E]]; |= E ¤ F if L[[E]] � L[[F]]; and |= E = F if

L[[E]] = L[[F]].

As expected, L[[E�]] is the set of all finite concatenations of strings from L[[E]]:

L[[E�]] = ts1 . . . sn | n ¥ 0^ si P L[[E]] for all 1 ¤ i ¤ nu.

Definition 11 (Constant part). The constant part o(E) of E is defined as o(E) = 1 if
ε P L[[E]] and o(E) = 0 otherwise.

Definition 12 (Matching). We say s matches E and write
$ s P E if the statement s P E is derivable in the inference system in Figure 13a.

Matching is sound and complete for membership testing:

Proposition 13. |= s P E if and only if $ s P E.

The derivation of a matching statement s P E describes a parse tree for s under E
understood as a regular grammar. This paper is about studying the parse trees,
not just the regular language denoted by E. A sometimes unnoticed fact is that
parse trees are in one-to-one correspondence with regular expressions interpreted
as types; that is, all we need to do is interpret the regular expression constructors
as type constructors and we obtain exactly the parse trees.

2.2.2 Regular expressions as types

Definition 14 (Type interpretation). The type interpretation T[[.]] compositionally
maps a regular expression E to a set of structured values:

T[[0]] =H

T[[1]] = t()u

T[[a]] = tau

T[[E+ F]] = T[[E]] + T[[F]]

T[[E� F]] = T[[E]]� T[[F]]

T[[E�]] = t[v1, . . . , vn] | vi P T[[E]]u

We write |= v : E if v P T[[E]].

48 regular expression containment

Figure 13 Matching relation and type inhabitation

ε P 1

a P a

s P E

s P E+ F

s P F

s P E+ F

s P E t P F

s t P E� F

s P 1+ E� E�

s P E�

() : 1

a : a

v : E

inl v : E+ F

w : F

inrw : E+ F

v : E w : F

(v,w) : E� F

v : 1+ E� E�

fold v : E�

a) Regular expression matching b) Type inhabitation

Note that this is the ordinary interpretation of the regular expression constructors
as type constructors: 0 is the empty type, 1 the unit type, a (as a type) the singleton
type tau, + the sum type constructor, � the product type constructor, and .� the
list type constructor.

Definition 15 (Inhabitation). We say v inhabits E and write
$ v : E if the statement v : E is derivable in the inference system in Figure 13b.

Inhabitation is sound and complete for type membership:

Proposition 16. |= v : E if and only if $ v : E.

By inspection of Figures 13a and 13b we can see that a value v such that $ v : E
corresponds to a unique derivation of s P E for a string s that is uniquely determined
by flattening v.

Definition 17. The flattening function flat(.) from values to strings is defined as follows:

flat(()) = ε flat(a) = a

flat(inl v) = flat(v) flat(inrw) = flat(w)

flat((v,w)) = flat(v)flat(w) flat(fold v) = flat(v)

In particular we have:

Theorem 18. L[[E]] = tflat(v) | v P T[[E]]u

2.2 regular expressions as types and coercions 49

2.2.3 Regular expression containment as type coercion

Since each regular expression can be thought of as an ordinary type whose elements
are all the parse trees for all its strings under the language interpretation, we
can characterize regular language containment as the problem of transforming
parse trees under one regular expression into parse trees under the other regular
expression.

Definition 19 (Coercion). A function f P T[[E]]Ñ T[[F]]K is a partial coercion from E

to F if flat(v) = flat(f(v)) for all v P T[[E]] where f(v) � K. It is a total coercion (or just
coercion) if f(v) � K for all v P T[[E]].

We write T[[E ¤ FK]] for the set of partial coercions from E to F; and T[[E ¤ F]] for the
set of total coercions from E to F.

In other words, a coercion from E to F is a function that transforms every parse
tree under E to a parse tree under F for the same underlying string. Clearly, if there
exists a coercion from E to F then |= E ¤ F: the coercion takes any membership proof
of a string in L[[E]] to a membership proof for the same string in L[[F]]. Conversely,
if |= E ¤ F, we can define a coercion from E to F by mapping any value v : E to a
value w : F where flat(v) = flat(w).

Theorem 20 (Containment by coercion). |= E ¤ F if and only if there exists a coercion
from E to F.

An immediate corollary is that two regular expressions are equivalent if and only
if there is a pair of coercions between them:

Corollary 21 (Equivalence by coercion pairs). |= E = F if and only if there exists a
pair of coercions (f,g) such that f P T[[E ¤ F]] and g P T[[F ¤ E]].

It may be tempting to expect such pairs to be isomorphisms; that is, f �g = idT[[F]]

and g � f = idT[[E]]). This is generally not the case, however: We have |= a = a+ a,
but there is no isomorphism between them, since there are two values for a+ a
but only one value for a.

Theorem 20 provides a simple and amazingly useful method for proving regular
expression containments by functional programming: Find a function from E to F (as
types!) and make sure that it terminates, outputs each part of the input exactly once
and in the same left-to-right order. The latter is usually easily checked when using
pattern matching in the definition of the function.

Example 22. We prove the denesting rule [77] |= (a+ b)� = a� � (b� a�)�. In one
direction, find a function f : (a+b)� Ñ a�� (b�a�)� and make sure that it terminates,

50 regular expression containment

uses each part of the input exactly once and outputs them in the same left-to-right order as
in the input.

f([]) = ([], [])

f(inlu :: ~z) = let (~x,~y) = f(~z) in (u :: ~x,~y)

f(inr v :: ~z) = let (~x,~y) = f(~z) in ([], (v,~x) :: ~y)

We can see that f terminates since it is called recursively with smaller sized arguments, and
the output contains the input components in the same left-to-right order. Consequently, f
defines a coercion, and by Theorem 20 this constitutes a proof that the regular language
L[[(a+ b)�]] is contained in L[[a� � (b� a�)�]]. The other direction is similar.

In this example we defined an element of the function space T[[E]]Ñ T[[F]]K and
then verified manually that it belongs to the subspace T[[E ¤ F]]. The following
section is about designing a language of functions each of which is guaranteed to
be a coercion (soundness) and that furthermore is expressive enough so that it
contains a term denoting a coercion from E to F whenever |= E ¤ F (completeness).

2.3 declarative coinductive axiomatization

At the core of all axiomatizations of regular expression equivalence are the axiom-
atization of product (�), sum (+), empty (0) and unit (1) as the free idempotent
semiring over A. See Figures 14 and 15. We add the familiar fold/unfold axiom for
Kleene-star in Figure 16, which models that E� is a fixed point of X = 1+ E� X.
Let us call the resulting inference system weak equivalence. It is a sound, but in-
complete axiomatization of regular expression equivalence. In particular, we have
|= (a+ 1)� = a�, but they are not weakly equivalent [108, Remark 4].

Intuitively, this is because weak equivalence does not allow invoking recursively
what we want to prove. The basic idea in our axiomatization is to add recursion by
way of a general finitary coinduction rule

[E = F]
...

E = F

E = F
(*)

Here [E = F] is a hypothetical assumption: It may be used an arbitrary number of
times in deriving the premise, but is discharged when applying the inference step.

Since the premise is the same as the conclusion, without a side condition (�)

restricting its applicability this rule is blatantly unsound: We could simply satisfy
the premise by immediately concluding E = F from the hypothetical assumption.
By the coinduction rule E = F for arbitrary E, F would be derivable.

2.3 declarative coinductive axiomatization 51

Figure 14 Axioms for idempotent semirings

E+ (F+G) = (E+ F) +G (2.1)

E+ F = F+ E (2.2)

E+ 0 = E (2.3)

E+ E = E (2.4)

E� (F�G) = (E� F)�G (2.5)

1� E = E (2.6)

E� 1 = E (2.7)

E� (F+G) = (E� F) + (E�G) (2.8)

(E+ F)�G = (E�G) + (F�G) (2.9)

0� E = 0 (2.10)

E� 0 = 0 (2.11)

The key idea of this paper is to make the side condition not a property of the
premise, but of the derivation of the premise. To this end we switch from axioma-
tizing equivalence to axiomatizing containment and equip our inference system
with names for the rules, arriving at a type-theoretic formulation with explicit proof
terms. These proof terms can be computationally interpreted as coercions as defined
in Section 2.2.

The coinduction rule then suggestively reads

[f : E ¤ F]
...

c : E ¤ F

fixf. c : E ¤ F
(*)

as in Brandt and Henglein [23, Section 4.4], where the side condition is a syntactic
condition specific to recursive subtyping. The computational interpretation of fixf. c
is the recursively defined partial coercion f such that f = c where c may contain free
occurrences of f. For soundness all we need is for the coercion to be total, that is
terminate on all inputs. This leads us to the side condition in its most general form:

The computational interpretation of fixf. c must be total.

Unfortunately, totality turns out to be undecidable, and we present efficiently
checkable syntactic conditions that entail totality and yet are expressive enough to
admit completeness.

52 regular expression containment

Figure 15 Rules of equality

E = E

E = F

F = E

E = F F = G

E = G

E = G F = H

E+ F = G+H

E = G F = H

E� F = G�H

2.3.1 Axiomatization

Consider the coercion inference system in Figure 17. Each axiom of the form
Γ $ p : E = F is a short-hand for two containment axioms: Γ $ p : E ¤ F and
Γ $ p�1 : F ¤ E.

Definition 23 (Coercion judgement). Let Γ be a sequence of coercion assumptions of
the form f : E ¤ F. A coercion judgement is a statement of the form Γ $ c : E ¤ F that
is derivable in the inference system of Figure 17.

If Γ is empty we simply omit it and write $ c : E ¤ F.
By induction on its derivation, a coercion judgement f1 : E1 ¤ F1, . . . , fn :

En ¤ Fn $ c : E ¤ F can be interpreted coherently as a continuous function
F[[Γ $ c : E ¤ F]] : T[[E1 ¤ F1K]]� . . .� T[[En ¤ FnK]] Ñ T[[E ¤ FK]], which is speci-
fied by the equations in Figure 18. For example, the clauses for retag should be
understood as

F[[Γ $ retag : E+ F ¤ F+ E]](f1, . . . , fn) =

λx.case xof inl vñ inr v | inr vñ inl v.

The interpretation of fixf.c is defined to be the least fixed point of a continuous
function on T[[E ¤ FK]], which always exists since T[[E ¤ FK]] is empty or a cpo
with bottom. The interpretation of abortL, abortR, abortL�1, abortR�1 is the empty
function since the type interpretation of their domain is empty. To summarize:

Definition 24 (Computational interpretation).
The computational interpretation

F[[f1 : E1 ¤ F1, . . . , fn : En ¤ Fn $ c : E ¤ F]]

Figure 16 Fold/unfold rule for Kleene-star

E� = 1+ E� E� (2.12)

2.3 declarative coinductive axiomatization 53

Figure 17 Declarative coercion inference system for regular expressions as types.
With suitable side conditions for the coinduction rule this is sound and complete
for regular expression containment. See Sections 2.3.2 and 2.3.3 for side conditions.

Γ $ shuffle : E+ (F+G) = (E+ F) +G

Γ $ retag : E+ F = F+ E

Γ $ untagL : 0+ F = F

Γ $ untag : E+ E ¤ E

Γ $ tagL : E ¤ E+ F

Γ $ assoc : E� (F�G) = (E� F)�G

Γ $ swap : E� 1 = 1� E

Γ $ proj : 1� E = E

Γ $ abortR : E� 0 = 0

Γ $ abortL : 0� E = 0

Γ $ distL : E� (F+G) = (E� F) + (E�G)

Γ $ distR : (E+ F)�G = (E�G) + (F�G)

Γ $ wrap : 1+ E� E� = E�

Γ $ id : E = E

Γ $ c : E ¤ E 1 Γ $ d : E 1 ¤ E2

Γ $ c;d : E ¤ E2

Γ $ c : E ¤ E 1 Γ $ d : F ¤ F 1

Γ $ c+ d : E+ F ¤ E 1 + F 1

Γ $ c : E ¤ E 1 Γ $ d : F ¤ F 1

Γ $ c� d : E� F ¤ E 1 � F 1

Γ , f : E ¤ F, Γ 1 $ f : E ¤ F

Γ , f : E ¤ F $ c : E ¤ F

Γ $ fixf.c : E ¤ F (coinduction rule)

54 regular expression containment

of a coercion judgement is the continuous function that maps partial coercions from Ei to
Fi bound to the fi to a partial coercion from E to F satisfying the equations of Figure 18.

We can interpret all computation judgements, but without a side condition
controlling the use of the coinduction rule, the coercion inference system is unsound
for deducing regular expression containments. To wit, we can trivially derive
$ fixf.f : E ¤ F for any E, F. We might hope that a simple guarding rule would
ensure soundness.

Definition 25 (Left-guarded). Let Γ $ fixf.c : E ¤ F be a coercion judgement. We say
an occurrence of f in c is left-guarded by d if c contains a subterm of the form d� d 1

and f occurs in d 1. We call fixf.c left-guarded if for each occurrence of f there is a d that
left-guards f.

Left-guardedness is not sufficient for soundness, however. Consider

$ fixf.(proj�1 ; (id1 � f) ; proj) : E ¤ F,

which is derivable for all E and F. (For emphasis, we have annotated id with a
subscript indicating which regular expression it operates on.) Computationally, this
coercion judgement does not terminate on any input. This is an instructive case: It
contains both a proj�1 coercion and an f that is left-guarded “only” by (a coercion
operating on) a regular expression whose language contains the empty string, in
this case 1.

2.3.2 Soundness

We have seen that, without a side condition on the coinduction rule, the coercion
inference system is unsound for deducing regular expression containments. The key
idea now is this: Impose a side condition that guarantees that the coercion in the
conclusion of the coinduction rule is total. Since all other rules preserve totality of
coercions, this yields a sound axiomatization of regular expression containment by
Theorem 20. Since our coercions may contain free variables, we need to generalize
totality to second-order coercions:

Definition 26 (Hereditary totality). We say coercion judgement Γ $ c : E ¤ F for
Γ = f1 : E1 ¤ F1, . . . , fn : En ¤ Fn is hereditarily total if F[[Γ $ c : E ¤ F]](f1, . . . , fn)
is total whenever fi is a total coercion from Ei to Fi for all i = 1, . . . ,n.

We are now ready to define sound restrictions of the coercion inference system.
Instead of formulating a specific side condition, we parameterize over side condi-
tions for the coinduction rule to express, generally, what is necessary for such a
side condition to guarantee soundness.

2.3 declarative coinductive axiomatization 55

Figure 18 Computational interpretation of coercions

shuffle(inl v) = inl (inl v)

shuffle(inr (inl v)) = inl (inr v)

shuffle(inr (inr v)) = inr v

shuffle�1(inl (inl v)) = inl v

shuffle�1(inl (inr v)) = inr (inl v)

shuffle�1(inr v) = inr (inr v)

retag(inl v) = inr v

retag(inr v) = inl v

retag�1 = retag

untagL (inr v) = v

untag (inl v) = v

untag (inr v) = v

tagL (v) = inl v

assoc(v, (w, x)) = ((v,w), x)

assoc�1((v,w), x) = (v, (w, x))

swap(v, ()) = ((), v)

swap�1((), v) = (v, ())

proj((),w) = w

proj�1(w) = ((),w)

distL(v, inlw) = inl (v,w)

distL(v, inr x) = inr (v, x)

distL�1(inl (v,w)) = (v, inlw)

distL�1(inr (v, x)) = (v, inr x)

distR(inl v,w) = inl (v,w)

distR(inr v, x) = inr (v, x)

distR�1(inl (v,w)) = (inl v,w)

distR�1(inr (v, x)) = (inr v, x)

wrap (v) = fold v

wrap�1(v) = fold�1 v

id(v) = v

id�1 = id

(c;d)(v) = d(c(v))

(c+ d)(inl v) = inl (c(v))

(c+ d)(inrw) = inr (d(w))

(c� d)(v,w) = (c(v),d(w))

(fixf.c)(v) = c[fixf.c/f](v)

56 regular expression containment

Definition 27 (Coercion inference system with side condition). Consider the coercion
inference system of Figure 17 where the coinduction rule is equipped with a side condition
P, a predicate on the coercion judgement in the conclusion:

Γ , f : E ¤ F $ c : E ¤ F

Γ $ fixf.c : E ¤ F (P(Γ $ fixf.c : E ¤ F)).

We write Γ $P c : E ¤ F, if each application of the coinduction rule in the derivation of
Γ $ c : E ¤ F satisfies P.

We arrive at the Master Soundness Theorem, which provides a general criterion
for sound side conditions:

Theorem 28 (Soundness). Let P be any predicate on coercion judgements that universally
implies hereditary totality.

Then $ d : E ¤ F implies |= E ¤ F for all d,E, F.

This theorem shows that hereditary totality is an “upper bound” for how liberal
the side condition can be without the risk of losing sound computational interpreta-
tion of a regular expression containment proof as a coercion. Interestingly, allowing
partial coercions does not necessarily make the resulting inference system unsound
for proving regular expression containment. If we define the side condition

Pt(Γ $ fixf.c : E ¤ F) ðñ |= E ¤ F,

the resulting inference system is trivially sound and complete since $ fixf.f :

E ¤ F is derivable for those E, F such that |= E ¤ F. Clearly, F[[$ fixf.f : E ¤ F]] is
computationally completely useless, however: it never terminates.

Unfortunately, hereditary totality itself is undecidable even for the restricted
language of coercions denotable by coercion judgements:3

Theorem 29. Whether or not Γ $ c : E ¤ F is hereditarily total is undecidable.

Proof. Even totality of $ c : 1 ¤ 1 is undecidable. This follows from the undecid-
ability of $ c : 1� � 1� ¤ 1� � 1�, which in turn follows from encoding Minsky
machines (2-register machines) as closed coercion judgements, using a unary coding
of natural numbers.

This makes hereditary totality inapplicable as a conventional side condition
in an axiomatization, where valid instances of an inference rule are expected to
be decidable. Below we provide polynomial-time decidable side conditions that
are sufficient to encode existing derivations in previous axiomatizations (see Sec-
tion 2.3.3). In each case their soundness follows from application of Theorem 28. In
this sense, hereditary totality can be considered the “mother of all side conditions”,
even though it itself is “too extensional” to be used as a conventional side condition.

3 Proved by Eijiro Sumii, Yasuhiko Minamide, Naoki Kobayashi, Atsushi Igarashi and Fritz Henglein
at the IFIP TC 2 Working Group 2.8 meeting at Shirahama, Japan, April 11-16, 2010

2.3 declarative coinductive axiomatization 57

Definition 30 (Syntactic side conditions Si). Define predicates S1,S2,S3 and S4 on
coercion judgements of the form
Γ $ fixf.c : E ¤ F as follows:

• S1(Γ $ fixf.c : E ¤ F) if and only if each occurrence of f in c is left-guarded by
a d where Γ , . . . $ d : E 1 ¤ F 1 is the coercion judgement for d occurring in the
derivation of Γ $ fixf.c : E ¤ F and o(E 1) = 0 (from Definition 11).

• S2(Γ $ fixf.c : E ¤ F) if and only if each occurrence of f in c is left-guarded and
for each subterm of the form c1; c2 in c at least one of the following conditions is
satisfied:

– c1 is closed and proj�1-free;

– c2 is closed.

• S3(Γ $ fixf.c : E ¤ F) if c is of the form wrap�1; (id+ id� f);d where d is closed.

• S4 = S1 _ S3.

It is easy to see that S1,S2,S3 and S4 are polynomial-time checkable. They further-
more imply hereditary totality:

Lemma 31 (Hereditary totality for Si). Let Γ $ fixf.c : E ¤ F such that Si(Γ $ fixf.c :
E ¤ F) with i P t1, 2, 3, 4u.

Then Γ $ fixf.c : E ¤ F is hereditarily total.

Side condition S3 is a special case of S2. The case of S4 follows from S1 and S3.
We have formulated S3 separately since S4 is sufficient to code all derivations in
Salomaa’s and Grabmayer’s axiomatizations. S2 by itself, without S1, is sufficient
for Kozen’s axiomatization.

Proof. (Idea) The general idea behind the side conditions S1,S2 is that they ensure
that every recursive call f in the body c of a recursively defined coercion fixf.c is
called with an argument whose size is properly smaller than the size of the original
call. The difference between the two conditions is the definition of size in each case.

Consider S1. Define the 0-size |v|0 of a value by |v|0 = |flat(v)|1; that is, it is
the length of the underlying string. Values containing () may be of 0-size 0, e.g.
|((), ())|0 = 0, and the size of a component of a pair may be the same as the size
of the pair: |((), v)|0 = |v|0. Consider a call of fixf.c to a value v of 0-size n. The
predicate S1 ensures that all recursive calls to f in c are only applied to a value
constructed from the second component of some pair, where the first component
has size at least 1. Since coercions never increase the size this guarantees that the
recursive call is applied to a value of 0-size at most n� 1.

58 regular expression containment

Now consider S2. Define the 1-size |v|1 of v as follows:

|()|1 = 1 |a|1 = 1

|inl v|1 = |v|1 |inr v|1 = |v|1

|fold v|1 = |v|1 |(v,w)|1 = |v|1 + |w|1

Note that if we had defined |()|1 to be 0 then this would be just the 0-size (hence
our terminology).

The idea for ensuring termination of a recursively defined coercion is the same
as before, but for 1-size instead of 0-size. With 1-size we have the important
property that each component of a pair is properly smaller than the pair, in particular
|v2|1 |(v1, v2)|1 for all v1. We say a coercion c is nonexpansive if |c(v)|1 ¤ |v|1.
All primitive coercions except for proj�1 are nonexpansive, and the inference rules
preserve nonexpansiveness. Now, S2 guarantees that each recursive call is applied
to an argument of size properly smaller than the original call. Informally, this
is because S2 guarantees that a recursive call of f is never applied to a value
(constructed from) the output (return value) of a proj�1-call.

From Theorem 28, Lemma 31 and Theorem 20 we obtain:

Corollary 32 (Soundness for side conditions Si). Let S1, S2, S3, S4 as in Definition 30,
i P t1, 2, 3, 4u.

Then $Si d : E ¤ F implies |= E ¤ F.

2.3.3 Completeness

We show now how to code derivations in Salomaa’s, Kozen’s and Grabmayer’s
axiomatizations of regular expression equivalence in our coercion inference system
(Figure 17) with side condition S4 (Salomaa, Grabmayer) or S2 (Kozen). This
provides a computational interpretation for each of these systems. Furthermore,
it implies that coercion axiomatization with either S2 or S4 is complete. More
precisely, we encode every derivation of $ E = F as a pair of coercion judgements
$ c : E ¤ F and $ d : F ¤ E, respectively, which provides a computational
interpretation of a regular expression equivalence as a pair of coercions.

Even though they are for regular expression equivalence, these codings also
provide completeness of our coercion axiomatization for regular expression con-
tainment. Assume |= E ¤ F. This holds if and only if |= E+ F = F. By completeness
of the regular expression equivalence axiomatizations, E+ F = F is derivable, and
we can construct a coercion judgement of $ c : E+ F ¤ F. Composes with tagL this
yields $ tagL ; c : E ¤ F, and we are done.

Theorem 33 (Completeness). Let P be either S2 or S4. Then |= E ¤ F implies $P E ¤ F

2.3 declarative coinductive axiomatization 59

Figure 19 Salomaa’s rules for axiomatization F1

E = F

E� = F� E� = (1+ E)�

E = F� E+G

E = F� �G
(if o(F) = 0)

It follows that any side condition “between” S2 or S4 on the one hand and heredi-
tary totality on the other hand yields a sound and complete coercion axiomatization
of regular expression containment.

Corollary 34 (Soundness and completeness). Let P be such that either S2 or S3
universally implies P, and P universally implies hereditary totality. Then $P c : E ¤ F if
and only if |= E ¤ F.

Whereas hereditary totality is the natural “upper” bound we suspect that there
are natural weaker “lower” bounds than S2 and S4.

Salomaa

Salomaa’s System F1 [108] arises from adding the rules of Figure 19 to the axiom-
atization of weak equivalence (Figures 14, 15 and 16).4 The side condition of the
inference rule in Figure 19 is called the “no empty word property”.

To be precise, we prove by induction on derivations of E = F in System F1
that there exist coercion judgements $S4 c : E ¤ F and $S4 d : F ¤ E. This is
straightforward for the weak equivalence rules. We thus concentrate on the rules in
Figure 19.

Consider

E = F

E� = F� . By induction hypothesis there exist $S4 c : E ¤ F and
$S4 d : F ¤ E. We reason as follows: Assume E� ¤ F� and call this assumption f.

E� ¤ (1+ E� E�) by wrap�1

¤ (1+ F� F�) by id + c� f

¤ F� by wrap

This shows that

f : E� ¤ F� $S4 (wrap�1; id + c� f; wrap) : E� ¤ F�.

Note that $ fixf.(wrap�1; id + c� f; wrap) : E� ¤ F� satisfies side condition S3
and thus S4. Its computational interpretation is the map-function on lists. With S4

4 Technically, this is the “left-handed” dual due to Grabmayer [52] to Salomaa’s original “right-handed”
formulation where the fold-unfold rule for Kleene star is axiomatized as E� = 1+ E� � E.

60 regular expression containment

satisfied we can apply the coinduction rule to conclude $S4 fixf.(wrap�1; id + c�

f; wrap) : E� ¤ F�. Similarly, we get $S4 fixg.(wrap�1; id + d� g; wrap) : F� ¤ E�.
Consider E� = (1+ E)�. The case E� ¤ (1+ E)� follows from the rule above since

E ¤ (1+ E). For the converse containment assume f : (1+ E)� ¤ E�. We have:

(1+ E)� ¤ 1+ (1+ E)� (1+ E)� by wrap�1

¤ 1+ (1+ E)� E� by f

¤ 1+ 1� E� + E� E� by distR

¤ 1+ E� + E� E� by proj

¤ 1+ E� E� + E� by retag

¤ E� + E� by wrap

¤ E� by untag

We are a bit informal here: We leave associativity, congruence and identity steps
implicit. Let us consider $ fixf.c : (1+ E)� ¤ E� now. Without displaying c in full
detail, from the derivation above we can see that f satisfies side condition S3 and
thus S4, and we can conclude $S4 fixf.c : (1+ E)� ¤ E� by the coinduction rule.
Operationally, F[[$ fixf.c : (1+ E)� ¤ E�]] traverses its input list of type T[[(1+ E)�]],
removes all occurrences of inl () and returns the v’s for each inr v in the input.

Finally, consider

E = F� E+G

E = F� �G [if o(F) = 0].
Our induction hypothesis is $S4 c1 : E ¤ F� E+G and $S4 d1 : F� E+G ¤ E.
Let us first consider F� �G ¤ E. Assume f : F� �G ¤ E, and we can calculate
d2 : F

� �G ¤ E as follows:

F� �G ¤ (1+ F� F�)�G by wrap�1

¤ 1�G+ F� F� �G by distR

¤ G+ F� F� �G by proj

¤ G+ F� E by f

¤ F� E+G by retag

¤ E byd1

We can see that $ fixf.d2 : F� �G ¤ E satisfies S2 and, since o(F) = 0, also S1 and
thus S4. We can thus conclude $S4 fixf.d2 : F� �G ¤ E by the coinduction rule.
Observe that $ fixf.d2 : F� �G ¤ E is hereditarily total, whether or not o(F) = 0,
since S2 is also satisfied.

2.3 declarative coinductive axiomatization 61

Figure 20 Kozen’s rules for axiomatization of Kleene Algebras

1+ (E� � E) ¤ E�

E� F ¤ F

E� � F ¤ F

E� F ¤ E

E� F� ¤ E

For the other direction, assume $S4 g : E ¤ F� � G, and we can calculate
c2 : E ¤ F

� �G essentially in the reverse direction to the above calculation.

E ¤ F� E+G by c1
¤ G+ F� E by retag

¤ G+ F� F� �G byg

¤ 1�G+ F� F� �G by proj�1

¤ (1+ F� F�)�G by distR�1

¤ F� �G by wrap

Here, the coercion judgement $ fixg.c2 : E ¤ F� � G may computationally be
nonterminating: Choose, e.g., c1 = proj�1; tagL : E ¤ 1� E + 0. For o(F) = 0,
however, $ fixg.c2 : E ¤ F��G satisfies side condition S1 and thus S4; in particular,
it always terminates. We can conclude$S4 fixg.c2 : E ¤ F�E+G by the coinduction
rule.

Kozen

Kozen [76] has shown that adding the rules in Figure 20 to weak equivalence is
sound and complete for regular expression equivalence. Formally, a containment
E ¤ F in his axiomatization is an abbreviation for E+ F = F. We show now that all
derivations in his system can be coded as coercion judgements with side condition
S2.

Consider 1+ (E� � E) ¤ E�. It is sufficient to construct a coercion judgement
$S2 c : E

� � E ¤ E� E�, since we then have $S2 id + c; wrap : 1� E� � E ¤ E�, as
desired.

Assume f : E� � E ¤ E� E�. We can calculate c : E� � E ¤ E� E� as follows:

E� � E ¤ (1+ E� E�)� E by wrap�1

¤ 1� E+ E� E� � E by distR

¤ 1� E+ E� E� E� by f

¤ E� 1+ E� E� E� by swap

¤ E� (1+ E� E�) by distL�1

¤ E� E� by wrap

62 regular expression containment

Writing c explicitly, we have

c = (wrap�1 � id); distR;

swap + (assoc�1; id� f);

distL�1; id�wrap

Observe that $ fixf.c : E� � E ¤ E� E� satisfies side condition S2, and we can
conclude $S2 fixf.c : E� � E ¤ E� E� by the coinduction rule.

Consider the rule

E� F ¤ F

E� � F ¤ F . Our induction hypothesis is that there exists
$S2 d : E� F ¤ F. Assume f : E� � F ¤ F, and we calculate c : E� � F ¤ F as follows:

E� � F ¤ (1+ E� E�)� F by wrap�1

¤ 1� F+ E� E� � F by distR

¤ 1� F+ E� F by f

¤ F+ E� F by proj

¤ F+ F byd

¤ F by untag

Note that $ fixf.c : E� � F ¤ F satisfies side condition S2, and we can apply the
coinduction rule to conclude $S2 fixf.c : E� � F ¤ F.

The rule

E� F ¤ E

E� F� ¤ E is similar to the previous rule, with an additional step
involving E� � E ¤ E� E�.

Grabmayer

The following results hold for all alphabets, but for convenience we assume that A
is finite in this section.

The Brzozowski-derivative Ea [12, 25, 33, 107, 108] for regular expression E and
a P A is defined in Figure 21.

Grabmayer [52] recognized that Brzozowski-derivatives can be combined with
the ACI-properties of + and the coinductive fixed point rule for recursive types of
Brandt and Henglein [23] to give a coinductive axiomatization of regular expression
equivalence. His rule COMP/FIX is given in Figure 22. Indeed, it can be seen that in
the presence of a transitivity rule of equational logic, the compatibility-with-context-
rules, and ACI-axioms, only the rule COMP/FIX is needed to obtain a complete
system for regular expression equivalence, without the other rules of Grabmayer’s

2.3 declarative coinductive axiomatization 63

Figure 21 Definition of Brzozowski-derivative

0ai = 0

1ai = 0

(ai)ai = 1

(aj)ai = 0 (i � j)

(E+ F)ai = Eai + Fai

(E� F)ai = Eai � F (o(E) = 0)

(E� F)ai = Eai � F+ Fai (o(E) = 1)

(E�)ai = Eai � E
�

inference system cREG0(Σ). A sequent style presentation of COMP/FIX is as
follows:

Γ ,E = F $G Ea = Fa for all a P A, o(E) = o(F)

Γ $G E = F

Let us write Γ¤ and Γ¥ for Γ where all occurrences of = in Γ are replaced by
¤, respectively ¥. We can show by rule induction that for each derivation of
Γ $G E = F there exist coercion judgements Γ¤ $S4 c : E ¤ F and Γ¥ $S4 d : F ¤ E.

The only interesting rule to consider is COMP/FIX. By induction hypothesis, we
have Γ¤, f : E ¤ F $ ca : Ea ¤ Fa and Γ¥,g : F ¤ E $ da : Fa ¤ Ea for all a P A,
where o(E) = o(F). Note that |= E = o(E) +

°
aPA a� Ea. Salomaa [108] shows

that E = o(E) +
°
aPA a� Ea is derivable from the rules for weak equivalence

(Figures 14, 15 and 16), extended with Salomaa’s Axiom A11: F� = (1+ F)�. (See
also Grabmayer [52, Lemma 5, p. 189].) A11 is only required for what Frisch and
Cardelli [46] call problematic regular expressions, regular expressions of the form
G� where o(G) = 1.

By applying the derivation coding of Salomaa’s axiomatization from Subsec-
tion 2.3.3 to the derivation of E = o(E) +

°
aPA a� Ea, we know that there exist

Figure 22 Grabmayer’s coinduction rule COMP/FIX

[E = F]
...

Ea1 = Fa1

. . .

[E = F]
...

Ean = Fan

E = F [o(E) = o(F)]

64 regular expression containment

$S4 cE : o(E) +
°
aPA a� Ea ¤ E and $S4 dE : E ¤ o(E) +

°
aPA a� Ea. This gives

us the following derivable coercion judgements:

Γ¤, f : E ¤ F $S4 dE; (ido(E) +
°
aPA ida � ca); cF : E ¤ F

Γ¥,g : F ¤ E $S4 dF; (ido(F) +
°
aPA ida � da); cE : F ¤ E

We can observe that they satisfy side condition S1 and thus S4. By the coinduction
rule we can thus conclude:

Γ¤ $S4 fixf.dE; (ido(E) +
°
aPA ida � ca); cF : E ¤ F

Γ¥ $S4 fixg.dF; (ido(F) +
°
aPA ida � da); cE : F ¤ E

This provides an alternative proof to the one based on coding Salomaa’s System F1
for concluding that |= E ¤ F implies $S4 E ¤ F.

2.3.4 Examples

We continue Example 22 by implementing the function proving (a+ b)� ¤ a� �

(b� a�)� in the coercion language.

Example 35 (Denesting as coercion). The function from Example 22 can be implemented
in our coercion language:

fixf. wrap�1; id + retag� f; id + distR;

id + (assoc + assoc); shuffle; wrap + id;

id + (tagR ; wrap)� id; proj�1 + id;

(tagL ; wrap)� id + id; untag

2.3 declarative coinductive axiomatization 65

Abbreviate E = (a+ b)� and F = a� � (b� a�)�. We can calculate the inclusion from
Example 22 as follows.

E ¤ 1+ (a+ b)� E by wrap�1

¤ 1+ (a+ b)� F by f

¤ 1+ (b+ a)� F by retag

¤ 1+ ((b� F) + (a� F)) by distR

¤ 1+ (((b� a�)� (b� a�)�) + (a� F)) by assoc

¤ (1+ (b� a�)� (b� a�)�) + ((a� F)) by shuffle

¤ (b� a�)� + (a� F) by wrap

¤ (b� a�)� + ((a� a�)� (b� a�)�) by assoc

¤ (b� a�)� + ((1+ a� a�)� (b� a�)�) by tagR

¤ (b� a�)� + F by wrap

¤ 1� (b� a�)� + F by proj�1

¤ (1+ a� a�)� (b� a�)� + F by tagL

¤ F+ F by wrap

¤ F by untag

In the above example, the coercion is, operationally, basically the function defined
in Example 22: It folds a constant-time computable function over its input list
therefore runs in linear time. Kozen [76, Proposition 2.7] gives a proof of the
same inclusion in his axiomatization of Kleene algebra. When encoding it as in
Section 2.3.3 we obtain a similar, linear-time coercion. This raises the question
whether computational interpretation of all proofs of the same containment in the
axiomatizations of Salomaa, Kozen and Grabmayer yield coercions of the same,
linear-time complexity. Remarkably, this is not the case, as illustrated by the next
example.

Example 36 (Coercion efficiency). Consider a� � a�� ¤ a�. The simplest way to prove
this with Kozen’s rules is to start from a� a� ¤ a� proved by tagR ; wrap . By the left
inference rule in Figure 20 we then get a� � a� ¤ a�. By the right inference rule in
Figure 20 we finally obtain a� � a�� ¤ a�.

Let us consider the computational interpretation of this proof. We have two (nested)
applications of the (left and right, respectively) inference rule from Figure 20. This gives
quadratic runtime. It is unclear to us whether there exists a proof using Kozen’s whose
computational interpretation as a functional program runs in linear time.

It is possible to construct a linear-time coercion for a� � a�� ¤ a� in our coercion
inference system, however. This can be systematically obtained by encoding the (minimal)
proof in Grabmayer’s axiomatization. In fact, the encoding of any proof in Grabmayer’s
axiomatization will have linear runtime. This is because the only admissible application of

66 regular expression containment

recursion in Grabmayer’s axiomatization is of the form fixf.dE; (id + ΣaPAid� ca); cF,
where f does not occur in dE and cF, which entails that only constant amount of processing
occurs for each constant part of the input.

2.3.5 Parametric completeness

Let us extend regular expressions by adding variables that can be bound to arbitrary
regular sets. Formally,

E, F,G,H ::= 0 | 1 | a | X | E+ F | E� F | E�

where X ranges over a denumerable set of (formal) variables tXiuiPN. Such a regular
expression is closed if it contains no formal variables.

We define |= @X1, . . . ,Xm.E[X1, . . . ,Xm] ¤ F[X1, . . . ,Xm] if the containment holds
for all substitutions of Xi with (closed) regular expressions.

Our axiomatization is immediately applicable to regular expressions with free
variables. Without change it is not only complete, but parametrically complete for
infinite alphabets:

Theorem 37 (Parametric completeness). Let A be infinite. Let the side condition P for
the coinduction rule in Figure 17 be either total hereditariness or S2.
Then: |= @X1, . . . ,Xm.E ¤ F if and only if $P c : E ¤ F.

Proof. Only if: By rule induction, coercion axiomatization is closed under substitu-
tion, with total hereditariness or S2 as side condition. Note that this is not the case
for S4. (Technically, S1 is not even defined for regular expressions with variables,
since o(X) is undefined.)

If: Assume |= @X1, . . . ,Xn.E ¤ F. Let b1, . . . ,bn be n distinct alphabet sym-
bols not occurring in E or F. (Since A is infinite, they exist.) By definition of |=
@X1, . . . ,Xn.E ¤ F, we have |= EtX1 ÞÑ b1, . . . ,Xn ÞÑ bnu ¤ FtX1 ÞÑ b1, . . . ,Xn ÞÑ
bnu. By Theorem 33 (completeness), there is a derivable coercion judgement
$P c : EtX1 ÞÑ b1, . . . ,Xn ÞÑ bnu ¤ FtX1 ÞÑ b1, . . . ,Xn ÞÑ bnu. It can be shown
that our coercion axiomatization with hereditary totality or S2 as side condition
is closed under substitution in the sense that the b1, . . . ,bn can be replaced by
arbitrary regular expressions E1, . . . ,En, respectively, such that $ c : Etb1 ÞÑ

E1, . . . ,bn ÞÑ Enu ¤ Ftb1 ÞÑ E1, . . . ,bn ÞÑ Enu. In particular, we can choose
X1, . . . ,Xn for E1, . . . ,En and thus obtain $ c : E ¤ F.

As a consequence of Theorem 37, a schematic containment such as E� E� ¤
E� � E is derivable, not just admissible in our axiomatization: we can synthesize
a single coercion judgement for it and use it for all instances of E. For finite
alphabets our axiomatization is incomplete, however: |= @X. (X ¤ (a+ b)�) holds
for A = ta,bu, but X ¤ (a+ b)� is not derivable.

2.4 application: compact bit representations of parse trees 67

Figure 23 Type-directed encoding function from parse trees (values) to bit sequences

code(() : 1) = ε

code(a : a) = ε

code(inl v : E+ F) = 0 code(v : E)

code(inrw : E+ F) = 1 code(w : F)

code((v,w) : E� F) = code(v : E) code(w : F)

code(fold v : E�) = code(v : 1+ E� E�)

We observe that Kozen’s axiomatization [76] is also parametrically complete
for infinite alphabets, but not for finite alphabets. Neither Salomaa’s [108] nor
Grabmayer’s [52] appear to be parametrically complete: In Salomaa’s case we need
to make a case distinction as to whether the regular expression E substituted for X
has the empty word property; and in Grabmayer’s case E needs to be differentiated,
the proof of which depends on the syntax of E.

2.4 application: compact bit representations of parse trees

If the regular expressions are statically known in a program we can code their
elements, more precisely their parse trees, compactly as bit strings.

2.4.1 Bit coded strings

Intuitively, a bit coding of a parse tree p factors p into its static part, the regular
expression E it is a member of, and its dynamic part, a bit sequence that uniquely
identifies p as a particular element of E.

Consider for example the string s = abaab as an element of H1 = (a+ b)�. It
has the unique parse tree corresponding to

ps = [inla, inrb, inla, inla, inrb]

with $ ps : H1, which shows that flat(ps) = abaab is an element of L[[H1]].
Figures 23 and 24 define regular-expression directed coding and decoding func-

tions code and decode from parse trees to their (canonical) bit codings and back.
Informally, the bit coding of a parse tree consists of listing the inl - and inr -
constructors in preorder traversal, where inl is mapped to 0 and inr is mapped to
1. No bits are generated for the other constructors. For example, the bit coding bs
for ps is 10 11 10 10 11 0.

68 regular expression containment

Figure 24 Type-directed decoding function from bit sequences to parse trees (values)

decode 1(d : 1) = ((),d)

decode 1(d : a) = (a,d)

decode 1(0d : E+ E 1) = let (v,d 1) = decode 1(d : E)

in (inl v,d 1)

decode 1(1d : E+ E 1) = let (w,d 1) = decode 1(d : E)

in (inrw,d 1)

decode 1(d : E� E 1) = let (v,d 1) = decode 1(d : E)

(w,d2) = decode 1(d 1 : E 1)

in ((v,w),d2)

decode 1(d : E�) = let (v,d 1) = decode 1(d : 1+ E� E�)

in (fold v,d 1)

decode(d : E) = = let (w,d 1) = decode 1(d : E)

in ifd 1 = ε thenw else error

We can think of the bit coding of a parse tree p as a bit coding of the underlying
string flat(p). Note that the bit coding of a string is not unique. It depends on

• which regular expression it is parsed under; and

• if the regular expression is ambiguous, which parse tree is chosen for it.

As an illustration of the first effect, the bit representation b 1s of s under H2 =

1+ (a+ b)� � (a+ b) is different from bs: it is 1 10 11 10 10 0 1. Since both H1 and
H2 are unambiguous there are no other bit representations of s under either H1 or
H2.

2.4.2 Bit code coercions

So what if we have a bit representation of a run-time string under one regular
expression and we need to transform it into a bit representation under another
regular expression? This arises if the branches of a conditional each return a bit-
coded string, but under different regular expressions, and we need to ensure that
the result of the conditional is a bit coding in a common regular expression that
contains the two.

Let us consider s again and how to transform bs into b 1s. As we have seen in
Section 2.3.3, E� is contained in 1+ (E� � E) for all E and there is a parametric

2.4 application: compact bit representations of parse trees 69

polymorphic coercion c1 : @X.X� ¤ 1 + (X� � X) mapping any value $ p : E�

representing a parse tree for string s 1 = flat(p) to a parse tree $ p 1 : 1+ E� � E for
s 1. In particular applying c1 to ps yields p 1s.

We can compose c1 with code and decode from Figures 23 and 24 to compute a
function ĉ1 operating on bit codings:

ĉ1 = code � c1 � decode.

Instead of converting to and from values we can define a bit coding coercion by
providing a computational interpretation of coercions that operates directly on bit
coded strings. See Figure 25. It uses the type-directed function split from Figure 26

for splitting a bit sequence into a pair of bit sequences.
Consider for example the coercion $ c0 : E� � E to E� E� from Section 2.3.3. By

interpreting c0 according to Figure 25 we arrive at the following highly efficient
function gE, which transforms bit codings of values of E� � E into corresponding
bit representations for E� E�.

gE(0d) = 0d

gE(1d) = 1 fE(d)

fE(0d) = d0

fE(1d) = let (d1,d2) = splitE(d)ind1 1 fE(d2)

The bit coded version of c1 : E� ¤ 1+ E� � E gives us a linear-time function hE
that operates directly on bit codings of (parse trees) of strings in E� and transforms
them to bit codings in 1+ E� � E:

hE(0d) = 0d

hE(1d) = 1 gE(d)

Note that h(a+b) is the bit coding coercion from H1 to H2.
It transforms 10 11 10 10 11 0 into 1 10 11 10 10 0 1 without ever materializing a string
or value.

2.4.3 Tail-recursive µ-types

The presented bit sequences are compact, but their sizes depend on the regular
expression used. Thus it is necessary to use reasonable regular expressions to obtain
compact bit sequences. In fact the most compact representations can be found
only by generalizing regular expressions to tail-recursive µ-types. We will use the
remainder of this section to study this extension, and the compression it allows.

70 regular expression containment

Figure 25 Coercions operating on typed bit sequence representations instead of
values

retag(0d) = 1d

retag(1d) = 0d

retag�1 = retag

tagL (d) = 0d

untag (bd) = d

shuffle(0d) = 00d

shuffle(10d) = 01d

shuffle(11d) = 1d

shuffle�1(00d) = 0d

shuffle�1(01d) = 10d

shuffle�1(1d) = 11d

swap(d) = d

swap�1 = swap

proj(d) = d

proj�1(d) = d

assoc(d) = d

assoc�1(d) = d

distL(d : E� (F+G))

= let (d1,bd2) = split(d : E)

inbd1d2
distL�1(bd : (E� F) + (E�G))

= let (d1,d2) = split(d : E)

ind1bd2
distR(d) = d

distR�1(d) = d

wrap (d) = d

wrap�1(d) = d

(c+ c 1)(0d) = 0 c(d)

(c+ c 1)(1d 1) = 1 c 1(d 1))

(c� c 1)(d : E� F) = let (d1,d2) = split(d : E)

in c(d1) c 1(d2)

(c; c 1)(d) = c 1(c(d))

id(d) = d

(fix f.c)(d) = c[fix f.c/f](d)

2.4 application: compact bit representations of parse trees 71

Figure 26 Type-directed function for splitting bit sequence into subsequences
corresponding to components of product type

split(d : 1) = (ε,d)

split(d : a) = (ε,d)

split(0d : E+ E 1) = let (d1,d2) = split(d : E)

in (0d1,d2)

split(1d 1 : E+ E 1) = let (d1,d2) = split(d 1 : E 1)

in (1d1,d2)

split(d : E�) = split(d : 1+ E� E�)

split(d : E� E 1) = let (d1,d2) = split(d : E)

(d3,d4) = split(d2 : E 1)

in (d1d3,d4)

A common representation of strings over an alphabet
Σ = ta1, . . . ,a255u of 255 characters from the Latin-1 (ISO/IEC 8859-1:1998) al-
phabet employs a sequence of 8-bit bytes representing each of the 255 different
characters and uses the remaining byte to indicate the end of the string. This gives
a total size of 8 � (n+ 1) bits to represent a string of length n.

Consider now the size of the bit sequence from Section 2.4.1 of a string under
regular expression E�Σ where EΣ is a sum type holding all the 255 characters in
Σ. This can be written in many ways using permutations and associations of the
characters. For example, if we define EΣ as a1 + (a2 + (a3 + . . .+ a255) . . .) this
means that the size of the bit coding of ak is k bits long. This can be improved by
ensuring that the type is balanced such that each path to a character has the same
length. As there are 255 characters this means we will use 8 bits to represent each
characters, leaving one path unused (so one character only uses 7 bits). Now we
can look at the space required for the bit coding of a string under type E�Σ. Since
E�Σ is unfolded to 1+ EΣ � E�Σ the representation of the empty string requires 1 bit,
while the representation of other strings is 1 bit plus 8 bits for representing the first
character, plus the bits to represent the rest of the string for the type E�Σ. Thus up
to 9 �n+ 1 bits are used to represent a string of length n.

Figure 27 Inhabitation rule for µ

v : α[µX.α/X]

fold v : µX.α

72 regular expression containment

The reason why bit codings for regular types use one bit more per character is
due to the very restrictive recursion in regular expressions. The extra bit is used to
say for each character that we do not want to end the string yet. This is because we
can only use the .� constructor to define recursive types, and a regular expression
E� always unfolds to 1+ E� E�. Therefore we use one bit for each character to
choose the right hand side after the unfold. This is equivalent to using a unary
integer representation to state how many times the E inside the .� is used, and this
leaves room for optimization.

We now generalize the recursion to tail-recursive µ-types in order to obtain more
compact bit codings. Consider the language of expressions UnRegµΣ over a finite
alphabet Σ = ta1, . . . ,anu:

α ::= 0 | 1 | a | α1 +α2 | α1 �α2 | µX.α | X

We define the free variables of α to be the set of variables X that occur in α without
a binder µX. If there are no free variables in α then we say that α is closed. We call
α tail-recursive if α1 is closed in all subterms of the form α1 �α2.

We can now define the language RegµΣ as the closed, tail-recursive expressions
from UnRegµΣ.

We need to define semantics, type-interpretation and inhabitation for the new
expressions, but we can reuse the definitions from regular expressions (L[[]],T[[]], v :
E), simply by adding new rules for the new µ and X constructs.

We can use the language semantics from Definition 10, except the definition of
L[[E�]] must be replaced with the definitions

L[[X]] =H and L[[µX.α]] =
�
i¥0L[[α

(X,i)]]

where α(X,0) = α[0/X] and α(X,n+1) = α[α(X,n)/X].

We can extend the type-interpretation from Definition 14 with an environment σ,
and replace the definition of T[[E�]] with

T[[X]]σ = σ(X) and T[[µX.α]]σ =
�
i¥0 T[[α]]σ(i) where

σ(0) = σ[X ÞÑ H] and σ(n+1) = σ[X ÞÑ T[[α]]σ(n)].

Finally, we can use the inhabitation rules from Figure 13, except the fold rule
must be replaced with the rule for µ in Figure 27.

We can now prove that RegµΣ expresses exactly the same languages as RegΣ:

Theorem 38 (Conservativity of tail-recursive µ-types).

1. For all E P RegΣ there is α P RegµΣ
such that tflat(v) | $ v : Eu = tflat(v) | $ v : αu.

2. For all α P RegµΣ there is E P RegΣ
such that tflat(v) | $ v : αu = tflat(v) | $ v : Eu.

2.4 application: compact bit representations of parse trees 73

The equivalence of regular expressions with right-regular grammars is well
known [30]. Tail-recursive µ-types are like right-regular grammars, but do not
exactly correspond to them: tail-recursive µ-types lack mutual recursion, but offer
locally scoped recursion, where grammars only provide top-level recursion. 5

Proof. (Sketch) The first statement is proved by encoding E� as µX.1+α�X where
α is the encoding of E. The second statement is proved by first rewriting µ-types
to the form µX.(α�X+β), where X is not free in α or β. Now it can be seen that
L[[µX.(α�X+β)]] = L[[E� � F]] where E is a regular expression encoding of α and
F is an encoding of β.

Even though RegµΣ expresses exactly the same languages as RegΣ, the new
expressions allow us to define (a+ b+ c)� as µX.(1+ a�X) + (b�X+ c�X) and
thus saving us one bit per character we need to express.

Using this optimization the representation of any string with respect to the
generalized regular expression type αΣ will use eight bits per Latin-1 character
plus eight bits to terminate the string. This is exactly the same size as the standard
Latin1-representation. In fact the bit-representations for this type will be exactly
the same as the bit-representations for the standard Latin-1 representation if the
same permutation of characters is chosen in αΣ.

It may not seem very impressive to reinvent the Latin-1 representation this way,
but it can guarantee that bit coding uses at most as much space as the Latin-1
representation. The benefit of bit coding comes when we no longer consider all
Latin-1 strings, but a subset specified by a regular expression. In this case the bit
codings will generally be more compact. The ultimate example of this is when
the regular expression allows exactly one string. For example the bit sequence of
’abcbcba’ under regular expression a� b� c� b� c� b� a uses zero bits since
its value contains no inl /inr -choices. Of course the program needs to know the
regular expression in order to interpret the bit sequences, but that can be shared
across interpretation of multiple bit sequences.

We end this section with two examples showing the bit sizes of strings under
different regular expressions.

Example 39. In the table below Z denotes a designated end-of-string character; and
characters a,b, c their 8-bit Latin-1 codings.

5 Milner [86] presents a sound and complete axiomatization of behavioral equivalence of µ-terms de-
noting labeled transition systems. Behavioral equivalence is properly weaker than regular expression
equivalence, however. Crucially, distributivity E� (F+G) = E� F+ E�G does not hold.

74 regular expression containment

Regular expression Representation Size

Latin1 abcbcbaZ 64

Σ� 1a1b1c1b1c1b1a0 64

((a+ b) + (c+ d))� 1001011101011101011000 22

((a+ b) + c)� 10010111101111011000 20

a� (b+ c)� � a 10111011100 11

a� b� c� b� c� b� a 0

The following is a more realistic example, where we also consider the data size
before and after text compression.

Example 40 (Sizes for XML record collection string). Consider the following regular
expression, corresponding to a regular XML schema (� and associativity have been omitted
for simplicity).
<CATALOG>

(<CD><TITLE>Σ�</TITLE><ARTIST>Σ�</ARTIST>

<COUNTRY>Σ�</COUNTRY><COMPANY>Σ�</COMPANY>

<PRICE>Σ�</PRICE><YEAR>Σ�</YEAR>

</CD>)*
</CATALOG>

This regular expression describes an XML-format for representing a list of CDs. We have
found the sizes for representing a specific list containing 26 CDs to be the following

Uncompressed Compressed

Latin-1 32760 7248

bit representation using EΣ 11187 6654

bit representation using αΣ 9947 6552

As we can see, there is almost a factor 3 reduction in the space requirement when using
the regular expression specific bit codings. The benefit is reduced by compression of the bit
codes with bzip [109] but an 8% space reduction is still obtained.

2.5 discussion

Regular expressions are fundamental to computer science with numerous appli-
cations in semi-structured text processing, natural language processing, program
analysis, graph querying, shortest path computation, compilers, program verifica-
tion, bioinformatics and more.

Salomaa [108] and, independently, Aanderaa provided the first sound and com-
plete axiomatizations of regular expression equivalence , based on a unique fixed

2.5 discussion 75

point rule, with Krob [80], Pratt [102] (for extended regular expressions), and Kozen
[76] providing alternatives in the 90s.

Recently, coinductive axiomatizations based on finitary cases of Rutten’s coinduc-
tion principle [107] for simulation relations have become popular: Grabmayer [52]
for regular expressions; Chen and Pucella [29] and Kozen [78] for Kleene Algebra
with Tests. Silva, Bonsangue and Rutten show how to specialize their coalgebraic
framework to regular languages and show how to translate regular languages into
so-called deterministic expressions [110, Example 3.4]. Such expressions appear to
correspond to (nondeterministic) linear forms [12], which in turn represent ε-free
nondeterministic automata. Their particular translation may generate exponentially
bigger expressions than the original regular expressions, however, which may limit
practical applicability.

Grabmayer’s axiomatization [52] is based on Brzozowski derivatives [12, 25],
which allow automata constructions and pairwise regular expression rewriting
[11, 50, 83] to be understood as proof search. In this paper we present a declarative
coinductive axiomatization of regular expression containment, generalizing Grab-
mayer’s algorithmic coinductive axiomatization of regular expression equality.6 Ours
is the first axiomatization of regular expression containment with a Curry-Howard-
style computational interpretation of containment proofs as functions (coercions)
operating on regular expressions read as regular types. Like Kozen’s (noncoin-
ductive) axiomatization, but unlike Salomaa’s (noncoinductive) and Grabmayer’s
(coinductive) it is parametrically complete for infinite alphabets: If E[X] ¤ F[X] for
all X, then there is a parametric polymorphic coercion c : @X.E[X] ¤ F[X].

Frisch and Cardelli [46] were, as far we know, the first to state the precise
connection between regular expressions as languages and regular expressions as
types (Section 2.2.2 in this paper).

Coinductive axiomatizations with a Curry-Howard style computational inter-
pretation have been introduced by Brandt and Henglein [23] for recursive type
equivalence and subtyping, expounded on by Gapeyev et al. [47], as an alternative
to the axiomatization of Amadio and Cardelli [10], which uses the unique fixed
point principle. In this fashion, classical unification closure can be understood as
proof search for a type isomorphism, and the product automaton construction of
Kozen et al. [79] as search for the coercion embedding a subtype into another type.
Di Cosmo et al. [35] provide a coinductive characterization of recursive subtyping
with associative-commutative products, but it is not a proper axiomatization since it
appeals directly to bisimilarity.7 Recursive type isomorphisms have also been stud-
ied by Abadi and Fiore [7], Fiore [38, 39] and have been used for stub generation

6 Here, “declarative” and “algorithmic” are used in the same sense as in Benjamin Pierce’s book Types
and Programming Languages, MIT Press.

7 Bisimilarity is coinductively defined (that is, as a greatest fixed point), but not necessarily finitarily as
required in an ordinary (recursive) axiomatization.

76 regular expression containment

[15].

The (finitary) coinduction rule in its most general form is

Γ ,P $ P

Γ $ P It requires a
side condition for soundness, which is usually specific to the syntax of the formulae
P and the particular logical system at hand. Numerous syntactic variations may
be possible, and care must be applied to retain soundness; e.g. by not allowing a
transitivity rule [47]. This work represents the end of a quest for a general semantic
side condition, at least for containment formulae: Interpret a proof of containment
computationally as a function, and let the side condition be that the conclusion
(now with explicit proof object) under this interpretation be (hereditarily) total. For
regular expression containment, hereditary totality turns out to be undecidable,
but it justifies the soundness of our side conditions S2 and S4, which each yield
sound and complete axiomatizations of regular expression containment. Their dis-
junction is expressive enough to facilitate a compositional encoding of derivations
in Salomaa’s, Kozen’s and Grabmayer’s axiomatizations.

Brandt and Henglein [23, Section 4.3] discuss how the finitary coinduction rule
can be understood as a rule for finding a finite set of formulae that are intrinsically
consistent. Intuitively this corresponds to constructing proofs of such formulae
that are finite, but may be circular: they may contain occurrences of formulae
to be proved as assumptions. This is also the essence of circular coinduction for
behavioral equivalences [104]. Rosu and Lucanu [105] provide a general proof-
theoretic framework for applying circular coinduction soundly. It allows marking
certain equations as frozen to prevent them from being applied prematurely, which
would lead to unsound conclusions. Our approach is fundamentally different in the
following sense: We allow circular equations without any restriction. An equation
is interpreted as a pair of potentially partial functions, whose definition depends
on the particular (circular) proof of the equation. An equation is valid (sound),
however, only if the two functions making up its computational interpretation are
total.

Our regular-expression specific bit representation of (parse trees of) strings
corresponds to composing regular expression parsing with the flattening function
of Jansson and Jeuring [68], who attribute the technique to work in the 80s on
text compression with syntactic source information models (see references in their
paper). Bit coding captures the idea that only choices made – the tags of sum
types – need to be encoded, which is also the key idea of oracle-based coding
in proof-carrying code [89]. Our direct compilation of containment proofs to bit
manipulation functions appears to be novel, however. It should be noted that
compaction by bit coding is orthogonal to statistical text data compression. As we
have illustrated, combining them may yield significantly shorter bit strings than
either technique by itself.

Type- and coercion-theoretic techniques appear to be applicable to regular expres-

2.5 discussion 77

sion types [63, 64, 93, 113] and other nonregular extensions, notably context-free
languages.8 This remains to be investigated thoroughly, however. Note that regular
expression types are a proper extension of regular expressions as types.

There are also numerous practically motivated topics to investigate: Inference of
regular type containments and search for practically efficient coercions implement-
ing them; disambiguation of regular expressions by annotating them; instrumenting
automata constructions for fast input processing that yields parse trees; and more.
We hope that this may lead the way to putting logic and computer science into
a new generation of expressive, generally applicable high-performance regular
expression processing tools.

acknowledgements

We would like to thank the anonymous reviewers for their comprehensive critical
and constructive comments, and for detailed recommendations for improvement.
Any remaining problems are solely the authors’ responsibility. The alphabetically
first author is grateful to Eijiro Sumii, Yasuhiko Minamide, Naoki Kobayashi,
and Atsushi Igarashi for jointly solving the question of decidability of hereditary
totality (Theorem 29). We would like to thank Dexter Kozen for sharing many
insights on Kleene Algebras as part of a mini-course held at DIKU, as well as
for ideas and suggestions for the present–and for further–work. Thanks also to
Alexandra Silva for explaining and commenting her work on Kleene coalgebras and
its relation to regular expressions. Finally we would like to thank the participants
of our graduate course “Topics in Programming Languages: Theory and Practice
of Regular Expressions”, held at DIKU in Spring 2010, for exploring some of the
applications of regular expressions as types.

8 Completeness is out of the question, of course, since context-free grammar containment is not
recursively enumerable.

3
B I T- C O D E D R E G U L A R E X P R E S S I O N PA R S I N G

Authors:
Fritz Henglein - University of Copenhagen,
Lasse Nielsen - University of Copenhagen

Presented at:
LATA 2011 – 5th International Conference on Language and Automata

Theory and Applications

79

Regular expression parsing is the problem of producing a parse tree of a string
for a given regular expression. We show that a compact bit representation of a
parse tree can be produced efficiently, by simplifying the algorithms of Dubé and
Feeley, and Frish and Cardelli to emit the bits of the bit representation without
explicitly materializing the parse tree itself. Automata minimization is important
for the efficiency of the automata based algorithms. The generated transducers
can be minimized using an adaptation of the algorithm by Mohri, which after a
transformation of the input labels applies the DFA minimization algorithm. What
happens when the DFA minimization algorithm is applied without the preceding
transformation? Examples show the result is not minimal, however we prove the
result to be a minimal transducer under a stronger equivalence. This provides a
semantic description of the result, and suggests the result to be close to minimal.
We have implemented the parsing algorithms and the transducer minimizations,
gauged the parsing performance as well as the effects of the two minimizations.

82 bit-coded regular expression parsing

3.1 introduction

A regular expression over finite alphabet Σ, as introduced by Kleene [72], is a formal
expression generated by the regular tree grammar

E, F ::= 0 | 1 | a | E+ F | E� F | E�

where a P Σ, and �, � and + have decreasing precedence. (In concrete syntax, we
may omit � and write | instead of +.) Informally, we talk about a regular expression
matching a string, but what exactly does that mean?

In classical theoretical computer science, regular expression matching is the
problem of deciding whether a string belongs to the regular language denoted by
a regular expression; that is, it is membership testing [18]. In this sense, abdabc
matches ((ab)(c|d)|(abc))*, but abdabb does not. This is captured in the lan-
guage interpretation for regular expressions in Figure 28.

In programming, however, membership testing is rarely good enough: We do
not only want a yes/no answer, we also want to obtain proper matches of sub-
strings against the subexpressions of a regular expression so as to extract parts
of the input for further processing. In a Perl Compatible Regular Expression (PCRE)1

matcher, for example, matching abdabc against E = ((ab)(c|d)|(abc))* yields
a substring match for each of the 4 parenthesized subexpressions (“groups”):
They match abc,ab, c, and ε (the empty string), respectively. If we use a POSIX
matcher [37] instead, we get abc, ε, ε,abc, however. The reason for the difference
is that ((ab)(c|d)|(abc))* is ambiguous: the string abc can match the left or the
right alternative of (ab)(c|d)|(abc), and returning substring matches makes this
difference observable.

A limitation of Perl- and POSIX-style matching is that we only get at most one
match for each group in a regular expression. This is why only abc is returned, the
last substring of abdabc matching the group ((ab)(c|d)|(abc)) in the regular ex-
pression above. Intuitively, we might expect to get the list of all matches [abd,abc].
This is possible with regular expression types [64]: Each group in a regular expression
can be named by a variable, and the output may contain multiple matches for the
same variable. For a variable under two Kleene stars, however, we cannot discern
the matches belonging to different level-1 Kleene-star groups.

An even more refined notion of matching is thus regular expression parsing: Re-
turning a parse tree of the input string under the regular expression read as a
grammar. Automata-theoretic techniques, which exploit equivalence of regular ex-
pressions under their language interpretation, typically change the grammatical
structure of matched strings and are thus not directly applicable. Only recently
have linear-time2 regular expression parsing algorithms been devised [36, 46].

1 See http://www.pcre.org.
2 This is the data complexity; that is for a fixed regular expression, whose size is considered constant.

3.2 regular expressions as types 83

Figure 28 The language interpreation of regular expressions

L[[0]] = H L[[E+ F]] = L[[E]]YL[[F]]

L[[1]] = tεu L[[E� F]] = L[[E]]L[[F]]

L[[a]] = tau L[[E�]] = t
�
i¥0L[[E]]

i

where ε is the empty string, S T = ts t | s P S^ t P Tu, and S0 = tεu,Si+1 = SSi.

In this paper we show how to generate a compact bit-coded representation of a
parse tree highly efficiently, without explicitly constructing the parse tree first. A
bit coding can be thought of as an oracle directing the expansion of a grammar
– here we only consider regular expressions – to a particular string. Bit codings
are interesting in their own right since they are typically not only smaller than the
parse tree, but also smaller than the string being parsed and can be combined with
other techniques for improved text compression [27, 32].

In Section 3.2 we recall that parse trees can be identified with the elements of
regular expressions interpreted as types, and in Section 3.3 we describe bit codings
and conversions to and from parse trees. Section 3.4 presents our algorithms for
generating bit coded parse trees. These are empirically evaluated in Section 3.5.
In Section 3.6 we describe how the generated automatons can be reduced in two
different ways. Both algorithms are then proved to produce a minimal transducer
but under two different equivalences. Section 3.7 empirically evaluates the pre-
sented minimizations and their effects on the automaton based implementations.
Section 3.8 summarizes our conclusions.

3.2 regular expressions as types

Parse trees for regular expressions can be formalized as ad-hoc data structures [22,
36], representing exactly how the string can be expressed in the regular expression.
This means that both membership testing, substring groups and regular expression
types can be found by filtering away the extra information in the parse tree.
Interestingly, parse trees also arise completely naturally by interpreting regular
expressions as types [46, 56]; see Figure 29. For example, the type interpretation
of regular expression ((ab)(c|d)|(abc))� is ((tau � tbu)� (tcu+ tdu) + tau � (tbu �

tcu)) list. We call elements of a type values; e.g., p1 = [inl ((a,b), inrd), inr (a, (b, c))]
and p2 = [inl ((a,b), inrd), inl ((a,b), inl c)] are different elements of ((tau� tbu)�
(tcu + tdu) + tau � (tbu � tcu)) list, and thus represent different parse trees for
regular expression ((ab)(c|d)|(abc))�.

We can flatten (unparse) any value to a string by removing the tree structure.

84 bit-coded regular expression parsing

Figure 29 The type interpreation of regular expressions

T[[0]] = H T[[E+ F]] = T[[E]] + T[[F]]

T[[1]] = t()u T[[E� F]] = T[[E]]� T[[F]]

T[[a]] = tau T[[E�]] = T[[E]] list
where () is distinct from all alphabet symbols,

S+ T = tinl x | x P Su Y tinry | y P Tu is the disjoint union,
S� T = t(x,y) | x P S,y P Tu the Cartesian product of S and T , and

S list = t[v1, . . . , vn] | vi P Su the finite lists over S.

Definition 41. The flattening function flat(.) from values to strings is defined as follows:

flat(()) = ε flat(a) = a

flat(inl v) = flat(v) flat(inrw) = flat(w)

flat((v,w)) = flat(v)flat(w) flat(fold v) = flat(v)

Flattening the type interpretation of a regular expression yields its language
interpretation:

Theorem 42. L[[E]] = tflat(v) | v P T[[E]]u

A regular expression is ambiguous if and only if its type interpretation contains
two distinct values that flatten to the same string. With p1,p2 as above, since
flat(p1) = flat(p2) = abdabc, this shows that ((ab)(c|d)|(abc))� is grammatically
ambiguous.

3.3 bit-coded parse trees

The description of bit coding in this section is an adaptation from Henglein and
Nielsen [56]. Bit coding for more general types than the type interpretation of
regular expressions is well-known [69]. It has been applied to certain context-free
grammars [27], but its use in this paper for efficient regular expression parsing
seems to be new.

A bit-coded parse tree is a bit sequence representing a parse tree for a given regular
expression. Intuitively, bit coding factors a parse tree p into its static part, the
regular expression E it is a member of, and its dynamic part, a bit sequence that
uniquely identifies p as a particular element of E. The basic idea is that the bit
sequence serves as an oracle for the alternatives that must be taken to expand a
regular expression into a particular string.

Consider, for example, the values p1 = [inl ((a,b), inrd), inr (a, (b, c))] and p2 =
[inl ((a,b), inrd), inl ((a,b), inl c)] from Section 3.2, which represent distinct parse

3.4 parsing algorithms 85

Figure 30 Type-directed encoding function from syntax trees to bit sequences

code(() : 1) = ε

code(a : a) = ε

code(inl v : E+ F) = 0 code(v : E)

code(inrw : E+ F) = 1 code(w : F)

code((v,w) : E� F) = code(v : E) code(w : F)

code([v1, . . . , vn] : E�) = 0 code(v1 : E) . . . 0 code(vn : E) 1

trees of abdabc for regular expression ((ab)(c|d)|(abc))*. The bit coding arises
from throwing away everything in the parse tree except the list and the tag con-
structors, which yields [inl inr , inr]. We code inl by 0 and inr by 1, which gives us
[01, 1]. Finally we code the list itself: Each element is prefixed by 0, and the list is
terminated by 1. The resulting bit coding is b1 = 001 01 1 (whitespace added for
readability). Similarly, the bit coding of p2 is b2 = 001 000 1. More compact codings
for lists are possible by generalizing regular expressions to tail-recursive µ-terms
[56]. We stick to the given coding of lists here, however, since the focus of this paper
is on constructing the bit codings, not their effect on text compression.

Figures 30 and 31 define regular-expression directed linear-time coding and
decoding functions from parse trees to their bit codings and back:

Theorem 43. If v P T[[E]] then decode(code(v : E) : E) = v

Proof: By structural induction on v.

Note that bit codings are only meaningful in the context of a regular expression,
because the same bit sequence may represent different strings for different regular
expressions, and may be invalid for other regular expressions.

Bit codings are not only more compact than parse trees. As we shall see, they
are also more suitable for automaton output, as it is not necessary to generate list
structure, pairing or even the alphabet symbols occurring in a parse tree.

3.4 parsing algorithms

We present two bit coding parsing algorithms in this section. The first can be
understood as a simplification of Dubé and Feeley’s [36] DFA-generation algorithm,
producing bit codings instead of explicit parse tree. We also show that Frisch and
Cardelli’s [46] algorithm can be straightforwardly modified to produce bit codings.

86 bit-coded regular expression parsing

Figure 31 Type-directed decoding function from bit sequences to syntax trees

decode 1(d : 1) = ((),d)

decode 1(d : a) = (a,d)

decode 1(0d : E+ F) = let (v,d 1) = decode 1(d : E)

in (inl v,d 1)

decode 1(1d : E+ F) = let (w,d 1) = decode 1(d : F)

in (inrw,d 1)

decode 1(d : E� F) = let (v,d 1) = decode 1(d : E)

(w,d2) = decode 1(d 1 : F)

in ((v,w),d2)

decode 1(0d : E�) = let (v1,d 1) = decode 1(d : E)

(~v,d2) = decode 1(d 1 : E�)

in (v1 :: ~v,d 1)

decode 1(1d : E�) = ([],d)

decode(d : E) = = let (w,d 1) = decode 1(d : E)

in ifd 1 = ε thenw else error

3.4.1 Dubé/Feeley-style parsing

Our DFA-based algorithm performs the following steps: Given regular expression
E and input string s,

1. generate an enhanced Thompson-style NFA with output actions (finite state
transducer);

2. use the subset construction to produce an enhanced DFA with additional
information on edges to capture the output actions from the NFA;

3. use the enhanced DFA as a regular DFA on s;

• if it rejects terminate with error (no parse tree);

• if it accepts, return the path in the DFA induced by the input string;

4. combine, in reverse order of the path, the output information on each edge
traversed to construct the bit coding of a parse tree.

The steps are described in more detail below.

3.4 parsing algorithms 87

Enhanced NFA generation

The left column of Figure 32 shows Thompson-style NFA generation. We enhance
it by adding single bit outputs to the outedges of those states that have two
outgoing ε-transitions, shown in the right column. The output bits can be thought
of indicators for an agent traversing the NFA: 0 means turn left, 1 means turn right.
The other edges carry no output bit since their traversal is forced.

When traversing a path p in an enhanced NFA, the sequence of symbols read is
denoted by read(p), and the sequence of symbols written is denoted by write(p).

Lemma 44 (Soundness and completeness of enhanced NFAs). LetNE be the enhanced
NFA for regular expression E according to Figure 32 (right). Then for each s P Σ� we have
tv|v P T[[E]]^ flat(v) = su =
tdecode(write(p) : E) | p is a path in NE from initial state to final state such that
read(p) = su.

Proof: By structural induction on E.

In other words, an enhanced NFA generates exactly the bit codings of the parse
trees of the strings it accepts. Observe furthermore that no two distinct paths from
initial to final state have the same output bits. This means that a bit coding uniquely
determines a particular path from initial to final state, and vice versa.

Dubé and Feeley [36] also instrument Thompson-style NFAs, but with more out-
put symbols on more edges so as to be able to generate an external representation
of a parse tree. Figure 33 shows their enhanced NFA for E = a� (b+ c)� � a on
the left. Our corresponding enhanced NFA is shown on the right.

Enhanced subset construction

During subset construction additional information is computed:

1. A map init from the NFA states q in the initial DFA state to an output init(q).
The output init(q) must be write(p) for some path p from the initial NFA state
to q where read(p) = ε. These paths are traversed when finding the ε-closure
of the initial NFA state, which is how the initial DFA state is constructed in
the subset construction, and is thus easy to generate.

2. A map outpute for each edge e in the DFA, that maps each NFA state q2 in
the destination DFA state to a pair (q1,o) of an NFA state q1 in the source
DFA state, and an output o. The output o must be write(p) for some path p
from q1 to q2 where read(p) is the input of the DFA edge e. These paths are
traversed, when the destination state of the edge is computed, and are thus
simple to generate.

88 bit-coded regular expression parsing

The DFA for the NFA from Fig. 33 (right) is shown in Fig. 34, and the result of
adding the information described above is shown in Fig. 35.

The additional information captures basically the same information as in Dubé
and Feeley’s DFA construction, but it stores the additional information directly in
the DFA edges, where Dubé and Feeley use an external 3-dimensional table. Most
importantly, the additional information we need to store is reduced, since we only
generate bit codings, not explicit parse trees.

Bit code construction

After accepting s = a1 . . . an we have a path p = [A0,A1, � � � ,An] in the enhanced
DFA, where A0, . . . ,An are DFA states, each consisting of a set of NFA states, and
A0 is the initial state and An contains the final NFA state qf.

We construct the bit code of a parse tree for s by calling write(p,qf) where write
traverses p from right to left as follows:

write([A0],q) = init(q)

write([A0,A1, . . . ,Ak�1,Ak],q) = write([A0,A1, . . . ,Ak�1],q 1) � b 1

where (q 1,b 1) = outputAk�1ÑAk(q)

Lemma 45 (Bit coding preservation). Let DE be the enhanced DFA generated from the
enhanced NFA NE for E. If p is a path from the initial state in D to a state containing the
NFA state q and if write(p,q) = b
then there is a path p 1 inNE from the initial state inNE to the state q such that read(p) =
read(p 1) and write(p,q) = write(p 1).

Proof: Induction on the number of steps in p.

We can now conclude that the bit sequence found represents a parse tree for the
input string.

Theorem 46 (Correctness of DFA algorithm).
If DE is an enhanced DFA generated from an enhanced NFA NE for regular expression E,
and p is a path from the initial state to a final state in DE, and qf is the final state of NE
then read(p) = flat(decode(write(p,qf) : E)).

Proof: This follows from first applying Lemma 45 and then Lemma 44.

Once the DFA has been generated, this method results in very efficient regular
expression parsing. The DFA traversal takes time Θ(|s|), and the bit code genera-
tion takes time Θ(|s|+ |b|), where |b| is the length of the output bit sequence. This
means the total run time complexity of parsing is Θ(|s|+ |b|) which is (sequentially)
optimal, since the entire string must be read, and the entire bit sequence must be
written.

3.4 parsing algorithms 89

DFA steps

Step q Symbol new q b

3Ñ 2 9 a 8 ""

4Ñ 3 8 b 3 "1"

3Ñ 4 3 c 4 "00"

1Ñ 3 4 b 3 "01"

0Ñ 1 3 a 0 "00"

Example. Consider the enhanced DFA for
the regular expression a(b+c)�a in Fig. 35.
If we use it to accept the string abcba,
then we get the path p = 0 Ñ 1 Ñ 3 Ñ

4 Ñ 3 Ñ 2. Tracing the path backwards,
keeping track of the output bit-sequences
b and NFA states q we get the steps in the
table on the right. Since init0 = "" we get
the bit code b = "" � "00" � "01" � "00" � "1" �
"" = "0001001".

We can verify that the DFA parsing algorithm has given us a correct bit coding
since flat(decode("0001001" : a(b+ c)�a)) = abcba.

3.4.2 Frisch/Cardelli-style parsing

Instead of building a Thompson-style NFA from the regular expressions, Frisch
and Cardelli [46] build an NFA with one node for each position in the regular
expression, with the final state as the only additional node. The regular expression
positions are identified by the path used to reach the position. The positions λend(E)

in a regular expression E are defined as lists of choices (the choices are fst and
snd for sequence, lft and rgt for sum and star for �). E.l is used to denote the
subexpression of E found by following the path l. The transitions δ(E) in the NFA
of a regular expression E are defined using a successor relation succ on the paths.

The NFA is used to generate a table Q(l, i), which maps each position l P λend(E)

and input string position i to true, if E.l accepts the ith suffix of s and false

otherwise.
The table Q can be constructed by starting with Q(l, i) = false for all l P λend(E)

and i = 1 . . . |s|, and calling SetPrefix(Q, end, |s|), which updates Q as defined
below.

SetPrefix(Q, l, i) = if Q(l, i) then return;

Q(l, i) := true;

for (l 1, ε, l) P δ(E) do SetPrefix(Q, l 1, i);

if i ¡ 0 then for (l 1, s[i], l) P δ(E) do SetPrefix(Q, l 1, i� 1);

The run time cost and memory consumption of computing Q is asymptotically
bounded by the size of Q, which is in Θ(|s| � |E|).

After Q is built, it is easy to check whether s matches the regular expression E,
simply by looking up Q([], 0). We modify Frisch and Cardelli’s build function to
construct a bit coding representing the greedy leftmost (or first and greedy [117])
parse tree for s, if s matches E, as follows (notice that l :: x means appending x after
l):

90 bit-coded regular expression parsing

build(l, i) = case E.l of

a: return (ε, i+ 1)

1: return (ε, i)

E1 � E2: let (b1, j) = build(l :: fst, i)

in let (b2,k) = build(l :: snd, j) in return (b1b2,k);

E1 + E2: if Q(l :: lft, i)

then let (b1, j) = build(l :: fst, i) in retuen (0b1, j)

else let (b2, j) = build(l :: snd, i) in return (1b2, j);

E�1: if Q(l :: star, i)

then let (b1, j) = build(l :: star, i)

in let (b2,k) = build(l, j) in return (0b1b2,k)

else return (1, j);

The run time cost and memory consumption of build([], 0) is asymptotically bound-
ed by the number of cells in Q, which is in Θ(|E| � |s|) and which is therefore the
time complexity and memory consumption of the entire algorithm.

Figure 32 NFA generation schema

E NFA Enhanced NFA

0 0 1 0 1

1 0 0

a 0 1
a

0 1

a/ε

E1 � E2
0 1 2

E F
0 1 2

E F

E+ F
0

1

2

3

4

5

E1

E2 0

1

2

3

4

5

ε/1

ε/0

E1

E2

ε/ε

ε/ε

E1
� 0

1 2

3

E1

0

1 2

3

ε/0
ε/1

E1

ε/ε

Figure 33 Enhanced NFAs for a(b+ c)�a

0 1

2

3

4

5

6

7

8 9
a/a ε/[]

ε/[b/b

c/c
ε/,

ε/]

a/a 0 1

2

3

4

5

6

7

8 9
a/ε ε/1

ε/0

ε/0

ε/1

b/ε

c/ε
ε/ε

ε/ε

ε/ε

a/ε

3.5 empirical evaluation of algorithms 91

Figure 34 DFA for a(b+ c)�a

0: 0 1: 1,2,3,4,8 2: x9y

3: 1,2,3,4,5,7,8

4: 1,2,3,4,6,7,8

a

a

b

c

a

b

c ab

c

3.5 empirical evaluation of algorithms

We have implemented the algorithms described in Section 3.4 as a C++ library [92]
and performed a series of performance tests on a PC with a 2.50GHz Intel Core2

Duo CPU and 4Gb of memory, running Ubuntu 10.4. We test four different parsing
methods. NFA based backtracking (backtracking), implemented by a depth-first
search for an accepting path in our enhanced Thompson-style NFA. FRCA is the
algorithm based on Frisch and Cardelli from Section 3.4.2. DFA is the algorithm
based on Dubé and Feeley from Section 3.4.1. DFASIM is the same algorithm
as DFA, but where the nodes and edges of the DFA are not precomputed, but
generated dynamically by need.

3.5.1 Backtracking worst case: (an : (a+ 1)nan)

The regular expression is (a+ 1)nan, where we use the notation En to represent
E � � � � � E (n copies). This is a well-known example [34], which captures the
problematic cases for backtracking.3 The results of matching an (denoting n as) to
(a+ 1)n � an are in the two leftmost graphs below.

When parsing a string with n as, the backtracking algorithm traverses 2n different
paths before eventually finding the match. The cost of generating the DFA is Θ(n2)
(2 �n nodes containing n NFA-nodes on average). Since only half of the DFA-nodes
are used, DFASIM is faster than generating the whole DFA, but the run time

3 If a fixed regular expression is preferred, then (a+ a)� � b or (a� � a)� � b provokes the same
behavior.

92 bit-coded regular expression parsing

Figure 35 Enhanced DFA for a(b+ c)�a

complexity is still Θ(n2). The time used for FRCA is Θ(n), since there is exactly
one suffix that can be parsed from each position in the regular expression. The
reason FRCA performs much better than the other algorithms in this example is
that the example was designed to be hard to parse from the left to right, and FRCA
processes the string in its first phase from right to left. If we change the regular
expression to an(1+ a)n, it becomes hard to process from right to left, as shown in
the rightmost graph above. It is generally advantageous to process a string in the
“more deterministic” direction of the regular expression.

3.5.2 DFA worst case (am+1 : (a+ b)�a(a+ b)n)

The following is a worst-case scenario for the DFA based algorithm, and a best-case
scenario for the FRCA and backtracking algorithms. The regular expression is
(a+ b)�a(a+ b)n, and the string is am+1.

The two leftmost graphs below show the execution time when n = m, and the
right graph shows the execution time when n = 13. When n is fixed to 13, the
runtime of both FRCA, DFASIM and DFA are linear, but even though DFA has a
large initialization time for building the DFA, FRCA uses more time for large m,
because it uses more time per character.

The DFA will have O(2n) DFA-nodes. This causes the DFA algorithm to have a run
time complexity of Θ(m+ n � 2n). This exponential behaviour is avoided by the

3.5 empirical evaluation of algorithms 93

DFASIM algorithm, which only builds as many states as needed for the particular
input string, which results in a Θ(m �n) run time.

3.5.3 Practical examples

We have tested 9 of the 10 examples of “real world” regular expressions from
Veanes et al. [118] to compare the performance of each algorithm. (Their example
nr. 3 is uninteresting for performance testing since it only accepts strings of a
bounded length).

Examples 1,4,5,7,8,9,10 are different ways of expressing the language of email
addresses, while Example 2 defines the language of dollar-amounts, and Example
6 defines the language of floating point values.

94 bit-coded regular expression parsing

The DFA and Precompiled DFA (a staged version of DFA) graphs are missing in
the four last examples. This is because the DFA generation runs out of memory.
The two best algorithms for these tests are FRCA and DFASIM, with DFASIM
being faster by a large factor (at least 10) in all cases. Apart from the direction of
processing NFA-nodes in their respective first passes, the key difference between
DFASIM and FRCA is that DFASIM memoizes and reuses DFA-states at multiple
positions in the input string, whereas FRCA essentially produces what amounts
to a separate DFA-state for each position in the input string. In comparison to
FRCA, the DFA-state memoization not only saves space, but also computation time
whenever the same transition is traversed more than once.

3.6 transducer reduction 95

3.6 transducer reduction

Just like for NFAs and DFAs, it is advantageous to minimize the enhanced automa-
tons for space and time optimization. The usual approach is to generate the DFA
and then apply a minimization algorithm to obtain the DFA with least possible
nodes. The process of first generating the large DFA before minimization is time
and space consuming, and in some cases even unfeasible because the unreduced
DFA is so large that it cannot be represented in memory, even though the reduced
DFA can. This approach cannot be applied to the enhanced DFAs, because the DFA
minimization algorithm works by finding equivalent states which are then merged,
and the merging of equivalent states is not possible when the DFA edges have
output maps, because the edges that are merged may have different maps, and
there is no known way to safely merge the different maps. Therefore we focus on
the reduction of the generated transducers, because a transducer with less redun-
dancy will result in a smaller enhanced DFA, since the states that differ only in
the redundant transducer nodes will not be separated, and because this reduction
is performed before the enhanced DFA generation, the unreduced enhanced DFA
never has to be represented. Transducer minimization is undecidable in general,
but can be solved in special cases. Mohri [87] created an algorithm to minimize
sequential transducers, and Breslauer [24] used suffix trees to improve the runtime
of the algorithm. A transducer is sequential when its projection as an input au-
tomaton is an ε-free DFA. The transducers we generate are similar, because their
projection as output-automatons are DFAs but not ε-free. We adapt the algorithm
by Mohri to minimize the generated transducers. The difference between being
input and output deterministic is unimportant as the input and output can be
switched before and after minimization, equivalently the use of input and output
labels can be switched inside the algorithm, and this is what we have done. The
primary modification of the algorithm is thus the elimination of ε-output edges
prior to using the original minimization algorithm. The original minimization
algorithm has two steps, where the first is a transformation of the input edges
followed by an adaptation of the DFA minimization algorithm [8, p.141-144] to
output-deterministic transducers. What happens when the first step is omitted, and
the adapted DFA minimization algorithm is applied directly? Examples show that
the result is not minimal, but we prove that the result can be characterized as a
minimal equivalent transducer under a stronger equivalence.

3.6.1 Transducer semantics

We start by giving the standard definitions of transducers, paths and some defini-
tions of path traversals. This is used to define two different semantics for transduc-
ers.

96 bit-coded regular expression parsing

Definition 47 (Transducer).
A transducer T is a tuple T = (Q,Σi,Σo,qi,Qf, t) whereQ is the finite set of states, Σi is
the input alphabet, Σo is the output alphabet, qi P Q is the initial (start) state, Qf � Q is
the set of final states and t � Q� (Σi list)� (Σo Z tεu)�Q is the transition relation.

We assume that the input and output alphabets are non overlapping, that is Σi X Σo =
H.

Definition 48 (Path and traversals).
If T = (Q,Σi,Σo,qi,Qf, t) then a path p is a list of edges from t where the endnode for
p[i] is the startnode for p[i+ 1] for i = 1, 2, . . . , |p| � 1. If the startnode of p[1] is q1 and
the endnode of p[|p|] is q2 then we say that p is a path in T from q1 to q2. If p is a path
in T we define tri(p) in Σi list as the input read when traversing p by

tri([]) = []

tri((_, is, _, _) :: p 1) = is@tri(p 1)

If p is a path in T we define tro(p) in Σo list as the output written when traversing p by

tro([]) = []

tro((_, _, ε, _) :: p 1) = tro(p 1)

tro((_, _,o, _) :: p 1) = o :: tro(p 1)

If p is a path in T we define troi(p) in Σi ZΣo list as the merging of the output written
and the input read when traversing p by

troi([]) = []

troi((_, is,o, _) :: p 1) = o :: is@tro(p 1)

troi((_, is, ε, _) :: p 1) = is@tro(p 1)

Transducers can be used to translate. Given an input string, a path accepting the
input string is found, and the output produced when traversing that path is the
result of the translation. For this reason, the standard semantics for transducers is
the input to output relation that is obtained by the described procedure.

Definition 49 (Semantics).
We define LtJTK as the translation relation for the transducer T . We define LoiJTK as
the output-input language accepted by the transducer T , which is obtained by merging
the outputs and inputs traversed by the accepting paths. The formal definitions are given
below

LtJTK = t(tri(p), tro(p)) | p is a path from qi to some qf P Qfu,

LoiJTK = ttroi(p) | p is a path from qi to some qf P Qfu.

3.6 transducer reduction 97

Although transducers are formalised as above, we will continue to use graphs
to describe transducers in an intuitive way. We use the notation for illustrating
input-automatons as graphs, and illustrate the output of transitions on the edge,
separated from the input by a slash (/).
For example, the transducer (t0, 1u, ta,bu, t0, 1u, 0, t1u, t(0, [a], 0, 0), (0, [b], 1, 1)u)
can be illustrated as below.

0 1

a/0
b/1

In stead of the list representation of inputs, we simply write the input string, and
we use the ε symbol for the empty input.

We will now generate an example transducer to explain the properties that we
will be relying on in the generated transducers.

Example 50. Consider the regular expression b�ba�|bb�a�. By applying the method from
Section 3.4.1, the following transducer is obtained.

0

1 2 3 4

5 67 8

9 10 11 12

13 1415 16

17

ε/0

ε/1

ε/0

ε/1

b/ε ε/0

ε/1
ε/ε

a/ε

ε/ε

b/ε

ε/ε

b/ε ε/0

ε/1

ε/0

ε/1

ε/ε

a/ε

ε/ε

b/ε

ε/ε

The found transducer is deterministic in the output. That is, each node with more that one
outgoing edge, has different output symbols on each edge and there are no edges from the
final node. This means that for each sequence of output symbols, there is at most one path
from the initial node to a final node which produces the given sequence of outputs. This is
true for all transducers generated in this way.

Definition 51 (Output-deterministic).
A transducer T = (Q,Σi,Σo,qi,Qf, t) is output-deterministic if the following two prop-
erties are fulfilled.

• If (q1, is1, x,q2) and (q1, is2,y,q3) are two different edges in t
then x � ε and y � ε and x � y.

• If (q1, is,o,q2) is in t then q1 R Qf.

98 bit-coded regular expression parsing

The generated transducers are always output-deterministic because the fragments from
Figure 32 used to compose the transducers are output deterministic, and therefore they
can be reduced using a method similar to DFA-minimization, as we will describe in the
following section. Before describing the reduction algorithm, we will define equivalence
relations based on the given semantics, which are used to describe the reduced transducers
semantically.

Definition 52. If T and T 1 are transducers then we write T =t T
1 iff LtJTK = LtJT 1K.

This means that =t is an equality based on the translations of the transducers.

Definition 53. If T and T 1 are transducers then we write T =oi T
1 iff LoiJTK = LoiJT 1K.

Since the input and output languages are disjunct, each element in LoiJTK is
canonically mapped to elements in LtJTK, and thus LtJTK can be found from
LoiJTK. Therefore if T =oi T

1 then T =t T
1, which means that =oi ensures that the

translation-semantics is preserved.

3.6.2 Reduction algorithm

The reduction algorithm presented below is an adaptation of Mohri’s minimization
algorithm for sequential transducers to output deterministic transducers. The
algorithm uses the following steps

1 Remove states that are dead or unreachable

2 Make compact (eliminate ε-output edges)

3 Make prefix form (transform input labels)

4.a Divide the nodes into two (unmarked) groups: Qf and QzQf

4.b Pick any unmarked group and call it G. If G is consistent, then it is marked,
otherwise G is split into its maximal consistent sub-groups, replacing G and
all groups are unmarked.

5 If all groups are marked, all nodes that are in the same group are equivalent,
and are merged to a single node. Duplicate edges are removed.

The steps 4.a, 4.b and 5 corresponds to the well known DFA-minimization algorithm
[8, p.141-144].

Step 2 relies on the notion of compact transducers. We will now define what we
mean by a compact transducer, and describe how such a transducer is obtained.

Definition 54 (Compact Transducer). A transducer T = (Q,Σi,Σo,qi,Qf, t) is com-
pact if it has no ε/ε edges, only the initial node can have outgoing edges with ε-output,
and if it does it has no incoming edges. That is if (q1, is, ε,q2) P t then is � [], q1 = qi
and @(q 11, is 1, x 1,q 12) P t.q

1
2 � qi.

3.6 transducer reduction 99

The first condition is ensured by removing ε/ε edges by rewriting

y z
ε/ε

to z

and removing the node y by redirecting all edges with destination y to z. If y is the
initial node qi then qi is reassigned to z. y cannot have multiple outgoing edges,
as the transducer is assumed to be output-deterministic, and the rewriting does
not break output-determinism or change the LoiJTK semantics.

The second condition is ensured by rewriting subgraphs of the form

x1

...

xk

y z

is1/x1

isk/xk

is 1/ε
to

x1

...

xk

z

is1@is 1/x1

isk@is 1/xk

and removing the node y when y is not the initial node qi. Should y be the initial
node qi then the edges from the x-nodes are altered, but the y-node and the edge
from the y-node are preserved. Again y cannot have multiple outgoing edges, as
the transducer is assumed to be output-deterministic. This way we can ensure
that only the initial node can have outgoing edges with ε-output, and if this is
the case, the initial node has no incoming edges. This rewriting does not break
output-determinism, or change the LoiJTK semantics. In case the initial node has
no input-prefix – as assumed by Mohri’s algorithm [87] – even the initial node
will have no ε-output edges, and the resulting transducer will be entirely free of
ε-output edges.

Step 3 uses the prefix form, which requires each node in the transducer to have
the empty input-prefix, as defined below.

Definition 55 (Input-prefix). Let T = (Q,Σi,Σo,qi,Qf, t) be any transducer, and
q P Q be a live node in T . The input-prefix of q in T is then the longest common prefix of
the set of strings ttri(p) | p is a path in T from q to a final node f P Qfu.

The input-prefix for each node in a transducer can be found by iteratively
computing

pre(q) =

$&
%
ε if q P Qf

largest common prefix of tis@pre(q 1) | (q, is,o,q 1) P tu otherwise

until a fixpoint is reached. A more efficient algorithm is described in [24]. When
the input-prefixes are found for each node, the prefix form of the transducer can
be constructed by applying the transformation

(q, is, x,q 1)Ñ (q,pre(q)�1(is@pre(q 1)), x,q 1)

100 bit-coded regular expression parsing

, where s�1(st) = t, to each transition in the transducer. This results in the prefix
form of the transducer, assuming the initial node has the empty prefix. In case
the initial node does not have the empty prefix, a new initial node i 1 has to be
injected along with the transition (i 1,pre(i), ε, i). In this case we cannot be sure the
minimization produces a minimal transducer, but a transducer with at most one
more state than a minimal transducer.

Step 4.b uses the notion of consistent groups. To check if two nodes are consistent,
we check that for each output symbol (and ε) the unique edges from the nodes
with the given output symbol has the destination in the same group, and reads the
same input. We say a group is consistent if all the nodes in the group are pairwise
consistent. This is easily checked by building a table with one row for each node
in the group, one column for each output (including ε), where each cell holds
the group reached and the input read by following the edge from the node. The
group is consistent if all rows are identical, and otherwise the maximal consistent
sub-groups are found by grouping all the nodes with identical rows.

Example 56. To explain the details of the described algorithm, we will apply it to the
transducer from Example 50.

The first step is to eliminate all dead and unreachable states. This does not change the
transducer from Example 50, as it has no dead or unreachable states.

The second step is to make the transducer compact. Applying the described compactifi-
cation method to the transducer from Example 50 results in the following compact trans-
ducer.

0

1 2

3 4

5

ε/0

b/1

b/0
b/1

ε/0

a/1

ε/0
b/1 ε/0a/1

The third step is to produce the prefix form of the transducer, but we will skip this step to
study the consequences.

The first part of the fourth step (4.a) is to create the setQzQf = t0, 1, 2, 3, 4u containing
the non-final nodes, and the set Qf = t5u containing the final nodes.

The fourth step is to check the consistency of the sets and split or mark the sets, until all
sets have been marked as consistent. This in done below.

3.6 transducer reduction 101

G0,1,2,3,4 0 1 ε

0 (G0,1,2,3,4,ε) (G0,1,2,3,4,b) -

1 (G0,1,2,3,4,b) (G0,1,2,3,4,b) -

2 (G5,ε) (G0,1,2,3,4,a) -

3 (G0,1,2,3,4,ε) (G0,1,2,3,4,b) -

4 (G5,ε) (G0,1,2,3,4,a) -

ñ
The group is split into its maximal
consistent subgroups:
G0,3, G1 and G2,4

G0,3 0 1 ε

0 (G1,ε) (G0,3,b) -

3 (G2,4,ε) (G0,3,b) -

ñ
G0,

G3

G2,4 0 1 ε

2 (G5,ε) (G2,4,a) -

4 (G5,ε) (G2,4,a) -

`

G0 0 1 ε

0 (G1,ε) (G3,b) -

` G1 0 1 ε

1 (G2,4,b) (G1,b) -

`

G3 0 1 ε

3 (G2,4,ε) (G3,b) -

` G5 0 1 ε

5 - - -

`

The result shows that nodes 2 and 4 can be merged to a single node, which results in the
following transducer.

0

1

3

2,4 5

ε/0

b/1

b/0

b/1

ε/0b/1

ε/0

a/1

After all this work, we can take joy in the fact, that we have found a much smaller trans-
ducer which expresses the same translation as the original one. However, we have not
found a minimal transducer, as the following is a smaller transducer, representing the
same translation.

0 1 2 3
b/0

b/1

ε/0
b/1

ε/0
a/1

In order to obtain a minimal transducer, we have to realize that the input b on
the edge from node 1 to node 2 can be moved to the edge from node 0 to node 1
without changing the LtJTK semantics, and this is exactly what the skipped step 3

does. After this alteration the nodes 1 and 3 are equivalent and can be merged by

102 bit-coded regular expression parsing

step 4 and 5. It is this kind of reductions that are not found when skipping step 3.
Even though moving the input preserves the LtJTK semantics, it does change the
LoiJTK semantics, because the order between the inputs and outputs are changed.

3.6.3 Reduction correctness

Since step 2 results in an equivalent output-deterministic and ε-output free trans-
ducer, the theorem from [87] concludes that the described algorithm returns a
minimal transducer that is =t-equivalent to the input transducer.

We will now prove that although the algorithm does not return a minimal
transducer that is equivalent under =t when step 3 is skipped, it does return a
minimal transducer that is =oi-equivalent to the input transducer.

The semantic states for a transducer T is the set of suffix-languages of LoiJTK
starting with an output symbol, where the empty language is excluded, but the
full language is included (even if it does not start with an output symbol or it is
the empty language). The definitions for suffix-language and semantic states are
given below.

Definition 57 (L Ó s). For any set of strings L and any string s we define

L Ó s = ts 1 | s@s 1 P Lu

Definition 58 (SJTK). For any transducer T = (Q,Σi,Σo,qi,Qf, t) we define

SJTK = tLoiJTK Ó s | Do P Σo.s P LoiJTK _ s@(o :: s 1) P LoiJTKuzttuu YLoiJTK

The semantic states have a special meaning for output-deterministic transducers,
as it is necessary for them to have at least one node for each semantic state. This
means that the number of nodes in an output-deterministic transducer has the
number of semantic states for its language as a lower bound.

Lemma 59 (Transducer states lower bound). If T = (Q,Σi,Σo,qi,Qf, t) is an output-
deterministic transducer, then |Q| ¥ |SJTK|.

Proof: By generation of an injective function from SJTK to Q. See Appendix B.1.1
for details.

Assume Tc = (Q,Σi,Σo,qi,Qf, t) is a compact transducer, with q1,q2 P Q. We
write q1 � q2 if q1 and q2 are in the same group after step 4. For all q P Q we
consider Tcq = (Q,Σi,Σo,q,qf, t). We can now prove that the merging of nodes in
step 5 is sound and complete in the sense that only nodes with identical languages
are merged, and if nodes have identical languages then they are merged.

Lemma 60 (Soundness of �). If q1 � q2 and s P LoiJTq1K then s P LoiJTcq2K.

3.7 empirical evaluation of reduction 103

Proof: By induction on |s|. See Appendix B.1.2 for details.

Lemma 61 (Completeness of �). If q1 � q2 then LoiJTcq1K � LoiJTcq2K.

Proof: In duction on the iteration when q1 and q2 are separated. See Ap-
pendix B.1.3 for detail.

Now we are ready to prove that the algorithm produces a minimanl transducer.

Theorem 62 (Minimality of result). If T 1 = (Q 1,Σi 1,Σo 1,q 1i,Q
1
f, t

1) is the result of
applying the algorithm to an output-deterministic transducer
T = (Q,Σi,Σo,qi,Qf, t), then T 1 has exactly |SJTK| nodes.

Proof: By combining the previous results. See Appendix B.1.4 for details.

We have now proved that the result of the algorithm without step 3 is a transducer
that is equivalent under =oi, and that the result is minimal under =oi. This means
that only reductions that changes the LoiJTK are missed when step 3 is skipped,
and this suggests the reduced transducers to be close to minimal under =t. In
the following section we test the effect on the transducers and the subsequently
generated enhanced DFAs to observe the effect on space and time consumption.

3.7 empirical evaluation of reduction

We have added an implementation of the minimization algorithms – with and
without step 3 – presented in Section 3.6 to the C++ library with the parser
implementations [92], and used the original test machine to evaluate the effects
of the reduction. The first application is to reduce the memory footprint of all the
automata based implementations, namely DFA and DFASIM, due to the reduction
of the represented automata. In the case of the DFA algorithm, this may render the
algorithm feasible in the practical examples where it failed previously. We have
measured the number of nodes in the generated transducers before and after the
reductions, and the number of states used in the enhanced DFAs generated from
the original transducer and the minimized transducers, for each of the practical
examples [118]. The results are in the Figure 36. As the results show, there is a
drastic reduction in the used number of transducer nodes as well as enhanced
DFA states, and this means that the enhanced DFA construction is now feasible
for all the examples. It is also worth noting that the difference in size between the
reduction with and without step 3 is very small, and in most of the examples the
algorithm without step 3 produces a transducer with one node less than when step
3 is included. This is not a bug, but a result of the assumption of no input-prefix
for the initial node by step 3, that we solve by injecting a new initial node to the
found prefix form of the transducer. This means that the result may have one node

104 bit-coded regular expression parsing

Figure 36 The effects of the minimizations

Test:
NFA NFA-=oi DFA-=t

DFA DFA-=oi DFA-=t

Example #1

6077 203 204

1847 8 9

Example #2

749 147 148

133 13 13

Example #4

2365 358 359

659 12 12

Example #5

2038 194 195

388 6 6

Example #6

342 50 51

89 8 8

Example #7

42185 5373 5304

unknown 280 280

Example #8

20615 4789 4727

unknown 141 141

Example #9

107836 6608 6609

unknown 134 134

Example #10

6125 207 208

unknown 12 13

NFA and DFA holds the size of the unreduced transducer and the enhanced DFA it generates.
NFA-=oi and DFA-=oi holds the size of the =oi-minimized transducer and the enhanced DFA it generates.
NFA-=t and DFA-=t holds the size of the =t-minimized transducer and the enhanced DFA it generates.

more than the minimum, and in these cases the transducer found when skipping
step 3 indeed has one node less and must thus be a minimal transducer (with
respect to =t). We can conclude that both minimizations significantly reduce the
number of nodes in the transducer, and the number of nodes in the subsequently
generated enhanced DFA. The effect on the size of the enhanced DFAs is twofold,
as not only the number of nodes in the enhanced DFA is reduced, but each edge in
the enhanced DFA contains a mapping for each transducer node in the source state,
and as there are fewer transducer nodes, the size of each edge in the enhanced DFA
is also reduced.

Another application is to improve the parsing time of the DFA and DFASIM

3.7 empirical evaluation of reduction 105

algorithms. The DFA algorithm can save time because it may take more time to
generate the DFA from the unreduced transducer, than it does to perform the
reduction and construct a DFA from the result. This is because the DFA generated
from the original transducer may be significantly larger than the DFA generated
from the reduced transducer. The DFA generated from the reduced transducer may
parse more efficiently as well, because it is smaller and thus enjoys better memory
locality. The DFASIM algorithm may become more efficient as well, because even
though it does not generate the full DFA initially, it may have to generate less states
during parsing by using the reduced transducer. The DFA and DFASIM algorithms
have been executed on the practical examples using the transducer reduction, and
the graphs below compare the used time to the execution without using transducer
reduction.

106 bit-coded regular expression parsing

As the results show, the DFA algorithm becomes a lot more efficient by using the
transducer reduction, which means that the time it takes to generate the full DFA
dominates the time it takes to reduce the transducer and generate the DFA for
the reduced transducer. In most examples the DFASIM algorithm is more efficient
without using the reduction. This is probably because only a few of the DFA
states are generated when parsing the example strings, and therefore the gain of
the reduction is dominated by the reduction time. The graphs do show that the
DFASIM algorithm has a slower increase when the string length is increased when
using the reduction, and therefore the DFASIM algorithm using the transducer
reduction may be more efficient for very large strings, as demonstrated by the last
graph where the input size is increased.

3.8 conclusion

We have designed and implemented a number of regular expression parsing al-
gorithms, which produce bit coded representations of parse trees without ever
materializing the parse trees during parsing. Producing bit codings is advanta-
geous since it carries the dual advantage of yielding a compressed parse tree
representation and of speeding its construction. Our DFA simulation algorithm
DFASIM, in the style of Dubé and Feeley [36], and FRCA, a modified version of
the greedy algorithm of Frisch and Cardelli [46], have shown the best asymptotic

3.8 conclusion 107

performance, with DFA simulation beating FRCA on a suite of real world examples.
We have adapted Mohri’s minimization algorithm for sequential transducers to
the output-deterministic transducers generated. We have shown that the minimal
transducer with respect to two differen equivalence relations are found depending
on if step 3 is included in the algorithm. We have also studied the effects of the
minimization algorithms on the sizes of the produced transducers and enhanced
DFAs and the effect on the parsing efficiency. As for the potential for further
improvements, efficient computation of the sub-transducers induced by an input
string (left-to-right or right-to-left or, preferably, something better), and memoized
DFA-state construction appear to be key to obtaining practically improved regular
expression parsing without sacrificing asymptotic scalability.

Part III

S E S S I O N T Y P E S

4
M U LT I PA RT Y S Y M M E T R I C S U M T Y P E S

Authors:
Lasse Nielsen - University of Copenhagen,
Nobuko Yoshida - Imperial College London and

Kohei Honda - Queen Mary University of London

Presented at:
EXPRESS 2010 – 17th International Workshop on Expressiveness in Concur-
rency

111

This paper introduces a new theory of multiparty session types based on sym-
metric sum types, by which we can type non-deterministic orchestration choice
behaviours. While the original branching type in session types can represent a
choice made by a single participant and accepted by others determining how the
session proceeds, the symmetric sum type represents a choice made by agree-
ment among all the participants of a session. Such behaviour can be found in
many practical systems, including collaborative workflow in healthcare systems
for clinical practice guidelines (CPGs). Processes with the symmetric sums can be
embedded into the original branching types using conductor processes. We show
that this type-driven embedding preserves typability, satisfies semantic soundness
and completeness, and meets the encodability criteria [51, 99] adapted to the typed
setting. The theory leads to an efficient implementation of a prototypical tool for
CPGs which automatically translates the original CPG specifications from a repre-
sentation called the Process Matrix to symmetric sum types, type checks programs
and executes them.

114 multiparty symmetric sum types

4.1 introduction

Clinical Practice Guidelines (CPGs) [115] are detailed descriptions of medical
treatment procedures, practised globally with local variations, in order to treat
specific medical disorders. CPGs are an example of social interactions, which
include workflow models and various cooperation models: its richness stems from
the diverse collaborative patterns human organisations can exhibit. One such
pattern, which plays a prominent role in CPGs, is symmetric synchronisation where
all the participants are equal in the decision-making, i.e. the participants collectively
decide on one of the possible choices.

Motivated from practice, this paper aims to distill the essence of this symmetric
synchronisation as an interaction primitive, position it as part of the type theory for
the asynchronous π-calculus with multiparty sessions, and explore its properties to
model workflow frameworks, enjoying the richness of multiparty session types to
express how data is exchanged. Our starting point is a widely known semi-formal
modelling framework for CPGs and other workflows called Process Matrix [84],
which provides a concise and general description of symmetric synchronisation
patterns as found in CPGs.

The new synchronisation primitive is generally useful, also for other calculi and
applications. We add the symmetric synchronisation primitive to the asynchronous
π-calculus and study it in a typed setting because it allows us to model CPGs as
types, and enables correctness and erasure properties.

We explain the key ideas of Process Matrix and CPGs using an example from a
CPG with three participants: A doctor (D), a nurse (N) and a patient (P). The doctor
and the nurse need to register and inspect the patient, thus they must obtain the
patient data (Data), schedule an appointment (Schedule) and inspect the patient

Figure 37 Cases in the healthcare cooperation example

Data Schedule Inspect

Case DD D D D

Case ND N D D

Case DN D N D

Case NN N N D

D: Doctor
N: Nurse
P: Patient

Data: Obtain patient data
Schedule: Schedule inspection
Inspect: Perform inspection

4.1 introduction 115

(Inspect). The actions can be divided between the doctor and the nurse in four
different ways, since they both can collect the data and schedule the appointment
but only the doctor may inspect the patient. The four cases are illustrated in the
table in Fig. 37. For example in Case ND, the nurse obtains the patient data and
the doctor schedules and performs the inspection. In this way, the doctor and the
nurse need to perform a different combination of actions depending on which
case is chosen, thus they need to commit to the same choice, in order for the
cooperation to work. This cannot be ensured using the asymmetric choice (as found
in branching/selection primitives in the foregoing session types [60, 114]), since
the decision is done by a single participant and not by common agreement.

Our aim is to obtain a general modelling framework which can uniformly cap-
ture both symmetric synchronisations and existing session-based communication
patterns. Such a framework will give a basis for the implementation of a tool for
CPGs where one can describe, validate and execute specifications backed up by
static validation coming from the theory. For this purpose we incorporate the syn-
chronisation primitive in the type theory for multiparty sessions from [21, 61], so
different groups of principals freely can mix standard asymmetric communications
and symmetric synchronisations. The resulting sessions are abstracted as types,
enabling type-based validation which ensures type and communication safety.

We offer the first prototype implementation of the π-calculus with multiparty
sessions, with a typechecker using multiparty session types with full projections.
Our implementation includes the symmetric synchronisation primitive and verifi-
cation using symmetric sum types. This allows us to implement, verify and execute
the examples used to explain and motivate the extension.

The use of types is not only essential for modelling CPGs and validating pro-
cesses, but also enables an organised analysis of the synchronisation primitive.
Using a type-directed translation, we show that the primitive can be embedded
into the asymmetric branching in the original multiparty sessions [21, 61]. The
translation generates auxiliary processes from the types, and combines them with
an encoding of the sum into asymmetric branch types, respecting global interaction
patterns and preserving semantics, by exploiting the type structure. The auxiliary
process generated from a type conducts the synchronisations of a session by receiv-
ing accepted cases from participants and sending the chosen case back. To prove its
correctness, we use a new technique based on derivations of the multiparty session
typing. The resulting translation introduces exponentially more branching cases
(e.g. 64 for the running example), demonstrating the practical usefulness of the
symmetric sum for compact description as well as offering a formally founded
distributed implementation strategy of the primitive.

Next we present the calculus for multiparty symmetric synchronisation (Sec-
tion 4.2) and study its type theory (Section 4.3). We then define a type-directed
encoding (Section 4.4) of the symmetric sum into the asynchronous multiparty

116 multiparty symmetric sum types

session; and investigate its encodability criteria by adapting the framework from
[51, 99] to the typed setting. Finally we present an application of the theory to
the formal CPG verification (Section 4.5), with a prototype implementation avail-
able from [1]. The technical contributions include subject reduction (Theorem 4.3.2)
and type/semantic correctness of the encoding (Theorems 4.4.1, 4.4.2 and 4.4.4). The
implementation demonstrates the correctness, feasible implementability and sig-
nificance of the new primitive. In particular, an automatic mapping from Process
Matrix to global types (Section 4.5) shows the expressiveness of multiparty session
types. The omitted definitions, examples and proofs are included in Appendix re-
fch:appendix:session:sumtypes.

4.2 processes with synchronisation 117

Figure 38 The process language

P ::= syncs̃,ntl : PlulPL
| randtPiuiPI
| a[2..n](s̃).P
| a[p](s̃).P
| s!xẽy;P
| s?(x̃);P
| s!xxs̃yy;P
| s?((s̃));P

D ::= tXi(x̃is̃i) = PiuiPI
e ::= v | x | e and e 1

| not e | randtviuiPI | ...

synchronisation
random choice
session request
session accept
value sending

value reception
delegation
reception

declarations
expressions

| s� l;P
| s� tl : PlulPL
| if e then P else Q
| P|Q

| 0

| (νn)P

| def D in P
| Xxẽs̃y

| s : h̃

v ::= a | true | false
h ::= l | ṽ | s̃

label selection
label branching

conditional
parallel
inaction

restriction
recursion

process call
message queue

values
messages

4.2 processes with synchronisation

This section introduces the syntax (Fig. 38) of the asynchronous multiparty session
π-calculus [61] with the new sync primitive, and the judgement P Ñ P 1 (Fig. 39,
where e Ó v denotes the evaluation of the expression e to the value v) describing
the small-step semantics for processes. The syntax defines the values: tv,w, . . .u,
expressions: te, e 1, . . .u and processes: tP,Q, . . .u from the sets of channel names:
ta,b, . . .u, value variables: tx,y, . . .u, session channels: ts, t, . . .u, labels: tl,m, . . .u
and process variables: tX, Y, . . .u.

Session request, a[2..n](s̃).P initiates a session with channels s̃ (where s̃ denotes a
vector s1 . . . sn) over the public channel a with the other n� 1 participants of shape
a[p](s̃).Qp for p from 2 to n ([Link] in Fig. 39). Asynchronous communication in
an established session is performed by sending and receiving values ([Send,Recv]),
transferring a session using session delegation and reception ([Deleg,SRec]), and
label selection and branching ([Label,Branch]), where the branching process offers
a number of labels and the selecting process chooses one of them.

The new syncs̃,ntl : PlulPL constructor is interpreted as the process participating
in a plenum decision between all the n processes in the session s̃ reaching a
common decision h from L. Afterwards the process proceeds as described in Ph.
In [Sync] in Fig. 39, h in the premise denotes the common label. We also add the
randtPiuiPI constructor which randomly selects one of its branches ([Rand]). This
primitive can be expressed using if and a random expression (hence it does not add
expressiveness from [61]), but simplifies the erasure mapping in Section 4.4.

In [Sync], the processes cannot perform the synchronisation if they do not share
some common label, in which case the processes will be stuck. We also need
to know how many participants are in the session in order to know when the
synchronisation can step; otherwise the processes will be stuck. The typing system

118 multiparty symmetric sum types

introduced in the next section ensures that sync satisfies these two conditions.

healthcare cooperation (1): processes

We motivate the symmetric synchronisation using the example from the introduc-
tion. We first explain the problem when representing this interaction without sync.
As explained in the introduction, there is no rigorous way to decide which of the
four cases will occur, as well as who will be the principal decision maker: we
could let the doctor non-deterministically decide between the cases, and then we
obtain the processes in Fig. 40, if we are to use the processes from [61]: similarly
we could let the nurse or even the patient decide. None of these representations
captures the cooperation where the doctor, the nurse and the patient should reach
a common decision, because it is impossible to know who takes the initiative. Another
problem is that we need to specify the choices in PD, which is best captured by
non-deterministic expressions like rand.

Figure 39 The reduction rules

[Link]

a[2..n](s̃).P1|a[2](s̃).P2| . . . |a[n](s̃).Pn Ñ (νs̃)(P1|P2| . . . |Pn|s1 :H| . . . |sm :H)

[Send] ẽ Ó ṽ

s!xẽy;P|s : h̃Ñ P|s : h̃ � ṽ

[Recv]

s?(x̃);P|s : ṽ � h̃Ñ P[ṽ/x̃]|s : h̃

[Label]

s� l;P|s : h̃Ñ P|s : h̃ � l

[Branch] j P I

s� tli : PiuiPI|s : lj � h̃Ñ Pj|s : h̃

[Deleg]

s!xxt̃yy;P|s : h̃Ñ P|s : h̃ � t̃

[SRec]

s?((t̃));P|s : t̃ � h̃Ñ P|s : h̃

[IfT] e Ó true

if e then P else QÑ P

[IfF] e Ó false

if e then P else QÑ Q

[Def] ẽ Ó ṽ Xxx̃s̃y = P P D

def D in Xxẽs̃y|QÑ def D in P[ṽ/x̃]|Q

[Scop] P Ñ P 1

(νn)P Ñ (νn)P 1

[Par] P Ñ P 1

P|QÑ P 1|Q

[Defin] P Ñ P 1

def D in P Ñ def D in P 1

[Str] P � P 1 P Ñ Q Q � Q 1

P 1 Ñ Q 1

[Rand] j P I

randtPiuiPI Ñ Pj

[Sync] h P
�n
i=1 Li

syncs̃,ntl : P1lulPL1 | ... | syncs̃,ntl : PnlulPLn Ñ P1h | ... | Pnh

4.3 symmetric sum types 119

Figure 40 Healthcare example without sync

PD = // Doctor
a [2] (d , s , r , cp , cn) .
if rand{ true , false }
then cp�CaseD ; cn�CaseD ; d? (data) ; if rand{ true , false }

then cp�CaseDD ; cn�CaseDD ; s ! x eSchedule y ; r ! x eResult y ;end
else cp�CaseDN ; cn�CaseDN ; r ! x eResult y ;end

else cp�CaseN ; cn�CaseN ; if rand{ true , false }
then cp�CaseND ; cn�CaseND ; s ! x eSchedule y ; r ! x eResult y ;end
else cp�CaseNN ; cn�CaseNN ; r ! x eResult y ;end

PP = // P a t i e n t
a [2 . . 3] (d , s , r , cp , cn) . pd�
{ CaseD : d ! xeDatay ; cp�

{ CaseDD : s ? (schedule) ; r ? (r e s u l t) ;end ,
CaseDN : s ? (schedule) ; r ? (r e s u l t) ;end } ,

CaseN : d ! xeDatay ; pd�
{ CaseND : s ? (schedule) ; r ? (r e s u l t) ;end ,
CaseNN : s ? (schedule) ; r ? (r e s u l t) ;end }

}

PN = // Nurse
a [3] (d , s , r , cp , cn) . cn�
{ CaseD : cn� { CaseDD : end , CaseDN : s ! x eSchedule y ;end } ,

CaseN : d? (data) ; cn� { CaseND : end ,
CaseNN : s ! x eSchedule y ;end }

}

Fig. 41 describes the same example using sync where the intended cooperation
is directly modelled. The case is logically decided by two choices: first it is decided
who receives the patient data, and then it is decided who schedules the inspection.
Since these decisions are not necessarily made at the same time, the processes select
the case using two sequential synchronisations.

4.3 symmetric sum types

We start by defining the global types G in Fig. 42, which specifies global session
protocols between the participants. Except for the symmetric sum type, the syntax
is from [61]. The type pÑ p 1 : kxUy.G 1 expresses that participant p sends a message

120 multiparty symmetric sum types

of type U along channel k to p 1 and then interactions described in G 1 take place.
The type p Ñ p 1 : ktli : GiuiPI expresses that p sends one of the labels li to p 1. If
lj is sent, interactions described in Gj take place. Type µt.G is a recursive type,
assuming type variables (t, t 1, . . .) are guarded in the standard way. We assume
that G in the grammar of sorts is closed, i.e., without free type variables. Type end
represents the session termination.

The sum type tl : GlulPL;M represents a synchronisation where the labels are
taken from the set L and the non-empty set M. The labels in L are optional, but
the labels in M are mandatory and must be accepted by all the participants. The
mandatory labels will be underlined to distinguish them from the optional labels
(e.g. tl : GlulPtl1u;tl2u = tl1 : Gl1, l2 : Gl2u).

The local types T are defined in Fig. 42. They describe the communication
performed by a single process. Therefore the “from process to process on channel”

Figure 41 Healthcare example using sync

PD = // Doctor
a [2] (d , s , r) . sync((d , s , r) , 3)
{ CaseD: d? (data) ; sync((d , s , r) , 3)

{CaseDD: s ! x eSchedule y ; r ! x eResult y ;end ,
CaseDN: r ! x eResult y ;end } ,

CaseN: sync((d , s , r) , 3)
{CaseND: s ! x eSchedule y ; r ! x eResult y ;end ,
CaseNN: r ! x eResult y ;end } }

PP = // P a t i e n t
a [2 . . 3] (d , s , r) . sync((d , s , r) , 3)
{ CaseD: d ! xeDatay ; sync((d , s , r) , 3)

{CaseDD: s ? (schedule) ; r ? (r e s u l t) ;end ,
CaseDN: s ? (schedule) ; r ? (r e s u l t) ;end } ,

CaseN: d ! xeDatay ; sync((d , s , r) , 3)
{CaseND: s ? (schedule) ; r ? (r e s u l t) ;end ,
CaseNN: s ? (schedule) ; r ? (r e s u l t) ;end } }

PN = // Nurse
a [3] (d , s , r) . sync((d , s , r) , 3)
{ CaseD: sync((d , s , r) , 3)

{CaseDD: end , CaseDN: s ! x eSchedule y ;end } ,
CaseN: d? (data) ; sync((d , s , r) , 3)

{CaseND: end , CaseNN: s ! x eSchedule y ;end } }

4.3 symmetric sum types 121

Figure 42 The Domains used for Global and Local types

Global Types:

G ::= pÑ p 1 : kxUy.G 1 | pÑ p 1 : ktli : GiuiPI | µt.G | t | end

| tl : GlulPL;M (M � H)

Local Types:

T ::= k!xUy; T | k?xUy; T | k` tl : TlulPL | k& tl : TlulPL | µt.T | t | end

| tl : TlulPL;M (M � H)

Message Types: Simple Types:

U ::= S̃ | T@(p,m,n) S ::= bool | int | ... | xGy

Environments:

Γ ::=H | Γ ,u : xGy | Γ ,X : S̃T̃ ∆ ::=H | ∆, s̃ : T@(p,n)

syntax is simply changed to sending or receiving on a channel. Thus the sending
type is k!xUy; T and represents sending a message of type U on channel k, followed
by the communication described by T . The type of receiving is k?xUy; T , the type of
selecting is k`tl : TlulPL and the type of branching is k& tl : TlulPL. The difference
from [61] is that the symmetric sum type constructor tl : TlulPL;M is added where
L,M satisfies the conditions similar to those of global type.

The message type T@(p,m,n) is used for delegation. It describes an open session,
and includes information about the participant number p, the number of session
channels m, and the number of participants n in the session together with a local
type T describing the remaining communication.

Finally we define the global environment Γ containing the global types for shared
channels u, and process variables X, and the local type environment ∆ containing
the remaining session communication in Fig. 42, where s̃ : T@(p,n) means s̃ is an
open session with n participants, where T describes the remaining communication
for participant p.

The projection Gæp of a global type G for a participant p generates the local type
for the participant in an intuitive way, for example (p0 Ñ p1 : kxUy.G 1)æp becomes
k!xUy; (G 1æp) if p = p0 and p � p1. The differences from the definition in [61] is
that we have added a case for the symmetric sum type, (tl : GlulPL;M)æp = tl :

(Glæp)ulPL;M.
A global type G is coherent [61] if and only if the projection Gæp is defined for all

participants, and G does not allow racing conditions (linearity). We only consider
coherent global types.

122 multiparty symmetric sum types

Figure 43 Selected typing rules

[Rand] @i P I.Γ $ Pi �∆ I � H

Γ $ randtPiuiPI �∆

[Sync] @l P L2 : Γ $ Pl �∆, s̃ : Tl@(p,n) L2 � LY L 1 L 1 � L2

Γ $ syncs̃,ntl : PlulPL2 �∆, s̃ : tl : TlulPL;L 1@(p,n)

[Mcast]

|s̃| = max(sid(G)) n = max(pid(G))

Γ $ a : xGy Γ $ P�∆, s̃ : (Gæ1)@(1,n)

Γ $ a[2..n](s̃).P�∆

[Macc]

s̃| = max(sid(G)) n = max(pid(G))

Γ $ a : xGy Γ $ P�∆, s̃ : (Gæp)@(p,n)

Γ $ a[p](s̃).P�∆

[Send] @j.Γ $ ej : Sj Γ $ P�∆, s̃ : T@(p,n)

Γ $ sk!xẽy;P�∆, s̃ : k!xS̃y; T@(p,n)

[Rcv] Γ , x̃ : S̃ $ P�∆, s̃ : T@(p,n)

Γ $ sk?(x̃);P�∆, s̃ : k?xS̃y; T@(p,n)

[Sel] Γ $ P�∆, s̃ : Th@(p,n) h P L

Γ $ sk � h;P�∆, s̃ : k` tl : TlulPL@(p,n)

[Branch] @l P L : Γ $ Pl �∆, s̃ : Tl@(p,n)

Γ $ sk � tl : PlulPL �∆, s̃ : k?tl : TlulPL@(p,n)

[Conc] Γ $ P�∆ Γ $ Q�∆ 1

Γ $ P|Q�∆ �∆ 1
(dom(∆)X dom(∆ 1) =H)

judgement The typing judgement extends the one from [61] with symmetric
sum types. The judgement Γ $ P�∆ states that the process P in the environment
Γ performs exactly the session communication described in ∆.

4.3 symmetric sum types 123

The main rules are included in Fig. 43. The local types now carry information
about the number of participants n and channels m. The number of participants
and channels is determined at the session initialisation in the rules [Mcast] and
[Macc], where sid(G) denotes channels that appear in G and pid(G) denotes the
participants that appear in G. The rule [Sync] checks that the accepted branches in
a synchronisation includes the mandatory ones and does not exceed the optional
ones, and checks that each accepted branch is typed with the correct communication.
The typing rule [Rand] checks that each choice in a rand process has the same
session environment.

Since the process is reduced by each rule-application, the typability question
Γ $ P�∆ is decidable.

healthcare cooperation (2): types

We explain how the types can describe and verify the healthcare scenario in the
Introduction. Recall the processes from Fig. 41. To type PD | PN | PP, we need a
matching type-environment first. The processes use the public channel a to create
a session, so the environment must be of the form Γ = a : xGy for some global type
G.

We will start by finding the type describing the interactions in CaseND. First the
participants select the choice CaseN and the patient sends the data to the nurse.
Then the participants select the choice CaseND, the doctor sends the schedule to
the patient, and finally the doctor sends the result to the patient.

When the patient has id 1, the doctor has id 2 and the nurse has id 3 the described
communication for CaseND is described by the type

{ CaseN: 1Ñ3 : 1 x Sdata y . {CaseND: 2Ñ1 : 2 x Sschedule y . 2Ñ1 : 3 x

S r e s u l t y . end} }

Performing the same reasoning for CaseDD, CaseDN and CaseNN and adding
their branches to the symmetric sums results in the global type G in Fig. 44. We
select CaseND, CaseDN and CaseN as the mandatory labels. Since all participants
must accept the mandatory choices, this means that it is always possible for the
participants to agree on a choice in each of the synchronisations. We can then
find the local type for the patient process as the patient’s projection of G, given in
Fig. 44. Using this type and the projections we can now typecheck the processes
(see Proof C.10.1).

Proposition 4.3.1. a : xGy $ PD | PN | PP �H.

We end this section by proving subject reduction, from which we can derive
soundness, communication safety and progress [61, § 5] as corollaries. Below
∆Ñ0/1 ∆ 1 denotes zero or one step using the type reduction [61], which represents

124 multiparty symmetric sum types

the communication between dual local types. For instance, a reduction between
input and output types is defined as:

k!xUy; T1@(p,n),k?xUy; T2@(q,n)Ñ T1@(p,n), T2@(q,n).

We extend it to the symmetric sum as:

ttl : Tp, . . .u@(p,n)upPt1..nu Ñ tTp@(p,n)upPt1..nu.

The formulation uses the extension of the typing to runtime processes (Γ $
P �t̃ ∆), which corresponds to the presented typing on processes without open
sessions, but also accept processes with open sessions. This is obtained by joining
compatible session environments (∆,∆ 1) using the ∆ � ∆ 1 operation to a single
environment expressing the communication in both ∆ and ∆ 1. Then we have:

Figure 44 Global Type G and patient projection for healthcare example

G = // Global type
{ CaseD:

1Ñ2 : 1 x Sdata y ;
{CaseDD: 2Ñ1 : 2 x Sschedule y ; 2Ñ1 : 3 x S r e s u l t y ;end ,
CaseDN: 3Ñ1 : 2 x Sschedule y ; 2Ñ1 : 3 x S r e s u l t y ;end

} ,
CaseN:

1Ñ3 : 1 x Sdata y ;
{CaseND: 2Ñ1 : 2 x Sschedule y ; 2Ñ1 : 3 x S r e s u l t y ;end ,
CaseNN: 3Ñ1 : 2 x Sschedule y ; 2Ñ1 : 3 x S r e s u l t y ;end

}
}

Gæ1 = // Local type f o r P a t i e n t
{ CaseD:

1 ! x Sdata y ;
{CaseDD: 2 ? x Sschedule y ; 3 ? x S r e s u l t y ;end ,
CaseDN: 2 ? x Sschedule y ; 3 ? x S r e s u l t y ;end

} ,
CaseN:

1 ! x Sdata y ;
{CaseND: 2 ? x Sschedule y ; 3 ? x S r e s u l t y ;end ,
CaseNN: 2 ? x Sschedule y ; 3 ? x S r e s u l t y ;end

}
}

4.4 from symmetric sum to conducted branching 125

Figure 45 Synchronisation message flows

Choice without sync Choice using sync Choice after erasure

Theorem 4.3.2 (Subject reduction).
If Γ $ P�s̃ ∆, ∆ coherent and P Ñ P 1 then Γ $ P 1 �s̃ ∆ 1 where ∆Ñ0/1 ∆ 1.

Proof: By induction on the derivation of P Ñ P 1. See Proof C.3.2.

4.4 from symmetric sum to conducted branching

This section studies an erasure of symmetric synchronisation, which translates
away symmetric sums using existing session primitives, which we hereafter simply
call the erasure. The erasure removes all occurrences of the sync constructor while
preserving static and dynamic semantics, i.e. typability and reduction. It uses a con-
ductor process for each session. The messages and protocol used to implement the
synchronisation are illustrated in Fig. 45 where the numbers indicate the sequence
of the messages. Fig. 45(a) shows the communication between the processes without
using sync in Fig. 40. Fig. 45(b) shows the communication between the processes
using sync in Fig. 41, where no messages are sent, because the synchronisation
ensures the same branch is chosen. Fig. 45(c) shows the conduction messages in the
processes where the synchronisation has been erased in Fig. 49. First the patient,
the doctor and the nurse send the cases they can accept to the conductor, who
chooses a common case and sends the selected case to the patient, the doctor and
the nurse.

4.4.1 Erasure definitions

Based on this idea, we translate the synchronisation and symmetric sum types into
the original system [61], step by step as follows.

step 1: process erasure Only well-typed processes are eligible for erasure,
because conductor processes are generated from the global types. Therefore the
erasure E J�K is defined on the type derivation in Fig. 46 and the result is the erased
process. We use the notation D :: Γ $ P � ∆ to denote a derivation D with the
conclusion Γ $ P�∆.

126 multiparty symmetric sum types

Figure 46 Erasure of Synchronisation from Typing-Derivation

E

t
[Mcast] Γ $ a[2..n](s̃).P�∆

Γ $ a[2..n](s̃).P�∆

|

=

C JGKs̃,n,a | a[2..n,n+1](s̃, ins̃1, outs̃1, . . . , ins̃n, outs̃n).E JD1K

E

t
[Macc] Γ $ a[p](s̃).P�∆

Γ $ a[p](s̃).P�∆

|

=

a[p](s̃, ins̃1, outs̃1, . . . , ins̃n, outs̃n,).E JD1K

E

t
[Sync] Γ $ syncs̃,ntl : PlulPL1 �∆, s̃ : tl : TlulPL;M,n@(p,n)

Γ $ syncs̃,ntl : PlulPL1 �∆, s̃ : tl : TlulPL;M,n@(p,n)

|

=

outs̃p � casesL1 ; ins̃p �tl : E JDlKulPL1

E

t
[Label] Γ $ sk �h;P�∆, s̃ : k`tl : TlulPL@(p,n)

Γ $ sk �h;P�∆, s̃ : k`tl : TlulPL@(p,n)

|

=

sk �h; outs̃p �h;E JD1K

The other cases are monomorphically defined

The case for session request increments the number of participants by one, to
make room for the conductor process, and adds two session channels per user
(ins̃,p and outs̃,p), for communicating with the conductor. The conductor process
C JGKs̃,n,a (defined in Step 2) is inserted in parallel with the resulting session
requesting process to ensure it is available.

The case for synchronisation sends the accepted labels to the conductor, waits to
receive one of the accepted labels and proceeds with the selected branch.

step 2: conductor generation The conductor process C JGKs̃,n,a was in-
serted in parallel with the session requests by the process erasure in Step 1. The
main cases of the conductor generation C J�K are in Fig. 47. Notice that C JGKs̃,n,a
is only a wrapper for C JGK�s̃,n which prefixes the session acceptance on channel
a. In C JGKs̃,n,a, s̃ is the original session channels, n is the number of original
participants, G is the original session type, and a is the channel the session is
created over.

The conductor process generated from a synchronisation receives the accepted
labels from each participant, selects a common label using rand and sends the

Figure 47 Conductor Process Generation from a Global Type

C JGKs̃,n,a = a[n+1](s̃, ins̃,1, outs̃,1, . . . , ins̃,n, outs̃,n).C JGK�s̃,n

C
q
tl : GlulPL;M

y�
s̃,n = outs̃1 � tcasesL1YM : . . . : outs̃n � tcasesLnYM :

randtins̃1 � l; . . . ; ins̃n � l;C JGlK
�
n,s̃ulP

�n
i=1 LiYM

uLn�L . . .uL1�L

4.4 from symmetric sum to conducted branching 127

Figure 48 Erasure Mapping for Global Types

JGK = JGK�max(pid(G)),max(sid(G))q
tl : GlulPL;M

y�
n,m = 1Ñ n+1 : (m+ 2)tcasesL1YM :

2Ñ n+1 : (m+ 4)tcasesL2YM : . . .

nÑ n+1 : (m+ 2 �n)tcasesLnYM :

n+1Ñ 1 : (m+ 1)tl : n+1Ñ 2 : (m+ 3)tl : . . .

n+1Ñ n : (m+ 2 �n� 1)tl : JGlK
�
n,mu . . .u

ulP
�n

i=0 LiYM
uLn�L . . .uL1�L

selected label back to each participant before conducting the chosen branch.

step 3: type translations To prove that typability is preserved by the era-
sure, we define translations of global types, local types, message types, global type
environments and local type environments to find the types for the result of the
erasure. The main cases for global types are defined in Fig. 48. The translation JGK
of global types is just a wrapper for JGK�n,m where n is the number of participants,
and m is the number of session channels in the original type.

As previously suggested, the symmetric sum is translated to nested branching,
where each participant sends the accepted labels to the conductor, receives the
selected label and continues with the selected branch.

4.4.2 Correctness

We now prove the correctness of the erasure mapping. We start by proving that the
typing is preserved, and the types of the result process is given by the defined type
translations.

Theorem 4.4.1 (Type preservation). If D :: Γ $ P�∆ then JΓK $ E JDK� J∆K

Proof: By induction on the type derivation D. See Proof C.5.4. The proof uses a
lemma stating that the generated conductor processes are well-typed.

Next we prove that process congruence (P � Q) is preserved by the erasure.

Theorem 4.4.2 (Congruence preservation).
If D1 :: Γ $ P�t̃ ∆ then for all Q we have that P � Q if and only if there is a derivation
D2 :: Γ $ Q�t̃ ∆ such that E JD1K � E JD2K.

Proof: See Proof C.6.1 and Proof C.6.5.

Congruence preservation suggests the erasure preserves semantic properties. We
start by stating the soundness theorem. To do this we define conductors for par-
tially completed sessions: PC(∆) as the set of possible partial conductor processes

128 multiparty symmetric sum types

generated from ∆. By using the partial conductors from the session environment it
is now possible to state the soundness theorem.

Theorem 4.4.3 (Soundness). If D :: Γ $ P�t̃ ∆, P Ñ P 1, ∆ coherent and PC P PC(∆ �

∆2) for some ∆2 then there is a derivation D 1 :: Γ $ P 1 �t̃ ∆
1 and P 1C P PC(∆

1 �∆2)

such that ∆Ñ0/1 ∆ 1 and E JDK |PC Ñ� E JD 1K |P 1C.

Proof: By induction on the derivation of P Ñ P 1.

We can extend the above theorem to multiple steps by induction on the number
of steps (Corollary C.7.3). Also the found evaluation of E JDK Ñ� E JD 1K performs
exactly the same communication on all non-conductor channels as the original
evaluation P Ñ� P 1.

We will now define conduction steps, since they play an important role in for-
mulating the completeness theorem. This is because all steps performed by the
result of the erasure can be mimicked by the original process up to conduction steps.
A step from P1 to P2 is a conduction step, written P1ãP2 if the step performs
label selection or label branching on a conductor channel or unfolding of a conductor
process; otherwise we write P1áP2. We observe all the extra steps introduced by
the erasure are of the form ã, while the other steps are of the form á. Therefore
there is a one-to-one correspondence between the á steps of the erased process,
and the steps in the original process.

Theorem 4.4.4 (Semantic completeness). If E JD1 :: Γ $ P1 �HK Ñ� Q 1 then there
exists a derivation D2 :: Γ $ P2 �H and Q such that P1 Ñ� P2 and E JD2Kã�Q and
Q 1ã�Q.

Proof: By induction on the number of non-conduction steps in E JD1K Ñ� Q 1,
using confluence and single-step completeness results. See Proof C.8.12.

healthcare cooperation (3): synchronisation erasure

The result of the erasure on the healthcare example from Section 4.3 is shown in
Fig. 49. Since we have showed that the processes from the synchronisation example
in Fig. 41 are well-typed in Proposition 4.3.1, we can apply Theorem 4.4.1 to provide
a : xJGKy $ P 1C | P

1
P | P

1
D | P 1N �H.

As this example illustrates, the result of the erasure does not capture the nature
of the situation in the same way, because it introduces a conductor process, which is
not a natural part of the situation. It is not compact either, as the conductor process
has 64 cases. Further we lose an accurate type abstraction of the dynamics of
symmetric synchronisation, because it is not clear from the encoded type structure
whether it is just a sequence of asymmetric branching actions or the (intended)
atomic multiparty synchronisation, since some of the key operational structures of
the encoding (e.g. random selection) is lost in the encoded type.

4.4 from symmetric sum to conducted branching 129

Figure 49 Example Processes after Erasure

P1C = // Conductor
a [4] (d , s , r , in_p , out_p ,

in_d , out_d , in_n , out_n) .
out_p �
{ cases_DN : out_d �

{ cases_DN : out_n �
{ cases_DN :
rand {

in_p � CaseD ;
in_d � CaseD ;
in_n � CaseD ;
out_p �
{ cases_DN : out_d �

{ cases_DN : out_n �
{ cases_DN :
rand

{ in_p � CaseDD ;
in_d � CaseDD ;
in_n � CaseDD ;
end ,
in_p � CaseDN ;
in_d � CaseDN ;
in_n � CaseDN ;
end } ,

cases_D : . . . } ,
cases_D : . . . } ,

cases_D : . . . } } ,
cases_N : . . . } ,

cases_N : . . . } ,
cases_N : . . . }

P1P = // P a t i e n t
a [2 . . 4] (d , s , r , in_p , out_p ,

in_d , out_d , in_n , out_n) .
out_p�cases_DN ; in_p�
{ CaseD : d ! xeDatay ; out_p�cases_DN ; in_p�

{CaseDD : s ? (schedule) ; r ? (r e s u l t) ; 0 ,
CaseDN : s ? (schedule) ; r ? (r e s u l t) ; 0 } ,

CaseN : d ! xeDatay ; out_p�cases_DN ; in_p�
{CaseND : s ? (schedule) ; r ? (r e s u l t) ; 0 ,
CaseNN : s ? (schedule) ; r ? (r e s u l t) ; 0 } }

P1D = // Doctor
a [2] (d , s , r , in_p , out_p ,

in_d , out_d , in_n , out_n) .
out_d�cases_DN ; in_d�
{ CaseD : d? xdata y ; out_d�cases_DN ; in_d�

{CaseDD : s ! xeScheduley ; r ! xeResulty ; 0 ,
CaseDN : r ! xeResulty ; 0 } ,

CaseN : out_d�cases_DN ; in_d�
{CaseND : s ! xeScheduley ; r ? (eResult) ; 0 ,
CaseNN : r ? xeResulty ; 0 } }

P1N = // Nurse
a [3] (d , s , r , in_p , out_p ,

in_d , out_d , in_n , out_n) .
out_n�cases_DN ; in_n�
{ CaseD : out_n�cases_DN ; in_n�

{CaseDD : 0 ,
CaseDN : s ! xeScheduley ; 0 } ,

CaseN : d? xdata y ; out_n�cases_DN ; in_n�
{CaseND : 0 ,
CaseNN : s ! xeScheduley ; 0 } }

4.4.3 Encodability criteria

The common properties of encodability from the known separation theorems
(e.g. [99]) has been studied [51], revealing a number of desirable criteria. Our en-
coding is type-based, so we cannot apply this untyped framework directly. However
if we simply change the formulation to use the type-derivation instead of the process
syntax, our encoding does fulfil the criteria.

Before we can define and prove the criteria, we need to define the relations (�1
and �2) and properties (successful state) used to define the criteria. We select �1
as the process equivalence (�), and define Q1 �2 Q2 if and only if DQ.Q1ã�Q ^

Q2ã
�Q.

Lemma 4.4.5. �2 is a weak barbed reduction congruence.

Proof: Immediately �2 is symmetric and reflective by definition. By the conflu-
ence, we can also prove its transitivity. See Appendix C.9.

To define a successful state, we introduce a new process constructor
`

, and
extend the typing system to accept

`
, and extend the erasure to preserve

`
.

130 multiparty symmetric sum types

A process P is accepting if P �
`
|P 1 for some P 1. This is formally defined in

Appendix C.9.
We list the new formulation for all the criteria and state the theorem. For the

motivation of each criterion, see [51]. Below, for the sake of readability, we omit Γ
and ∆ from the encoding.

compositionality criterion For every k-ary typing rule r in the typing system
of L1 and every subset of names N there exists a k-ary context CN

r
(_1, . . . , _k) such

that, for all D1, . . . ,Dk with Fn(D1, . . . ,Dk) = N, it holds that Jr(D1, . . . ,Dk)K =

CN
r
(JD1K, . . . , JDkK). Note that the information given by derivation (typing) in

D1 :: P1 and D2 :: P2 are essential.

name invariance criterion For every typing derivation D :: P (P has deriva-
tion D) and name substitution σ, it holds that if σ is injective, then JDσK = JDKσ 1; for
every a P N, otherwise JDσK �2 JDKσ 1 where σ 1 is such that ϕJK(σ(a)) = σ 1(ϕJK(a)).
Here ϕJK is called the renaming policy and captures how J�K translates channel names.

operational correspondence criterion Let Ñi denote the reduction
relation of the system i.
(1) Completeness: If D1 :: P1 and P1 Ñ�

1 P2 then there exists a D2 :: P2 such that
JD1K Ñ�

2�2 JD2K.
(2) Soundness: If JD1 :: P1K Ñ�

2 Q1 then there exists a D2 :: P2 such that P1 Ñ�
1 P2

and Q1 Ñ�
2�2 JD2K.

divergence reflection criterion If JD :: PK Ñω then P Ñω where Ñω

means infinite reductions.

success sensitiveness criterion If D :: P then P ó if and only if JDK ó
where P ó means P can reach a successful state.
Using the above definition, we arrive at the following main theorem. See Ap-
pendix C.9 for the proofs.

Theorem 4.4.6. The erasure mapping satisfies all the encodability criteria.

4.5 verifying cpg descriptions

This section describes how symmetric sum types can verify implementation con-
formance to a CPG [115] described using the Process Matrix. The verification is
performed by three steps in Fig. 50, as illustrated below.

process matrix . The Process Matrix representation consists of a table with one
row for each action. Each row has a number of columns: The Id and Name columns

4.5 verifying cpg descriptions 131

Figure 50 Steps in verifying a CPG description

Process Matrix [84]
Roles

Id Name Patient Doctor Nurse Predecessors

1 Data W R R

2 Schedule R W W 1

3 Result R W N 2

Process Matrix Encoding

Global Type:
{ Pdata: 1Ñ2 : 2 x S t r i n g y ; 1Ñ3 : 3 x S t r i n g y ;µ stateD .

{ Pdata: 1Ñ2 : 2 x S t r i n g y ; 1Ñ3 : 3 x S t r i n g y ; stateD ,
Dschedule: 2Ñ1 : 1 x S t r i n g y ; 2Ñ3 : 3 x S t r i n g y ;µ stateDS . { . . . }
Nschedule: 3Ñ1 : 1 x S t r i n g y ; 3Ñ2 : 2 x S t r i n g y ;µ stateDS . { . . . }

} }
Type Projections

Local Types:
{ Pdata: 2 ! x S t r i n g y ; 2 ! x S t r i n g y ; µ stateD .

{ Pdata: 1Ñ2 : 2 x S t r i n g y ; 1Ñ3 : 3 x S t r i n g y ; stateD ,
Dschedule: 1? x S t r i n g y ;µ stateDS . { . . . }
Nschedule: 1? x S t r i n g y ;µ stateDS . { . . . }

} }
Verification

Implementations:sync((p , d , n) , 3)
{ Pdata: s [2] ! xe y ; s [3] ! xe y ; def StateD (s) =sync((p , d , n) , 3)

{ Pdata:s [2] ! xe y ; s [3] ! xe y ; StateD (s) ,
Dschedule:s [1] ? (x) ; def StateDS (s) = . . . ,
Nschedule:s [1] ? (x) ; def StateDS (s) = . . .

} in StateD (s) }

are used to identify the action, and the Predecessors column holds the Ids of the
actions the action depends on. Before an action can be executed its predecessors
must have been executed. If all the predecessors of an action have been executed
we say that the action is executable. Finally there is one column for each participant
(called roles), where the content is either R meaning the participant can read the
action-data but not execute it, W meaning the participant can execute the action
and read its data or N meaning the participant cannot execute the action or read
its data (see [84] for a more adequate description). The Process Matrix in Fig. 50

describes the scenario from the introduction, except that the patient automatically
gives the data to both the doctor and the nurse, and the user can perform the
actions multiple times (by an implicit recursion), until all the actions are executed.

132 multiparty symmetric sum types

process matrix encoding Any CPG in a Process Matrix can be encoded
as a global type automatically. We explain this encoding by translating the above
Process Matrix example. In the resulting type, the state is described by the set
of actions that have been executed, leading to a finite but exponential number of
states. The representation of each state (except the completed state) is a symmetric
sum with one branch for each role that can execute each executable action. The
content of each branch consists of the executing participant sending the created
data to all other participants with read or write access, followed by the state where
the executed action is added, and depending actions have been removed.

Parts of the global type is included in Fig. 50. Notice that the resulting type uses
recursion: this is to describe an implicit recursion in the Process Matrix where the
state reached after an action does not have to be a new state, but can be the same as
the state before the execution of the action, or even from previous steps. This is the
case for the above example if the data is sent, the appointment is scheduled, and
then the data is resent. The resulting state would then be the state where only the
data action has been executed, which is the same as the second state. The described
method can be extended to translate any Process Matrix into a global type.

The conversion of CPGs from the Process Matrix, to session type allows the data
to be exchanged directly between the participants, while the current implementa-
tions rely on a centralised database for the exchange. This means the translation
offers a distributed implementation of the Process Matrix, which has not been
known before. A formally defined symmetric global synchronisation primitive,
together with its type discipline and encodability, offers a firm basis for such
implementations.

projection and verification When we have created the global type ex-
pressing the CPG, a process implementing one of the participants can be verified to
conform with the workflow, by projecting the global type to the local type of that
participant, and typechecking the process against the local type. Parts of the local
type and the process for the Patient are described in Fig. 50.

generalisation We have now described how to use the multiparty session
types extended with symmetric sum, to express CPGs formalised using the Process
Matrix. We believe many other workflow frameworks (such as large parts of the
BPMN) can be encoded as multiparty session types with symmetric sum, and
this would allow the type-system to serve as a common representation, enabling
interaction between different frameworks and implementing features (such as
automatic user-interface generation) only for symmetric sum types, and apply it to
all the encoded frameworks.

4.6 related and future work 133

4.5.1 Implementation

We have created an ascii syntax for the asynchronous π-calculus with multi-
party sessions and symmetric synchronisation called apims, and implemented
a typechecker and an interpreter. This is to our knowledge the first prototype
implementation of the π-calculus with multiparty sessions and multiparty session
types. The implementation along with example programs can be found on the
apims website [1].

The implementation extends the calculus with a guisync constructor to support
user interaction via GUIs. The guisync is the result of extending the sync for user
input. Each label has a set of typed arguments that must be given using the GUI
before that choice is accepted, and the given arguments can be used by the process
in that branch. This simple extension allows the processes to implement GUIs
and the type system guarantees that the GUI for each participant will respect the
protocol, hence the workflow. The mandatory labels ensure that the GUI must allow
all the users (the people using the interface for each participant) to agree in each
synchronisation, thus avoiding the GUIs causing a disagreement w.r.t. the theory
of a symmetric synchronisation.

The GUI shows the received data, the choices offered by the process, input fields
for the data needed for each choice, and buttons to accept/reject each choice. Fig. 51

shows three screen-shots, displaying the doctor’s GUI for each state and how each
choice affects the state. As soon as all the participants of a session accepts the same
choice, the processes continue with the accepted branch. The GUI implementation
for each participant can be created automatically from the Process Matrix.

The original implementation of the Process Matrix called Online Consultant by
Resultmaker [84] is database based. This means that communication consists of
the sender uploading information to the server, and all participants must query
the server when using the information. Implementing the workflows using the
π-calculus and session types not only gives the Process Matrix a formal semantics,
but also allows an implementation where participants communicate their data as
peer-to-peer. This offers more natural and robust realisation of the workflows, and
relieves the system from the server bottleneck.

4.6 related and future work

There are existing studies on self/broadcast synchronisations [59, 101]. The sym-
metric sum proposed in the present paper is different because it allows all the
participants to influence the choice equally and, to formulate this notion adequately,
demands a session-based operational framework. Another difference is the use of
the type discipline to control this complex synchronisation framework, which is
not found in the foregoing work. Note that the type discipline allows multiparty

134 multiparty symmetric sum types

Figure 51 States and screenshots for the doctor GUI

progress and communication-safety for participants, which is not generally ensured
in existing untyped self/broadcast synchronisation primitives. Our primitive and
its type-checker are applicable not only to Process Matrix, but also multiparty
synchronisations in general with strong safety guarantees.

The symmetric synchronisation is similar to the consensus in Weak Byzantine
Agreement (WBA) [14, 40, 41, 81] which is a formalisation of the database commit
problem. The similarity is that a number of processes need to end up with a
common choice. In contrast to symmetric sum, WBA only has two possible choices
(0 and 1). Not all participant has to initially accept the final decision, but if all
processes agree initially, the result should be the initial preference. WBA is studied
in an untyped settings on unreliable networks, with faulty processes (with arbitrary
behaviour).

The symmetric sum is also similar to the symmetric choice � in CSP and the mixed
choice in the π-calculus [99]. The main difference is these preceding primitives
are restricted to two party synchronisations. Our result is consistent with the non-
encodability of the mixed-choice π-calculus in the separated choice π-calculus [99]:
our erasure is defined on typing derivations, and cannot be made homomorphic on
processes. For example, take P = (νa)(P1|P2) where

P1 = a[2](s).synctl1 : P11, l2 : P12u and
P2 = a[2](s).synctl1 : P21, l3 : P23u.

This process shows that the erasure cannot be interpreted as an encoding from
processes J�K where JP1|P2K = JP1K|JP2K, because the result of JP1K depends on the
context P1 is in: the conductor inserted by the second step of the erasure depends
on the type of a which depends on the other process. In the given context, the
conductor must consider the labels l1, l2 and l3, and this could not be generated
from JP1K because P1 does not contain any information about l3. As noted above,
the symmetric sum and synchronisation construct differs from the mixed choice

4.6 related and future work 135

and from the untyped asymmetric, directed sums whose encodability is studied in
[90, 91], in that it is multi-party synchronisation for a fixed number of participants
ensured by the underlying session type discipline.

Types for the multiparty interactions are studied in the conversation calculus [26]
and contracts [28]. The former has choice behaviours where the channel-based
communication is replaced by conversation environments allowing multiple par-
ticipants, while the latter uses a process-based specification of protocols relying
on internal and external choices, where conformance is formalised based on must
preorder (so that we can ensure liveness). Our implementation crucially relies on
the choreographic description based on global types: in particular, global types
can offer a tractable, clear type-directed generation from the Process Matrices as
described in Section 4.5.

As future work, we plan to extend our work with logical assertions based on [20]
in order to describe and ensure the communicated data fulfil desired properties (for
example, “the prescribed medicine doses are less than the lethal amount”). With
the assertions, we can add arguments (state) to the recursive types, and conditions
to the branches in a choice, so that it will lead to a more efficient generation from
the Process Matrix.

Acknowledgements

The first author is supported by the TrustCare project, funded by the Danish Strategic
Research Agency, Grant #2106-07-0019. The last two authors are partially supported
by EPSRC EP/F003757, EP/F002114, EP/G015635 and EP/G015481.

5
M U LT I PA RT Y S Y M M E T R I C S U M T Y P E S W I T H A S S E RT I O N S

Authors:
Lasse Nielsen - University of Copenhagen,
Nobuko Yoshida - Imperial College London and

Kohei Honda - Queen Mary University of London

137

This paper merges and refines two extensions of multiparty session types, adding
assertions and the symmetric sum type constructor to the multiparty session type
language. Assertions are used for increasing the expressiveness of types to ensure
that the communicated values respect the asserted predicates as well as the type
domain. Symmetric sum types represent a decision by collective agreement, and
can be used to express cooperational workflows such as clinical practice guidelines
in the typing system, ensuring that certain choices and actions are made according
to the workflow. The combination of the two extensions to multiparty session types
allows the workflows represented to be more expressive and compact. This paper
formalises an extension of the asynchronous π-calculus with multiparty sessions
and the typing system including both assertions and symmetric sum types. We show
that the properties of multiparty session types are preserved by this extension, and
investigate what examples can be expressed by the extension and how efficiently.
Finally we present an implementation of the full framework, where the assertion
language has been restricted to a decidable fragment, and implementations of real
workflows that can be verified and executed by the implemented tool.

140 multiparty symmetric sum types with assertions

5.1 introduction

Multiparty session types [61] can be used to define protocols for interactions in
a group of participants, and verify that π-calculus processes follow the specified
protocol. Design-by-Contract (DbC) [20] extends the multiparty session types with
assertions, which elaborates type signatures though logical predicates. This can be
used to restrict the values that are communicated and choices that are made.

Symmetric sum types [96] is an extension of the multiparty session types that
can type nondeterministic orchestrational choice behaviors. This can be used to
represent workflows such as clinical practice guidelines (CPGs) [115] as types, such
that implementations can be verified to comply with the represented workflow by
type checking. CPGs are detailed descriptions of medical treatment procedures,
practised globally with local variations, in order to treat specific medical disorders.
CPGs are an example of social interactions, which include workflow models and
various cooperation models: its richness stems from the diverse collaborative pat-
terns human organisations can exhibit. One such pattern, which plays a prominent
role in CPGs, is symmetric synchronisation where all the participants are equal in
the decision-making, i.e. the participants collectively decide on one of the possible
choices.

This paper merges the two extensions to obtain a framework with both symmetric
sum types and assertions. The motivation for combining these extensions is that
assertions are directly usefull in the context of CPGs, but also that workflows in
general can be represented more compactly using assertions.

To illustrate how assertions allow more compact representation of workflows,
we have described a typical CPG workflow in Fig. 52 using the Buisness Process
Modelling Notation (BPMN). The described workflow is activated, when a patient
is admitted. First two tests are executed, possibly in parallel. Then, depending on
the result of the tests, either the patient is discharged directly, or the patient is
treated before discharging. In this workflow the treatment consists of administering
a drug to the patient. The workflow is ended, when the patient is discharged. The
described workflow is a standard paradigm in CPGs, that is, first a set of tests

Figure 52 Typical CPG workflow in BPMN

Admit
+

Test1

Test2

+ �

Administer

�
Discharge

not ok

ok

5.1 introduction 141

Figure 53 Session type representation of workflow

{ Test1 :
3Ñ1 : 1 xBool y ; // The r e s u l t of

t e s t 1

3Ñ2 : 2 xBool y ; // The r e s u l t of
t e s t 1

{ Test2 :
3Ñ1 : 1 xBool y ; // The r e s u l t of

t e s t 2

3Ñ2 : 2 xBool y ; // The r e s u l t of
t e s t 2

TREAT
} ,

Test2 :
3Ñ1 : 1 xBool y ; // The r e s u l t of

t e s t 2

3Ñ2 : 2 xBool y ; // The r e s u l t of
t e s t 2

{ Test1 :
3Ñ1 : 1 xBool y ; // The r e s u l t of

t e s t 1

3Ñ2 : 2 xBool y ; // The r e s u l t of
t e s t 1

TREAT
}

}

µ workflowx t e s t 1 : Bool=false , t e s t 2 : Bool=falsey
.

{ Test1 [[not t e s t 1]] :
3Ñ1 : 1 xBool y ; // The r e s u l t of t e s t 1

3Ñ2 : 2 xBool y ; // The r e s u l t of t e s t 1

workflowxtrue , t e s t 2 y ,
Test2 [[not t e s t 2]] :
3Ñ1 : 1 xBool y ; // The r e s u l t of t e s t 2

3Ñ2 : 2 xBool y ; // The r e s u l t of t e s t 2

workflowx t e s t 1 , truey ,
Diagnose [[t e s t 1 and t e s t 2]] :
TREAT’

}

a) Type without assertions b) Type using assertions

are performed, and depending on the results, either more tests are performed, the
patient is discharged or a treatment is executed.

If we try to describe the workflow as a multiparty session type with symmetric

Figure 54 Session type representation of workflow using assertions

µ workflowx t e s t 1 : Bool=false , t e s t 2 : Bool=false , administer : Bool=false ,
r e s u l t 1 : Bool=false , r e s u l t 2 : Bool=falsey .

{ Test1 [[not t e s t 1]] :
3Ñ1 : 1 xBool y as x ; // The r e s u l t of t e s t 1

3Ñ2 : 2 xBool y as y [[x=y]] ; // The r e s u l t of t e s t 1

workflowxtrue , t e s t 2 , administer , x , r e s u l t 2 y ,
Test2 [[not t e s t 2]] :
3Ñ1 : 1 xBool y as x ; // The r e s u l t of t e s t 2

3Ñ2 : 2 xBool y as y [[x=y]] ; // The r e s u l t of t e s t 2

workflowx t e s t 1 , true , administer , r e s u l t 1 , xy ,
Administer [[t e s t 1 and t e s t 2 and not administer and not (r e s u l t 1 and r e s u l t 2)]] :
workflowx t e s t 1 , t e s t 2 , true , r e s u l t 1 , r e s u l t 2 y ,

Discharge [[t e s t 1 and t e s t 2 and (r e s u l t 1 or r e s u l t 2 or administer)]] :
end

}

142 multiparty symmetric sum types with assertions

sum without using assertions, we can use the syntax from the original symmetric
sum type paper [96], where tl : GlulPL;M represents a choice by common agreement
where the possible choices are the labels in LYM and Gl describes how to procede
for the choice l. With this syntax, we can represent the workflow from Fig. 52 as the
type in Fig. 53a. The type states that first either Test1 or Test2 is executed. When
Test1 is executed, the result is sent from participant 3 to participant 1 and 2, this
could for example be the nurse informing the patient and the doctor of the result. If
Test1 was executed, then Test2 is executed (again the result is communicated), and
then the workflow proceeds as TREAT which represents the type for evaluating
the test results and treating the patient accordingly before discharging. If Test2 is
executed first, then Test1 is executed before continuing with TREAT. It is noticable,
how each permutation of the tests must be allowed explicitly. This is not so bad
in the given example, as the number of tests is 2, but as the number of tests n
increases, the number of permutation explodes, because there are n! permutations.

Using the approach from the original assertions paper [20], we can extend the
syntax of the symmetric sum types to ttAlu l : PlulPL;M, where Al is the assertion
on the choice l meaning that l can only be chosen if Al is valid. Using the extended
syntax, the workflow can be described by the type in Fig. 53b. The workflow is
described by a recursive type. This may be surprising, as the original workflow
has no recursion, but the idea is that the recursion has a state (test1 and test2
describing if the respective actions have been executed), which is used to decide
what actions can be executed. After executing an action, the recursive type is
used with an updated state. In the state where both tests have been executed, the
Diagnose action can be used to continue with the remaining workflow represented
as TREAT’.

Since the compact representation uses assertions, it makes sense to consider if the
assertions are useful for other aspects of the CPG workflows, and this seems like a
perfect fit. Assertions can for example be used to ensure that the prescribed doses
of medicine are below the lethal limit. In the example workflow the assertions can
be used to ensure, that the result sent to the patient and the doctor after a test is
the same, and the results of the tests can for instance be used to indicate if it makes
sense to administer the medicine or discharge the patient directly. This is used in
the type in Fig. 54 representing the full workflow, where the results communicated
in each test is used to decide if the Administer and Discharge actions can be selected.

In the remaining sections, we will formalise the framework with both symmetric
sum and assertions, prove that the properties of the original multiparty session
types are preserved, and show a working implementation of the framework and
real world examples represented and verified using the implementation.

Appendix D includes the omitted definitions and proofs, but the paper can be
read independently.

5.2 the process language 143

Figure 55 The process language

P ::= syncs̃,nttAlu l : PlulPL
| 0

| a[2..n](s̃).P
| a[p](s̃).P
| s!xẽy;P
| s?(x̃);P
| s!xxs̃yy;P
| s?((s̃));P

D ::= tXixx̃iy(s̃i) = PiuiPI
e ::= v | x | e and e 1 | . . .
A ::= e

synchronisation
inaction

session request
session accept
value sending

value reception
delegation
reception

declarations
expressions

assertions

| s� l;P
| s� tl : PlulPL
| if e then P else Q
| P|Q

| (νn)P

| def D in P
| Xxẽs̃y

| s : h̃

v ::= a | true | false
h ::= l | ṽ | s̃

label selection
label branching

conditional
parallel

restriction
recursion

process call
message queue

values
messages

5.2 the process language

This section introduces the syntax (Fig. 55) of the asynchronous multiparty session
π-calculus [61] with the new sync primitive, and the judgement P Ñ P 1 (Fig. 56,

Figure 56 The reduction rules

[Link]

a[2..n](s̃).P1|a[2](s̃).P2| . . . |a[n](s̃).Pn Ñ (νs̃)(P1|P2| . . . |Pn|s1 :H| . . . |sm :H)

[Send] ẽ Ó ṽ

s!xẽy;P|s : h̃Ñ P|s : h̃ � ṽ

[Recv]

s?(x̃);P|s : ṽ � h̃Ñ P[ṽ/x̃]|s : h̃

[Label]

s� l;P|s : h̃Ñ P|s : h̃ � l

[Branch] j P I

s� tli : PiuiPI|s : lj � h̃Ñ Pj|s : h̃

[Deleg]

s!xxt̃yy;P|s : h̃Ñ P|s : h̃ � t̃

[SRec]

s?((t̃));P|s : t̃ � h̃Ñ P|s : h̃

[IfT] e Ó true

if e then P else QÑ P

[IfF] e Ó false

if e then P else QÑ Q

[Def] ẽ Ó ṽ Xxx̃s̃y = P P D

def D in Xxẽs̃y|QÑ def D in P[ṽ/x̃]|Q

[Scop] P Ñ P 1

(νn)P Ñ (νn)P 1

[Par] P Ñ P 1

P|QÑ P 1|Q

[Defin] P Ñ P 1

def D in P Ñ def D in P 1
[Str] P � P 1 P Ñ Q Q � Q 1

P 1 Ñ Q 1

[Sync] h P
�n
i=1 Li A1h Ó true � � � Anh Ó true

syncs̃,nttA1lu l : P1lulPL1 | ... | syncs̃,nttAnlu l : PnlulPLn Ñ P1h | ... | Pnh

144 multiparty symmetric sum types with assertions

where e Ó v denotes the evaluation of the expression e to the value v) describing
the small-step semantics for processes. The syntax defines the values: tv,w, . . .u,
expressions: te, e 1, . . .u, assertions tA,B, . . .u and processes: tP,Q, . . .u from the sets
of channel names: ta,b, . . .u, value variables: tx,y, . . .u, session channels: ts, t, . . .u,
labels: tl,m, . . .u and process variables: tX, Y, . . .u.

It is a noticeable difference from the original assertion paper [20], that the
assertions are not included in the processes. Only the synchronization construct
explicitly includes the assertions, and this is because the assertions are a vital
part of the synchronisation as they express what choices the process accepts, and

Figure 57 Implementation of the participants in the workflow from Fig. 52 and
Fig. 54

PP = // P a t i e n t
a [2 . . 3] (p , d , n) .
def Xx t1 : Bool , t2 : Bool , adm : Bool ,

r1 : Bool , r2 : Bool y
((p , d , n) : workflowæ1x t1 , t2 , adm,

r1 , r2 y) =
sync((d , s , r) , 3)
{ Test1 [[not t1]] :

p? (r e s u l t) ;
Xxtrue , t2 , adm, r e s u l t , r2 y ((p , d ,m)) ,
Test2 [[not t2]] :
p? (r e s u l t) ;
Xx t1 , true ,adm, r1 , r e s u l t y ((p , d ,m)) ,
Administer [[t1 and t2 and not adm

and not (r1 and r2)]] :
Xx t1 , t2 , true , r1 , r2 y ,
Discharge [[t1 and t2 and

(r1 or r2 or adm)]] :
end

}
in Xxfalse ,false ,false ,false ,falsey ((p , d , n))

PD = // Doctor
a [2] (p , d , n) .
def Xx t1 : Bool , t2 : Bool , adm : Bool ,

r1 : Bool , r2 : Bool y
((p , d , n) : workflowæ1x t1 , t2 , adm,

r1 , r2 y) =
sync((d , s , r) , 3)
{ Test1 [[not t1]] :

d? (r e s u l t) ;
Xxtrue , t2 , adm, r e s u l t , r2 y ((p , d ,m)) ,
Test2 [[not t2]] :
d? (r e s u l t) ;
Xx t1 , true ,adm, r1 , r e s u l t y ((p , d ,m)) ,
Administer [[t1 and t2 and not adm

and not (r1 and r2) :
Xx t1 , t2 , true , r1 , r2 y ,
Discharge [[t1 and t2 and

(r1 or r2 or adm)]] :
end

}
in Xxfalse ,false ,false ,false ,falsey ((p , d , n))

PN = // Nurse
a [3] (p , d , n) .
def Xx t1 : Bool , t2 : Bool , adm : Bool , r1 : Bool , r2 : Bool y

((p , d , n) : workflowæ1x t1 , t2 , adm, r1 , r2 y) =
sync((d , s , r) , 3)
{ Test1 [[not t1]] :

p ! xeResulty ; d ! xeResulty ; Xxtrue , t2 , adm,eResult, r2 y ((p , d ,m)) ,
Test2 [[not t2]] :
p ! xeResulty ; d ! xeResulty ; Xx t1 , true ,adm, r1 ,eResulty ((p , d ,m)) ,
Administer [[t1 and t2 and not adm and not (r1 and r2) :

Xx t1 , t2 , true , r1 , r2 y ,
Discharge [[t1 and t2 and (r1 or r2 or adm)]] :

end
}

in Xxfalse ,false ,false ,false ,falsey ((p , d , n))

5.3 the type language 145

the used assertions for optional branches does not have to be equivalent to the
assertions used in the type. The reason why the original assertion paper includes
the assertions in the processes for sending and receiving messages and branches is,
that they are used to describe a semantics where sending or receiving a message
that does not meet the assertions result in an error, and this can be used to prove
a ’well typed processes do not go wrong’ result. The approach used in this paper
is to describe an unsafe semantics, meaning that messages that does not meet the
assertions can be communicated without detection. This means that we cannot
prove the same result as the original assertion paper, but we will in stead use the
approach of the original multiparty session type paper [61] to prove that each step
of a well type process, can be matched by a step by the type-environment such
that the result process is well-typed in the result environment. This also means
that the communicated messages meets the assertions, as this is required by the
environment steps.

Session request (a[2..n](s̃).P) initiates a session with channels s̃ (where s̃ denotes a
vector s1 . . . sn) over the public channel a with the other n� 1 participants of shape
a[p](s̃).Qp for p from 2 to n ([Link] in Fig. 56). Asynchronous communication in
an established session is performed by sending and receiving values ([Send,Recv]),
transferring a session using session delegation and reception ([Deleg,SRec]), and
label selection and branching ([Label,Branch]), where the branching process offers
a number of labels and the selecting process chooses one of them.

The new syncs̃,nttAlul : PlulPL constructor is interpreted as the process partici-
pating in a plenum decision between all the n processes in the session s̃ reaching
a common decision h from L, which all the processes accept since the assertions
evaluate to true. Afterwards each process p proceeds as described in Pph. In [Sync]
in Fig. 56, h in the premise denotes the common label.

In [Sync], the processes cannot perform the synchronisation if they do not accept
some common label, in which case the processes will be stuck. We also need
to know how many participants are in the session in order to know when the
synchronisation can step; otherwise the processes will be stuck, or some processes
will be left behind. The typing system introduced in the next section ensures that
sync satisfies such conditions.

workflow example (1): processes We give implementations of all three
participants in the workflow from the introduction in Fig. 57.

5.3 the type language

We start by defining the global types G in Fig. 58, which specifies global session
protocols between the participants. Except for the symmetric sum type, the syntax
is from [20]. The type pÑ p 1 : kxUy as x tAu .G 1 expresses that participant p sends

146 multiparty symmetric sum types with assertions

Figure 58 The Domains used for Global and Local types

(Global Types)
G ::= pÑ p 1 : kxSy as x tAu .G 1

| pÑ p 1 : kxUy.G 1

| pÑ p 1 : kttAiu li : GiuiPI
| µtxx̃y(ẽ).G
| txẽy

| end
| ttAlu l : GlulPL;M

(Message Types)
U ::= S̃ | T@(p,m,n)

(Simple Types)
S ::= bool | int | ... | xGy

(Local Types)
T ::= k!xSy as x tAu ; T

| k?xSy as x tAu ; T
| k!xUy; T | k?xUy; T
| k` ttAlu l : TlulPL
| k& ttAlu l : TlulPL
| µtxx̃y(ẽ).T | txẽy | end
| ttAlu l : TlulPL;M
| @x : S tAu .T

(Environments)
Γ ::=H | Γ ,u : xGy | Γ ,X : S̃T̃

∆ ::=H | ∆, s̃ : T@(p,n)
Θ ::= A

a message of type U along channel k to p 1 and then interactions described in G 1

take place. The as x tAu parts binds occurances of x in G and A to the value
communicated, and states that the value must respect the predicate A. The type
p Ñ p 1 : kttAiu li : GiuiPI expresses that p sends one of the labels li to p 1. If lj is
sent, then the predicate Aj must be fulfilled, and the interactions described in Gj
take place. Type µtxx̃y.G is a recursive type where x̃ is the state, assuming type
variables (t, t 1, . . .) are guarded in the standard way. We assume that G in the
grammar of sorts is closed, i.e., without free type or assertion variables. Type end
represents the session termination.

The sum type ttAlu l : GlulPL;M represents a synchronisation where the labels
are taken from the set LYM. The labels in L are optional, but the labels in M are
mandatory and must be accepted by all the participants. If the predicate Al is false,
the label is ignored, and must be rejected. The mandatory labels will be underlined
to distinguish them from the optional labels (e.g. tl : GlulPtl1u;tl2u = tl1 : Gl1, l2 :
Gl2u).

The local types T are defined in Fig. 58. They describe the communication
performed by a single process. Therefore the “from process to process on channel”
syntax is simply changed to sending or receiving on a channel. Thus the sending
type is k!xUy as x tAu ; T and represents sending a message of type U on channel
k respecting the predicate A, followed by the communication described by T . The
type of receiving is k?xUy as x tAu ; T , the type of selecting is k` ttAlu l : TlulPL
and the type of branching is k& ttAlu l : TlulPL. The difference from the original
assertion paper is that the symmetric sum type constructor ttAlu l : TlulPL;M is
added where L,M satisfies the conditions similar to those of a global sum type,
and we have introduced a @x tAu .T constructor. This is to capture the local type of

5.3 the type language 147

Figure 59 Projection from global to local types (æ)

(p0 Ñ p1 : kxSy as x tAu .G 1)æp =

$''&
''%

m!xSy as x tAu ; (G 1æp) if p = p0 and p � p1

m?xSy as x tAu ; (G 1æp) if p = p1 and p � p0

@x : S tAu .G 1æp if p � p0 and p � p1

(p0 Ñ p1 : kxUy.G 1)æp =

$''&
''%

m!xUy; (G 1æp) if p = p0 and p � p1

m?xUy; (G 1æp) if p = p1 and p � p0

G 1æp if p � p0 and p � p1

(p0 Ñ p1 : kt

Aj

(
lj : GjujPJ)æp =

$'''''&
'''''%

k` t

Aj

(
lj : (Gjæp)ujPJ if p = p0 � p1

k& t

Aj

(
lj : (Gjæp)ujPJ if p = p1 � p0

@_
!�

jPJAj

)
.max¤sub if p1 � p � p2

tT 1 | @j P J.T 1 ¤sub (Gjæp)u

(ttAlu l : GlulPL;L 1)æp = ttAlu l : (Glæp)ulPL;L 1

(µtxx̃y(ẽ).G)æp = µtxx̃y(ẽ).(Gæp)

(txẽy)æp = txẽy

(end)æp = end

message parsing for a participant that is neither the sender or the receiver in a more
intuitive way than the original assertion paper. In this case the local type should
allow only the behaviour that is valid for all possible messages, and therefore the
local type is represented by a forall construct.

The message type T@(p,m,n) is used for delegation. It describes an open session,
and includes information about the participant number p, the number of session
channels m, and the number of participants n in the session together with a local
type T describing the remaining communication.

Finally we define the global environment Γ containing the global types for shared
channels u, and process variables X, the local type environment ∆ containing the
remaining session communication in Fig. 58, where s̃ : T@(p,n) means s̃ is an open
session with n participants, where T describes the remaining communication for
participant p, and the assertion environment Θ which holds the current assertions.

The projection G æ p of a global type G for a participant p generates the local
type for the participant in an intuitive way. Projection is defined in Fig. 59. The
differences from the definition in [61] is that the assertions are preserved, the
communication between a second and third party is not ignored, but results in a
forall construct holding the message assertion, and we have added a case for the
symmetric sum type from [96] extended with assertions (ttAlu l : GlulPL;M)æp =

ttAlu l : (Glæp)ulPL;M.
A global type G is coherent [61] if and only if the projection Gæp is defined for all

148 multiparty symmetric sum types with assertions

Figure 60 Selected typing rules

[Sync]

@l P L2 : Θ^Al; Γ $ Pl �∆, s̃ : Tl@(p,n) L2 � LY L 1

@l P LzL2 :$ Θñ Bl @l P L2 :$ Θñ (Al ñ Bl)

@l P L :$ Θñ (Bl ñ Al) $ Θñ
�
lPL Bl

Θ; Γ $ syncs̃,nttAlu l : PlulPL2 �∆, s̃ : ttBlu l : TlulPL;L 1@(p,n)

[Mcast]

Γ $ a : xGy

Θ; Γ $ P�∆, s̃ : (Gæ1)@(1,n)

|s̃| = max(sid(G))

n = max(pid(G))

Θ; Γ $ a[2..n](s̃).P�∆
(fv(Gæ1) =H)

[Macc]

Γ $ a : xGy

Θ; Γ $ P�∆, s̃ : (Gæp)@(p,n)

|s̃| = max(sid(G))

n = max(pid(G))

Θ; Γ $ a[p](s̃).P�∆
(fv(Gæp) =H)

[SendA] Γ $ e : S Θ; Γ $ P�∆, s : T [e/x]@(p,n) $ Θñ A[e/x]

Θ; Γ $ sk!xey;P�∆, s̃ : k!xSy as x tAu ; T@(p,n)

[RcvA] Θ^A; Γ , x : S $ P�∆, s̃ : T@(p,n)

Θ; Γ $ sk?(x);P�∆, s̃ : k?xSy as x tAu ; T@(p,n)
(x R fv(Θ)Y fv(∆))

[Sel] Θ; Γ $ P�∆, s̃ : T@(p,n) h P L $ Θñ Ah

Θ; Γ $ sk � h;P�∆, s̃ : k` ttAlu l : TlulPL@(p,n)

[Branch] @l P L : Θ^Al; Γ $ Pl �∆, s̃ : Tl@(p,n)

Θ; Γ $ sk � tl : PlulPL �∆, s̃ : k&ttAlu l : TlulPL@(p,n)

[Conc] Θ; Γ $ P�∆ Θ; Γ $ Q�∆ 1

Θ; Γ $ P|Q�∆ �∆ 1
(dom(∆)X dom(∆ 1) =H)

[Subs] Θ; Γ $ P�∆ $ Θñ ∆ ¤ ∆ 1

Θ; Γ $ P�∆ 1

participants, and G does not allow racing conditions (linearity). We only consider
coherent global types.

judgement The typing judgement extends the original one [20] with symmetric
sum types. The judgement Θ; Γ $ P�∆ states that assuming Θ the process P in the
environment Γ performs exactly the session communication described in ∆.

The main rules are included in Fig. 60. The local types now carry information
about the number of participants n and channels m. The number of participants
and channels is determined at the session initialisation in the rules [Mcast] and

5.3 the type language 149

Figure 61 Local type for the patient

Gæ1 = // Local type f o r P a t i e n t
µ workflowx t e s t 1 : Bool=false , t e s t 2 : Bool=false ,

administer : Bool=false ,
r e s u l t 1 : Bool=false , r e s u l t 2 : Bool=falsey .

{ Test1 [[not t e s t 1]] :
1 ? x Sdata y as x ;
f o r a l l y [[x=y]] ;
workflowxtrue , t e s t 2 , administer , x , r e s u l t 2 y ,

Test2 [[not t e s t 2]] :
1 ? x Sdata y as x ;
f o r a l l y [[x=y]] ;
workflowx t e s t 1 , true , administer , r e s u l t 1 , xy ,

Administer [[t e s t 1 and t e s t 2 and not administer and
not (r e s u l t 1 and r e s u l t 2)]] :

workflowx t e s t 1 , t e s t 2 , true , r e s u l t 1 , r e s u l t 2 y ,
Discharge [[t e s t 1 and t e s t 2 and

(r e s u l t 1 or r e s u l t 2 or administer)]] :
Lend

}

[Macc], where sid(G) denotes channels that appear in G and pid(G) denotes the
participants that appear in G. The rule [Sync] checks that the synchronisation uses
the correct number of participants, the accepted branches includes the mandatory
ones exactly (if and only if) when their predicate is fulfilled, and does not accept
(only if) the optional ones with a false predicate. It is checked that there is always
an active mandatory option, and finally that each accepted branch is typed with
the correct communication.

Since the process is reduced by each rule-application, the typability question
Θ; Γ $ P�∆ is decidable when $ A is decidable.

healthcare cooperation (2): types The global type describing the work-
flow from Fig. 52 was deduced in the introduction, and given in Fig. 54. The local
type describing the behavior of each participant can be found by projection, and
the local type describing the behavior of the patient is given in Fig. 61. Using the
global type and its projections we can now typecheck the processes.

Proposition 5.3.1. a : xGy $ PP | PD | PN �H.

We end this section by proving subject reduction, from which we can derive
soundness, communication safety and single session progress [61, § 5] as corollaries.
The formulation uses the extension of the typing to runtime processes (Θ; Γ $
P �t̃ ∆), which corresponds to the presented typing on processes without open
sessions, but also accept processes with open sessions. This is obtained by joining
compatible session environments (∆,∆ 1) using the ∆ � ∆ 1 operation to a single
environment expressing the communication in both ∆ and ∆ 1. Below ∆Ñ0/1 ∆ 1

150 multiparty symmetric sum types with assertions

denotes zero or one step using the type reduction [61], which represents the
communication between dual local types. For this we use forall contexts, defined
by

Cx ::= [] | @y : S tAu .Cx

where y � x. For instance, a reduction between input and output types is defined
as:

$ v : S A[v/x] Ó true$'''''''&
'''''''%

Cx1[k!xSy as x tAu ; T1@(p1,n)],

Cx2[k?xSy as x tAu ; T2@(p2,n)],

Cx3[@x : S tAu .T3@(p2,n)],

. . . ,

Cxn[@x : S tAu .Tn@(pn,n)]

,///////.
///////-

Ñ tTp[v/x]@(p,n)unp=1

We extend it to the symmetric sum as:

A1 Ó true � � � An Ó true

tttApu l : Tp, . . .u@(p,n)upPt1..nu Ñ tTp@(p,n)upPt1..nu

Then we have subject reduction.

Theorem 5.3.2 (Subject Reduction).
If true; Γ $ P�s̃ ∆, ∆ coherent and P Ñ P 1 then true; Γ $ P 1 �s̃ ∆ 1 where ∆Ñ0/1 ∆ 1.

Proof: By induction on the derivation of P Ñ P 1.

5.4 implementation

apims [1] is an implementation of a typechecker and interpretor for the asyn-
chronour π-calculus with multiparty sessions and symmetric synchronisation [96].
We have extended apims with support for propositional assertions. This means that
only boolean variables and constants can be used in the assertions, and this ensures
that assertions validity is decidable. In order to automatically verify the assertions
are respected, we have implemented an automated theorem prover for the classical
propositional logic. We have implemented proof-search in two axiomatizations: LK
[49] and CFLKF [57]. Preliminary testing shows that although the CFLKF has the
best runtime on large assertions, the LK based theorem prover has the best runtime
for average programs, because a very large part of the theorems proved are trivial,
and for these theorems the LK based theorem prover is more efficient.

5.5 related and future work 151

5.5 related and future work

The theorem provers we have implemented are based on the LK and CFLKF
proof systems, but the is a vast abundance of theorem provers available [103] [71]
which can enable both more efficient verification (in practice) and more expressive
assertion languages. We can even use a resolution [112] based theorem prover or
indeed any method that can decide assertion validity, as we do not currently use
the derivations for anything. The results we have proved are not as powerful as
the ones proved for the original assertions paper [20]. This is because we do not
include the assertions in the programs, and therefore assertion violations are not
detected during execution which means we cannot prove the well typed terms do not
go wrong result. This is not related to the extension with symmetric sum types, and
thus it should be possible to extend the program syntax with assertions and prove
the result.

5.6 conclusions

We have successfully merged the symmetric sum types and the type assertions
extensions of the multiparty session types into a single type language. This enables
the benefits of assertion types – such as value restrictions and more efficient repre-
sentation of some interaction patterns – in the workflows that can be represented
using symmetric sum types. The extended typing judgement still ensure subject
reduction. We have implemented the used language and type verification for the
assertion language of classical propositional logic.

Acknowledgements

The first author is supported by the TrustCare project, funded by the Danish Strategic
Research Agency, Grant #2106-07-0019. The last two authors are partially supported
by EPSRC EP/F003757, EP/F002114, EP/G015635 and EP/G015481.

Part IV

A P P E N D I X

A
I N T R O D U C T I O N

a.1 process matrix

a.1.1 Oncology example

ID Name CP D N1 N2 PA Seq Log Condition Input

1.1 PatientInfo

1.1.1 BasicInfo R W W R N patient

1.1.2 LaboratoryResults R W W R N labresults

1.1.3 PatientHistory R W W R N history

1.2 OrderAndPrepare 1.1

1.2.01 CalculateDosis R W R R N data

1.2.02 Sign1 R W R R N 1.2.01 trustO

1.2.03 VerifyOrder R W R R N 1.2.02 (not trustO) trustO

1.2.04 ControlCalculation W R R R N 1.2.02

1.2.03

trustO

1.2.05 MakePreparation R N N N W 1.2.04 data

1.2.06 Sign2 R N N N W 1.2.05 data

1.2.07 VerifyPreparation R N N N W 1.2.06 (not trustPA) data

1.2.08 CheckOutPreparation W R R R R 1.2.06

1.2.07

trustPA

1.2.09 Sign3 W R R R R 1.2.08 data

1.2.10 VerifyCheckout W R R R R 1.2.09 (not trustP) data

1.2.11 CheckOrderMatchesPatient1 N R W R N 1.2.09

1.2.10

trustO, trustP

1.2.12 CheckOrderMatchesPatient2 N R R W N 1.2.09

1.2.10

data

1.2.13 Approve R W W R R 1.2.11

1.2.12

trustO, trustP

1.3 MedicineAdministration 1.2

1.3.1 AdministerPreparation R R W W N data

155

A.2 session types 157

a.2 session types

a.2.1 guisync rules

(:) = The user for each participant p has accepted the chosen branch (h) and given
the used input ṽhp

[guiSync] h P
�n

p=1 Lp $ ṽhp : S̃hp

guisyncs̃,n,1tl(x̃l1 : S̃l1) : Pl1ulPL1

| . . .

| guisyncs̃,n,ntl(x̃ln : S̃ln) : PlnulPLn

Ñ

Ph1[ṽh1/x̃h1]

| ...

| Phn[ṽhn/x̃hn]

(:)

[guiSync] @l P L2 : Γ , x̃l : S̃l $ Pl �∆, s̃ : Tl@(p,n) L2 � LY L 1 L 1 � L2

Γ $ guisyncs̃,n,ptl(x̃l : S̃l) : PlulPL2 �∆, s̃ : tl : TlulPL;L 1@(p,n)

a.2.2 Oncology example

// DRUG: CHANNEL, TYPE AND IMPLEMENTATION {{{

2 // GLOBAL TYPE: $drug // {{{

// This is the Interface of a Drug

// Users:

// 1: The drug itself

// 2: User/Owner

define $drug_atadminister = // Behavior when sent from Authorised person to Nurse

2=>1:1

{^Administer: // The drug is administered to the patient

Gend

}

12 in define $drug_atcheck2 = // Behavior when sent crom CP to Nurse via porter

rec $atcheck2.

2=>1:1

{^Check: // Check Patient Information

1=>2:2<String>; // Read Content description

1=>2:2<String>; // Read Patient Information

2=>1:1 // Verify or Reject

{^Reject: // the content does not match prescription

$atcheck2, // The drug is destroyed, and the preparation must be

restarted

^Verify: // The content matches the prescription

22 2=>1:1

{^Check: // Check Patient Information

1=>2:2<String>; // Read Content description

1=>2:2<String>; // Read Patient Information

2=>1:1 // Verify or Reject

158 introduction

{^Reject: // the content does not match prescription

$atcheck2, // The drug is destroyed, and the preparation must be

restarted

^Verify: // The content matches the prescription

$drug_atadminister

}

32 }

},

^Destroy:

Gend

}

in define $drug_ataccept1 = // Behavior when sent from PA to CP

2=>1:1 // Verify or Reject

{^Destroy: // the content does not match prescription

Gend, // The drug is destroyed, and the preparation must be

restarted

^Verify: // The content matches the prescription

42 $drug_atcheck2

}

in define $drug_atcheck1 = // Behavior when sent from PA to CP

2=>1:1

{^Check: // Check Patient Information

1=>2:2<String>; // Read content description

1=>2:2<String>; // Read Patient Information

$drug_ataccept1

}

in define $drug = // Full behavior of a drug

52 2=>1:1

{^Prepare:

2=>1:1<String>; // Attach Content Information

2=>1:1<String>; // Attach Patient Information

$drug_atcheck1

}

// Used positions: // {{{

in define $drug_ataccept3 = // Behavior when sent from PA to CP

2=>1:1 // Verify or Reject

{^Reject: // the content does not match prescription

62 $drug_atcheck2, // The drug is destroyed, and the preparation must be

restarted

^Verify: // The content matches the prescription

$drug_atadminister

}

in define $drug_atcheck3 = // Behavior when sent from Nurse to Authorised person

2=>1:1

{^Check: // Check Patient Information

1=>2:2<String>; // Read content description

1=>2:2<String>; // Read Patient Information

$drug_ataccept3

72 }

in define $drug_ataccept2 =

2=>1:1 // Verify or Reject

A.2 session types 159

{^Reject: // the content does not match prescription

$drug_atcheck2, // The drug is destroyed, and the preparation must be

restarted

^Verify: // The content matches the prescription

$drug_check3

} // }}}

in // }}}

(nu drug: $drug)

82 // This is the Drug Service Implementation

def Drug() = // {{{

link(2,drug,s,1);

guivalue(2,s,1,"User","Drug");

(Drug()

| s[1]>>

{^Prepare:

s[1]>>content;

s[1]>>patient;

s[1]>>

92 {^Check:

s[2]<<content;

s[2]<<patient;

s[1]>>

{^Destroy: end,

^Verify:

def Drug_Check2(s: $drug_atcheck2@(1of2)) =

s[1]>>

{^Check:

s[2]<<content;

102 s[2]<<patient;

s[1]>>

{^Reject: Drug_Check2(s),

^Verify:

s[1]>>

{^Check:

s[2]<<content;

s[2]<<patient;

s[1]>>

{^Reject: Drug_Check2(s),

112 ^Verify:

s[1]>>

{^Administer: end

}

}

}

},

^Destroy: end

}

in Drug_Check2(s)

122 }

}

}

160 introduction

)

in (Drug() | // }}}

// }}}

// FLOWCHART: CHANNEL, TYPE AND IMPLEMENTATION {{{

// GLOBAL TYPE: $flowchart {{{

// This is the Interface of a Flowchart

// Users:

132 // 1: The Flowchart Object

// 2: User/Owner

define $flowchart_atsign =

2=>1:1

{^Sign: // The resonsible nurse signs

Gend

}

in define $flowchart_atcheck3 =

rec $atcheck3.

2=>1:1

142 {^Check: // BEGIN: Responsible Nurse Check

1=>2:2<String>; // Read Patient Info

1=>2:2<String>; // Read Dosis

2=>1:1

{^Reject: // The prescription and prepared dosis do not

match

$atcheck3,

^Accept: // The prescription and prepared dosis match

2=>1:1

{^Check: // BEGIN: Authorized Person Check

1=>2:2<String>; // Read Patient Info

152 1=>2:2<String>; // Read Dosis

2=>1:1

{^Reject: // The prescription and prepared dosis do not

match

$atcheck3, // Put drug back, reverification is necessary

^Accept: // The prescription and prepared dosis match

$flowchart_atsign

}

}

}

}

162 in define $flowchart_atcheck4 =

2=>1:1

{^Check: // BEGIN: Authorized Person Check

1=>2:2<String>; // Read Patient Info

1=>2:2<String>; // Read Dosis

2=>1:1

{^Reject: // The prescription and prepared dosis do not

match

$flowchart_atcheck3, // Put drug back, reverification is necessary

^Accept: // The prescription and prepared dosis match

$flowchart_atsign

172 }

A.2 session types 161

}

// GLOBAL TYPE: $oncology_administer // {{{

// The administering of a drug

// Users:

// 1: The Patient

// 2: The Nurse

// 3: The Authorised Person

in define $oncology_administer =

1=>2:2<String>; // Patient gives info to nurse

182 {^Reject:

Gend,

#Verify:

1=>3:3<String>; // Patient gives details

2=>3:4<$flowchart_atcheck4@(2of2)>; // Transfer flowchart to verify

2=>3:4<$drug_atcheck3@(2of2)>; // Transfer drug to verify

{^Reject:

3=>2:2<$flowchart_atcheck3@(2of2)>;

3=>2:2<$drug_atcheck2@(2of2)>;// Transfer drug to verify

Gend,

192 #Verify:

3=>2:2<$flowchart_atsign@(2of2)>;

3=>2:2<$drug_atadminister@(2of2)>;// Transfer drug to verify

{^Administer:

Gend

}

}

}// }}}

in define $flowchart_attonurse =

1=>2:2< <$oncology_administer> >; // The Nurse reads the contact info

202 $flowchart_atcheck3

in define $flowchart_atcheck2 =

rec $atcheck2.

2=>1:1

{^CheckDrug: // BEGIN: CP check PA work

1=>2:2<String>; // Read Dosis

1=>2:2<String>; // Read Patient

2=>1:1

{^RejectDrug: // The Patient Info did not match

$atcheck2, // Try again when new drug is ready

212 ^AcceptDrug: // The produced drug is accepted

2=>1:1

{^Sign: // The Controlling Pharmacist signs

$flowchart_attonurse

}

}

}

in define $flowchart_ataccept2 =

2=>1:1

{^RejectDrug: // The Patient Info did not match

222 $flowchart_atcheck2, // Try again when new drug is ready

^AcceptDrug: // The produced drug is accepted

162 introduction

2=>1:1

{^Sign: // The Controlling Pharmacist signs

$flowchart_attonurse

}

}

in define $flowchart_atcalc =

rec $atcalc.

2=>1:1

232 {^CalcDosis:

2=>1:1<String>; // Write Dosis

2=>1:1

{^Sign: // The Doctor signs

2=>1:1

{^Check: // BEGIN: CP checks Prescription and

drug

1=>2:2<String>; // Read Patient Info

1=>2:2<Int>; // Read Patient Height

1=>2:2<Int>; // Read Patient Weight

1=>2:2<String>; // Read Patient History

242 1=>2:2<String>; // Read Latest Lab Results

1=>2:2<String>; // Read Dosis

rec $ataccept1.

2=>1:1

{^RejectCalc:

$atcalc,

^AcceptCalc:

rec $ataccept2.

2=>1:1

{^RejectDrug: // Calculations are wrong

252 $ataccept2, // The calculations must be redone

^AcceptDrug:

2=>1:1

{^Sign: // The Controlling Pharmacist signs

$flowchart_attonurse

}

},

^RejectDrug:

$ataccept1,

^AcceptDrug:

262 2=>1:1

{^RejectCalc: // Calculations are wrong

$atcalc, // The calculations must be redone

^AcceptCalc:

2=>1:1

{^Sign: // The Controlling Pharmacist signs

$flowchart_attonurse

}

}

}

272 }

}

A.2 session types 163

}

in define $flowchart_ataccept1no2 =

2=>1:1

{^RejectCalc: // Calculations are wrong

$flowchart_atcalc, // The calculations must be redone

^AcceptCalc:

2=>1:1

{^Sign: // The Controlling Pharmacist signs

282 $flowchart_attonurse

}

}

in define $flowchart_ataccept2no1 =

rec $ataccept2.

2=>1:1

{^RejectDrug: // Calculations are wrong

$ataccept2, // The calculations must be redone

^AcceptDrug:

2=>1:1

292 {^Sign: // The Controlling Pharmacist signs

$flowchart_attonurse

}

}

in define $flowchart_ataccept1 =

rec $ataccept1.

2=>1:1

{^RejectCalc:

$flowchart_atcalc,

^AcceptCalc:

302 $flowchart_ataccept2no1,

^RejectDrug:

$ataccept1,

^AcceptDrug:

$flowchart_ataccept1no2

}

in define $flowchart_atcheck1 =

2=>1:1

{^Check:

1=>2:2<String>; // Read Patient Info

312 1=>2:2<Int>; // Read Patient Height

1=>2:2<Int>; // Read Patient Weight

1=>2:2<String>; // Read Patient History

1=>2:2<String>; // Read Latest Lab Results

1=>2:2<String>; // Read Dosis

$flowchart_ataccept1

}

in define $flowchart =

2=>1:1

{^RegisterPatient:

322 2=>1:1<String>; // Write Patient Info

2=>1:1<Int>; // Write Patient Height

2=>1:1<Int>; // Write Patient Weight

164 introduction

2=>1:1<String>; // Write Patient History

2=>1:1<String>; // Write Latest Lab results

2=>1:1< <$oncology_administer> >; // Write contact info

$flowchart_atcalc

}

in // }}}

(nu flowchart: $flowchart)

332 // This is the Flowchart Service Implementation

def Flowchart() = // {{{

link(2,flowchart,s,1);

guivalue(2,s,1,"User","Flowchart");

(Flowchart()

| s[1]>>

{^RegisterPatient:

s[1]>>patient;

s[1]>>height;

s[1]>>weight;

342 s[1]>>history;

s[1]>>labresult;

s[1]>>channel;

def AtCalc(s:$flowchart_atcalc@(1of2)) =

def AtAdminister(patient:String, // {{{

dosis:String,

s:$flowchart_atcheck3@(1of2)) =

s[1]>>

{^Check:

s[2]<<patient;

352 s[2]<<dosis;

s[1]>>

{^Reject:

AtAdminister(patient,dosis,s),

^Accept:

s[1]>>

{^Check:

s[2]<<patient;

s[2]<<dosis;

s[1]>>

362 {^Reject:

AtAdminister(patient,dosis,s),

^Accept:

s[1]>>

{^Sign:

end

}

}

}

}

372 }

in // }}}

def AtAccept1no2(patient:String, // {{{

dosis:String,

A.2 session types 165

s:$flowchart_ataccept1no2@(1of2)) =

s[1]>>

{^RejectCalc:

AtCalc(s),

^AcceptCalc:

s[1]>>

382 {^Sign:

s[2]<<channel;

AtAdminister(patient,dosis,s)

}

}

in // }}}

def AtAccept2no1(patient:String, // {{{

dosis:String,

s:$flowchart_ataccept2no1@(1of2)) =

s[1]>>

392 {^RejectDrug:

AtAccept2no1(patient,dosis,s),

^AcceptDrug:

s[1]>>

{^Sign:

s[2]<<channel;

AtAdminister(patient,dosis,s)

}

}

in // }}}

402 def AtAccept1(patient:String, // {{{

dosis:String,

s:$flowchart_ataccept1@(1of2)) =

s[1]>>

{^RejectCalc:

AtCalc(s),

^AcceptCalc:

AtAccept2no1(patient,dosis,s),

^RejectDrug:

AtAccept1(patient,dosis,s),

412 ^AcceptDrug:

AtAccept1no2(patient,dosis,s)

}

in // }}}

s[1]>>

{^CalcDosis:

s[1]>>dosis;

s[1]>>

{^Sign:

s[1]>>

422 {^Check:

s[2]<<patient;

s[2]<<height;

s[2]<<weight;

s[2]<<history;

166 introduction

s[2]<<labresult;

s[2]<<dosis;

AtAccept1(patient,dosis,s)

}

}

432 }

in AtCalc(s)

}

)

in (Flowchart() | // }}}

// }}}

// PORTERS AND WARD INTERFACES {{{

// GLOBAL TYPE: $pharmacy_reception // {{{

// The reception of a flowchart at the pharmacy

// Users:

442 // 1: The Porter

// 2: The Controlling Pharmacist

define $pharmacy_reception =

1=>2:2<$flowchart_atcheck1@(2of2)>; // Porter delivers flowchart to

CP

Gend

in // }}}

(nu drug_order: $pharmacy_reception)

(nu pharmacy_reception: $pharmacy_reception)

def Porter_Order() = // {{{

link(2,drug_order,s,2);

452 guivalue(2,s,2,"User","Porter1");

(Porter_Order()

| s[2]>>fc; // Receive flowchart

link(2,pharmacy_reception,t,1);

guivalue(2,t,1,"User","Porter1");

t[2]<<fc; // Deliver flowchart

end

)

in (Porter_Order() | // }}}

// GLOBAL TYPE: $transfer_rejected // {{{

462 // The sending of a rejected flowchart from the pharmacy

// Users:

// 1: The Controlling Pharmacist

// 2: The Porter

define $transfer_rejected =

1=>2:2<$flowchart_atcalc@(2of2)>; // Porter receives flowchart

Gend

in // }}}

(nu rejected_send: $transfer_rejected)

(nu rejected_receive: $transfer_rejected)

472 def Porter_Rejected() = // {{{

link(2,rejected_send,s,2);

guivalue(2,s,2,"User","Porter2");

(Porter_Rejected()

| s[2]>>fc; // Receive rejected flowchart

A.2 session types 167

link(2,rejected_receive,t,1);

guivalue(2,t,1,"User","Porter2");

t[2]<<fc; // Deliver rejected flowchart

end

)

482 in (Porter_Rejected() | // }}}

// GLOBAL TYPE: $transfer_accepted // {{{

// The sending of an accepted flowchart (and the drug) from the pharmacy

// Users:

// 1: The Controlling Pharmacist

// 2: The Porter

define $transfer_accepted =

1=>2:2<$flowchart_attonurse@(2of2)>; // Porter receives flowchart

1=>2:2<$drug_atcheck2@(2of2)>; // Porter receives drug

Gend

492 in // }}}

(nu accepted_send: $transfer_accepted)

(nu accepted_receive: $transfer_accepted)

def Porter_Accepted() = // {{{

link(2,accepted_send,s,2);

guivalue(2,s,2,"User","Porter3");

(Porter_Accepted()

| s[2]>>theFlowchart; // Receive flowchart

s[2]>>theDrug; // Receive drug

link(2,accepted_receive,t,1);

502 guivalue(2,t,1,"User","Porter3");

t[2]<<theFlowchart; // Deliver flowchart

t[2]<<theDrug; // Deliver drug

end

)

in (Porter_Accepted() | // }}}

// }}}

// ONCOLOGY WARD {{{

// GLOBAL TYPE: $oncology_reception {{{

// The reception of a patient

512 // Users:

// 1: The Patient

// 2: The Doctor

define $oncology_reception =

1=>2:2<String>;

{^Register: // Receive Patient (register information)

2=>1:1< <$oncology_administer> >;

{^CalcDosis:

Gend

}

522 }

in // }}}

(nu oncology_reception: $oncology_reception)

def OncologyDoctor() = // {{{

link(2,oncology_reception,pa,2);

guivalue(2,pa,2,"User","Oncology Doctor");

168 introduction

(OncologyDoctor()

| pa[2]>>patient_info;

guisync(2,pa,2)

{^Register(patient:String=patient_info,

532 height:Int=0,

weight:Int=0,

history:String="",

labresult:String=""):

link(2,flowchart,fc,2);

guivalue(2,fc,2,"User","Oncology Doctor");

fc[1]<<^RegisterPatient;

fc[1]<<patient;

fc[1]<<height;

fc[1]<<weight;

542 fc[1]<<history;

fc[1]<<labresult;

(nu ref: $oncology_administer)

fc[1]<<ref;

pa[1]<<ref;

guisync(2,pa,2)

{^CalcDosis(dosis:String=""):

fc[1]<<^CalcDosis;

fc[1]<<dosis;

fc[1]<<^Sign;

552 link(2,drug_order,porter,1);

guivalue(2,porter,1,"User","Oncology Doctor");

porter[2]<<fc;

end

}

}

)

in (OncologyDoctor() | // }}}

(nu oncology_findauth: 1=>2:2< <$oncology_administer> >;Gend)

def OncologyNurse() = // {{{

562 link(2,accepted_receive,porter,2);

guivalue(2,porter,2,"User","Oncology Nurse");

(OncologyNurse()

| def ON_Checks(fc: $flowchart_atcheck3@(2of2), // {{{

dr: $drug_atcheck2@(2of2),

ref: <$oncology_administer>) =

link(3,ref,pa,2); // Find patient from reference

guivalue(3,pa,2,"User","Oncology Nurse");

pa[2]>>patient_info;

guivalue(3,pa,2,"Patient/Info",patient_info);

572 fc[1]<<^Check;

fc[2]>>fc_dosis;

guivalue(3,pa,2,"Flowchart/Dosis",fc_dosis);

fc[2]>>fc_patient;

guivalue(3,pa,2,"Flowchart/Patient",fc_patient);

dr[1]<<^Check;

dr[2]>>drug_dosis;

A.2 session types 169

guivalue(3,pa,2,"Drug/Dosis",drug_dosis);

dr[2]>>drug_patient;

guivalue(3,pa,2,"Drug/Patient",drug_patient);

582 guisync(3,pa,2)

{^Reject(reason:String=""):

fc[1]<<^Reject;

dr[1]<<^Reject;

ON_Checks(fc,dr,ref),

#Verify(comment:String=""):

fc[1]<<^Accept;

pa[4]<<fc;

dr[1]<<^Verify;

pa[4]<<dr;

592 sync(3,pa)

{^Reject: // Authorized person rejects

pa[2]>>fc;

pa[2]>>dr;

ON_Checks(fc,dr,ref),

#Verify: // Authorized person accepts

pa[2]>>fc;

pa[2]>>dr;

guisync(3,pa,2)

{^Administer(comment:String=""):

602 fc[1]<<^Sign;

dr[1]<<^Administer;

end

}

}

}

in // }}}

porter[2]>>fc; // Receive Flowchart

porter[2]>>dr; // Receive Drug

fc[2]>>ref; // Read patient reference from flowchart

612 link(2,oncology_findauth,auth,1);

guivalue(2,auth,1,"User","Oncology Nurse");

auth[2]<<ref; // Send patient reference to auth person

ON_Checks(fc,dr,ref)

)

in (OncologyNurse() | // }}}

def OncologyAuthorised() = // {{{

link(2,oncology_findauth,s,2);

guivalue(2,s,2,"User","Oncology Auth");

(OncologyAuthorised()

622 | def OA_Checks(ref: <$oncology_administer>) =

link(3,ref,pa,3); // Find patient from reference

guivalue(3,pa,3,"User","Oncology Auth");

sync(3,pa)

{^Reject:

OA_Checks(ref),

#Verify:

pa[3]>>patient_info;

170 introduction

pa[4]>>fc;

pa[4]>>dr;

632 guivalue(3,pa,3,"Patient/Info",patient_info);

fc[1]<<^Check;

fc[2]>>flowchart_dosis;

guivalue(3,pa,3,"Flowchart/Dosis",flowchart_dosis);

fc[2]>>flowchart_patient;

guivalue(3,pa,3,"Flowchart/Patient",flowchart_patient);

dr[1]<<^Check;

dr[2]>>drug_dosis;

guivalue(3,pa,3,"Drug/Dosis",drug_dosis);

dr[2]>>drug_patient;

642 guivalue(3,pa,3,"Drug/Patient",drug_patient);

guisync(3,pa,3)

{^Reject(reason:String=""): // Authorized person rejects

fc[1]<<^Reject;

dr[1]<<^Reject;

pa[2]<<fc;

pa[2]<<dr;

OA_Checks(ref),

#Verify(comment:String=""): // Authorized person accepts

fc[1]<<^Accept;

652 dr[1]<<^Verify;

pa[2]<<fc;

pa[2]<<dr;

sync(3,pa)

{^Administer:

end

}

}

}

in

662 s[2]>>ref;

OA_Checks(ref)

)

in (OncologyAuthorised() | // }}}

// }}}

// PHARMACY {{{

// WORKSLIP CHANNEL, TYPE AND IMPLEMENTATION {{{

// GLOBAL TYPE: $workslip // {{{

// This is the Interface of a Working Slip

// Users:

672 // 1: Workslip object

// 2: User/Owner

define $workslip_atverify =

2=>1:1

{^ReadInfo:

1=>2:2<String>; // Read Patient Information

1=>2:2<String>; // Read Product

1=>2:2<String>; // Read Batch Number

1=>2:2<Int>; // Read Quantity

A.2 session types 171

Gend

682 }

in define $workslip_atregister =

2=>1:1

{^RegisterProducts:

2=>1:1<String>; // Set Product

2=>1:1<String>; // Set Batch Number

2=>1:1<Int>; // Set Quantity

2=>1:1

{^Sign:

$workslip_atverify

692 },

^Destroy:

Gend

}

in define $workslip_atread =

2=>1:1

{^ReadDescription:

1=>2:2<String>;

$workslip_atregister

}

702 in define $workslip =

2=>1:1

{^SetDescription:

2=>1:1<String>; // Write Description

$workslip_atread

}

in // }}}

(nu workslip: $workslip)

// This is the Workslip Service Implementation

def Workslip() = // {{{

712 link(2,workslip,s,1);

guivalue(2,s,1,"User","Workslip");

(Workslip()

| s[1]>>

{^SetDescription:

s[1]>>description;

s[1]>>

{^ReadDescription:

s[2]<<description;

s[1]>>

722 {^RegisterProducts:

s[1]>>product;

s[1]>>batch;

s[1]>>quantity;

s[1]>>

{^Sign:

s[1]>>

{^ReadInfo:

s[2]<<description;

s[2]<<product;

172 introduction

732 s[2]<<batch;

s[2]<<quantity;

end

}

},

^Destroy:

end

}

}

}

742)

in (Workslip() | // }}}

// }}}

// GLOBAL TYPE: $pharmacy // {{{

// The cooperation at the pharmacy

// Users:

// 1: The Controlling Pharmacist

// 2: The Pharmacy Assistant

define $pharmacy2 =

rec $x1.

752 {^MakeWorkslip:

1=>2:2<$workslip_atread@(2of2)>; // CP sends workslip to PA

{^MakeDrug: // PA produces drug and sends it to CP

2=>1:1<$workslip_atverify@(2of2)>; // PA sends workslip to CP

2=>1:1<$drug_atcheck1@(2of2)>; // PA sends drug to CP

{#AcceptDrug:

Gend, // The cooperation is complete

^RejectDrug:

$x1 // Make new drug

}

762 }

}

in define $pharmacy_mkdr2 = // At MakeDrug (Accepted Dosis)

{^MakeDrug: // PA produces drug and sends it to CP

2=>1:1<$workslip_atverify@(2of2)>; // PA sends workslip to CP

2=>1:1<$drug_atcheck1@(2of2)>; // PA sends drug to CP

{#AcceptDrug:

Gend, // The cooperation is complete

^RejectDrug:

$pharmacy2 // Make new drug

772 }

}

in define $pharmacy_acdr2 = // At AcceptDrug (Accepted Dosis)

{#AcceptDrug:

Gend, // The cooperation is complete

^RejectDrug:

$pharmacy2 // Make new drug

}

in define $pharmacy =

rec $x0.

782 {^RejectDosis:

A.2 session types 173

Gend, // No internal communication

#AcceptDosis:

$pharmacy2,

#MakeWorkslip:

1=>2:2<$workslip_atread@(2of2)>; // CP sends workslip to PA

{^RejectDosis:

Gend,

#AcceptDosis:

$pharmacy_mkdr2,

792 #MakeDrug:

2=>1:1<$workslip_atverify@(2of2)>; // PA sends workslip to CP

2=>1:1<$drug_atcheck1@(2of2)>; // PA sends drug to CP

{^RejectDosis:

Gend,

#AcceptDosis:

$pharmacy_acdr2,

#AcceptDrug:

{^RejectDosis:

Gend,

802 #AcceptDosis:

Gend

},

#RejectDrug:

$x0

}

}

}

in define $pharmacy_mkdr =

{^RejectDosis:

812 Gend,

#AcceptDosis:

$pharmacy_mkdr2,

#MakeDrug:

2=>1:1<$workslip_atverify@(2of2)>; // PA sends workslip to CP

2=>1:1<$drug_atcheck1@(2of2)>; // PA sends drug to CP

{^RejectDosis:

Gend,

#AcceptDosis:

$pharmacy_acdr2,

822 #AcceptDrug:

{^RejectDosis:

Gend,

#AcceptDosis:

Gend

},

#RejectDrug:

$pharmacy

}

}

832 in define $pharmacy_acdr =

{^RejectDosis:

174 introduction

Gend,

#AcceptDosis:

$pharmacy_acdr2,

#AcceptDrug:

{^RejectDosis:

Gend,

#AcceptDosis:

Gend

842 },

#RejectDrug:

$pharmacy

}

in define $pharmacy_acca =

{^RejectDosis:

Gend,

#AcceptDosis:

Gend

}

852 // *** VERSION USING STATE *** define $pharmacy = // {{{

// *** VERSION USING STATE *** rec $state<ad:Bool=false,mw:Bool=false,mdr:Bool=false

,adr:Bool=false,rd:Bool=false>.

// *** VERSION USING STATE *** {^RejectDosis[[not (ad or rd)]]:

// *** VERSION USING STATE *** $state<false,mw,mdr,adr,true>,

// *** VERSION USING STATE *** #AcceptDosis[[not (ad or rd)]]:

// *** VERSION USING STATE *** $state<true,mw,mdr,adr,false>,

// *** VERSION USING STATE *** ^MakeWorkslip[[not (mw or rd)]]:

// *** VERSION USING STATE *** 1=>2:2<$workslip_atread@(2of2)>;

// CP sends workslip to PA

// *** VERSION USING STATE *** $state<ad,true,mdr,adr,rd>,

// *** VERSION USING STATE *** ^MakeDrug[[mw and not (mdr or rd)]]:

862 // *** VERSION USING STATE *** 2=>1:1<$workslip_atverify@(2of2)>;

// PA sends workslip to CP

// *** VERSION USING STATE *** 2=>1:1<$drug_atcheck1@(2of2)>;

// PA sends drug to CP

// *** VERSION USING STATE *** $state<ad,mw,true,adr,rd>,

// *** VERSION USING STATE *** #AcceptDrug[[mdr and not (adr or rd)]]:

// *** VERSION USING STATE *** $state<ad,mw,mdr,true,rd>,

// *** VERSION USING STATE *** ^RejectDrug[[mdr and not (adr or rd)]]:

// *** VERSION USING STATE *** $state<ad,mw,false,false,rd>,

// *** VERSION USING STATE *** ^Finish[[(ad and mw and mdr and adr) or rd]]:

// *** VERSION USING STATE *** Gend

// *** VERSION USING STATE *** } // }}}

872 in // }}}

(nu pharmacy: $pharmacy)

def PharmacistAssistant() = // {{{

link(2,pharmacy,s,2);

guivalue(2,s,2,"User","Pharmacy Assistant");

(PharmacistAssistant()

| def PA_DestroyWorksheet(reason: String, ws: $workslip_atregister@(2of2)) = // {{{

(nu accept: {^Accept: Gend})

link(1,accept,s,1);

A.2 session types 175

guivalue(1,s,1,"User","Pharmacy Assistant");

882 guivalue(1,s,1,"Action:","Destroy Worksheet");

guivalue(1,s,1,"Reason:",reason);

guisync(1,s,1)

{^Accept(comment:String="Worksheet Destroyed"):

ws[1]<<^Destroy;

end

}

in // }}}

def PA_Accept(s:$pharmacy2@(2of2)) = // {{{

guisync(2,s,2)

892 {^MakeWorkslip():

s[2]>>ws;

ws[1]<<^ReadDescription;

ws[2]>>description;

guivalue(2,s,2,"Description:",description);

guisync(2,s,2)

{^MakeDrug(patient:String=description,product:String="",batch:String="",

quantity:Int=0):

link(2,drug,d,2);

guivalue(2,d,2,"User","Pharmacy Assistant");

d[1]<<^Prepare;

902 d[1]<<product;

d[1]<<patient;

ws[1]<<^RegisterProducts;

ws[1]<<product;

ws[1]<<batch;

ws[1]<<quantity;

ws[1]<<^Sign;

s[1]<<ws;

s[1]<<d;

sync(2,s)

912 {#AcceptDrug:

end,

^RejectDrug:

PA_Accept(s)

}

}

}

in // }}}

def PA_NoAccept(s:$pharmacy@(2of2)) = // {{{

guisync(2,s,2)

922 {^RejectDosis():

end,

#AcceptDosis():

guivalue(2,s,2,"Dosis","Accepted");

PA_Accept(s),

#MakeWorkslip():

s[2]>>ws;

ws[1]<<^ReadDescription;

ws[2]>>description;

176 introduction

guivalue(2,s,2,"Description:",description);

932 guisync(2,s,2)

{^RejectDosis():

PA_DestroyWorksheet("Dosis rejected",ws),

#AcceptDosis():

guivalue(2,s,2,"Dosis","Accepted");

guisync(2,s,2)

{^MakeDrug(patient:String=description,product:String="",batch:String="",

quantity:Int=0):

link(2,drug,d,2);

guivalue(2,d,2,"User","Pharmacy Assistant");

d[1]<<^Prepare;

942 d[1]<<product;

d[1]<<patient;

ws[1]<<^RegisterProducts;

ws[1]<<product;

ws[1]<<batch;

ws[1]<<quantity;

ws[1]<<^Sign;

s[1]<<ws;

s[1]<<d;

sync(2,s)

952 {#AcceptDrug:

end,

^RejectDrug:

PA_Accept(s)

}

},

#MakeDrug(patient:String=description,product:String="",batch:String="",

quantity:Int=0):

link(2,drug,d,2);

guivalue(2,d,2,"User","Pharmacy Assistant");

d[1]<<^Prepare;

962 d[1]<<product;

d[1]<<patient;

ws[1]<<^RegisterProducts;

ws[1]<<product;

ws[1]<<batch;

ws[1]<<quantity;

ws[1]<<^Sign;

s[1]<<ws;

s[1]<<d;

sync(2,s)

972 {^RejectDosis:

end,

#AcceptDosis:

guivalue(2,s,2,"Dosis","Accepted");

sync(2,s)

{#AcceptDrug:

end,

^RejectDrug:

A.2 session types 177

PA_Accept(s)

},

982 #AcceptDrug:

sync(2,s)

{^RejectDosis:

end,

#AcceptDosis:

end

},

#RejectDrug:

PA_NoAccept(s)

}

992 }

}

in // }}}

PA_NoAccept(s)

)

in (PharmacistAssistant() | // }}}

def ControllingPharmacist() = // {{{

link(2,pharmacy_reception,s,2);

guivalue(2,s,2,"User","Controlling Pharmacist");

(ControllingPharmacist()

1002 | def CP_AtMakeWorkslip2(ph: $pharmacy2@(1of2), // {{{

fc: $flowchart_ataccept2no1@(2of2)) =

// FIXME: Double Def

def CP_AtAcceptDrug2(ph: $pharmacy_acdr2@(1of2), // {{{

fc: $flowchart_ataccept2no1@(2of2),

dr: $drug_ataccept1@(2of2)) =

guisync(2,ph,1)

{^RejectDrug(comment:String=""):

dr[1]<<^Destroy;

fc[1]<<^RejectDrug;

1012 CP_AtMakeWorkslip2(ph,fc),

#AcceptDrug(comment:String=""):

dr[1]<<^Verify;

fc[1]<<^AcceptDrug;

fc[1]<<^Sign;

link(2,accepted_send,porter,1);

guivalue(2,porter,1,"User","Controlling Pharmacist");

porter[2]<<fc;

porter[2]<<dr;

end

1022 }

in // }}}

// FIXME: Double Def

def CP_AtMakeDrug2(ph: $pharmacy_mkdr2@(1of2), // {{{

fc: $flowchart_ataccept2no1@(2of2)) =

guisync(2,ph,1)

{^MakeDrug():

ph[1]>>ws;

ph[1]>>dr;

178 introduction

// Read info from Worksheet

1032 ws[1]<<^ReadInfo;

ws[2]>>ws_patient;

guivalue(2,ph,1,"Workslip/Patient:",ws_patient);

ws[2]>>ws_product;

guivalue(2,ph,1,"Workslip/Product:",ws_product);

ws[2]>>ws_batch;

guivalue(2,ph,1,"Workslip/Batch:",ws_batch);

ws[2]>>ws_quantity;

guivalue(2,ph,1,"Workslip/Quantity:",ws_quantity);

// Read info from Drug label

1042 dr[1]<<^Check;

dr[2]>>dr_content;

guivalue(2,ph,1,"Drug/Content:",dr_content);

dr[2]>>dr_patient;

guivalue(2,ph,1,"Drug/Patient:",dr_patient);

CP_AtAcceptDrug2(ph,fc,dr)

}

in // }}}

guisync(2,ph,1)

{^MakeWorkslip(description:String="Patient:, Dosis:"):

1052 link(2,workslip,ws,2);

guivalue(2,ws,2,"User","Controlling Pharmacist");

ws[1]<<^SetDescription;

ws[1]<<description;

ph[2]<<ws;

CP_AtMakeDrug2(ph,fc)

}

in // }}}

def CP_AtAcceptDrug2(ph: $pharmacy_acdr2@(1of2), // {{{

fc: $flowchart_ataccept2no1@(2of2),

1062 dr: $drug_ataccept1@(2of2)) =

guisync(2,ph,1)

{^RejectDrug(comment:String=""):

dr[1]<<^Destroy;

fc[1]<<^RejectDrug;

CP_AtMakeWorkslip2(ph,fc),

#AcceptDrug(comment:String=""):

dr[1]<<^Verify;

fc[1]<<^AcceptDrug;

fc[1]<<^Sign;

1072 link(2,accepted_send,porter,1);

guivalue(2,porter,1,"User","Controlling Pharmacist");

porter[2]<<fc;

porter[2]<<dr;

end

}

in // }}}

def CP_AtMakeDrug2(ph: $pharmacy_mkdr2@(1of2), // {{{

fc: $flowchart_ataccept2no1@(2of2)) =

guisync(2,ph,1)

A.2 session types 179

1082 {^MakeDrug():

ph[1]>>ws;

ph[1]>>dr;

// Read info from Worksheet

ws[1]<<^ReadInfo;

ws[2]>>ws_patient;

guivalue(2,ph,1,"Workslip/Patient:",ws_patient);

ws[2]>>ws_product;

guivalue(2,ph,1,"Workslip/Product:",ws_product);

ws[2]>>ws_batch;

1092 guivalue(2,ph,1,"Workslip/Batch:",ws_batch);

ws[2]>>ws_quantity;

guivalue(2,ph,1,"Workslip/Quantity:",ws_quantity);

// Read info from Drug label

dr[1]<<^Check;

dr[2]>>dr_content;

guivalue(2,ph,1,"Drug/Content:",dr_content);

dr[2]>>dr_patient;

guivalue(2,ph,1,"Drug/Patient:",dr_patient);

CP_AtAcceptDrug2(ph,fc,dr)

1102 }

in // }}}

def CP_AtMakeWorkslip(ph: $pharmacy@(1of2), // {{{

fc: $flowchart_ataccept1@(2of2)) =

def CP_AtAcceptCalc(ph: {^RejectDosis: Gend, #AcceptDosis: Gend}@(1of2), // {{{

fc: $flowchart_ataccept1no2@(2of2),

dr: $drug_atcheck2@(2of2)) =

guisync(2,ph,1)

{^RejectDosis(reason:String=""):

// FIXME: reason is not communicated

1112 dr[1]<<^Destroy;

fc[1]<<^RejectCalc;

link(2,rejected_send,porter,1);

guivalue(2,porter,1,"User","Controlling Pharmacist");

porter[2]<<fc;

end,

#AcceptDosis(comment:String=""):

fc[1]<<^AcceptCalc;

fc[1]<<^Sign;

link(2,accepted_send,porter,1);

1122 guivalue(2,porter,1,"User","Controlling Pharmacist");

porter[2]<<fc;

porter[2]<<dr;

end

}

in // }}}

def CP_AtAcceptDrug(ph: $pharmacy_acdr@(1of2), // {{{

fc: $flowchart_ataccept1@(2of2),

dr: $drug_ataccept1@(2of2)) =

guisync(2,ph,1)

1132 {^RejectDosis(reason:String=""):

180 introduction

// FIXME: reason is not communicated

dr[1]<<^Destroy;

fc[1]<<^RejectCalc;

link(2,rejected_send,porter,1);

guivalue(2,porter,1,"User","Controlling Pharmacist");

porter[2]<<fc;

end,

#AcceptDosis(comment:String=""):

fc[1]<<^AcceptCalc;

1142 CP_AtAcceptDrug2(ph,fc,dr),

#RejectDrug(comment:String=""):

dr[1]<<^Destroy;

fc[1]<<^RejectDrug;

CP_AtMakeWorkslip(ph,fc),

#AcceptDrug(comment:String=""):

dr[1]<<^Verify;

fc[1]<<^AcceptDrug;

CP_AtAcceptCalc(ph,fc,dr)

}

1152 in // }}}

def CP_AtMakeDrug(ph: $pharmacy_mkdr@(1of2), // {{{

fc: $flowchart_ataccept1@(2of2)) =

guisync(2,ph,1)

{^RejectDosis(reason:String=""):

// FIXME: reason is not communicated

fc[1]<<^RejectCalc;

link(2,rejected_send,porter,1);

guivalue(2,porter,1,"User","Controlling Pharmacist");

porter[2]<<fc;

1162 end,

#AcceptDosis(comment:String=""):

fc[1]<<^AcceptCalc;

CP_AtMakeDrug2(ph,fc),

#MakeDrug():

ph[1]>>ws;

ph[1]>>dr;

// Read info from Worksheet

ws[1]<<^ReadInfo;

ws[2]>>ws_patient;

1172 guivalue(2,ph,1,"Workslip/Patient:",ws_patient);

ws[2]>>ws_product;

guivalue(2,ph,1,"Workslip/Product:",ws_product);

ws[2]>>ws_batch;

guivalue(2,ph,1,"Workslip/Batch:",ws_batch);

ws[2]>>ws_quantity;

guivalue(2,ph,1,"Workslip/Quantity:",ws_quantity);

// Read info from Drug label

dr[1]<<^Check;

dr[2]>>dr_content;

1182 guivalue(2,ph,1,"Drug/Content:",dr_content);

dr[2]>>dr_patient;

A.2 session types 181

guivalue(2,ph,1,"Drug/Patient:",dr_patient);

CP_AtAcceptDrug(ph,fc,dr)

}

in // }}}

guisync(2,ph,1)

{^RejectDosis(reason:String=""):

// FIXME: reason is not communicated

fc[1]<<^RejectCalc;

1192 link(2,rejected_send,porter,1);

guivalue(2,porter,1,"User","Controlling Pharmacist");

porter[2]<<fc;

end,

#AcceptDosis(comment:String=""):

fc[1]<<^AcceptCalc;

CP_AtMakeWorkslip2(ph,fc),

#MakeWorkslip(description:String="Patient: <>, Dosis: <>"):

link(2,workslip,ws,2);

guivalue(2,ws,2,"User","Controlling Pharmacist");

1202 ws[1]<<^SetDescription;

ws[1]<<description;

ph[2]<<ws;

CP_AtMakeDrug(ph,fc)

}

in // }}}

s[2]>>fc; // Receive Flowchart

link(2,pharmacy,ph,1); // Create Pharmacy Workflow

guivalue(2,ph,1,"User","Controlling Pharmacist");

guivalue(2,ph,1,"User","Controling Pharmacist");

1212 // Read information from Flowchart

fc[1]<<^Check;

fc[2]>>patient;

guivalue(2,ph,1,"Flowchart/Patient",patient);

fc[2]>>height;

guivalue(2,ph,1,"Flowchart/Patient/Height",height);

fc[2]>>weight;

guivalue(2,ph,1,"Flowchart/Patient/Weight",weight);

fc[2]>>history;

guivalue(2,ph,1,"Flowchart/Patient/History",history);

1222 fc[2]>>labresult;

guivalue(2,ph,1,"Flowchart/Patient/Lab. Result",labresult);

fc[2]>>dosis;

guivalue(2,ph,1,"Flowchart/Dosis",dosis);

CP_AtMakeWorkslip(ph,fc)

)

in (ControllingPharmacist() | // }}}

// }}}

// PATIENT TEMPLATE IMPLEMENTATION {{{

def Patient(myInfo: String) =

1232 link(2,oncology_reception,doctor,1);

guivalue(2,doctor,1,"User","Patient");

doctor[2]<<myInfo;

182 introduction

sync(2,doctor)

{^Register:

doctor[1]>>ref;

(sync(2,doctor)

{^CalcDosis:

end

}

1242 | def P_Wait(ref: <$oncology_administer>) =

link(3,ref,s,1);

guivalue(3,s,1,"User","Patient");

s[2]<<myInfo;

sync(3,s)

{^Reject:

P_Wait(ref),

#Verify:

s[3]<<myInfo;

sync(3,s)

1252 {^Reject:

P_Wait(ref),

#Verify:

guisync(3,s,1)

{^Administer(comment:String=""):

end

}

}

}

in P_Wait(ref)

1262)

}

in (// }}}

// Test Patient:

Patient("Name: A, CPR: A-xxxx")

))))))))))))

a.2.3 Urology example

// Journal {{{

// Jounal Interface {{{

3 // Participants:

// 1: User

// 2: Journal

define $journal xEnrolled

xNrOne xNrTwo

xOperation xInformed xBooked

xAdmMorning xAdmAfternoon xAdmEvening =

rec $actions<xEnrolled:Bool=xEnrolled,

xNrOne:Bool=xNrOne,

xNrTwo:Bool=xNrTwo,

13 xOperation:Bool=xOperation,

xInformed:Bool=xInformed,

xBooked:Bool=xBooked,

xAdmMorning:Bool=xAdmMorning,

xAdmAfternoon:Bool=xAdmAfternoon,

xAdmEvening:Bool=xAdmEvening>.

1=>2:1

{^ReadName[[xEnrolled]]:

2=>1:2<String>;

$actions<xEnrolled,xNrOne,xNrTwo,xOperation,xInformed,xBooked,xAdmMorning,

xAdmAfternoon,xAdmEvening>,

23 ^WriteName[[xEnrolled]]:

1=>2:1<String>;

$actions<xEnrolled,xNrOne,xNrTwo,xOperation,xInformed,xBooked,xAdmMorning,

xAdmAfternoon,xAdmEvening>,

^ReadCPR[[xEnrolled]]:

2=>1:2<String>;

$actions<xEnrolled,xNrOne,xNrTwo,xOperation,xInformed,xBooked,xAdmMorning,

xAdmAfternoon,xAdmEvening>,

^WriteCPR[[xEnrolled]]:

1=>2:1<String>;

$actions<xEnrolled,xNrOne,xNrTwo,xOperation,xInformed,xBooked,xAdmMorning,

xAdmAfternoon,xAdmEvening>,

^ReadRoom[[xEnrolled]]:

33 2=>1:2<String>;

$actions<xEnrolled,xNrOne,xNrTwo,xOperation,xInformed,xBooked,xAdmMorning,

xAdmAfternoon,xAdmEvening>,

^WriteRoom[[xEnrolled]]:

1=>2:1<String>;

$actions<xEnrolled,xNrOne,xNrTwo,xOperation,xInformed,xBooked,xAdmMorning,

xAdmAfternoon,xAdmEvening>,

^ReadFluid[[xEnrolled]]:

2=>1:2<String>;

$actions<xEnrolled,xNrOne,xNrTwo,xOperation,xInformed,xBooked,xAdmMorning,

xAdmAfternoon,xAdmEvening>,

^WriteFluid[[xEnrolled]]:

184 introduction

1=>2:1<String>;

43 $actions<xEnrolled,xNrOne,xNrTwo,xOperation,xInformed,xBooked,xAdmMorning,

xAdmAfternoon,xAdmEvening>,

^ReadEnergy[[xEnrolled]]:

2=>1:2<String>;

$actions<xEnrolled,xNrOne,xNrTwo,xOperation,xInformed,xBooked,xAdmMorning,

xAdmAfternoon,xAdmEvening>,

^WriteEnergy[[xEnrolled]]:

1=>2:1<String>;

$actions<xEnrolled,xNrOne,xNrTwo,xOperation,xInformed,xBooked,xAdmMorning,

xAdmAfternoon,xAdmEvening>,

^ReadSymptoms[[xEnrolled]]:

2=>1:2<String>;

$actions<xEnrolled,xNrOne,xNrTwo,xOperation,xInformed,xBooked,xAdmMorning,

xAdmAfternoon,xAdmEvening>,

53 ^WriteSymptoms[[xEnrolled]]:

1=>2:1<String>;

$actions<xEnrolled,xNrOne,xNrTwo,xOperation,xInformed,xBooked,xAdmMorning,

xAdmAfternoon,xAdmEvening>,

^ReadBooking[[xEnrolled]]:

2=>1:2<String>;

$actions<xEnrolled,xNrOne,xNrTwo,xOperation,xInformed,xBooked,xAdmMorning,

xAdmAfternoon,xAdmEvening>,

^WriteBooking[[xEnrolled]]:

1=>2:1<String>;

$actions<xEnrolled,xNrOne,xNrTwo,xOperation,xInformed,xBooked,xAdmMorning,

xAdmAfternoon,xAdmEvening>,

^ReadMedication[[xEnrolled]]:

63 2=>1:2<String>;

$actions<xEnrolled,xNrOne,xNrTwo,xOperation,xInformed,xBooked,xAdmMorning,

xAdmAfternoon,xAdmEvening>,

^WriteMedication[[xEnrolled]]:

1=>2:1<String>;

$actions<xEnrolled,xNrOne,xNrTwo,xOperation,xInformed,xBooked,xAdmMorning,

xAdmAfternoon,xAdmEvening>,

^WriteNrOne[[xEnrolled]]:

1=>2:1<Bool> as xNrOne;

$actions<xEnrolled,xNrOne,xNrTwo,xOperation,xInformed,xBooked,xAdmMorning,

xAdmAfternoon,xAdmEvening>,

^WriteNrTwo[[xEnrolled]]:

1=>2:1<Bool> as xNrTwo;

73 $actions<xEnrolled,xNrOne,xNrTwo,xOperation,xInformed,xBooked,xAdmMorning,

xAdmAfternoon,xAdmEvening>,

^WriteOperation[[xEnrolled]]:

1=>2:1<Bool> as xOperation;

$actions<xEnrolled,xNrOne,xNrTwo,xOperation,xInformed,xBooked,xAdmMorning,

xAdmAfternoon,xAdmEvening>,

^WriteInformed[[xEnrolled]]:

1=>2:1<Bool> as xInformed;

$actions<xEnrolled,xNrOne,xNrTwo,xOperation,xInformed,xBooked,xAdmMorning,

xAdmAfternoon,xAdmEvening>,

A.2 session types 185

^WriteBooked[[xEnrolled]]:

1=>2:1<Bool> as xBooked;

$actions<xEnrolled,xNrOne,xNrTwo,xOperation,xInformed,xBooked,xAdmMorning,

xAdmAfternoon,xAdmEvening>,

83 ^WriteAdministration[[xEnrolled]]:

1=>2:1<Bool> as xAdmMorning;

1=>2:1<Bool> as xAdmAfternoon;

1=>2:1<Bool> as xAdmEvening;

$actions<xEnrolled,xNrOne,xNrTwo,xOperation,xInformed,xBooked,xAdmMorning,

xAdmAfternoon,xAdmEvening>,

^WriteEnrolled:

1=>2:1<Bool> as xEnrolled;

$actions<xEnrolled,xNrOne,xNrTwo,xOperation,xInformed,xBooked,xAdmMorning,

xAdmAfternoon,xAdmEvening>,

^Archive[[not xEnrolled]]: Gend

}

93 in // }}}

// Create Channel: journal {{{

(nu journal :

1=>2:1<String>; // Set Name

1=>2:1<String>; // Set CPR

1=>2:1<String>; // Set Room

1=>2:1<String>; // Set Symptoms

$journal<true,false,false,false,false,false,false,false,false>) // }}}

(// Journal Service Implementation {{{

def Journal() =

103 link(2,journal,s,2);

(Journal()

| s[1]>>name;

s[1]>>cpr;

s[1]>>room;

s[1]>>symptoms;

def State<pEnrolled:Bool, pNrOne:Bool, pNrTwo:Bool,

pOperation:Bool, pInformed:Bool, pBooked:Bool,

pAdmMorning:Bool,pAdmAfternoon:Bool,

pAdmEvening:Bool>

113 (s:$journal<pEnrolled,pNrOne,pNrTwo,

pOperation,pInformed,pBooked,

pAdmMorning,pAdmAfternoon,

pAdmEvening>@(2of2),

pName:String, pCPR:String, pRoom:String,

pFluid:String, pEnergy:String,

pSymptoms:String, pBooking:String, pMedication:String) =

s[1]>>

{^ReadName:

s[2]<<pName;

123 State<pEnrolled,pNrOne,pNrTwo,pOperation,pInformed,pBooked,pAdmMorning,

pAdmAfternoon,pAdmEvening>

(s,pName,pCPR,pRoom,pFluid,pEnergy,pSymptoms,pBooking,pMedication),

^WriteName:

s[1]>>newName;

186 introduction

State<pEnrolled,pNrOne,pNrTwo,pOperation,pInformed,pBooked,pAdmMorning,

pAdmAfternoon,pAdmEvening>

(s,newName,pCPR,pRoom,pFluid,pEnergy,pSymptoms,pBooking,pMedication),

^ReadCPR:

s[2]<<pCPR;

State<pEnrolled,pNrOne,pNrTwo,pOperation,pInformed,pBooked,pAdmMorning,

pAdmAfternoon,pAdmEvening>

(s,pName,pCPR,pRoom,pFluid,pEnergy,pSymptoms,pBooking,pMedication),

133 ^WriteCPR:

s[1]>>newCPR;

State<pEnrolled,pNrOne,pNrTwo,pOperation,pInformed,pBooked,pAdmMorning,

pAdmAfternoon,pAdmEvening>

(s,pName,newCPR,pRoom,pFluid,pEnergy,pSymptoms,pBooking,pMedication),

^ReadRoom:

s[2]<<pCPR;

State<pEnrolled,pNrOne,pNrTwo,pOperation,pInformed,pBooked,pAdmMorning,

pAdmAfternoon,pAdmEvening>

(s,pName,pCPR,pRoom,pFluid,pEnergy,pSymptoms,pBooking,pMedication),

^WriteRoom:

s[1]>>newRoom;

143 State<pEnrolled,pNrOne,pNrTwo,pOperation,pInformed,pBooked,pAdmMorning,

pAdmAfternoon,pAdmEvening>

(s,pName,pCPR,newRoom,pFluid,pEnergy,pSymptoms,pBooking,pMedication),

^ReadFluid:

s[2]<<pFluid;

State<pEnrolled,pNrOne,pNrTwo,pOperation,pInformed,pBooked,pAdmMorning,

pAdmAfternoon,pAdmEvening>

(s,pName,pCPR,pRoom,pFluid,pEnergy,pSymptoms,pBooking,pMedication),

^WriteFluid:

s[1]>>newFluid;

State<pEnrolled,pNrOne,pNrTwo,pOperation,pInformed,pBooked,pAdmMorning,

pAdmAfternoon,pAdmEvening>

(s,pName,pCPR,pRoom,newFluid,pEnergy,pSymptoms,pBooking,pMedication),

153 ^ReadEnergy:

s[2]<<pEnergy;

State<pEnrolled,pNrOne,pNrTwo,pOperation,pInformed,pBooked,pAdmMorning,

pAdmAfternoon,pAdmEvening>

(s,pName,pCPR,pRoom,pFluid,pEnergy,pSymptoms,pBooking,pMedication),

^WriteEnergy:

s[1]>>newEnergy;

State<pEnrolled,pNrOne,pNrTwo,pOperation,pInformed,pBooked,pAdmMorning,

pAdmAfternoon,pAdmEvening>

(s,pName,pCPR,pRoom,pFluid,newEnergy,pSymptoms,pBooking,pMedication),

^ReadSymptoms:

s[2]<<pSymptoms;

163 State<pEnrolled,pNrOne,pNrTwo,pOperation,pInformed,pBooked,pAdmMorning,

pAdmAfternoon,pAdmEvening>

(s,pName,pCPR,pRoom,pFluid,pEnergy,pSymptoms,pBooking,pMedication),

^WriteSymptoms:

s[1]>>neweSymptoms;

A.2 session types 187

State<pEnrolled,pNrOne,pNrTwo,pOperation,pInformed,pBooked,pAdmMorning,

pAdmAfternoon,pAdmEvening>

(s,pName,pCPR,pRoom,pFluid,pEnergy,neweSymptoms,pBooking,pMedication),

^ReadBooking:

s[2]<<pBooking;

State<pEnrolled,pNrOne,pNrTwo,pOperation,pInformed,pBooked,pAdmMorning,

pAdmAfternoon,pAdmEvening>

(s,pName,pCPR,pRoom,pFluid,pEnergy,pBooking,pBooking,pMedication),

173 ^WriteBooking:

s[1]>>newBooking;

State<pEnrolled,pNrOne,pNrTwo,pOperation,pInformed,pBooked,pAdmMorning,

pAdmAfternoon,pAdmEvening>

(s,pName,pCPR,pRoom,pFluid,pEnergy,newBooking,pBooking,pMedication),

^ReadMedication:

s[2]<<pMedication;

State<pEnrolled,pNrOne,pNrTwo,pOperation,pInformed,pBooked,pAdmMorning,

pAdmAfternoon,pAdmEvening>

(s,pName,pCPR,pRoom,pFluid,pEnergy,pMedication,pMedication,pMedication)

,

^WriteMedication:

s[1]>>newMedication;

183 State<pEnrolled,pNrOne,pNrTwo,pOperation,pInformed,pBooked,pAdmMorning,

pAdmAfternoon,pAdmEvening>

(s,pName,pCPR,pRoom,pFluid,pEnergy,newMedication,pMedication,

pMedication),

^WriteNrOne:

s[1]>>newNrOne;

State<pEnrolled,newNrOne,pNrTwo,pOperation,pInformed,pBooked,pAdmMorning,

pAdmAfternoon,pAdmEvening>

(s,pName,pCPR,pRoom,pFluid,pEnergy,pBooking,pBooking,pMedication),

^WriteNrTwo:

s[1]>>newNrTwo;

State<pEnrolled,pNrOne,newNrTwo,pOperation,pInformed,pBooked,pAdmMorning,

pAdmAfternoon,pAdmEvening>

(s,pName,pCPR,pRoom,pFluid,pEnergy,pBooking,pBooking,pMedication),

193 ^WriteOperation:

s[1]>>newOperation;

State<pEnrolled,pNrOne,pNrTwo,newOperation,pInformed,pBooked,pAdmMorning,

pAdmAfternoon,pAdmEvening>

(s,pName,pCPR,pRoom,pFluid,pEnergy,pBooking,pBooking,pMedication),

^WriteInformed:

s[1]>>newInformed;

State<pEnrolled,pNrOne,pNrTwo,pOperation,newInformed,pBooked,pAdmMorning,

pAdmAfternoon,pAdmEvening>

(s,pName,pCPR,pRoom,pFluid,pEnergy,pBooking,pBooking,pMedication),

^WriteBooked:

s[1]>>newBooked;

203 State<pEnrolled,pNrOne,pNrTwo,pOperation,pInformed,newBooked,pAdmMorning,

pAdmAfternoon,pAdmEvening>

(s,pName,pCPR,pRoom,pFluid,pEnergy,pBooking,pBooking,pMedication),

^WriteAdministration:

188 introduction

s[1]>>newAdmMorning;

s[1]>>newAdmAfternoon;

s[1]>>newAdmEvening;

State<pEnrolled,pNrOne,pNrTwo,pOperation,pInformed,pBooked,newAdmMorning,

newAdmAfternoon,newAdmEvening>

(s,pName,pCPR,pRoom,pFluid,pEnergy,pBooking,pBooking,pMedication),

^WriteEnrolled:

s[1]>>newEnrolled;

213 State<newEnrolled,pNrOne,pNrTwo,pOperation,pInformed,pBooked,pAdmMorning,

pAdmAfternoon,pAdmEvening>

(s,pName,pCPR,pRoom,pFluid,pEnergy,pSymptoms,pBooking,pMedication),

^Archive: end

}

in State<true,false,false,false,false,false,false,false,false>(s,name,cpr,room

,"(unknown)","(unknown)",symptoms,"None","None")

)

in Journal() | // }}}

// }}}

// Secretary {{{

// Secretary Interface // {{{

223 // Participants:

// 1: Nurse

// 2: Secretary

define $fetch_journal xNrOne xNrTwo xOperation xInformed xBooked xAdmMorning

xAdmAfternoon xAdmEvening =

2=>1:2<$journal<true,xNrOne,xNrTwo,xOperation,xInformed,xBooked,xAdmMorning,

xAdmAfternoon,xAdmEvening>@(1of2)>;

Gend

in

define $secretary =

1=>2:1<Bool> as xNrOne;

1=>2:1<Bool> as xNrTwo;

233 1=>2:1<Bool> as xOperation;

1=>2:1<Bool> as xInformed;

1=>2:1<Bool> as xBooked;

1=>2:1<Bool> as xAdmMorning;

1=>2:1<Bool> as xAdmAfternoon;

1=>2:1<Bool> as xAdmEvening;

1=>2:1<$journal<true,xNrOne,xNrTwo,xOperation,xInformed,xBooked,xAdmMorning,

xAdmAfternoon,xAdmEvening>@(1of2)>;

$fetch_journal<xNrOne,xNrTwo,xOperation,xInformed,xBooked,xAdmMorning,xAdmAfternoon,

xAdmEvening>

in // }}}

// Create Channel: secretary // {{{

243 (nu secretary: $secretary) // }}}

(// Secretary Service Implementation {{{

def Secretary() =

link(2,secretary,s,2);

s[1]>>xNrOne;

s[1]>>xNrTwo;

s[1]>>xOperation;

A.2 session types 189

s[1]>>xInformed;

s[1]>>xBooked;

s[1]>>xAdmMorning;

253 s[1]>>xAdmAfternoon;

s[1]>>xAdmEvening;

s[1]>>j;

// FIXME: Write updates to the journal

s[2]<<j;

// Handle next assignment

Secretary()

in

(Secretary() | Secretary() | Secretary()) | // Create 3 secretaries }}}

// }}}

263 // Treatment {{{

// Treatments Interface {{{

// Participants:

// 1: Patient

// 2: Doctor

// 3: Nurse

define $treatment_2114 xNrOne xNrTwo

xDischarge

xJournalHere xJournalUpdated

xOperation xInformed xBooked

273 xAdmMorning xAdmAfternoon xAdmEvening =

rec $treatment<xNrOne:Bool=xNrOne,

xNrTwo:Bool=xNrTwo,

xDischarge:Bool=xDischarge,

xJournalHere:Bool=xJournalHere,

xJournalUpdated:Bool=xJournalUpdated,

xOperation:Bool=xOperation,

xInformed:Bool=xInformed,

xBooked:Bool=xBooked,

xAdmMorning:Bool=xAdmMorning,

283 xAdmAfternoon:Bool=xAdmAfternoon,

xAdmEvening:Bool=xAdmEvening>.

{^Rounds[[xJournalHere and not xAdmMorning and not xAdmAfternoon and not

xAdmEvening]]:

3=>2:2<$journal<true,xNrOne,xNrTwo,xOperation,xInformed,xBooked,xAdmMorning,

xAdmAfternoon,xAdmEvening>@(1of2)>;

// Symptoms are added to journal

rec $stuegang<xNrOne:Bool=xNrOne,

xNrTwo:Bool=xNrTwo,

xDischarge:Bool=xDischarge,

xJournalHere:Bool=xJournalHere,

xJournalUpdated:Bool=xJournalUpdated,

293 xOperation:Bool=xOperation,

xInformed:Bool=xInformed,

xBooked:Bool=xBooked,

xAdmMorning:Bool=xAdmMorning,

xAdmAfternoon:Bool=xAdmAfternoon,

xAdmEvening:Bool=xAdmEvening>.

190 introduction

{#Surgery:

2=>1:1<Bool> as newOperation;

2=>3:3<Bool> as pOperation [[(newOperation or not pOperation) and (not

newOperation or pOperation)]]; // =newOperation

2=>1:1<Bool> as newInformed;

303 2=>3:3<Bool> as pInformed [[(newInformed or not pInformed) and (not

newInformed or pInformed)]]; // =newInformed

$stuegang<xNrOne,xNrTwo,xDischarge,xJournalHere,xJournalUpdated,newOperation

,newInformed,xBooked,xAdmMorning,xAdmAfternoon,xAdmEvening>,

#Discharge[[xNrOne and xNrTwo]]:

2=>1:1<Bool> as newDischarge;

2=>3:3<Bool> as pDischarge [[(newDischarge or not pDischarge) and (not

newDischarge or pDischarge)]]; // =newDischarge

$stuegang<xNrOne,xNrTwo,newDischarge,xJournalHere,xJournalUpdated,xOperation

,xInformed,xBooked,xAdmMorning,xAdmAfternoon,xAdmEvening>,

#Medication:

2=>1:1<String>; // Doctor informs about medication

2=>3:3<String>; // Doctor informs about medication

2=>1:1<Bool> as newAdmMorning;

313 2=>3:3<Bool> as pAdmMorning [[(newAdmMorning or not pAdmMorning) and (not

newAdmMorning or pAdmMorning)]]; // =newAdmMorning

2=>1:1<Bool> as newAdmAfternoon;

2=>3:3<Bool> as pAdmAfternoon [[(newAdmAfternoon or not pAdmAfternoon) and (

not newAdmAfternoon or pAdmAfternoon)]]; // =newAdmAfternoon

2=>1:1<Bool> as newAdmEvening;

2=>3:3<Bool> as pAdmEvening [[(newAdmEvening or not pAdmEvening) and (not

newAdmEvening or pAdmEvening)]]; // =newAdmEvening

$stuegang<xNrOne,xNrTwo,xDischarge,xJournalHere,xJournalUpdated,xOperation,

xInformed,xBooked,newAdmMorning,newAdmAfternoon,newAdmEvening>,

^StopRounds:

2=>3:3<$journal<true,xNrOne,xNrTwo,xOperation,xInformed,xBooked,xAdmMorning,

xAdmAfternoon,xAdmEvening>@(1of2)>;

$treatment<xNrOne,xNrTwo,xDischarge,xJournalHere,xJournalUpdated,xOperation,

xInformed,xBooked,xAdmMorning,xAdmAfternoon,xAdmEvening>

},

323 #Dictate[[xJournalHere]]:

$treatment<xNrOne,xNrTwo,xDischarge,xJournalHere,true,xOperation,xInformed,

xBooked,xAdmMorning,xAdmAfternoon,xAdmEvening>,

^SendJournal[[xJournalHere and xJournalUpdated]]:

$treatment<xNrOne,xNrTwo,xDischarge,false,xJournalUpdated,xOperation,xInformed,

xBooked,xAdmMorning,xAdmAfternoon,xAdmEvening>,

^FetchJournal[[not xJournalHere]]:

$treatment<xNrOne,xNrTwo,xDischarge,true,false,xOperation,xInformed,xBooked,

xAdmMorning,xAdmAfternoon,xAdmEvening>,

#Move[[xJournalHere]]:

// New room is written to journal

$treatment<xNrOne,xNrTwo,xDischarge,xJournalHere,xJournalUpdated,xOperation,

xInformed,xBooked,xAdmMorning,xAdmAfternoon,xAdmEvening>,

^VisitMorning[[xJournalHere]]: // Time Constraint?

333 //1=>3:4<String>; // Patient explains symptoms

// Symptoms are added to the journal

A.2 session types 191

1=>3:3<Bool> as newNrOne;

3=>2:2<Bool> as pNrOne [[(newNrOne or not pNrOne) and (not newNrOne or pNrOne)

]]; // =newNrOne

1=>3:3<Bool> as newNrTwo;

3=>2:2<Bool> as pNrTwo [[(newNrTwo or not pNrTwo) and (not newNrTwo or pNrTwo)

]]; // =newNrTwo

//1=>3:3<String>; // Patient explains how much liquid

//1=>3:3<String>; // and energy has been consumed

// Liquid- and energy consumption is registered in journal

$treatment<newNrOne,newNrTwo,xDischarge,xJournalHere,xJournalUpdated,xOperation,

xInformed,xBooked,xAdmMorning,xAdmAfternoon,xAdmEvening>,

343 ^VisitAfternoon[[xJournalHere]]: // Time Constraint?

//1=>3:4<String>; // Patient explains symptoms

// The symptoms are added to the journal

1=>3:3<Bool> as newNrOne;

3=>2:2<Bool> as pNrOne [[(newNrOne or not pNrOne) and (not newNrOne or pNrOne)

]]; // =newNrOne

1=>3:3<Bool> as newNrTwo;

3=>2:2<Bool> as pNrTwo [[(newNrTwo or not pNrTwo) and (not newNrTwo or pNrTwo)

]]; // =newNrTwo

//1=>3:3<String>; // Patient explains how much liquid

//1=>3:3<String>; // and energy has been consumed

// Liquid- and energy consumption is registered in journal

353 $treatment<newNrOne,newNrTwo,xDischarge,xJournalHere,xJournalUpdated,xOperation,

xInformed,xBooked,xAdmMorning,xAdmAfternoon,xAdmEvening>,

^VisitEvening[[xJournalHere]]: // Time Constraint?

//1=>3:4<String>; // Patient explains symptoms

// The symptoms are added to the journal

1=>3:3<Bool> as newNrOne;

3=>2:2<Bool> as pNrOne [[(newNrOne or not pNrOne) and (not newNrOne or pNrOne)

]]; // =newNrOne (not done physically)

1=>3:3<Bool> as newNrTwo;

3=>2:2<Bool> as pNrTwo [[(newNrTwo or not pNrTwo) and (not newNrTwo or pNrTwo)

]]; // =newNrTwo (not done physically)

//1=>3:3<String>; // Patient explains how much liquid

//1=>3:3<String>; // and energy has been consumed

363 // Liquid- and energy consumption is registered in journal

$treatment<newNrOne,newNrTwo,xDischarge,xJournalHere,xJournalUpdated,xOperation,

xInformed,xBooked,xAdmMorning,xAdmAfternoon,xAdmEvening>,

^AdmMorning[[xJournalHere and xAdmMorning]]: // Time Constraint?

// Nurse administers the medication to the patient

$treatment<xNrOne,xNrTwo,xDischarge,xJournalHere,xJournalUpdated,xOperation,

xInformed,xBooked,false,xAdmAfternoon,xAdmEvening>,

^AdmAfternoon[[xJournalHere and xAdmAfternoon]]: // Time Constraint?

// Nurse administers the medication to the patient

$treatment<xNrOne,xNrTwo,xDischarge,xJournalHere,xJournalUpdated,xOperation,

xInformed,xBooked,xAdmMorning,false,xAdmEvening>,

^AdmEvening[[xJournalHere and xAdmEvening]]: // Time Constraint?

// Nurse administers the medication to the patient

373 $treatment<xNrOne,xNrTwo,xDischarge,xJournalHere,xJournalUpdated,xOperation,

xInformed,xBooked,xAdmMorning,xAdmAfternoon,false>,

192 introduction

^Book[[xJournalHere and xOperation and not xBooked]]:

$treatment<xNrOne,xNrTwo,xDischarge,xJournalHere,xJournalUpdated,xOperation,

xInformed,true,xAdmMorning,xAdmAfternoon,xAdmEvening>,

^Surgery[[xJournalHere and xOperation and xInformed and xBooked]]:

{^StopSurgery:

$treatment<xNrOne,xNrTwo,xDischarge,xJournalHere,xJournalUpdated,false,false,

false,xAdmMorning,xAdmAfternoon,xAdmEvening>

},

^Discharge[[xDischarge and xJournalHere]]: Gend

}

in

383 define $treatment_2114_stuegang xNrOne xNrTwo

xDischarge

xJournalHere xJournalUpdated

xOperation xInformed xBooked

xAdmMorning xAdmAfternoon xAdmEvening =

rec $stuegang<xNrOne:Bool=xNrOne,

xNrTwo:Bool=xNrTwo,

xDischarge:Bool=xDischarge,

xJournalHere:Bool=xJournalHere,

xJournalUpdated:Bool=xJournalUpdated,

393 xOperation:Bool=xOperation,

xInformed:Bool=xInformed,

xBooked:Bool=xBooked,

xAdmMorning:Bool=xAdmMorning,

xAdmAfternoon:Bool=xAdmAfternoon,

xAdmEvening:Bool=xAdmEvening>.

{#Surgery:

2=>1:1<Bool> as newOperation;

2=>3:3<Bool> as pOperation [[(newOperation or not pOperation) and (not

newOperation or pOperation)]]; // =newOperation

2=>1:1<Bool> as newInformed; // [[newOperation or not newInformed]];

403 2=>3:3<Bool> as pInformed [[(newInformed or not pInformed) and (not newInformed

or pInformed)]]; // =newInformed

$stuegang<xNrOne,xNrTwo,xDischarge,xJournalHere,xJournalUpdated,newOperation,

newInformed,xBooked,xAdmMorning,xAdmAfternoon,xAdmEvening>,

#Discharge[[xNrOne and xNrTwo]]:

2=>1:1<Bool> as newDischarge; // [[(xNrOne and xNrTwo) or not newDischarge]];

2=>3:3<Bool> as pDischarge [[(newDischarge or not pDischarge) and (not

newDischarge or pDischarge)]]; // =newDischarge

$stuegang<xNrOne,xNrTwo,newDischarge,xJournalHere,xJournalUpdated,xOperation,

xInformed,xBooked,xAdmMorning,xAdmAfternoon,xAdmEvening>,

#Medication:

2=>1:1<String>; // Doctor explains the medication

2=>3:3<String>; // Doctor explains the medication

2=>1:1<Bool> as newAdmMorning;

413 2=>3:3<Bool> as pAdmMorning [[(newAdmMorning or not pAdmMorning) and (not

newAdmMorning or pAdmMorning)]]; // =newAdmMorning

2=>1:1<Bool> as newAdmAfternoon;

2=>3:3<Bool> as pAdmAfternoon [[(newAdmAfternoon or not pAdmAfternoon) and (not

newAdmAfternoon or pAdmAfternoon)]]; // =newAdmAfternoon

A.2 session types 193

2=>1:1<Bool> as newAdmEvening;

2=>3:3<Bool> as pAdmEvening [[(newAdmEvening or not pAdmEvening) and (not

newAdmEvening or pAdmEvening)]]; // =newAdmEvening

$stuegang<xNrOne,xNrTwo,xDischarge,xJournalHere,xJournalUpdated,xOperation,

xInformed,xBooked,newAdmMorning,newAdmAfternoon,newAdmEvening>,

^StopRounds:

2=>3:3<$journal<true,xNrOne,xNrTwo,xOperation,xInformed,xBooked,xAdmMorning,

xAdmAfternoon,xAdmEvening>@(1of2)>;

$treatment_2114<xNrOne,xNrTwo,xDischarge,xJournalHere,xJournalUpdated,xOperation

,xInformed,xBooked,xAdmMorning,xAdmAfternoon,xAdmEvening>

}

423 in // }}}

// Create Channel: treatment {{{

(nu treatment :

1=>3:3<$journal<true,false,false,false,false,false,false,false,false>@(1of2)>;

$treatment_2114<false,false,false,true,false,false,false,false,false,false,false>)

// }}}

(// Doctor service Implementation {{{

def Doctor() =

link(3,treatment,s,2); // Connect as Doctor

(Doctor()

| def Treatment<xNrOne:Bool,xNrTwo:Bool,xDischarge:Bool,

433 xJournalHere:Bool,xJournalUpdated:Bool,

xOperation:Bool,xInformed:Bool,xBooked:Bool,

xAdmMorning:Bool,xAdmAfternoon:Bool,xAdmEvening:Bool>

(b:$treatment_2114<xNrOne,xNrTwo,xDischarge,

xJournalHere,xJournalUpdated,

xOperation,xInformed,xBooked,

xAdmMorning,xAdmAfternoon,xAdmEvening>@(2of3))=

def Rounds<xNrOne:Bool,xNrTwo:Bool,xDischarge:Bool, // {{{

xJournalUpdated:Bool,

xOperation:Bool,xInformed:Bool,xBooked:Bool,

443 xAdmMorning:Bool,xAdmAfternoon:Bool,xAdmEvening:Bool>

(b:$treatment_2114_stuegang<xNrOne,xNrTwo,xDischarge,

true,xJournalUpdated,

xOperation,xInformed,xBooked,

xAdmMorning,xAdmAfternoon,xAdmEvening>@(2of3),

j:$journal<true,xNrOne,xNrTwo,

xOperation,xInformed,xBooked,

xAdmMorning,xAdmAfternoon,xAdmEvening>@(1of2)) =

guivalue(3,b,2,"NrOne",if xNrOne then "Yes" else "No");

guivalue(3,b,2,"NrTwo",if xNrTwo then "Yes" else "No");

453 guivalue(3,b,2,"Discharged",if xDischarge then "Yes" else "No");

guivalue(3,b,2,"Journal is here","Yes");

guivalue(3,b,2,"Journal has changes",if xJournalUpdated then "Yes" else "No

");

guivalue(3,b,2,"Surgeryes",if xOperation then "Yes" else "No");

guivalue(3,b,2,"Patient is informed",if xInformed then "Yes" else "No");

guivalue(3,b,2,"OR is booked",if xBooked then "Yes" else "No");

guivalue(3,b,2,"Administer in the Morning",if xAdmMorning then "Yes" else "

No");

194 introduction

guivalue(3,b,2,"Administer in the Afternoon",if xAdmAfternoon then "Yes"

else "No");

guivalue(3,b,2,"Administer in the Evening",if xAdmEvening then "Yes" else "

No");

guisync(3,b,2)

463 {#Surgery(operer:Bool=xOperation,

patientinformeret:Bool=false):

b[1]<<operer;

b[3]<<operer;

b[1]<<patientinformeret;

b[3]<<patientinformeret;

j[1]<<^WriteOperation;

j[1]<<operer;

j[1]<<^WriteInformed;

j[1]<<patientinformeret;

473 Rounds<xNrOne,xNrTwo,xDischarge,xJournalUpdated,operer,patientinformeret,

xBooked,xAdmMorning,xAdmAfternoon,xAdmEvening>(b,j),

#Discharge[[xNrOne and xNrTwo]](udskriv:Bool=xDischarge):

b[1]<<udskriv;

b[3]<<udskriv;

Rounds<xNrOne,xNrTwo,udskriv,xJournalUpdated,xOperation,xInformed,xBooked,

xAdmMorning,xAdmAfternoon,xAdmEvening>(b,j),

#Medication(medicin:String="",

morgen:Bool=xAdmMorning,

eftermiddag:Bool=xAdmAfternoon,

aften:Bool=xAdmEvening):

b[1]<<medicin;

483 b[3]<<medicin;

j[1]<<^WriteMedication;

j[1]<<medicin;

b[1]<<morgen;

b[3]<<morgen;

b[1]<<eftermiddag;

b[3]<<eftermiddag;

b[1]<<aften;

b[3]<<aften;

j[1]<<^WriteAdministration;

493 j[1]<<morgen;

j[1]<<eftermiddag;

j[1]<<aften;

Rounds<xNrOne,xNrTwo,xDischarge,xJournalUpdated,xOperation,xInformed,

xBooked,morgen,eftermiddag,aften>(b,j),

^StopRounds(kommentar:String=""):

b[3]<<j;

Treatment<xNrOne,xNrTwo,xDischarge,true,xJournalUpdated,xOperation,

xInformed,xBooked,xAdmMorning,xAdmAfternoon,xAdmEvening>(b)

} // }}}

in

guivalue(3,b,2,"NrOne",if xNrOne then "Yes" else "No");

503 guivalue(3,b,2,"NrTwo",if xNrTwo then "Yes" else "No");

guivalue(3,b,2,"Discharged",if xDischarge then "Yes" else "No");

A.2 session types 195

guivalue(3,b,2,"Journal is here",if xJournalHere then "Yes" else "No");

guivalue(3,b,2,"Journal has changes",if xJournalUpdated then "Yes" else "No

");

guivalue(3,b,2,"Surgeryes",if xOperation then "Yes" else "No");

guivalue(3,b,2,"Patient is informed",if xInformed then "Yes" else "No");

guivalue(3,b,2,"OR is booked",if xBooked then "Yes" else "No");

guivalue(3,b,2,"Administer in the Morning",if xAdmMorning then "Yes" else "

No");

guivalue(3,b,2,"Administer in the Afternoon",if xAdmAfternoon then "Yes"

else "No");

guivalue(3,b,2,"Administer in the Evening",if xAdmEvening then "Yes" else "

No");

513 guisync(3,b,2)

{^Rounds[[xJournalHere and not xAdmMorning and not xAdmAfternoon and not

xAdmEvening]](kommentar:String=""):

b[2]>>j;

Rounds<xNrOne,xNrTwo,xDischarge,xJournalUpdated,xOperation,xInformed,

xBooked,xAdmMorning,xAdmAfternoon,xAdmEvening>(b,j),

#Dictate[[xJournalHere]](diktat:String=""):

// FIXME: Send changes directly to secretary

Treatment<xNrOne,xNrTwo,xDischarge,xJournalHere,true,xOperation,xInformed,

xBooked,xAdmMorning,xAdmAfternoon,xAdmEvening>(b),

^SendJournal[[xJournalHere and xJournalUpdated]]():

Treatment<xNrOne,xNrTwo,xDischarge,false,xJournalUpdated,xOperation,

xInformed,xBooked,xAdmMorning,xAdmAfternoon,xAdmEvening>(b),

^FetchJournal[[not xJournalHere]]():

523 Treatment<xNrOne,xNrTwo,xDischarge,true,false,xOperation,xInformed,xBooked

,xAdmMorning,xAdmAfternoon,xAdmEvening>(b),

#Move[[xJournalHere]]():

Treatment<xNrOne,xNrTwo,xDischarge,xJournalHere,xJournalUpdated,xOperation

,xInformed,xBooked,xAdmMorning,xAdmAfternoon,xAdmEvening>(b),

^VisitMorning[[xJournalHere]]():

b[2]>>xNrOne;

b[2]>>xNrTwo;

Treatment<xNrOne,xNrTwo,xDischarge,xJournalHere,xJournalUpdated,xOperation

,xInformed,xBooked,xAdmMorning,xAdmAfternoon,xAdmEvening>(b),

^VisitAfternoon[[xJournalHere]]():

b[2]>>xNrOne;

b[2]>>xNrTwo;

533 Treatment<xNrOne,xNrTwo,xDischarge,xJournalHere,xJournalUpdated,xOperation

,xInformed,xBooked,xAdmMorning,xAdmAfternoon,xAdmEvening>(b),

^VisitEvening[[xJournalHere]]():

b[2]>>xNrOne;

b[2]>>xNrTwo;

Treatment<xNrOne,xNrTwo,xDischarge,xJournalHere,xJournalUpdated,xOperation

,xInformed,xBooked,xAdmMorning,xAdmAfternoon,xAdmEvening>(b),

^AdmMorning[[xJournalHere and xAdmMorning]]():

Treatment<xNrOne,xNrTwo,xDischarge,xJournalHere,xJournalUpdated,xOperation

,xInformed,xBooked,false,xAdmAfternoon,xAdmEvening>(b),

^AdmAfternoon[[xJournalHere and xAdmAfternoon]]():

196 introduction

Treatment<xNrOne,xNrTwo,xDischarge,xJournalHere,xJournalUpdated,xOperation

,xInformed,xBooked,xAdmMorning,false,xAdmEvening>(b),

^AdmEvening[[xJournalHere and xAdmEvening]]():

543 Treatment<xNrOne,xNrTwo,xDischarge,xJournalHere,xJournalUpdated,xOperation

,xInformed,xBooked,xAdmMorning,xAdmAfternoon,false>(b),

^Book[[xJournalHere and xOperation and not xBooked]]():

Treatment<xNrOne,xNrTwo,xDischarge,xJournalHere,xJournalUpdated,xOperation

,xInformed,true,xAdmMorning,xAdmAfternoon,xAdmEvening>(b),

^Surgery[[xJournalHere and xOperation and xInformed and xBooked]](kommentar

:String=""):

guisync(3,b,2)

{^StopSurgery(kommentar:String=kommentar):

Treatment<xNrOne,xNrTwo,xDischarge,xJournalHere,xJournalUpdated,false,

false,false,xAdmMorning,xAdmAfternoon,xAdmEvening>(b)

},

^Discharge[[xDischarge and xJournalHere]](): end

}

553 in

Treatment<false,false,false,true,false,false,false,false,false,false,false>(s)

)

in Doctor() | // }}}

(// Nurse Service Implementation {{{

def Nurse() =

link(3,treatment,s,3); // Connect as Nurse

(Nurse()

| def WithJournal<xNrOne:Bool,xNrTwo:Bool,xDischarge:Bool, // {{{

xJournalUpdated:Bool,

563 xOperation:Bool,xInformed:Bool,xBooked:Bool,

xAdmMorning:Bool,xAdmAfternoon:Bool,xAdmEvening:Bool>

(b:$treatment_2114<xNrOne,xNrTwo,xDischarge,

true,xJournalUpdated,

xOperation,xInformed,xBooked,

xAdmMorning,xAdmAfternoon,xAdmEvening>@(3of3),

j:$journal<true,xNrOne,xNrTwo,

xOperation,xInformed,xBooked,

xAdmMorning,xAdmAfternoon,xAdmEvening>@(1of2))=

def Rounds<xNrOne:Bool,xNrTwo:Bool,xDischarge:Bool, // {{{

573 xJournalUpdated:Bool,

xOperation:Bool,xInformed:Bool,xBooked:Bool,

xAdmMorning:Bool,xAdmAfternoon:Bool,xAdmEvening:Bool>

(b:$treatment_2114_stuegang<xNrOne,xNrTwo,xDischarge,

true,xJournalUpdated,

xOperation,xInformed,xBooked,

xAdmMorning,xAdmAfternoon,xAdmEvening>@(3of3)) =

guivalue(3,b,3,"NrOne",if xNrOne then "Yes" else "No");

guivalue(3,b,3,"NrTwo",if xNrTwo then "Yes" else "No");

guivalue(3,b,3,"Discharged",if xDischarge then "Yes" else "No");

583 guivalue(3,b,3,"Journal is here","Yes");

guivalue(3,b,3,"Journal has changes",if xJournalUpdated then "Yes" else "No");

guivalue(3,b,3,"Surgeryes",if xOperation then "Yes" else "No");

guivalue(3,b,3,"Patient is informed",if xInformed then "Yes" else "No");

A.2 session types 197

guivalue(3,b,3,"OR is booked",if xBooked then "Yes" else "No");

guivalue(3,b,3,"Administer in the Morning",if xAdmMorning then "Yes" else "No

");

guivalue(3,b,3,"Administer in the Afternoon",if xAdmAfternoon then "Yes" else

"No");

guivalue(3,b,3,"Administer in the Evening",if xAdmEvening then "Yes" else "No

");

guisync(3,b,3)

{#Surgery():

593 b[3]>>operer;

b[3]>>patientinformeret;

Rounds<xNrOne,xNrTwo,xDischarge,xJournalUpdated,operer,patientinformeret,

xBooked,xAdmMorning,xAdmAfternoon,xAdmEvening>(b),

#Discharge[[xNrOne and xNrTwo]]():

b[3]>>udskriv;

Rounds<xNrOne,xNrTwo,udskriv,xJournalUpdated,xOperation,xInformed,xBooked,

xAdmMorning,xAdmAfternoon,xAdmEvening>(b),

#Medication():

b[3]>>medicin;

b[3]>>morgen;

b[3]>>eftermiddag;

603 b[3]>>aften;

Rounds<xNrOne,xNrTwo,xDischarge,xJournalUpdated,xOperation,xInformed,xBooked

,morgen,eftermiddag,aften>(b),

^StopRounds(kommentar:String=""):

b[3]>>j;

WithJournal<xNrOne,xNrTwo,xDischarge,xJournalUpdated,xOperation,xInformed,

xBooked,xAdmMorning,xAdmAfternoon,xAdmEvening>(b,j)

} // }}}

in

def WithoutJournal<xNrOne:Bool,xNrTwo:Bool,xDischarge:Bool, // {{{

xJournalUpdated:Bool,

xOperation:Bool,xInformed:Bool,xBooked:Bool,

613 xAdmMorning:Bool,xAdmAfternoon:Bool,xAdmEvening:Bool>

(b:$treatment_2114<xNrOne,xNrTwo,xDischarge,

false,xJournalUpdated,

xOperation,xInformed,xBooked,

xAdmMorning,xAdmAfternoon,xAdmEvening>@(3of3),

s:$fetch_journal<xNrOne,xNrTwo,xOperation,xInformed,xBooked,xAdmMorning

,xAdmAfternoon,xAdmEvening>@(1of2))=

guivalue(3,b,3,"NrOne",if xNrOne then "Yes" else "No");

guivalue(3,b,3,"NrTwo",if xNrTwo then "Yes" else "No");

guivalue(3,b,3,"Discharged",if xDischarge then "Yes" else "No");

guivalue(3,b,3,"Journal is here","No");

623 guivalue(3,b,3,"Journal has changes",if xJournalUpdated then "Yes" else "No");

guivalue(3,b,3,"Surgeryes",if xOperation then "Yes" else "No");

guivalue(3,b,3,"Patient is informed",if xInformed then "Yes" else "No");

guivalue(3,b,3,"OR is booked",if xBooked then "Yes" else "No");

guivalue(3,b,3,"Administer in the Morning",if xAdmMorning then "Yes" else "No

");

198 introduction

guivalue(3,b,3,"Administer in the Afternoon",if xAdmAfternoon then "Yes" else

"No");

guivalue(3,b,3,"Administer in the Evening",if xAdmEvening then "Yes" else "No

");

guisync(3,b,3)

{^FetchJournal(kommentar:String=""):

s[2]>>j;

633 WithJournal<xNrOne,xNrTwo,xDischarge,false,xOperation,xInformed,xBooked,

xAdmMorning,xAdmAfternoon,xAdmEvening>(b,j)

}

// WithoutJournal<xNrOne,xNrTwo,xDischarge,xJournalUpdated,xOperation,xInformed

,xBooked,xAdmMorning,xAdmAfternoon,xAdmEvening>(b,j) // }}}

in

guivalue(3,b,3,"NrOne",if xNrOne then "Yes" else "No");

guivalue(3,b,3,"NrTwo",if xNrTwo then "Yes" else "No");

guivalue(3,b,3,"Discharged",if xDischarge then "Yes" else "No");

guivalue(3,b,3,"Journal is here","Yes");

guivalue(3,b,3,"Journal has changes",if xJournalUpdated then "Yes" else "No");

guivalue(3,b,3,"Surgeryes",if xOperation then "Yes" else "No");

643 guivalue(3,b,3,"Patient is informed",if xInformed then "Yes" else "No");

guivalue(3,b,3,"OR is booked",if xBooked then "Yes" else "No");

guivalue(3,b,3,"Administer in the Morning",if xAdmMorning then "Yes" else "No

");

guivalue(3,b,3,"Administer in the Afternoon",if xAdmAfternoon then "Yes" else

"No");

guivalue(3,b,3,"Administer in the Evening",if xAdmEvening then "Yes" else "No

");

guisync(3,b,3)

{^Rounds[[not xAdmMorning and not xAdmAfternoon and not xAdmEvening]](

kommentar:String=""):

b[2]<<j;

Rounds<xNrOne,xNrTwo,xDischarge,xJournalUpdated,xOperation,xInformed,xBooked

,xAdmMorning,xAdmAfternoon,xAdmEvening>(b),

#Dictate():

653 WithJournal<xNrOne,xNrTwo,xDischarge,true,xOperation,xInformed,xBooked,

xAdmMorning,xAdmAfternoon,xAdmEvening>(b,j),

^SendJournal[[xJournalUpdated]](kommentar:String=""):

link(2,secretary,s,1);

s[1]<<xNrOne;

s[1]<<xNrTwo;

s[1]<<xOperation;

s[1]<<xInformed;

s[1]<<xBooked;

s[1]<<xAdmMorning;

s[1]<<xAdmAfternoon;

663 s[1]<<xAdmEvening;

s[1]<<j;

WithoutJournal<xNrOne,xNrTwo,xDischarge,xJournalUpdated,xOperation,xInformed

,xBooked,xAdmMorning,xAdmAfternoon,xAdmEvening>(b,s),

#Move(room:String=""): //FIXME: Brug nuvaerende room som default

j[1]<<^WriteRoom;

A.2 session types 199

j[1]<<room;

WithJournal<xNrOne,xNrTwo,xDischarge,xJournalUpdated,xOperation,xInformed,

xBooked,xAdmMorning,xAdmAfternoon,xAdmEvening>(b,j),

^VisitMorning(kommentar:String=""):

b[3]>>xNrOne;

b[2]<<xNrOne;

673 b[3]>>xNrTwo;

b[2]<<xNrTwo;

j[1]<<^WriteNrOne;

j[1]<<xNrOne;

j[1]<<^WriteNrTwo;

j[1]<<xNrTwo;

WithJournal<xNrOne,xNrTwo,xDischarge,xJournalUpdated,xOperation,xInformed,

xBooked,xAdmMorning,xAdmAfternoon,xAdmEvening>(b,j),

^VisitAfternoon(kommentar:String=""):

b[3]>>xNrOne;

b[2]<<xNrOne;

683 b[3]>>xNrTwo;

b[2]<<xNrTwo;

j[1]<<^WriteNrOne;

j[1]<<xNrOne;

j[1]<<^WriteNrTwo;

j[1]<<xNrTwo;

WithJournal<xNrOne,xNrTwo,xDischarge,xJournalUpdated,xOperation,xInformed,

xBooked,xAdmMorning,xAdmAfternoon,xAdmEvening>(b,j),

^VisitEvening(kommentar:String=""):

b[3]>>xNrOne;

b[2]<<xNrOne;

693 b[3]>>xNrTwo;

b[2]<<xNrTwo;

j[1]<<^WriteNrOne;

j[1]<<xNrOne;

j[1]<<^WriteNrTwo;

j[1]<<xNrTwo;

WithJournal<xNrOne,xNrTwo,xDischarge,xJournalUpdated,xOperation,xInformed,

xBooked,xAdmMorning,xAdmAfternoon,xAdmEvening>(b,j),

^AdmMorning[[xAdmMorning]](kommentar:String=""):

j[1]<<^WriteAdministration;

j[1]<<false;

703 j[1]<<xAdmAfternoon;

j[1]<<xAdmEvening;

WithJournal<xNrOne,xNrTwo,xDischarge,xJournalUpdated,xOperation,xInformed,

xBooked,false,xAdmAfternoon,xAdmEvening>(b,j),

^AdmAfternoon[[xAdmAfternoon]](kommentar:String=""):

j[1]<<^WriteAdministration;

j[1]<<xAdmMorning;

j[1]<<false;

j[1]<<xAdmEvening;

WithJournal<xNrOne,xNrTwo,xDischarge,xJournalUpdated,xOperation,xInformed,

xBooked,xAdmMorning,false,xAdmEvening>(b,j),

^AdmEvening[[xAdmEvening]](kommentar:String=""):

200 introduction

713 j[1]<<^WriteAdministration;

j[1]<<xAdmMorning;

j[1]<<xAdmAfternoon;

j[1]<<false;

WithJournal<xNrOne,xNrTwo,xDischarge,xJournalUpdated,xOperation,xInformed,

xBooked,xAdmMorning,xAdmAfternoon,false>(b,j),

^Book[[xOperation and not xBooked]](kommentar:String=""):

j[1]<<^WriteBooked;

j[1]<<true;

WithJournal<xNrOne,xNrTwo,xDischarge,xJournalUpdated,xOperation,xInformed,

true,xAdmMorning,xAdmAfternoon,xAdmEvening>(b,j),

^Surgery[[xOperation and xInformed and xBooked]](kommentar:String=""):

723 guisync(3,b,3)

{^StopSurgery(kommentar:String=kommentar):

j[1]<<^WriteOperation;

j[1]<<false;

j[1]<<^WriteInformed;

j[1]<<false;

j[1]<<^WriteBooked;

j[1]<<false;

WithJournal<xNrOne,xNrTwo,xDischarge,xJournalUpdated,false,false,false,

xAdmMorning,xAdmAfternoon,xAdmEvening>(b,j)

},

733 ^Discharge[[xDischarge]](kommentar:String=""):

j[1]<<^WriteEnrolled;

j[1]<<false;

j[1]<<^Archive;

end

} // }}}

in

s[3]>>j; // Modtag journal

WithJournal<false,false,false,false,false,false,false,false,false,false>(s,j)

)

743 in Nurse() | // }}}

// }}}

// Reception {{{

// Reception Interface (sReception) {{{

// Participants:

// 1: Patient

// 2: Receptionist

define $sReception =

1=>2:2<String>; // Send Name

1=>2:2<String>; // Send CPR

753 1=>2:2<String>; // Send Symptoms

{^Enroll:

2=>1:1<$treatment_2114<false,false,false,true,false,false,false,false,false,false,

false>@(1of3)>;

Gend

}

in // }}}

//// Create Channel: sReception {{{

A.2 session types 201

(nu sReception : $sReception) // }}}

(// Receptionist {{{

def Receptionist() =

763 link(2,sReception,s,2);

s[2]>>name;

s[2]>>cpr;

s[2]>>symptoms;

guivalue(2,s,2,"Name:",name);

guivalue(2,s,2,"CPR:",cpr);

guivalue(2,s,2,"Symptoms:",symptoms);

guisync(2,s,2)

{^Enroll(room:String="Room12a"): // Input room from UI

link(2,journal,j,1); // Create Journal

773 j[1]<<name;

j[1]<<cpr;

j[1]<<room;

j[1]<<symptoms;

link(3,treatment,b,1); // Create Treatment session

b[3]<<j; // Send journal to nurse

s[1]<<b; // Send treatment session to patient

Receptionist()

}

in Receptionist() | // Create one sReceptionist }}}

783 // }}}

(def Patient(name: String,cpr: String,symptoms: String) = // {{{

def Treatment<xNrOne:Bool,xNrTwo:Bool,xDischarge:Bool,

xJournalHere:Bool,xJournalUpdated:Bool,

xOperation:Bool,xInformed:Bool,xBooked:Bool,

xAdmMorning:Bool,xAdmAfternoon:Bool,xAdmEvening:Bool>

(b:$treatment_2114<xNrOne,xNrTwo,xDischarge,

xJournalHere,xJournalUpdated,

xOperation,xInformed,xBooked,

xAdmMorning,xAdmAfternoon,xAdmEvening>@(1of3))=

793 def Rounds<xNrOne:Bool,xNrTwo:Bool,xDischarge:Bool, // {{{

xJournalUpdated:Bool,

xOperation:Bool,xInformed:Bool,xBooked:Bool,

xAdmMorning:Bool,xAdmAfternoon:Bool,xAdmEvening:Bool>

(b:$treatment_2114_stuegang<xNrOne,xNrTwo,xDischarge,

true,xJournalUpdated,

xOperation,xInformed,xBooked,

xAdmMorning,xAdmAfternoon,xAdmEvening>@(1of3)) =

guivalue(3,b,1,"NrOne",if xNrOne then "Yes" else "No");

guivalue(3,b,1,"NrTwo",if xNrTwo then "Yes" else "No");

803 guivalue(3,b,1,"Discharged",if xDischarge then "Yes" else "No");

guivalue(3,b,1,"Journal has changes",if xJournalUpdated then "Yes" else "No");

guivalue(3,b,1,"Surgeryes",if xOperation then "Yes" else "No");

guivalue(3,b,1,"Patient is informed",if xInformed then "Yes" else "No");

guivalue(3,b,1,"OR is booked",if xBooked then "Yes" else "No");

guivalue(3,b,1,"Administer in the Morning",if xAdmMorning then "Yes" else "No

");

202 introduction

guivalue(3,b,1,"Administer in the Afternoon",if xAdmAfternoon then "Yes" else

"No");

guivalue(3,b,1,"Administer in the Evening",if xAdmEvening then "Yes" else "No

");

guisync(3,b,1)

{#Surgery():

813 b[1]>>operer;

b[1]>>patientinformeret;

Rounds<xNrOne,xNrTwo,xDischarge,xJournalUpdated,operer,patientinformeret,

xBooked,xAdmMorning,xAdmAfternoon,xAdmEvening>(b),

#Discharge[[xNrOne and xNrTwo]]():

b[1]>>udskriv;

Rounds<xNrOne,xNrTwo,udskriv,xJournalUpdated,xOperation,xInformed,xBooked,

xAdmMorning,xAdmAfternoon,xAdmEvening>(b),

#Medication():

b[1]>>medicin;

guivalue(3,b,1,"Medication",medicin);

b[1]>>xAdmMorning;

823 b[1]>>xAdmAfternoon;

b[1]>>xAdmEvening;

Rounds<xNrOne,xNrTwo,xDischarge,xJournalUpdated,xOperation,xInformed,xBooked

,xAdmMorning,xAdmAfternoon,xAdmEvening>(b),

^StopRounds():

Treatment<xNrOne,xNrTwo,xDischarge,true,xJournalUpdated,xOperation,xInformed

,xBooked,xAdmMorning,xAdmAfternoon,xAdmEvening>(b)

} // }}}

in

guivalue(3,b,1,"NrOne",if xNrOne then "Yes" else "No");

guivalue(3,b,1,"NrTwo",if xNrTwo then "Yes" else "No");

guivalue(3,b,1,"Discharged",if xDischarge then "Yes" else "No");

833 guivalue(3,b,1,"Journal is here",if xJournalHere then "Yes" else "No");

guivalue(3,b,1,"Journal has changes",if xJournalUpdated then "Yes" else "No");

guivalue(3,b,1,"Surgeryes",if xOperation then "Yes" else "No");

guivalue(3,b,1,"Patient is informed",if xInformed then "Yes" else "No");

guivalue(3,b,1,"OR is booked",if xBooked then "Yes" else "No");

guivalue(3,b,1,"Administer in the Morning",if xAdmMorning then "Yes" else "No

");

guivalue(3,b,1,"Administer in the Afternoon",if xAdmAfternoon then "Yes" else

"No");

guivalue(3,b,1,"Administer in the Evening",if xAdmEvening then "Yes" else "No

");

guisync(3,b,1)

{^Rounds[[xJournalHere and not xAdmMorning and not xAdmAfternoon and not

xAdmEvening]]():

843 Rounds<xNrOne,xNrTwo,xDischarge,xJournalUpdated,xOperation,xInformed,xBooked

,xAdmMorning,xAdmAfternoon,xAdmEvening>(b),

#Dictate[[xJournalHere]]():

Treatment<xNrOne,xNrTwo,xDischarge,xJournalHere,true,xOperation,xInformed,

xBooked,xAdmMorning,xAdmAfternoon,xAdmEvening>(b),

^SendJournal[[xJournalHere and xJournalUpdated]]():

A.2 session types 203

Treatment<xNrOne,xNrTwo,xDischarge,false,xJournalUpdated,xOperation,

xInformed,xBooked,xAdmMorning,xAdmAfternoon,xAdmEvening>(b),

^FetchJournal[[not xJournalHere]]():

Treatment<xNrOne,xNrTwo,xDischarge,true,false,xOperation,xInformed,xBooked,

xAdmMorning,xAdmAfternoon,xAdmEvening>(b),

#Move[[xJournalHere]]():

Treatment<xNrOne,xNrTwo,xDischarge,xJournalHere,xJournalUpdated,xOperation,

xInformed,xBooked,xAdmMorning,xAdmAfternoon,xAdmEvening>(b),

^VisitMorning[[xJournalHere]](xNrOne:Bool=xNrOne,xNrTwo:Bool=xNrTwo):

853 b[3]<<xNrOne;

b[3]<<xNrTwo;

Treatment<xNrOne,xNrTwo,xDischarge,xJournalHere,xJournalUpdated,xOperation,

xInformed,xBooked,xAdmMorning,xAdmAfternoon,xAdmEvening>(b),

^VisitAfternoon[[xJournalHere]](xNrOne:Bool=xNrOne,xNrTwo:Bool=xNrTwo):

b[3]<<xNrOne;

b[3]<<xNrTwo;

Treatment<xNrOne,xNrTwo,xDischarge,xJournalHere,xJournalUpdated,xOperation,

xInformed,xBooked,xAdmMorning,xAdmAfternoon,xAdmEvening>(b),

^VisitEvening[[xJournalHere]](xNrOne:Bool=xNrOne,xNrTwo:Bool=xNrTwo):

b[3]<<xNrOne;

b[3]<<xNrTwo;

863 Treatment<xNrOne,xNrTwo,xDischarge,xJournalHere,xJournalUpdated,xOperation,

xInformed,xBooked,xAdmMorning,xAdmAfternoon,xAdmEvening>(b),

^AdmMorning[[xJournalHere and xAdmMorning]]():

Treatment<xNrOne,xNrTwo,xDischarge,xJournalHere,xJournalUpdated,xOperation,

xInformed,xBooked,false,xAdmAfternoon,xAdmEvening>(b),

^AdmAfternoon[[xJournalHere and xAdmAfternoon]]():

Treatment<xNrOne,xNrTwo,xDischarge,xJournalHere,xJournalUpdated,xOperation,

xInformed,xBooked,xAdmMorning,false,xAdmEvening>(b),

^AdmEvening[[xJournalHere and xAdmEvening]]():

Treatment<xNrOne,xNrTwo,xDischarge,xJournalHere,xJournalUpdated,xOperation,

xInformed,xBooked,xAdmMorning,xAdmAfternoon,false>(b),

^Book[[xJournalHere and xOperation and not xBooked]]():

Treatment<xNrOne,xNrTwo,xDischarge,xJournalHere,xJournalUpdated,xOperation,

xInformed,true,xAdmMorning,xAdmAfternoon,xAdmEvening>(b),

^Surgery[[xJournalHere and xOperation and xInformed and xBooked]](kommentar:

String=""):

873 sync(3,b)

{^StopSurgery:

Treatment<xNrOne,xNrTwo,xDischarge,xJournalHere,xJournalUpdated,false,

false,false,xAdmMorning,xAdmAfternoon,xAdmEvening>(b)

},

^Discharge[[xDischarge and xJournalHere]](): end

}

in

link(2,sReception,s,1); // Connect as Patient

s[2]<<name;

s[2]<<cpr;

883 s[2]<<symptoms;

sync(2,s)

{^Enroll:

204 introduction

s[1]>>b; // Receive treatment session

Treatment<false,false,false,true,false,false,false,false,false,false,false>(b)

}

in // }}}

// Create Patient Process(es)

(Patient("John Doe","123456....","Congestion")

)))))))

B
B I T- C O D E D R E G U L A R E X P R E S S I O N PA R S I N G

b.1 transducer reduction

b.1.1 Proof of transducer states lower bound (Lemma 59)

To prove this we define an injective map from SJTK to Q. The intuition of this map
should be that each semantic state L is mapped to a node qL where the paths from
qL to a qf P Qf describes exactly the elements in L.

Consider an L P SJTK. The definition of SJTK gives us three possibilities.

If L = LoiJTK then we map L to qL = qi.

Otherwise L � tu.

If L = LoiJTK Ó sL for some word sL P LoiJTK then L = t[]u because T is output
deterministic, and we map L to qL = qf for some qf P Qf (notice Qf � H as LoiJTK
is not empty).

Finally, if L = LoiJTK Ó s where s@(o :: s 1) P LoiJTK then there is a path p in T from
qi to some qf P Qf with troi(p) = s@(o :: s 1). Since o is an output symbol then p
can be split into p1 from qi to some qL, and p2 from qL to qf such that troi(p1) = s
and troi(p2) = o :: s 1, and we map L to qL.

This defines a map from SJTK to Q by L ÞÑ qL. We need to argue that this map
is injective. To do this we consider TL = (Q,Σi,Σo,qL,Qf, t) for each L P SJTK. If
L1 � L2 in SJTK then LoiJTL1K = L1 � L2 = LoiJTL2K and therefore TL1 � TL2 and
this can only mean qL1 � qL2 concluding that the map L ÞÑ qL is injective and
thus |Q| ¥ |SJTK|.

b.1.2 Proof of soundness of � (Lemma 60)

Induction on the length of s.

If s = [] then q1 P Qf. Since q1 � q2 then q2 P Qf otherwise q1 and q2 would have
been separated in step 4.a and thus s = [] P LoiJTcq2K.

If s = i :: s 1 where i P Σi then q1 = qi because Tc is compact which means that
only qi has edges without output. This also means that the ’ε’ column for q1 is set.
Since q1 � q2 then the ’ε’ column for q2 must be set, otherwise q1 and q2 would
be separated in step 4.b. Therefore q2 = qi because only qi can have the ’ε’ column

205

206 bit-coded regular expression parsing

set. This means that q1 = qi = q2 and thus s P LoiJTcq2K.

If s = o :: s 1 where o P Σo then there is a path p = (q1, is,o,q1 1) :: p 1 from q1
to some qf P Qf such that troi(p) = o :: (is@troi(p 1)) = s. Since q1 � q2 there
is (q2, is,o,q2 1) P t such that q 11 � q 12, otherwise q1 and q2 would have been
split in step 4.b because of the ’o’ column. Now the induction hypothesis (on
troi(p 1) and q 11 � q

1
2) yields that troi(p 1) P LoiJTcq 12K and therefore s = troi(p) = o ::

(is@troi(p 1)) P LoiJTcq2K.

b.1.3 Proof of completeness of � (Lemma 61)

Induction on iteration (of step 4.b) when q1 and q2 were separated.

Start (separated in step 4.a): If q1 and q2 were separated in step 4.a, then either
q1 P Qf and q2 R Qf or q1 R Qf and q2 P Qf. In the first case [] P LoiJTcq1K and
[] R LoiJTcq2K so the languages are not the same. In the second case [] R LoiJTcq1K
and [] P LoiJTcq2K so the languages are not the same.

Step (separated in step 4.b): If q1 and q2 were separated in step 4.b, then there is a
column c P Σo Y tεu such that q1 and q2 differ in column c.

If q1 and q2 differ on column ε then either q1 or q2 is the initial node, since
only the initial node can have the ε column set. If the ε column is set for qi then
(qi, is, ε,q 1) P t which means that (is@s 1) P LoiJTcq1K for some s 1 (as there are no
dead states). Since is � [] then there is a word in LoiJTcqiK which starts with an
input character. Since this can only be true for the initial node, the languages for
q1 and q2 are different.

If column ’o’ is set for q1 but unset for q2 then (q1, is,o,q 11) P t which means that
o :: (is@s 1) P LoiJTcq1K for some s 1 (as there are no dead states). Since q2 has no
edge with output o then LoiJTcq2K contains no strings starting with o and therefore
the languages are different.

The case where column ’o’ is unset for q1 but set for q2 follows by symmetry.

If column ’o’ for q1 is (G1, is1) and for q2 it is (G2, is2) then (q1, is1,o,q 11) P t and
(q2, is2,o,q 12) P t and either is1 � is2 or q 11 and q 12 were separated in an earlier
iteration.

If is1 � is2 then there is some s 1 P LoiJTcq 11K (since there are no dead states),
where s 1 is either empty (if q 11 is final) or starts with an output symbol (because
all edges from nodes with input edges have non-ε output). In the same way for
all s2 P LoiJTcq 12K either s2 is empty or starts with an output symbol and thus
o :: (is1@s 1) P LoiJTcq1K and all strings in LoiJTcq2K starting with o is on the forms
o :: (is2@s2) � o :: (is1@s 1) since is1 � is2, so the languages are different.

B.1 transducer reduction 207

If is1 = is2 and q 11 and q 12 were separated in an earlier iteration then the induction
hypothesis yields that LoiJTcq 11K � LoiJTcq 12K and since the strings in LoiJTcq1K that
starts with o are exactly to :: is1@s 1 | s 1 P LoiJTcq 11Ku and the strings in LoiJTcq2K
that starts with o are exactly to :: is2@s 1 | s 1 P LoiJTcq 12Ku the filtered languages are
different, and thus the languages are different.

b.1.4 Proof of minimality of result (Theorem 62)

Since merging two nodes with the same language preserves the language, then
LoiJT 1K = LoiJTK, and therefore Lemma 59 concludes that T 1 will have at least
|SJT 1K| = |SJTK| nodes.

Since T 1 is compact (due to step 2), all edges except possibly edges from the initial
node are of the form (q1, is,o,q2) where o P Σo. This means that for all q P Q 1

LoiJT 1qK will be in SJT 1K. Because Lemma 61 concludes that all nodes with the same
language has been merged, we know that q1 � q2 P Q 1 ñ LoiJT 1q1K � LoiJT 1q2K. In
conclusion all nodes in T 1 have languages in SJT 1K = SJTK and since different nodes
have different languages we can conclude that |Q 1| ¤ |SJTK|.

C
M U LT I PA RT Y S Y M M E T R I C S U M T Y P E S

c.1 process congruence

The process semantics uses the notion of process equivalence (�), and this is
included in Figure 62.

Figure 62 Process congruence (�)

The relation � is defined as the smallest congruence relation satisfying
P|0 � P P|Q � Q|P

P|(Q|R) � (P|Q)|R (νn)P|Q � (νn)(P|Q) if n R fn(Q)

(νnn 1)P � (νn 1n)P (νn)0 � 0

def D in 0 � 0 (νs1..sn)Πisi :H � 0

def D in (νn)P � (νn)def D in P if n R fn(D)

(def D in P) | Q � def D in (P | Q) if dpv(D)X fpv(Q) =H

def D in def D 1 in P � def D and D 1 in P if dpv(D)X dpv(D 1) =H

c.2 symmetric sum types

We include the full set of typing rules in Figure 43. The typing system uses the
notion of type projection (æ) defined in Figure 64, and the notion of subtyping (¤)
of session-environments which consists of subtyping of each of the used local types
defined in Figure 65.

c.3 subject reduction

We include the proof of subject reduction in Proof C.3.2. The proof uses Lemma C.3.1
which is an extension of Lemma 5.18 from [61] and states that the [Subs] rules can
be propagated upwards to the [Sel] and [Branch] rules.

Lemma C.3.1 (Extension of Lemma 5.18 from [61]: Permutation).

209

210 multiparty symmetric sum types

(1) If

[Subs]

[Subs]

D

Γ $ P�t̃ ∆

Γ $ P�t̃ ∆
1

Γ $ P�t̃ ∆
2 then

[Subs]

D

Γ $ P�t̃ ∆

Γ $ P�t̃ ∆
2 and the

result of E JK is unchanged.

(2) If

[Subs]

[X] D

Γ $ P�t̃ ∆

Γ $ P�t̃ ∆
1 and the second last rule-application X is not Sel or

Branch then the last two rule-applications can be permuted and the result of E JK is
unchanged.

Proof:
(1) Is immediate because ¤sub is transitive and E JK in both cases reduces to E JDK.

(2) Is proved for each possible rule X. This is done as in the original proof, where

preservation of E JK is shown by evaluation since E

t
[Subs] Γ $ P�t̃ ∆

1

Γ $ P�t̃ ∆
1

|

=

E JD 1K. There is one new case, and we will prove it now.

Sync: In this case we consider a derivation

[Subs]

[Sync] @l P L2

Dl

Γ $ Pl �t̃ ∆, s̃ : tTl@(p,n)u

Γ $ syncs̃,ntl : PlulPL2 �t̃ ∆, s̃ : ttl : TlulPL;L 1@(p,n)u

Γ $ syncs̃,ntl : PlulPL2 �t̃ ∆
1, s̃ : ttl : T 1lulPL;L 1@(p,n)u

where Tl ¤sub T
1
l for each l P L2 and ∆ ¤sub ∆

1. We can therefore create

[Sync] @l P L2

[Subs]

Dl

Γ $ Pl �t̃ ∆, s̃ : tTl@(p,n)u

Γ $ Pl �t̃ ∆
1, s̃ : tT 1l@(p,n)u

Γ $ syncs̃,ntl : PlulPL2 �t̃ ∆
1, s̃ : ttl : T 1lulPL;L 1@(p,n)u

Now we only need to show that E JK is the same for both derivations, but this is
fulfilled, since

E

t
[Subs] Γ $ P�t̃ ∆

Γ $ P�t̃ ∆

|

= E JDK. 2

C.4 erasure definition 211

Proof C.3.2 (Theorem 4.3.2: Subject reduction).
We prove

If Γ $ P�s̃ ∆, ∆ coherent and P Ñ P 1

then Γ $ P 1 �s̃ ∆ 1where ∆Ñ0/1 ∆ 1.

By induction on the derivation of P Ñ P 1.
We only have to consider the case Sync, as the other cases are proved in [61]. Assume

[Sync] h P
�n
i=1 Li

syncs̃,ntl : P1lulPL1 | ... | syncs̃,ntl : PnlulPLn Ñ P1h | ... | Pnh

We can assume that the typing Γ $ synct̃,ntl : P1lulPL1 | ... | synct̃,ntl : PnlulPLn �s̃
∆, t̃ : ttl : TliulPL;L 1@(i,n)uiPt1..nu starts with n� 1 applications of the Conc rule each
containing one application of the Sync rule because of the extension of Lemma 5.18 in
C.3.1. This gives us the subderivations:

[Sync]

Dil

Γ $ Pil �s̃i ∆i, t̃ : tTli@(i,n)u @l P Li

Γ $ tl : PilulPLi �s̃i ∆i, t̃ : tl : TliulPL 1;L@(i,n)

for i=1..n such that s̃i X s̃j = H for all i � j in 1..n,
�n
i=1 s̃i = s̃ and ∆1 � (∆2 � (. . . �

∆n)) = ∆.
Since each of these subderivations starts with the Sync rule we get that

Dih

Γ $ Pih �s̃i ∆i, t̃ : tThi@(i,n)u for i = 1..n

Now we can apply Conc n� 1 times to create a derivation of
Γ $ P1h | . . . | Pnh �s̃ ∆, t̃ : tThi@(p,n)upPt1..nu.
Since ∆, t̃ : ttl : TliulPL;L 1@(i,n)uiPt1..nu Ñ ∆, t̃ : tThi@(i,n)uiPt1..nu, subject reduc-
tion is fulfilled in the Sync case. 2

c.4 erasure definition

We provide the erasure definition and the translation giving the types of the erased
processes. Figure 66 shows the conductor generation from(step 2). Figure 67 shows
the type and environment translations giving the types of the erased processes,
used to express the theorems.

212 multiparty symmetric sum types

c.5 type preservation

We include the proof that the presented erasure preserves typability.

Theorem C.5.2 proves that the generated conductors are well-typed in the translated
environment, using Lemma C.5.1. Lemma C.5.3 proves that translating a global
type, and projecting the result is the same as projecting the original type and
translating the result. Using Theorem C.5.2 and Lemma C.5.3 Proof C.5.4 concludes
that the erased processes are well-typed in the translated environments, thus
proving Theorem 4.4.1.

Lemma C.5.1 (Conductors are typed). If n ¥ max(pid(G)) and |s̃| ¥ max(sid(G))
then
H $ C JGK�s̃,n � s̃, ins̃1, . . . , outs̃n : ((JGK�n,|s̃|)æ(n+1))@(n+1,n+ 1)

Proof: By structural induction on G. The interesting cases Branch and Sync are
explained briefly.

Branch: Assume G = p1 Ñ p2 : ktl : GlulPL.
Then the resulting conductor process is:

C JGK�s̃,n = outs̃p1 � tl : C JGlK
�
s̃,nulPL,

and the global type is:

JGK�n,|s̃| = p1 Ñ p2 : ktl : p1 Ñ n+1 : (|s̃|+ 2 � p1)tl : JGlK
�
n,|s̃|uulPL.

Therefore the resulting local type is:

(JGK�n,|s̃|)æ(n+1)

= max¤subtT
1 | @l P L.T 1 ¤sub (|s̃|+ 2 � p1)&tl : JGlK

�
n,|s̃|æ(n+1)uu

= (|s̃|+ 2 � p1)&tl : JGlK
�
n,|s̃|æ(n+1)ulPL with n+1 ¡ p1 and p2.

By the induction hypothesis,

H $ C JGlK
�
s̃,n � s̃, ins̃1, . . . , outs̃n : (JGlK

�
n,|s̃|æ(n+1))@(n+1,n+ 1)

for all l P L,

and because of rule Branch we get that

H $ outs̃p1 � tl : C JGlK
�
s̃,nulPL � s̃, ins̃1, . . . , outs̃n :

((|s̃|+ 2 � p1)&tJGlK
�
n,|s̃|æ(n+1)ulPL)@(n+1,n+ 1).

Therefore this case is fulfilled.

Sync: Assume G = tl : GlulPL;L 1 . In this case the resulting conductor process is:

C JGK�s̃,n
= outs̃1 � tcasesL21YL 1 : outs̃2 � tcasesL22YL 1 : . . . outs̃n � tcasesL2nYL 1 :

randtl : ins̃1 � l; . . . ; ins̃n � l;C JGlK
�
s̃,nulPL 1Y(L21XL

2

2X...L
2
n)

uL2n�L . . .uL22�LuL21�L,

C.5 type preservation 213

the resulting global type is

JGK�n,|s̃|
= 1Ñ n+1 : (|s̃|+ 2)tcasesL21YL 1 :

2Ñ n+1 : (|s̃|+ 4)tcasesL22YL 1 : . . .
nÑ n+1 : (|s̃|+ 2 �n)tcasesL2nYL 1 :
n+1Ñ 1 : (|s̃|+ 1)tl :

n+1Ñ 2 : (|s̃|+ 3)tl : . . .

n+1Ñ n : (|s̃|+ 2 � n� 1)tl : JGlK
�
n,|s̃|u . . .u

ulPL 1Y(L21XL
2

2X...L
2
n)
uL2n�L . . .uL22�LuL21�L

and since n+1 ¡ p1 and p2 the resulting local type is

(JGK�n,|s̃|)æ(n+1)

= (|s̃|+ 2)&tcasesL21YL 1 :
(|s̃|+ 4)&tcasesL22YL 1 : . . .
(|s̃|+ 2 �n)&tcasesL2nYL 1 :
(|s̃|+ 1)` tl :

(|s̃|+ 3)` tl : . . .

(|s̃|+ 2 � n� 1)` tl : JGlK
�
n,|s̃|æ(n+1)u . . .u

ulPL 1Y(L21XL
2

2X...L
2
n)
uL2n�L . . .uL22�LuL21�L

We get from the induction hypothesis that

Dl

H $ C JGlK
�
s̃,n � s̃, ins̃1, . . . , outs̃n : (JGlK

�
n,|s̃|æ(n+1))@(n+1,n+ 1)

for all l P LY L 1. We can therefore construct the type derivation in by n levels of
Branch rules on top of which is a Rand rule containing n levels of the Label rule
containing Dl for the selected branches l.
Therefore this case is fulfilled.

We have now proved the interesting cases therefore the lemma is fulfilled. 2

Theorem C.5.2 (Conductors are typed).
We prove

If Γ $ a : xGy and n = max(pid(G)) and |s̃| = max(sid(G))
then JΓK $ C JGKs̃,n,a �H

Proof: Since Γ $ a : xGy we have JΓK $ a : JGK.
Now JGK = JGK�max(pid(G)),max(sid(G)) and therefore Lemma C.5.1 gives us that
H $ C JGK�s̃,n � s̃, ins̃1, . . . , outs̃n : ((JGK)æ(n+1))@(n+1,n+ 1)

because |s̃| = max(sid(G)) and n = max(pid(G)).
Finally we conclude the desired by applying Macc. 2

214 multiparty symmetric sum types

Lemma C.5.3 (Projection and erasure commutes). If p ¤ n, n ¥ max(pid(G)) and
m ¥ max(sid(G))
then JGK�m,næp = JGæpKm,n,p.

Proof: Structural induction on G. The interesting cases Branch and Sync are
explained briefly.

Branch: G = p0 Ñ p1 : ktl : GlulPL
There are three subcases depending on p.

If p � p0 and p � p1 then

Jp0 Ñ p1 : ktl : GlulPLK
�
n,mæp

= (p0 Ñ p1 : ktl : p1 Ñ n+1 : m+ 2 � p1 : tl : JGlK
�
n,muulPL)æp

= max¤subtT | T ¤sub p1 Ñ n+1 : m+ 2 � p1tl : JGlK
�
n,muæp @l P Lu

= max¤subtT | T ¤sub max¤subtT
1 | T 1 ¤sub JGlK

�
n,mæpu @l P Lu

= max¤subtT | T ¤sub JGlK
�
n,mæp @l P Lu and

Jp0 Ñ p1 : ktl : GlulPLæpKn,m,p
=

q
max¤subtT | T ¤sub Glæp @l P Lu

y
n,m,p

= max¤subtT | T ¤sub JGlæpKn,m,p @l P Lu (JK is monotonic)

Now the induction hypothesis proves this case.

The cases where p = p0 and p = p1 are proved in the same way, except less
rewriting of max expressions are required.

Sync: G = tl : GlulPL;L 1

If this case

Jtl : GlulPL;L 1K
�
n,mæp

= 1Ñ n+1 : (m+ 2)tcasesL1YL 1 : . . .
nÑ n+1 : (m+ 2 �n)tcasesLnYL 1 :
n+1Ñ 1 : (m+ 1)tl :

n+1Ñ 2 : (m+ 3)tl : . . .

n+1Ñ n : (m+ 2 �n� 1)tl : JGlK
�
n,mu . . .u

ulPL 1Y(L1X...Ln)uLn�L . . .uL1�L)æp (rewriting max)
= max¤subtT | T ¤sub (m+ 2 � p)` tcasesLpYL 1 : (m+ 2 � p� 1)&tl :

JGlK
�
n,mæpulPL 1Y(L1X...Ln)uLp�L

@L1, . . . ,Lp�1,Lp+1, . . . Ln � Lu
= (m+ 2 � p)` tcasesLpYL 1 : (m+ 2 � p� 1)&tl : JGlK

�
n,mæpulPL 1YLpuLp�L

Now this case follows by the induction hypothesis.

We have now proved the interesting cases therefore the lemma is fulfilled. 2

Proof C.5.4 (Theorem 4.4.1: Type preservation).
We Prove

C.5 type preservation 215

If

D

Γ $ P�∆ then JΓK $ E JDK� J∆K

By induction on the type derivation D. The interesting cases Mcast and Sync are explained
briefly.

Mcast:

D =

Γ $ a : xGy

D1

Γ $ P�∆, s̃ : (Gæ1)@(1,n) |s̃| = max(sid(G)) n = max(pid(G))

Γ $ a[2..n](s̃).P�∆

From this we obtain from the induction hypothesis on D1 that

D 1
1

JΓK $ E JD1K� J∆K , s̃, ins̃1, . . . , outs̃,n : JGæ1Kn,|s̃|,p @(1,n+ 1)

and therefore Lemma C.5.3 gives us that

D 1
1

JΓK $ E JD1K� J∆K , s̃, ins̃1, . . . , outs̃,n : JGK�n,|s̃|æ1@(1,n+ 1) .

Now we can create

D 1 =

[Mcast] JΓK $ a : xJGKy D 1
1 |s̃, ins̃1, . . . , outs̃n| = n+m = max(sid(JGK)) n = max(pid(JGK))

JΓK $ a[2..n+1](s̃, ins̃1, . . . , outs̃n).E JD1K� J∆K .

Corollary C.5.2 gives us that

D 1
2

JΓK $ C JGKs̃,n,a �H and therefore we can prove the
desired by

[Conc]

D 1
2

JΓK $ C JGKs̃,n,a �H

D 1

JΓK $ a[2..n+1](s̃, ins̃1, . . . , outs̃n).E JD1K� J∆K

JΓK $ E JDK� J∆K .

Sync:

D =

[Sync]

Dl

Γ $ Pl �∆, s̃ : Tl@(p,n) @l P L L2 � LY L 1 L 1 � L2

Γ $ tl : PlulPL2 �∆, s̃ : tl : TlulPL;L 1@(p,n)

If this case we apply the Branch rule to the results of the induction hypothesis, and then
applying a Sel rule to that.

We have now proved the interesting cases therefore the theorem is fulfilled. 2

216 multiparty symmetric sum types

c.6 congruence preservation

We include the proof that the presented erasure preserves process congruence.

We start by extending the erasure to runtime processes in Figure 68. Proof C.6.1
concludes soundness, and can be considered as a natural extension of Theorem
5.22(1) from [61]. Lemme C.6.4 proves that each relevant congruence step for the
translated process can be matched by a congruence step by the original process,
and Proof C.6.5 uses this to conclude completeness. Thus both soundness and
completeness of Theorem 4.4.2 are proved.

Proof C.6.1 (Theorem 4.4.2(Soundness): Congruence preservation).
We prove

If P � Q and

D1

Γ $ P�t̃ ∆ then there is a derivation

D2

Γ $ Q�t̃ ∆ such
that E JD1K � E JD2K.

By rule-induction on P � Q. All the rules are considered in [61], and we get that E JD1K �
E JD2K for the derivations found in the original proof, by moving the conductor processes
around and applying the considered equivalence rule. 2

Observation C.6.2.
If E JΓ1 $ P1 �∆1K = E JΓ2 $ P2 �∆2K then P1 = P2.

Observation C.6.3.
If E JD1K � E JD2K then there is a derivation without using the steps

• Q1|Q2 � Q2|Q1

• Q1|(Q2|Q3) � (Q1|Q2)|Q3

• (νn)Q1|Q2 � (νn)(Q1|Q2)

where either Q1, Q2 or Q3 are conductor processes.

This is true because E JK only creates a a conductor process from the derivation
of a session requesting process a[2..n](s̃).P and in this case it is created in parallel
with the session request process a[2..n+ 1](s̃ 1)P 1. Therefore if the steps of E JD1K �
E JD2K at some point separates the conductor process from the session request, it
must later join the session request with another conductor process in order to reach
E JD2K. For this reason we can safely assume that the steps of E JD1K � E JD2K at
no point separates the conductor from the session request, since we can create a
derivation that fulfils this by removing all the steps that moves or changes the
associativity of conductor processes.

C.6 congruence preservation 217

Lemma C.6.4 (Congruence single step completeness).

If

D1

Γ1 $ P1 �∆1 and E JD1K � Q in one step, that does not use the rules

• Q1|Q2 � Q2|Q1

• Q1|(Q2|Q3) � (Q1|Q2)|Q3

• (νn)Q1|Q2 � (νn)(Q1|Q2)

where either Q1, Q2 or Q3 are conductor processes, then there is

D2

Γ1 $ P2 �∆1 such
that E JD2K = Q and P1 � P2.

Proof: This is proved for each rule. We consider the most interesting cases here.

Case Q1|Q2 � Q2|Q1:
Only the typing-rules Mcast and Conc results in processes of this form. If Q1|Q2
is the result of an Mcast rule, then Q1 is a conductor process, and since we can
assume this is not the case, we only have to consider the Conc rule. Therefore we
know that

D1 =

[Conc]

D1i

Γ1 $ P1i �∆1i

Γ1 $ P11|P12 �∆11 �∆12 and can select D2 =

[Conc]

D1i

Γ1 $ P1i �∆1i

Γ1 $ P12|P11 �∆12 �∆11 .
Since E JD2K = E JD12K |E JD11K = Q2|Q1 and P11|P12 � P12|P11.

Cases Q1|(Q2|Q3) � (Q1|Q2)|Q3 and (νn)Q1|Q2 � (νn)(Q1|Q2) are proved in
the same way, and the rest of the rules are straightforward. 2

Proof C.6.5 (Theorem 4.4.2(Completeness): Congruence preservation).
We prove

If

D1

Γ1 $ P1 �∆1 and

D2

Γ2 $ P2 �∆2 and E JD1K � E JD2K then P1 � P2.

By induction on the number of steps in the derivation of E JD1K � E JD2K.

If there are no steps, then E JD1K = E JD2K and therefore P1 = P2.

If E JD1K � E JD2K uses at least one step, and the first step is E JD1K � Q then Ob-

servation C.6.3 lets us use Lemma C.6.4 to find a derivation

D3

Γ1 $ P3 �∆1 such that
E JD3K = Q and P1 � P3. Now we get from the induction hypothesis that P3 � P2 and
therefore P1 � P2. 2

218 multiparty symmetric sum types

c.7 erasure soundness

We prove that the erasure is sound. To do this we define PC as the set of possible
partial conductors for the open sessions ∆. Proof C.7.2 proves Theorem 4.4.3 (an
extension of Theorem 5.22(2) from [61]) which states soundness for a single step,
and Corollary C.7.3 generalises this to soundness for multiple steps.

Definition C.7.1 (Partial conductors: PC). The possible conductors for an environment
of partially completed session PC(∆) is defined below.

PC(H) = t0u

PC(∆ 1, s̃ : tTp@(p,n)upPt1..nu) =�
P 1CPPC(∆

1)tC JGK�s̃,n |P
1
C|ins̃1 :H| . . . |outs̃n :H | Gæp = Tp @p P t1..nuu

Proof C.7.2 (Theorem 4.4.3: Erasure soundness).

If

D

Γ $ P�t̃ ∆ , P Ñ P 1, ∆ coherent and PC P PC(∆ �∆�)

then there is a derivation

D 1

Γ $ P 1 �t̃ ∆
1 and a P 1C P PC(∆

1 �∆�)

such that ∆Ñ0/1 ∆ 1 and E JDK |PC Ñ� E JD 1K |P 1C.

The proof is by induction on the derivation of P Ñ P 1. All cases except Sync are covered by
the original proof, where E JDK |PC Ñ� E JD 1K |P 1C can be proved for the found derivation
D 1 by selecting P 1C using the same global types as was used to find PC. We will show the
case for Link as an example, and prove the new case for Sync.

Link:
[Link]

$ a[2..n](s̃).P1|a[2](s̃).P2| . . . |a[n](s̃).Pn Ñ (νs̃)(P1|P2| . . . |Pn|s1 :H| . . . |sm :H)

We can assume that the typing derivation D starts with n applications of the Conc rule
without changing E JDK because of the extension of Lemma 5.18 in C.3.1. The first Conc
rule contains a derivation

[Mcast] Γ $ a : xGy

D1

Γ $ P1 �∆, s̃ : (Gæ1)@(1,n) |s̃| = max(sid(G)) n = max(pid(G))

Γ $ a[2..n](s̃).P1 �∆1

and the other Conc rules contain the derivations

[Macc] Γ $ a : xGy

Dp

Γ $ P�∆p, s̃ : (Gæp)@(p,n) |s̃| = max(sid(G)) n = max(pid(G))

Γ $ a[p](s̃).Pp �∆p

for p = 1..n.
We can now create D 1 as an application of the CRes rule containing 2 � n applications

of the Conc rule containing Di for i = 1..n, and Dn+1 . . .D2�n which are derivations for
the empty queues. D 1 concludes that

C.7 erasure soundness 219

Γ $ (νs̃)(P1|P2| . . . |Pn|s1 :H| . . . |sn :H)�∆.

Now can now use the definition of E JK to find

E JDK = a[n+1](s̃, cs̃1, . . . , cs̃n).C JGK�s̃,n |a[2..n+1](s̃).E JD1K |a[2](s̃).E JD2K
| . . . |a[n](s̃).E JDnK

E JD 1K = (νs̃, cs̃1, . . . , cs̃n)(C JGKs̃,n,a | cs̃1 :H | . . . | cs̃n :H | E JD1K | . . . |E JDnK
|s1 :H| . . . |sn :H)

With these choices of D, D 1 the theorem is proved by a single Link step wrapped in a Conc
and Str rule since we can choose PC = P 1C.

Sync:

[Sync] l 1 P
�n
i=1 Li

syncs̃,ntl : P1lulPL1 | ... | syncs̃,ntl : PnlulPLn Ñ P1l 1 | ... | Pnl 1

We can assume that the typing derivation D starts with n applications of the Conc rule
without changing E JDK because of the extension of Lemma 5.18. The Conc rules contain
the derivations

[Sync] @l P L2 :

Dpl

Γ $ Ppl �∆p, s̃ : tTpl@(p,n)u L2 � LY L 1 L 1 � L2

Γ $ syncs̃,ntl : PplulPL2 �∆p, s̃ : ttl : TplulPL;L 1@(p,n)u for p =

1..n.

We can now create D 1 as n applications of the Conc rule containing D1l 1 , . . . ,Dnl 1 . D 1

concludes that Γ $ P1l 1 | ... | Pnl 1 �∆1, s̃ : tTpl 1@(p,n)upPt1..nu.

Let PC P PC(∆) = PC(∆1, s̃ : ttl : TplulPL;L 1@(p,n)upPt1..nu)

=
�
PC1PPC(∆1)

tC Jtl : GlulPL;L 1K
�
s̃,n |PC1|cs̃1 : H| . . . |cs̃n : H | Glæp = Tpl @p P

t1..nu, l P LY L 1u.

We can now choose P 1C = C JGlK
�
s̃,n |PC1|cs̃1 :H| . . . |cs̃n :H.

With these choices of D, D 1, PC and P 1C the theorem is proved by performing the com-
munication which E JK and PC produces from the synchronisation constructor. 2

Corollary C.7.3 (Erasure soundness).
This corollary is an extension of Theorem 5.22(3) from [61].

We prove

If

D

Γ $ P�H and P Ñ� P 1

then there is a derivation

D 1

Γ $ P 1 �H

such that E JDK Ñ� E JD 1K.

Proof: By induction on the number of steps in P Ñ� P 1.

If P = P 1 then the theorem is trivially fulfilled.

220 multiparty symmetric sum types

If P Ñ� P 1 is of the form P Ñ P1 Ñ
� P 1 then the extension of Theorem 5.22(2) in

Theorem 4.4.3 gives us that there is a derivation

D1

Γ $ P1 �H such that E JDK |0Ñ�

E JD1K |0, since H is coherent and complete and PC(H) = t0u. Now we can wrap the
first and the last step in E JDK |0Ñ� E JD1K |0with a Str rule to get E JDK Ñ� E JD1K.

The induction hypothesis yields that there is a derivation

D 1

Γ $ P 1 �H such that
E JD1K Ñ� E JD 1K, and therefore we get that E JDK Ñ� E JD 1K by combining the
steps in the two evaluations.

Therefore the theorem is fulfilled. 2

c.8 erasure completeness

We prove that the erasure is complete. This is done by first classifying all stepping
derivations by the active stepping rule in Lemma C.8.1. This classification is used to
formally define conduction steps (ã) in Definition C.8.2. Next we prove confluence
for the conduction steps in Lemma C.8.7, and using this it is possible to prove
the single step completeness in Lemma C.8.11. Finally we can conclude multistep
completeness in Proof C.8.12 using a non-trivial combination of the single step
completeness (Illustrated in Figure 69), and the confluence results, thus proving
Theorem 4.4.4.

Step 1: Conduction Steps

Lemma C.8.1 (Classification of steps).
If P1 Ñ P2 then exactly one of the following cases is fulfilled.

Link P1 � (νñ)def D in (a[2 . . . n](s̃).Q11|a[2](s̃).Q12| . . . |a[n](s̃).Q1n|Q2) and
P2 � (νñ)def D in ((νs̃)(Q11|Q12| . . . |Q1n|s1 :H| . . . |sm :H)|Q2).

Send P1 � (νñ)def D in (sk!xẽy;Q1|sk : h̃|Q2) and
P2 � (νñ)def D in (Q1|sk : h̃ � ṽ|Q2) where ẽ Ó ṽ.

Recv P1 � (νñ)def D in (sk?(x̃);Q1|sk : ṽ � h̃|Q2) and
P2 � (νñ)def D in (Q1[ṽ/x̃]|sk : h̃|Q2).

Label P1 � (νñ)def D in (sk � l;Q1|sk : h̃|Q2) and
P2 � (νñ)def D in (Q1|sk : h̃ � l|Q2).

Branch P1 � (νñ)def D in (sk � tl : Q1, . . .u|sk : l � h̃|Q2) and
P2 � (νñ)def D in (Q1|sk : h̃|Q2).

C.8 erasure completeness 221

Deleg P1 � (νñ)def D in (sk!xxt̃yy;Q1|sk : h̃|Q2) and
P2 � (νñ)def D in (Q1|sk : h̃ � t̃|Q2).

SRec P1 � (νñ)def D in (sk?((t̃));Q1|sk : t̃ � h̃|Q2) and
P2 � (νñ)def D in (Q1|sk : h̃|Q2).

IfT P1 � (νñ)def D in (if e then Q11 else Q12|Q2) and
P2 � (νñ)def D in (Q11|Q2) where e Ó true.

IfF P1 � (νñ)def D in (if e then Q11 else Q12|Q2) and
P2 � (νñ)def D in (Q12|Q2) where e Ó false.

Def P1 � (νñ)def D in (Xxẽs̃y|Q2) and
P2 � (νñ)def D in (Q1[ṽ/x̃]|Q2) where X(x̃s̃) = Q1 P D and ẽ Ó ṽ.

Rand P1 � (νñ)def D in (randtPiuiPI|Q2) and
P2 � (νñ)def D in (Pj|Q2) for some j P I.

Sync P1 � (νñ)def D in (syncs̃,ntl : Q11, . . .u| . . . |syncs̃,ntl : Q1n, . . .u|Q2) and
P2 � (νñ)def D in (Q11| . . . |Q1n|Q2).

Proof: By induction on the derivations of P1 Ñ P2.

Each of the rules represented results in the case of the same name.
The Scop rule adds n to ñ.
The Par rule adds the unused process to Q2.
The Defin rule adds the definitions to D, where reaming can be necessary.
Finally the Str rule follows directly by the induction hypothesis since � is transitive.
2

Definition C.8.2 (Definition of conduction steps).
If P1 Ñ P2 then we write P1ãP2 if one of the following cases is fulfilled

• Lemma C.8.1 uses case Label or Branch where sk is a conductor channel.

• Lemma C.8.1 uses case Def where X is a conductor process-variable.

Otherwise we write that P1áP2.

Step 2: Confluence

Lemma C.8.3 (Separation).
If P1 is linear, P1ãP2 and P1 Ñ P 12
then one of the following eight cases is fulfilled.

• P2 � P 12.

222 multiparty symmetric sum types

• P1 � (νñ)def D in (Q1|Q2|Q3)

where Q1ãQ 1
1, Q2 Ñ Q 1

2

and P2 � (νñ)def D in (Q 1
1|Q2|Q3)

and P 12 � (νñ)def D in (Q1|Q
1
2|Q3).

• P1 � (νñ)def D in (sk � l;Q 1
1|sk : ṽ � h̃|sk?(x̃);Q 1

2|Q3)

where P2 � (νñ)def D in (Q 1
1|sk : ṽ � h̃ � l|sk?(x̃);Q 1

2|Q3)

and P 12 � (νñ)def D in (sk � l;Q 1
1|sk : h̃|Q 1

2[ṽ/x̃]|Q3).

• P1 � (νñ)def D in (sk � l;Q 1
1|sk : t̃ � h̃|sk?((t̃));Q 1

2|Q3)

where P2 � (νñ)def D in (Q 1
1|sk : t̃ � h̃ � l|sk?((t̃));Q 1

2|Q3)

and P 12 � (νñ)def D in (sk � l;Q 1
1|sk : h̃|Q 1

2|Q3).

• P1 � (νñ)def D in (sk � l;Q 1
1|sk : l 1 � h̃|sk � tl

1 : Q 1
2, . . .u|Q3)

where P2 � (νñ)def D in (Q 1
1|sk : l 1 � h̃ � l|sk � tl

1 : Q 1
2, . . .u|Q3)

and P 12 � (νñ)def D in (sk � l;Q 1
1|sk : h̃|Q 1

2|Q3).

• P1 � (νñ)def D in (sk � tl : Q
1
1, . . .u|sk : l � h̃|sk!xẽy;Q 1

2|Q3)

where P2 � (νñ)def D in (Q 1
1|sk : h̃|sk!xẽy;Q 1

2|Q3)

and P 12 � (νñ)def D in (sk � tl : Q
1
1, . . .u|sk : l � h̃ � ṽ|Q 1

2|Q3) where ẽ Ó ṽ.

• P1 � (νñ)def D in (sk � tl : Q
1
1, . . .u|sk : l � h̃|sk!xxt̃yy;Q 1

2|Q3)

where P2 � (νñ)def D in (Q 1
1|sk : h̃|sk!xxt̃yy;Q 1

2|Q3)

and P 12 � (νñ)def D in (sk � tl : Q
1
1, . . .u|sk : l � h̃ � t̃|Q 1

2|Q3).

• P1 � (νñ)def D in (sk � tl : Q
1
1, . . .u|sk : l � h̃|sk � l

1;Q 1
2|Q3)

where P2 � (νñ)def D in (Q 1
1|sk : h̃|sk � l

1;Q 1
2|Q3)

and P 12 � (νñ)def D in (sk � tl : Q
1
1, . . .u|sk : l � h̃ � l 1|Q 1

2|Q3).

Proof: Consider each case of P1ãP2 and P 11 Ñ P 12 in Lemma C.8.1. 2

Lemma C.8.4 (Diamond property for ã).
If P1 is linear, P1ãP2 and P1ãP 12
then P2 � P 12 or DP3 such that P2ãP3 and P 12ãP3.

Proof: Consider each case of Lemma C.8.3. 2

Lemma C.8.5 (Diamond property).
If P1 is linear, P1ãP2 and P1áP 12
then DP3 such that P2áP3 and P 12ãP3.

Proof: Consider each case of Lemma C.8.3. 2

Lemma C.8.6 (Partial confluence).
If P1 is linear, P1ã�P2 and P1 Ñ P 12
then DP3 such that P2 Ñ� P3 and P 12ã

�P3.

C.8 erasure completeness 223

Proof: By induction on the number of steps in P1ã�P2, using Lemma C.8.4 or
C.8.5 in each step. 2

It should be noted that the number of steps is not increased, such that the number
of steps in P1ã�P2 is an upper bound for number of steps in P 12ã

�P3 and P2 Ñ� P3
in at most one step.

Lemma C.8.7 (confluence).
If P1 is linear, P1ã�P2 and P1 Ñ� P 12
then DP3 such that P2 Ñ� P3 and P 12ã

�P3.

Proof: By induction on the number of steps in the evaluation P1 Ñ� P 12, using
Lemma C.8.6 in each step. 2

It should be noted that the number of steps is not increased, such that the number of
steps in P1ã�P2 is an upper bound for number of steps in P 12ã

�P3 and the number
of steps in P1 Ñ� P 12 is an upper bound for the number of steps in P2 Ñ� P3.

Step 3: Single-step completeness

Lemma C.8.8 (Direct step completeness).

If E

t
D1

Γ $ P1 �∆1

|

= Q1,

Pc1 P PC(∆1 �∆
�) and Q1|Pc1áQ2

then D

D2

Γ $ P2 �∆2 and Pc2 P PC(∆2 � ∆
�) such that P1 Ñ P2, ∆1 Ñ0/1 ∆2 and

Q2ã
�E

t
D2

Γ $ P2 �∆2

|

| Pc2

Proof: Check all direct steps of all right-hand-sides of E JK and C JK, using that
channel-queues are copied, and the newly created channels ins̃p and outs̃p are new
names and therefore does not interfere with original channels. 2

Lemma C.8.9 (Step commutativity).

If E

t
D

Γ $ P�∆

|

= Q1,

Pc P PC(∆ �∆
�) and Q1|Pcã�Q2áQ3

where Lemma C.8.1 on Q2áQ3 does not use the Rand case in a conductor
then Q1|PcáQ 1

2ã
�Q3.

Proof: By induction on the call-tree of E JK and C JK.
First we can see by inspection of all right-hand-sides of E JK and C JK that
if ins̃p : h is in Q1|Pc then h =H.

Second we can see by inspection of all right-hand-sides of E JK and C JK that

224 multiparty symmetric sum types

writing on any in channel is preceded by a non-conduction step.

Finally we can see by inspection of all right-hand-sides of E JK and C JK that
either the result starts with a non-conduction step, or non-conduction steps are
preceded by reading on an in channel, except for Rand steps in the conductor,
therefore the lemma is fulfilled. 2

Lemma C.8.10 (Sync step completeness).

If E

t
D1

Γ $ P1 �∆1

|

= Q1,

Pc1 P PC(∆1 � ∆
�) and Q1|Pc1ã�Q2áQ

1
3 where Lemma C.8.1 on Q2áQ 1

3 uses the
Rand case in a conductor

then D

D2

Γ $ P2 �∆2 ,Pc2 P PC(∆2 �∆�)
such that P1 Ñ P2, ∆1 Ñ0/1 ∆2 and E JD2K |Pc2ã�Q3 and Q 1

3ã
�Q3.

Proof: If Q2áQ 1
3 uses the Rand case in a conductor then that conductor C must

be generated from the type tl : GlulPL;L 1 . This means that

C = outs̃1 � tcasesL1YL 1 : . . . : outs̃n � tcasesLnYL 1 :

randtins̃1 � l; . . . ; ins̃n � l;C JGlK
�
n,s̃ulP

�n
i=1 LiYL

1uLn�L . . .uL1�L

Since we know that Q1|Pc1ã�Q2 and Q2 steps using the Rand case in a conductor,
we know that there must be processes in Q1 sending on outs̃p for all p = 1..n. They
can only be created from Sync rules, since Q2áQ 1

3 is the first non-conduction step.
This means that the processes

Q1p = outs̃p � casesL2 ; ins̃p � tl : PplulPLp for p = 1..n

can send to C, and this means that

Q1|Pc1 � (νñ 1)def D 1 in (C|Q11| . . . |Q1n|ins̃1 : H| . . . |outs̃n : H|Q 1
1)

and
P1 � (νñ)defD in ((syncs̃,ntl : Pl1ulPL1YL 1 | . . . |syncs̃,ntl : PlnulPLnYL 1)|P

1
1),

Now the extension of Theorem 5.22(1) from [61] in Appendix 4.4.2 gives us a
derivation

D 1

1

Γ $ (νñ)defD in ((syncs̃,ntl : Pl1ulPL1YL1 | . . . |syncs̃,ntl : PlnulPLnYL1)|P 11)�∆1

such that E JD1K � E
q
D 1
1

y
, and we can see D 1

1 must contain a subderivation on the
form

[Par] D11 =

[
[Sync] Γ 1 $ syncs̃,ntl : Pl1ulPL1YL1 �∆11, s̃ : ttl : Tl1ulPL;L1 @(1,n)u

Γ 1 $ syncs̃,ntl : Pl1ulPL1YL1 �∆11, s̃ : ttl : Tl1ulPL;L1 @(1,n)u

]
[Par] ..

.

..
.

Γ 1 $ syncs̃,ntl : Pl1ulPL1YL1 | . . . |syncs̃,ntl : PlnulPLnYL1 �∆ 1

1, s̃ : ttl : TlpulPLpYL1 @(p,n)up=1..n

C.8 erasure completeness 225

We get from Theorem 4.4.1 that Q1|Pc1 is typable, and therefore it is linear. This
means that we can propagate the sending and receiving on the outs̃p channels and
the Rand step forward to the beginning of the evaluation, giving us the evaluation

Q1|Pc1ã
�Q 1
2áQ

2
3ã

�Q 1
3 where

Q1|Pc1 � (νñ 1)def D 1 in (C|Q11| . . . |Q1n|ins̃1 :H| . . . |outs̃n :H|Q
1
1),

Q 1
2 � (νñ 1)def D 1 in (randtins̃1 � l; . . . ; ins̃n � l;C JGlK

�
n,s̃ulP

�n
i=1 LiYL

1

|ins̃1 � tl : P1lulPL1 | . . . |ins̃n � tl : PnlulPLn
|ins̃1 :H| . . . |outs̃n :H|Q

1
1) and

Q2
3 � (νñ 1)def D 1 in (ins̃1 � l; . . . ; ins̃n � l;C JGlK

�
n,s̃

|ins̃1 � tl : P1lulPL1 | . . . |ins̃n � tl : PnlulPLn
|ins̃1 :H| . . . |outs̃n :H|Q

1
1)

Now we can see that

Q2
3ã

�(νñ 1)defD 1in(C JGlK
�
n,s̃ |P1l| . . . |Pnl|ins̃1 :H| . . . |outs̃n :H|Q

1
1) = Q4

by sending and receiving on the ins̃p channels. Lemma C.8.7 therefore gives us a
Q3 such that Q 1

3ã
�Q3 and Q4ã�Q3.

This means we only need to find

D2

Γ $ P2 �∆2 and Pc2 P PC(∆2 �∆
�) such that

P1 Ñ P2, ∆1 Ñ0/1 ∆2 and E JD2K |Pc2 � Q4.
If we create the derivation

[Par] Dl1

[Par] Dln-1 Dln

..
.

Γ 1 $ Pl1| . . . |Pln �∆
1

1, s̃ : tTlp@(p,n)up=1..n

and substitute this for the original subderivation in D 1
1 we get a derivation of

D2

Γ $ P2 �∆2 where P2 � (νñ)def D in (Pl1| . . . |Pln|P
1
1).

There are two possibilities for ∆2. Either ∆1 = ∆ 1
1, s̃ : ttl : TlpulPL;L 1@(p,n)up=1..n

and ∆2 = ∆ 1
1, s̃ : tTlp@(p,n)up=1..n which means that ∆1 Ñ ∆2 and we can select

Pc2 as Pc1 where C has been replaced by C JGlK
�
s̃,n. Otherwise s̃ is captured in

P1 and P2 and in this case ∆1 = ∆2 and we can select Pc2 = Pc1 but this means
that the conductor generated by the capturing CRes rule will no longer be C but
C JGlK

�
s̃,n.

We can see that P1 Ñ P2 in a Sync step, and in both cases E JD2K |Pc2 � Q4. 2

Lemma C.8.11 (Single-step completeness).

If E

t
D1

Γ $ P1 �∆1

|

= Q1, Pc1 P PC(∆1 �∆�) and Q1|Pc1ã�Q2áQ
1
3

226 multiparty symmetric sum types

then D

D2

Γ $ P2 �∆2 ,Pc2 P PC(∆2 �∆�)
such that P1 Ñ P2, ∆1 Ñ0/1 ∆2 and E JD2K |Pc2ã�Q3 and Q 1

3ã
�Q3.

Proof: There are two cases.
If Q2áQ 1

3 uses the Rand case in a conductor then Lemma C.8.10 concludes the
desired.
If Q2áQ 1

3 does not use the Rand case in a conductor, then Lemma C.8.9 gives a

derivation of Q1|Pc1áQ 1
2ã

�Q 1
3. Therefore Lemma C.8.8 gives us

D2

Γ $ P2 �∆2
and Pc2 P PC(∆2 � ∆

�) such that P1 Ñ P2, ∆1 Ñ0/1 ∆2 and Q 1
2ã

�E JD2K |Pc2.
Now we have that Q 1

2ã
�Q 1
3 and Q 1

2ã
�E JD2K |Pc2 and therefore we get from

Lemma C.8.7 that there is a Q3 such that Q 1
3ã

�Q3 and E JD2K |Pc2ã�Q3. 2

Step 4: Sequencing steps

Proof C.8.12 (Theorem 4.4.4: Semantic completeness).

If E

t
D1

Γ $ P1 �H

|

Ñ� Q 1

then D

D2

Γ $ P2 �H and Q such that P1 Ñ� P2 and E JD2Kã�Q and Q 1ã�Q.

Proof: By induction on the number of non-conduction steps in E JD1K Ñ� Q 1.
If P1ã�Q 1 then the theorem is trivially fulfilled using D2 = D1 and Q = Q 1.
Otherwise we have that E JD1K Ñ� Q 1

3áQ
1
2ã

�Q 1.

We obtain from the induction hypothesis that D

D3

Γ $ P3 �H andQ2
3 such that P1 Ñ� P3

and E JD3Kã�Q2
3 and Q 1

3ã
�Q2
3.

Now we have that Q 1
3áQ

1
2 and Q 1

3ã
�Q2
3 and therefore we get from Lemma C.8.6 that

DQ2
2 such that Q2

3 Ñ Q2
2 and Q 1

2ã
�Q2
2.

Now we have that Q 1
2ã

�Q 1 and Q 1
2ã

�Q2
2 and therefore we get from Lemma C.8.7 that

DQ2 such that Q 1ã�Q2 and Q 1
2ã

�Q2.
We can now use Lemma C.8.11 on the found derivation of E JD3Kã�Q3áQ

2
2 to find

D2

Γ $ P2 �H and Q3
2 such that P3 Ñ P2, Q2

2ã
�Q3
2 and E JD2Kã�Q3

2 .
Finally we have that Q2

2ã
�Q2 and Q2

2ã
�Q3
2 and therefore Lemma C.8.7 gives us a Q

such that Q2ã�Q and Q3
2ã

�Q.

Therefore we now have that P1 Ñ� P2, Q 1ã�Q2ã�Q and E JD2Kã�Q3
2ã

�Q. 2

There are a lot of sub-steps in this proof, so to give an overview of the found evaluations,

C.9 encodability criteria 227

we have included an illustration showing what lemmas are used to find the different parts
of the evaluations in Figure 69.

c.9 encodability criteria

We now consider each criteria from Section 4.4.3 stemming from [51], proving that
they are fulfilled by the presented erasure. This work culminates in Proof C.9.9
concluding that all the criteria are fulfilled, thus proving Theorem 4.4.6. Finally we
prove that the relation we use for �2 is a weak barbed reduction congruence.

Lemma C.9.1 (Compositionality). For every k-ary typing rule r in the typingsystem
Γ $ P�∆ and every subset of names N there exists a k-ary context
CNop(_1, . . . , _k) such that, for all D1, . . . ,Dk with Fn(D1, . . . ,Dk) = N, it holds that

E

t
[r] Γ $ P�∆

Γ $ P�∆

|

= CN
r
(JD1K, . . . , JDkK) where

t
D 1

Γ 1 $ P 1 �∆ 1

|

= E JD 1K

and JΓ 1 $ a : GK = C JGK�s̃,n.

Proof: This is clear from inspecting the right-hand sides of E JK.
It should be noted that C JK� takes the arguments s̃ and n which are not in the
derivation Γ $ a : G, but we know that n = max(pid(G)), and |s̃| = max(sid(G))
so only the names in s̃ are not allowed to be used. Fortunately s̃ is only used for
aesthetic reasons, to use the same channel names as the other processes. It could
be left out, if the conductor used the names inp and outp in stead of ins̃p and outs̃p
which does not cause interference since the conductor only uses one session. 2

Lemma C.9.2 (Divergence reflection). If

D1

Γ $ P1 �H and E JD1K Ñω

then P1 Ñω.

Proof: This follows from Theorem 4.4.4, because non-conduction steps must
occur infinitely often in E JD1K Ñω.

First we must consider, if an evaluation E JD1K Ñω can contain a sub-evaluation
Qãω. Since each recursive step (def-unfolding) in non-conductor processes is
a non-conduction step, this would mean there is a sub-evaluation Q 1ãω where
only conductor processes step. Since conductor processes only use recursion when
the body receives a message from a non-conductor process, this is not possible.
Therefore non-conduction steps must occur infinitely often in E JD1K Ñω.

Now assume that P �Ñω. In this case there is an upper limit N such that P can
make at most N steps. Because the non-conduction steps occur infinitely often
in E JD1K Ñω, we can select enough steps from Q Ñω to include N + 1 non-
conduction steps. Now Theorem 4.4.4 gives us an evaluation P Ñ� P 1, and this

228 multiparty symmetric sum types

evaluation will have N+ 1 steps. This is a contradiction because P could make at
most N steps. Therefore P Ñω. 2

Definition C.9.3 (Success sensitiveness (ó)).
Processes are extended by the

`
constant.

The typing system is extended by the rule
[success] Γ $

`
�H

Γ $
`

�H
.

The erasure is extended by E

t
[success] Γ $

`
�H

Γ $
`

�H

|

=
`

.

We say that P Ó if P �
`
| P 1.

We say that P ó if DQ such that P Ñ� Q and Q Ó.

Lemma C.9.4 (Erasure Success-preservation). E JD :: PK Ó if and only if P Ó.

Proof: This is proved by induction on the derivation D, since the conductors
does not introduce

`
. 2

Lemma C.9.5 (Success soundness). If
D

Γ $ P�∆
and P ó then E JDK ó.

Proof: Since
D

Γ $ P�H
and P Ñ� P 1 where P 1 Ó Corollary C.7.3 reveals a

derivation
D 1

Γ $ P 1 �∆ 1
such that E JDK Ñ� E JD 1K. Thus Lemma C.9.4 gives us

that E JD 1K Ó and therefore this lemma is fulfilled. 2

Lemma C.9.6 (Stepping success-preservation). If P Ó and P Ñ Q then Q Ó.

Proof: Ó is preserved by all equivalence and stepping rules. 2

Lemma C.9.7 (Conduction stepping success-preservation). If E JDK = Q and QãQ 1

where Q 1 Ó then Q Ó.

Proof: By induction on the call-tree of E JK and C JK.
First we can see by inspection of all right-hand-sides of E JK and C JK that
if ins̃p : h is in Q then h =H.

Second we can see by inspection of all right-hand-sides of E JK and C JK that
writing on any in channel is preceded by a non-conduction step.

Finally we can see by inspection of all right-hand-sides of E JK and C JK that
either the result is equivalent to

`
|P for some P, or all occurrences of

`
are preceded

by a non-conduction step or reading on an in channel. Therefore the lemma is
fulfilled. 2

C.9 encodability criteria 229

Lemma C.9.8 (Success completeness). If
D

Γ $ P�∆
and E JDK ó then P ó.

Proof: Since E JDK Ñ� Q 1 where Q 1 Ó Theorem 4.4.4 reveals
D 1

Γ $ P 1 �∆ 1

and Q2 such that P Ñ� P 1, Q 1ã�Q2 and E JD 1Kã�Q2. Lemma C.9.6 now proves
that Q2 Ó and therefore E JD 1K Ó because of Lemma C.9.7. Thus P 1 Ó because of
Lemma C.9.4 and therefore P ó. 2

Proof C.9.9 (Theorem 4.4.6: Erasure fulfils criteria).
The encodability criteria for the erasure mapping are fulfilled.

Compositionality: See Proof C.9.1 in the Appendix.

Name invariance: This criteria is fulfilled, because the only renaming we perform is to
reserve the conductor channels, and [51] argues that the criteria allows this.

Operational correspondence: Completeness follows from Corollary C.7.3 usingQ 1 = E JD2K,
and soundness follows from Theorem 4.4.4 using Q = Q1.

Divergence reflection: See Proof C.9.2 in the Appendix.

Success sensitiveness: See Lemma C.9.5 and Lemma C.9.8 in the Appendix. 2

�2 is a weak barbed reduction congruence

Definition C.9.10 (Context and completion).
C ::= � | C|P | (νn)C

A completion of a context C[P] is a process defined by
�[P1] = P1
(C|P)[P1] = (C[P1])|P

(νn)C[P1] = (νn)(C[P1]) if n R fn(P1).

Lemma C.9.11 (�2 is a Congruence relation).
P1 �2 P2 ñ C[P1] �2 C[P2].

Proof: Structural induction on C.

Case: C = �

In this case C[P1] = P1 and C[P2] = P2 and therefore we get from the assumption
that C[P1] �2 C[P2].

Case: C = C 1|P

In this case the induction hypothesis gives us that C 1[P1] �2 C
1[P2] which means

that there is a Q such that C 1[P1]ã
�Q and C 1[P2]ã

�Q. Now we can get evaluations
of C 1[P1]|Pã

�Q|P and C 1[P2]|Pã
�Q|P by applying the rule Par to each step in both

evaluations. Therefore we have that C[P1] �2 C[P2].

Case: C = (νn 1)C 1

230 multiparty symmetric sum types

In this case the induction hypothesis gives us that C 1[P1] �2 C
1[P2] which means

that there is a Q such that C 1[P1]ã
�Q and C 1[P2]ã

�Q. Now we can get evaluations
of (νn)(C 1[P1])ã

�(νn)Q and (νn)(C 1[P2])ã
�(νn)Q by applying the rule Scop to

each step of both evaluations. Therefore we have that C[P1] �2 C[P2]. 2

Definition C.9.12 (Commitment).
POa if P is ready to connect on channel a, that is
P � (νñ)def D in (a[2..p](s̃).P1|P2) or P � (νñ)def D in (a[p](s̃).P1|P2)
where a R ñ.

P
`
a if DP 1.P Ñ� P 1 and P 1Oa.

Lemma C.9.13 (ã preserves O).
If P1ãP 11 and P1Oa then P 11Oa.

Proof: There are three cases for P1ãP 11
Case Label: In this case
P1 � (νñ)def D in (sk � l;Q1|sk : h̃|Q2),
P 11 � (νñ)def D in (Q1|sk : h̃ � l|Q2)

and sk is a conductor channel.
If P1Oa then Q2Oa and a R ñ and therefore P 11Oa.

Case Branch: In this case
P1 � (νñ)def D in (sk � tl : Q1, . . .u|sk : l � h̃|Q2),
P 11 � (νñ)def D in (Q1|sk : h̃|Q2)

and sk is a conductor channel.
If P1Oa then Q2Oa and a R ñ and therefore P 11Oa.

Case Def: In this case
P1 � (νñ)def D in (Xxẽs̃y|Q2),
P2 � (νñ)def D in (Q1[ṽ/x̃]|Q2) where X(x̃s̃) = Q1 P D and ẽOṽ
and Q1 is produced by C JK�.
If P1Oa then Q2Oa and a R ñ and therefore P 11Oa. 2

Lemma C.9.14 (ã preserves
`

).
If P1 is linear, P1ãP 11 and P1

`
a then P 11

`
a.

Proof: If P1
`
a then there is a Q such that P1ã�Q and QOa. Since P1ãP 11

Lemma C.8.7 gives us that there is a Q 1 such that P 11 Ñ
� Q 1 and Qã�Q 1. Now we

can apply Lemma C.9.13 on each step of Qã�Q 1 to get that Q 1Oa, and therefore
P 11

`
a. 2

Lemma C.9.15 (Weak barbed bisimulation).
If P1 �2 P2 and P1

`
a then P2

`
a.

Proof: Since P1 �2 P2 there is aQ such that P1ã�Q and P2ã�Q. Since P1
`
awe

can use Lemma C.9.14 on each step of P1ã�Q to get that Q
`
a. This means there

C.10 healthcare example 231

is a Q 1 such that QÑ� Q 1 and Q 1Os. Now we have an evaluation P2ã�QÑ� Q 1

which means that P2
`
a. 2

Lemma C.9.16 (Ñ preserves �2).
If P1 �2 P2 and P1 Ñ P 11 then P2 Ñ� P 12 such that P 11 �2 P

1
2.

Proof: Assume P1 �2 P2 and P 11 Ñ P 12. Since P1 �2 P2 there is a Q such that
P1ã

�Q and P2ã
�Q. Now Lemma C.8.6 gives us a Q 1 such that P 11ã

�Q 1 and
QÑ0/1 Q 1. Therefore we can compose the steps P2ã�QÑ0/1 Q 1 = P 12 to get an
evaluation fulfilling the lemma. 2

Corollary C.9.17 (Ñ� preserves �2).
If P1 �2 P2 and P1 Ñ� P 11 then P2 Ñ� P 12 such that P 11 �2 P

1
2.

Proof: Follows by induction on the number of steps in P1 Ñ� P 11
using Lemma C.9.16 in each step. 2

c.10 healthcare example

We now provide more details for the healthcare examples presented in the paper.

Figure 70 shows how the synchronisation can be partially specified by the nurse
process. Figure 72 include the global type of the healthcare example processes from
Section 5.2 and the local types for each of the participants. Figure 73 shows the
full global type representing the cooperation described by the Process Matrix from
Section 4.5, and Figure 74 shows the local type for the doctor. Proof C.10.1 constructs
the typing derivation for the healthcare example processes from Section 5.2, and
thus proves Proposition 4.3.1.

Proof C.10.1 (Proposition 4.3.1: Example is typed). a : xGy $ PD | PN | PP �H.
First we type the patient-process PP. To do this, we start by typing each end-case of the
process with the matching case of the local type.

Notice that all the end-cases for PP are the same, thus
PPDD = PPDN = PPND = PPNN = s?(schedule); r?(result); 0, and the local types for
each of the end-cases are also identical, thus
TPDD = TPDN = TPND = TPNN = 2?xS̃scheduley; 3?xS̃resulty; end. Therefore the typing of
each end-case DPDD = DPDN = DPND = DPNN is the same. The derivation is given
below.

232 multiparty symmetric sum types

[Rcv]

[Rcv]

[Inact]

a : xGy, schedule : S̃schedule, result : S̃result $ 0� (d, s, r) : end@(1, 3)

a : xGy, schedule : S̃schedule $ r?(result); 0� (d, s, r) : 3?xS̃resulty; end@(1, 3)

a : xGy $ s?(schedule); r?(result); 0� (d, s, r) : 2?xS̃scheduley; 3?xS̃resulty; end@(1, 3)

Now we can collect the end cases using the Sync rule. This gives us DPD 1 :

[Sync] DPDD DPDN

a : xGy $ sync(d,s,r),3tCaseDD : PPDD, CaseDN : PPDNu� (d, s, r) : tCaseDD : TPDD, CaseDN : TPDNu@(1, 3)

and DPN 1 :

[Sync] DPND DPNN

a : xGy $ sync(d,s,r),3tCaseND : PPND, CaseNN : PPNNu� (d, s, r) : tCaseND : TPND, CaseNN : TPNNu@(1, 3)

Next we can use the rule Send on DPD 1 and DPN 1 which allows us to type the CaseD and
CaseN branches. This gives us DPD:

[Send] a : xGy $ edata : Sdata DPD 1

a : xGy $ d!xedatay;PPD 1 � (d, s, r) : 1!xSdatay; TPD 1@(1, 3)

and DPN:

[Send] a : xGy $ edata : Sdata DPN 1

a : xGy $ d!xedatay;PPN 1 � (d, s, r) : 1!xSdatay; TPN 1@(1, 3)

Again we collect the branches using the Sync rule, which gives us DP 1 .

[Sync] DPD DPN

a : xGy $ sync(d,s,r),3tCaseD : PPD, CaseN : PPNu� (d, s, r) : (Gæ1)@(1, 3)

Now we can type PP using the Mcast rule as a : xGy $ PP �H.

DP =

[Mcast] DP 1

a : xGy $ PP �H

The derivations for PD and PN are found similarly except that the Macc rule is used in
stead of Mcast. Finally the derivations for each process are collected using the Conc rule
twice which gives us that a : xGy $ PN | PD | PP �H. 2

c.11 full abstraction

For many translations between process calculi, full abstraction is the best way to
capture how the semantics is preserved by the translation. Unfortunately the
erasure we have presented produces new processes to help the existing processes to

C.11 full abstraction 233

perform the synchronisation, and therefore it is important that the new processes
actually behaves the way they have been defined. The problem is that full abstraction
considers any context for the processes, and this allows processes to join the sessions
as the new conductor process without behaving as the defined conductors.

For this reason full abstraction is not fulfilled for the presented erasure, and
Observation C.11.1 gives an explicit example of this.

Observation C.11.1 (No full abstraction).
Consider the processes
P1 = a[2..3](s̃).syncs̃,3tl : b[2](t̃).0u

| a[2](s̃).syncs̃,3tl : 0u

| a[3](s̃).def X(s̃) = X(s̃) in X(s̃)

P2 = a[2..3](s̃).syncs̃,3tl : 0u

| a[2](s̃).syncs̃,3tl : b[2](t̃).0u

| a[3](s̃).def X(s̃) = X(s̃) in X(s̃)
It is fairly intuitive that P1 h P2, because any context either allows the processes to syn-
chronise (by providing a non-looping 3rd participant) in which case both processes can
connect on channel b, or does not allow the processes to synchronise in which case none of
the processes can connect on channel b.

By using the erasure on the default typing derivations we get

Q1 = a[2..4](s̃c̃).out1 � casestlu; in1 � tl : b[2](t̃c̃).0u

| a[2](s̃c̃).out2 � casestlu; in2 � tl : 0u

| a[3](s̃c̃).def X(s̃c̃) = X(s̃c̃) in X(s̃c̃)

| a[4](s̃c̃).out1 � tcasestlu : out2 � tcasestlu : out3 � t

casestlu : randtin1 � l; in2 � l; in3 � l; 0uuuu

Q2 = a[2..4](s̃c̃).out1 � casestlu; in1 � tl : 0u

| a[2](s̃c̃).out2 � casestlu; in2 � tl : b[2](t̃c̃).0u

| a[3](s̃c̃).def X(s̃c̃) = X(s̃c̃) in X(s̃c̃)

| a[4](s̃c̃).out1 � tcasestlu : out2 � tcasestlu : out3 � t

casestlu : randtin1 � l; in2 � l; in3 � l; 0uuuu

But when using the context

C = � | a[4](s̃c̃).out1 � tcasestlu : in1 � l; 0u

We can see that it is possible for C[Q1] but not for C[Q2] to connect on b, and therefore
Q1 �h Q2. Therefore the erasure does not fulfil full abstraction. 2

234 multiparty symmetric sum types

c.12 implementation

We include apims code, which implements the processes from the healthcare
example in Section 4.5 in C.12.1.

c.12.1 Processes for example workflow

(nu a: { ^Pdata: 1=>2:2<String>;1=>3:3<String>;rec $stateD.

{ ^Pdata: 1=>2:2<String>;1=>3:3<String>;$stateD,

^Dschedule: 2=>1:1<String>;2=>3:3<String>;rec $stateDS.

{ ^Pdata: 1=>2:2<String>;1=>3:3<String>;$stateD,

^Dschedule: 2=>1:1<String>;2=>3:3<String>;$stateDS,

^Nschedule: 3=>1:1<String>;3=>2:2<String>;$stateDS,

^Dresult: 2=>1:1<String>;Gend

},

^Nschedule: 3=>1:1<String>;3=>2:2<String>;rec $stateDS.

{ ^Pdata: 1=>2:2<String>;1=>3:3<String>;$stateD,

^Dschedule: 2=>1:1<String>;2=>3:3<String>;$stateDS,

^Nschedule: 3=>1:1<String>;3=>2:2<String>;$stateDS,

^Dresult: 2=>1:1<String>;Gend

}

}

})

(// Patient

link(3,a,s,1);

guisync(3,s,1)

{ ^Pdata(symptoms: String):

s[2]<<symptoms;

s[3]<<symptoms;

def StateD(s: rec %stateD.

{ ^Dschedule: 1>><String>;rec %stateDS.

{ ^Dresult: 1>><String>;Lend,

^Dschedule: 1>><String>;%stateDS,

^Nschedule: 1>><String>;%stateDS,

^Pdata: 2<<<String>;3<<<String>;%stateD

},

^Nschedule: 1>><String>;rec %stateDS.

{ ^Dresult: 1>><String>;Lend,

^Dschedule: 1>><String>;%stateDS,

^Nschedule: 1>><String>;%stateDS,

^Pdata: 2<<<String>;3<<<String>;%stateD

},

^Pdata: 2<<<String>;3<<<String>;%stateD

}@(1 of 3)) =

def StateDS(s: rec %stateDS.

{ ^Dresult: 1>><String>;Lend,

^Dschedule: 1>><String>;%stateDS,

^Nschedule: 1>><String>;%stateDS,

^Pdata: 2<<<String>;3<<<String>;rec %stateD.

{ ^Dschedule: 1>><String>;rec %stateDS.

{ ^Dresult: 1>><String>;Lend,

^Dschedule: 1>><String>;%stateDS,

C.12 implementation 235

^Nschedule: 1>><String>;%stateDS,

^Pdata: 2<<<String>;3<<<String>;%stateD

},

^Nschedule: 1>><String>;rec %stateDS.

{ ^Dresult: 1>><String>;Lend,

^Dschedule: 1>><String>;%stateDS,

^Nschedule: 1>><String>;%stateDS,

^Pdata: 2<<<String>;3<<<String>;%stateD

},

^Pdata: 2<<<String>;3<<<String>;%stateD

}

}@(1 of 3)) =

guisync(3,s,1)

{ ^Pdata(symptoms: String):

s[2]<<symptoms;

s[3]<<symptoms;

StateD(s),

^Nschedule():

s[1]>>schedule;

StateDS(s),

^Dschedule():

s[1]>>schedule;

StateDS(s),

^Dresult():

s[1]>>result;

end

}

in guisync(3,s,1)

{ ^Pdata(symptoms: String):

s[2]<<symptoms;

s[3]<<symptoms;

StateD(s),

^Dschedule():

s[1]>>schedule;

StateDS(s),

^Nschedule():

s[1]>>schedule;

StateDS(s)

}

in StateD(s)

}

| // Doctor

link(3,a,s,2);

guisync(3,s,2)

{ ^Pdata():

s[2]>>symptoms;

def StateD(s: rec %stateD.

{ ^Dschedule: 1<<<String>;3<<<String>;rec %stateDS.

{ ^Dresult: 1<<<String>;Lend,

^Dschedule: 1<<<String>;3<<<String>;%stateDS,

^Nschedule: 2>><String>;%stateDS,

^Pdata: 2>><String>;%stateD

},

^Nschedule: 2>><String>;rec %stateDS.

{ ^Dresult: 1<<<String>;Lend,

^Dschedule: 1<<<String>;3<<<String>;%stateDS,

^Nschedule: 2>><String>;%stateDS,

^Pdata: 2>><String>;%stateD

},

236 multiparty symmetric sum types

^Pdata: 2>><String>;%stateD

}@(2 of 3)) =

def StateDS(s: rec %stateDS.

{ ^Dresult: 1<<<String>;Lend,

^Dschedule: 1<<<String>;3<<<String>;%stateDS,

^Nschedule: 2>><String>;%stateDS,

^Pdata: 2>><String>;rec %stateD.

{ ^Dschedule: 1<<<String>;3<<<String>;rec %stateDS.

{ ^Dresult: 1<<<String>;Lend,

^Dschedule: 1<<<String>;3<<<String>;%stateDS,

^Nschedule: 2>><String>;%stateDS,

^Pdata: 2>><String>;%stateD

},

^Nschedule: 2>><String>;rec %stateDS.

{ ^Dresult: 1<<<String>;Lend,

^Dschedule: 1<<<String>;3<<<String>;%stateDS,

^Nschedule: 2>><String>;%stateDS,

^Pdata: 2>><String>;%stateD

},

^Pdata: 2>><String>;%stateD

}

}@(2 of 3)) =

guisync(3,s,2)

{ ^Pdata():

s[2]>>symptoms;

StateD(s),

^Nschedule():

s[2]>>schedule;

StateDS(s),

^Dschedule(schedule: String):

s[1]<<schedule;

s[3]<<schedule;

StateDS(s),

^Dresult(result: String):

s[1]<<result;

end

}

in guisync(3,s,2)

{ ^Pdata():

s[2]>>symptoms;

StateD(s),

^Dschedule(schedule: String):

s[1]<<schedule;

s[3]<<schedule;

StateDS(s),

^Nschedule():

s[2]>>schedule;

StateDS(s)

}

in StateD(s)

}

| // Nurse

link(3,a,s,3);

guisync(3,s,3)

{ ^Pdata():

s[3]>>symptoms;

def StateD(s: rec %stateD.

{ ^Dschedule: 3>><String>;rec %stateDS.

{ ^Dresult: Lend,

C.12 implementation 237

^Dschedule: 3>><String>;%stateDS,

^Nschedule: 1<<<String>;2<<<String>;%stateDS,

^Pdata: 3>><String>;%stateD

},

^Nschedule: 1<<<String>;2<<<String>;rec %stateDS.

{ ^Dresult: Lend,

^Dschedule: 3>><String>;%stateDS,

^Nschedule: 1<<<String>;2<<<String>;%stateDS,

^Pdata: 3>><String>;%stateD

},

^Pdata: 3>><String>;%stateD

}@(3 of 3)) =

def StateDS(s: rec %stateDS.

{ ^Dresult: Lend,

^Dschedule: 3>><String>;%stateDS,

^Nschedule: 1<<<String>;2<<<String>;%stateDS,

^Pdata: 3>><String>;rec %stateD.

{ ^Dschedule: 3>><String>;rec %stateDS.

{ ^Dresult: Lend,

^Dschedule: 3>><String>;%stateDS,

^Nschedule: 1<<<String>;2<<<String>;%stateDS,

^Pdata: 3>><String>;%stateD

},

^Nschedule: 1<<<String>;2<<<String>;rec %stateDS.

{ ^Dresult: Lend,

^Dschedule: 3>><String>;%stateDS,

^Nschedule: 1<<<String>;2<<<String>;%stateDS,

^Pdata: 3>><String>;%stateD

},

^Pdata: 3>><String>;%stateD

}

}@(3 of 3)) =

guisync(3,s,3)

{ ^Pdata():

s[3]>>symptoms;

StateD(s),

^Nschedule(schedule: String):

s[1]<<schedule;

s[2]<<schedule;

StateDS(s),

^Dschedule():

s[3]>>schedule;

StateDS(s),

^Dresult():

end

}

in guisync(3,s,3)

{ ^Pdata():

s[3]>>symptoms;

StateD(s),

^Dschedule():

s[3]>>schedule;

StateDS(s),

^Nschedule(schedule: String):

s[1]<<schedule;

s[2]<<schedule;

StateDS(s)

}

in StateD(s)

238 multiparty symmetric sum types

}

)

C.12 implementation 239

Figure 63 The typing rules (Γ $ P�∆)

[Rand] @i P I.Γ $ Pi �∆

Γ $ randtPiuiPI �∆

[Name]

Γ ,a : S $ a : S

[Subs] Γ $ P�∆ ∆ ¤ ∆ 1

Γ $ P�∆ 1

[Sync] @l P L2 : Γ $ Pl �∆, s̃ : Tl@(p,n) L2 � LY L 1 L 1 � L2

Γ $ syncs̃,ntl : PlulPL2 �∆, s̃ : tl : TlulPL;L 1@(p,n)

[Mcast] Γ $ a : xGy Γ $ P�∆, s̃ : (Gæ1)@(1,n) |s̃| = max(sid(G)) n = max(pid(G))

Γ $ a[2..n](s̃).P�∆

[Macc] Γ $ a : xGy Γ $ P�∆, s̃ : (Gæp)@(p,n) |s̃| = max(sid(G)) n = max(pid(G))

Γ $ a[p](s̃).P�∆

[Send] @j.Γ $ ej : Sj Γ $ P�∆, s : T@(p,n)

Γ $ sk!xẽy;P�∆, s̃ : k!xS̃y; T@(p,n)

[Rcv] Γ , x̃ : S̃ $ P�∆, s : T@(p,n)

Γ $ sk?(x̃);P�∆, s̃ : k?xS̃y; T@(p,n)

[If] Γ $ e : bool Γ $ P�∆ Γ $ Q�∆

Γ $ if e then P else Q�∆

[Deleg] Γ $ P�∆, s̃ : T@(p,n)

Γ $ sk!xxt̃yy;P�∆, s̃ : k!xT 1@(p’, |t̃|,n 1)y; T@(p,n), t̃ : T 1@(p’,n 1)

[Srec] Γ $ P�∆, s̃ : T@(p,n), t̃ : T 1@(p’,n 1)

Γ $ sk?((t̃));P�∆, s̃ : k?xT 1@(p’, |t̃|,n 1)y; T@(p,n)

[Sel] Γ $ P�∆, s̃ : Th@(p,n) h P L

Γ $ sk � h;P�∆, s̃ : k` tl : TlulPL@(p,n)

[Branch] @l P L : Γ $ Pl �∆, s̃ : Tl@(p,n)

Γ $ sk � tl : PlulPL �∆, s̃ : k?tl : TlulPL@(p,n)

[Conc] Γ $ P|Q�∆ �∆ 1

Γ $ P|Q�∆ �∆ 1
(dom(∆)X dom(∆ 1) =H)

[Inact] ∆ end only

Γ $ 0�∆

[Nres] Γ ,a : xGy $ P�∆

Γ $ (νa)P�∆

[Var] Γ $ ẽ : S̃ ∆ end only

Γ ,X : S̃T̃ $ Xxẽs̃1...s̃|T̃ |y�∆, s̃1 : T1@(p1,n1), ..., s̃n : T|T̃ |@(p|T̃ |,n|T̃ |)

[Def] Γ ,X : S̃T̃ , x̃ : S̃ $ P� s̃1 : T1@(p1,n1), ..., s̃|T̃ | : T|T̃ |@(p|T̃ |,n|T̃ |) Γ ,X : S̃T̃ $ Q�∆

Γ $ def X(x̃s̃1, ..., s̃|T̃ |) = P in Q�∆

240 multiparty symmetric sum types

Figure 64 Projection from global to local types (æ)

(p0 Ñ p1 : kxUy.G 1)æp =

$''&
''%

m!xUy; (G 1æp) if p = p0 and p � p1

m?xUy; (G 1æp) if p = p1 and p � p0

G 1æp if p � p0 and p � p1

(p0 Ñ p1 : ktlj : GjujPJ)æp =

$''&
''%

k` tlj : (Gjæp)ujPJ if p = p0 � p1

k& tlj : (Gjæp)ujPJ if p = p1 � p0

max¤subtT
1 | @j P J.T 1 ¤sub (Gjæp)u if p1 � p � p2

(tl : GlulPL;L 1)æp = tl : (Glæp)ulPL;L 1 (µt.G)æp = µt.(Gæp) tæp = t endæp = end

Figure 65 Subtyping for local types

The subtyping for local types from [61, § 5], denoted T ¤sub T
1 is the greatest fixed point

of the function S that maps each binary relation R on local types as regular trees to S(R)
given as

end S(R) end
If TRT 1 then k!xUy; T S(R) k!xUy; T 1 and k?xUy; T S(R) k?xUy; T
If TiRT 1i , for each i P I � J then k` tli : TiuiPI S(R) k` tlj : T 1j ujPJ
and k&tlj : TjujPJ S(R) k&tli : T 1iuiPI and tli : TiuiPI S(R) tli : T 1iuiPI

Figure 66 Conductor process generation from a global type (Step 2)

C JGKs̃,n,a = a[n+1](s̃, ins̃,1, outs̃,1, . . . , ins̃,n, outs̃,n).C JGK�s̃,n

C
q
p1 Ñ p2 : kxUy.G 1

y�
s̃,n = C

q
G 1

y�
s̃,n

C Jp1 Ñ p2 : ktl : GlulPLK
�
s̃,n = outs̃,p2 � tl : C JGlK

�
s̃,nulPL

C
q
tl : GlulPL;L 1

y�
s̃,n = outs̃1 � tcasesL1YL 1 : . . . : outs̃n � tcasesLnYL 1 :

randtins̃1 � l; . . . ; ins̃n � l;C JGlK
�
n,s̃ulP

�n
i=1 LiYL

1

uLn�L . . .uL1�L

C
q
µt.G 1

y�
s̃,n = if C

q
G 1

y�
s̃,n � Xtxs̃, ins̃1, outs̃1, . . . , ins̃n, outs̃ny

then def Xt(s̃, ins̃1, outs̃1, . . . , ins̃n, outs̃n) =

C
q
G 1

y�
s̃,n in Xtxs̃, ins̃1, outs̃1, . . . , ins̃n, outs̃ny

else 0
C JtK�s̃,n = Xtxs̃, ins̃1, outs̃1, . . . , ins̃n, outs̃ny

C JendK�s̃,n = 0

C.12 implementation 241

Figure 67 Type erasure mappings (Step 3)

Global Type Translation

JGK = JGK�max(pid(G)),max(sid(G))

Jp0 Ñ p1 : kxUy.G 1K�n,m = p0 Ñ p1 : kxJUKy. JG 1K�n,m

Jp0 Ñ p1 : ktl : GlulPLK
�
n,m = p0 Ñ p1 : ktlj :

p0 Ñ (n+1) : (m+ 2 � p0)tl : JGlK
�
n,muulPLq

tl : GlulPL;L 1
y�
n,m = 1Ñ n+1 : (m+ 2)tcasesL1YL 1 :

2Ñ n+1 : (m+ 4)tcasesL2YL 1 : . . .

nÑ n+1 : (m+ 2 �n)tcasesLnYL 1 :

n+1Ñ 1 : (m+ 1)tl :

n+1Ñ 2 : (m+ 3)tl : . . .

n+1Ñ n : (m+ 2 �n� 1)tl : JGlK
�
n,mu . . .u

ulP
�n
i=0 LiYL

1uLn�L . . .uL1�L

Jµt.G 1K�n,m = µt. JG 1K�n,m

JtK�n,m = t

JendK�n,m = end

Local Type Translation

Jk!xUy; T 1Kn,m,p = k!xJUKy; JT 1Kn,m,p

Jk?xUy; T 1Kn,m,p = k?xJUKy; JT 1Kn,m,p

Jk` tl : TlulPLKn,m,p = k` tl : (m+ 2 � p)` tl : JTlKn,m,puulPL

Jk&tl : TlulPLKn,m,p = k&tl : JTlKn,m,pulPL

Jµt.T 1Kn,m,p = µt. JT 1Kn,m,p

JtKn,m,p = t

JendKn,m,p = end
q
tl : TlulPL;L 1

y
n,m,p = (m+ 2 � p)` tcasesL2YL 1 :

(m+ 2 � p� 1)&tl : JTlKn,m,pulPL2YL 1uL2�L

Message Type Translation

q
S̃
y

= S̃

JT@(p,m,n)K = JTKn,m,p @(p,m+ 1)

Global Environment Translation

JHK = H

JΓ ,u : xGyK = JΓK ,u : xJGKy
q
Γ ,X : S̃∆

y
= JΓK ,X :

q
S̃
y

J∆K

Local Environment Translation

JHK = H

J∆, s̃ : T@(p,n)K = J∆K , (s̃, ins̃1, . . . , outs̃n) : JTK|s̃|,p @(p,n+ 1)

242 multiparty symmetric sum types

Figure 68 Erasure extension to runtime processes

E

u

v [CRes] Γ $ (νs̃)P�t̃zs̃ ∆

Γ $ (νs̃)P�t̃zs̃ ∆

}

~

= (νs̃, ins̃1, outs̃1, . . . , ins̃n, outs̃n)(C JGK�s̃,n | ins̃1 :H | . . . | outs̃n :H | E JD1)K

Monomorphically for all other cases.

Figure 69 Illustration of the completeness proof

Figure 70 Example of partially specialised nurse process

PN =
a [3] (d , s , r) . if (busy)
then sync((d , s , r) , 3) {

CaseD: sync((d , s , r) , 3) { CaseDD: end , CaseDN: s ! xeScheduley ; end } ,
CaseN: d? (data) ; sync((d , s , r) , 3) { CaseND: end } }

else sync((d , s , r) , 3) {
CaseD: sync((d , s , r) , 3) { CaseDN: s ! xeScheduley ; end } ,
CaseN: d? (data) ; sync((d , s , r) , 3) { CaseND: end , CaseNN: s ! xeScheduley ; end } }

C.12 implementation 243

Figure 72

G=
{CaseD:

1Ñ2 : 1 x Sdata y ;
{CaseDD:

2Ñ1 : 2 x Sschedule y ; 2Ñ1 : 3 x S r e s u l t y ;end ,
CaseDN:

3Ñ1 : 2 x Sschedule y ; 2Ñ1 : 3 x S r e s u l t y ;end
} ,

CaseN:
1Ñ3 : 1 x Sdata y ;
{CaseND:

2Ñ1 : 2 x Sschedule y ; 2Ñ1 : 3 x S r e s u l t y ;end ,
CaseNN:

3Ñ1 : 2 x Sschedule y ; 2Ñ1 : 3 x S r e s u l t y ;end
}

}

Gæ2=
{ CaseD:

1 ? x Sdata y ;
{ CaseDD:

2 ! x Sschedule y ; 3 ! x S r e s u l t y ;end ,
CaseDN:
3 ! x S r e s u l t y ;end

} ,
CaseN:
{ CaseND:

2 ! x Sschedule y ; 3 ! x S r e s u l t y ;end ,
CaseNN:
3 ! x S r e s u l t y ;end

}
}

Gæ1=
{CaseD:

1 ! x Sdata y ;
{CaseDD:

2 ? x Sschedule y ; 3 ? x S r e s u l t y ;
end ,

CaseDN:
2 ? x Sschedule y ; 3 ? x S r e s u l t y ;

end
} ,

CaseN:
1 ! x Sdata y ;
{CaseND:

2 ? x Sschedule y ; 3 ? x S r e s u l t y ;
end ,

CaseNN:
2 ? x Sschedule y ; 3 ? x S r e s u l t y ;

end
}

}

Gæ3=
{ CaseD:

{ CaseDD:
end ,
CaseDN:
2 ! x Sschedule y ;end

} ,
CaseN:
1 ? x Sdata y ;
{ CaseND:

end ,
CaseNN:
2 ! x Sschedule y ;end

}
}

244 multiparty symmetric sum types

Figure 73 Global type representing the process matrix from Figure 50

{ Pdata:
1Ñ2 : 2 x S t r i n g y ;
1Ñ3 : 3 x S t r i n g y ;
µ stateD .
{ Pdata:

1Ñ2 : 2 x S t r i n g y ;
1Ñ3 : 3 x S t r i n g y ;
stateD ,
Dschedule:
2Ñ1 : 1 x S t r i n g y ;
2Ñ3 : 2 x S t r i n g y ;
µ stateDS .
{ Pdata:

1Ñ2 : 2 x S t r i n g y ;
1Ñ3 : 3 x S t r i n g y ;
stateD ,
Dschedule:

2Ñ1 : 1 x S t r i n g y ;
2Ñ3 : 3 x S t r i n g y ;
stateDS ,
Nschedule:
3Ñ1 : 1 x S t r i n g y ;
3Ñ2 : 2 x S t r i n g y ;
stateDS ,
Dresult:
2Ñ1 : 1 x S t r i n g y ;
end

} ,
Nschedule:
3Ñ1 : 1 x S t r i n g y ;
3Ñ2 : 2 x S t r i n g y ;
µ stateDS .
{ Pdata:

1Ñ2 : 2 x S t r i n g y ;

1Ñ3 : 3 x S t r i n g y ;
stateD ,
Dschedule:
2Ñ1 : 1 x S t r i n g y ;
2Ñ3 : 3 x S t r i n g y ;
stateDS ,
Nschedule:
3Ñ1 : 1 x S t r i n g y ;
3Ñ2 : 2 x S t r i n g y ;
stateDS ,
Dresult:
2Ñ1 : 1 x S t r i n g y ;
end

}
}

}

Figure 74 Local type for the doctor

{ Pdata:
2? x S t r i n g y ;
µ stateD .
{ Pdata:

2? x S t r i n g y ;
stateD ,
Dschedule:
1 ! x S t r i n g y ;
2 ! x S t r i n g y ;
µ stateDS .
{ Pdata:

2? x S t r i n g y ;
stateD ,
Dschedule:
1 ! x S t r i n g y ;

3 ! x S t r i n g y ;
stateDS ,
Nschedule:
2? x S t r i n g y ;
stateDS ,
Dresult:
1 ! x S t r i n g y ;

end
} ,
Nschedule:
2? x S t r i n g y ;
µ stateDS .
{ Pdata:

2? x S t r i n g y ;

stateD ,
Dschedule:
1 ! x S t r i n g y ;
3 ! x S t r i n g y ;
stateDS ,
Nschedule:
2? x S t r i n g y ;
Dresult:
1 ! x S t r i n g y ;

end
}

}
}

D
M U LT I PA RT Y S Y M M E T R I C S U M T Y P E S W I T H A S S E RT I O N S

d.1 definitions

d.1.1 Process congruence

The process semantics uses the notion of process equivalence (�), and this is
included in Figure 75.

Figure 75 Process congruence (�)

The relation � is defined as the smallest congruence relation satisfying
P|0 � P P|Q � Q|P

P|(Q|R) � (P|Q)|R (νn)P|Q � (νn)(P|Q) if n R fn(Q)

(νnn 1)P � (νn 1n)P (νn)0 � 0

def D in 0 � 0 (νs1..sn)Πisi :H � 0

def D in (νn)P � (νn)def D in P if n R fn(D)

(def D in P) | Q � def D in (P | Q) if dpv(D)X fpv(Q) =H

def D in def D 1 in P � def D and D 1 in P if dpv(D)X dpv(D 1) =H

d.1.2 Symmetric sum types

We include the full set of typing rules in Figure 43. The typing system uses the
notion of type projection (æ) defined in Figure 64, and the notion of subtyping (¤)
of session-environments which consists of subtyping of each of the used local types
defined in Figure 65.

The expression typing rules (Γ $ e : S)

[True]

Γ $ true : bool

[False]

Γ $ false : bool

[Var]

Γ , x : S $ x : S

[Not] Γ $ e : bool

Γ $ not e : bool

[And] Γ $ e1 : bool Γ $ e2 : bool

Γ $ e1 and e2 : bool

[Or] Γ $ e1 : bool Γ $ e2 : bool

Γ $ e1 or e2 : bool � � �

245

246 multiparty symmetric sum types with assertions

The typing rules (Θ; Γ $ P�∆)

[Subs] Θ; Γ $ P�∆ $ Θñ ∆ ¤ ∆ 1

Θ; Γ $ P�∆ 1

[Sync]

@l P L2 : Θ^Al; Γ $ Pl �∆, s̃ : Tl@(p,n) L2 � LY L 1

@l P LzL2 :$ Θñ Bl @l P L2 :$ Θñ (Al ñ Bl)

@l P L :$ Θñ (Bl ñ Al) $ Θñ
�
lPL Bl

Θ; Γ $ syncs̃,nttAlu l : PlulPL2 �∆, s̃ : ttBlu l : TlulPL;L 1@(p,n)

[Mcast] Γ $ a : xGy Θ; Γ $ P�∆, s̃ : (Gæ1)@(1,n)

|s̃| = max(sid(G))

n = max(pid(G))

Θ; Γ $ a[2..n](s̃).P�∆

[Macc] Γ $ a : xGy Θ; Γ $ P�∆, s̃ : (Gæp)@(p,n)

|s̃| = max(sid(G))

n = max(pid(G))

Θ; Γ $ a[p](s̃).P�∆

[SendA] Γ $ e : S Θ; Γ $ P�∆, s : T [e/x]@(p,n) $ Θñ A[e/x]

Θ; Γ $ sk!xey;P�∆, s̃ : k!xSy as x tAu ; T@(p,n)

[RcvA] Θ^A; Γ , x : S $ P�∆, s̃ : T@(p,n)

Θ; Γ $ sk?(x);P�∆, s̃ : k?xSy as x tAu ; T@(p,n)
(x R fv(Θ)Y fv(∆))

[Send] @j.Γ $ ej : Sj Θ; Γ $ P�∆, s : T@(p,n)

Θ; Γ $ sk!xẽy;P�∆, s̃ : k!xS̃y; T@(p,n)

[Rcv] Θ; Γ , x̃ : S̃ $ P�∆, s̃ : T@(p,n)

Θ; Γ $ sk?(x̃);P�∆, s̃ : k?xS̃y; T@(p,n)
(x̃X (fv(Θ)Y fv(∆)) =H)

[If] Γ $ e : bool Θ^ e; Γ $ P�∆ Θ^ e; Γ $ Q�∆

Θ; Γ $ if e then P else Q�∆

[Deleg] Θ; Γ $ P�∆, s̃ : T@(p,n)

Θ; Γ $ sk!xxt̃yy;P�∆, s̃ : k!xT 1@(p’, |t̃|,n 1)y; T@(p,n), t̃ : T 1@(p’,n 1)

[Srec] Θ; Γ $ P�∆, s̃ : T@(p,n), t̃ : T 1@(p’,n 1)

Θ; Γ $ sk?((t̃));P�∆, s̃ : k?xT 1@(p’, |t̃|,n 1)y; T@(p,n)

[Sel] Θ; Γ $ P�∆, s̃ : T@(p,n) h P L $ Θñ Ah

Θ; Γ $ sk � h;P�∆, s̃ : k` ttAlu l : TlulPL@(p,n)

[Branch] @l P L : Θ^Al; Γ $ Pl �∆, s̃ : Tl@(p,n)

Θ; Γ $ sk � tl : PlulPL �∆, s̃ : k&ttAlu l : TlulPL@(p,n)

D.1 definitions 247

[Conc] Θ; Γ $ P�∆ Θ; Γ $ Q�∆ 1

Θ; Γ $ P|Q�∆ �∆ 1
(dom(∆)X dom(∆ 1) =H)

[Inact] ∆ end only

Θ; Γ $ 0�∆

[Nres] Θ; Γ ,a : xGy $ P�∆

Θ; Γ $ (νa)P�∆

[Var] @j.Γ $ ej : Sj ∆ end only

Θ; Γ ,X : (x̃ : S̃) ˜T@(p,n) $ Xxẽy(s̃1...s̃|T̃ |)�∆, T̃ [ẽ/x̃]@(p,n)

[Def] Θ; Γ ,X : (x̃ : S̃) ˜T@(p,n), x̃ : S̃ $ P� ˜T@(p,n) Θ; Γ ,X : (x̃ : S̃) ˜T@(p,n) $ Q�∆

Θ; Γ $ def Xxx̃y(s̃1, ..., s̃|T̃ |) = P in Q�∆

The runtime typing rules (Θ; Γ $ P�t̃ ∆)

Where ∆ in the static typing rules represents a map from s̃ to T@(p,n), the runtime typing
rules uses ∆ as a map from (s̃, p) to T@(p,n).

The extra t̃ is used to ensure that there is exactly one queue for each session channel in
each open session.

[Subs] Θ; Γ $ P�t̃ ∆ $ Θñ ∆ ¤ ∆ 1

Θ; Γ $ P�t̃ ∆
1

[Sync]

@l P L2 : Θ^Al; Γ $ Pl �t̃ ∆, s̃ : Tl@(p,n) L2 � LY L 1

@l P LzL2 :$ Θñ Bl @l P L2 :$ Θñ (Al ñ Bl)

@l P L :$ Θñ (Bl ñ Al) $ Θñ
�
lPL Bl

Θ; Γ $ syncs̃,nttAlu l : PlulPL2 �t̃ ∆, s̃ : ttBlu l : TlulPL;L 1@(p,n)

[Mcast] Γ $ a : xGy Θ; Γ $ P�t̃ ∆, s̃ : (Gæ1)@(1,n)

|s̃| = max(sid(G))

n = max(pid(G))

Θ; Γ $ a[2..n](s̃).P�t̃ ∆

[Macc] Γ $ a : xGy Θ; Γ $ P�t̃ ∆, s̃ : (Gæp)@(p,n)

|s̃| = max(sid(G))

n = max(pid(G))

Θ; Γ $ a[p](s̃).P�t̃ ∆

[SendA] Γ $ e : S Θ; Γ $ P�t̃ ∆, s : T [e/x]@(p,n) $ Θñ A[e/x]

Θ; Γ $ sk!xey;P�t̃ ∆, s̃ : k!xSy as x tAu ; T@(p,n)

[RcvA] Θ^A; Γ , x : S $ P�t̃ ∆, s̃ : T@(p,n)

Θ; Γ $ sk?(x);P�t̃ ∆, s̃ : k?xSy as x tAu ; T@(p,n)
(x R fv(Θ)Y fv(∆))

[Send] @j.Γ $ ej : Sj Θ; Γ $ P�t̃ ∆, s : T@(p,n)

Θ; Γ $ sk!xẽy;P�t̃ ∆, s̃ : k!xS̃y; T@(p,n)

248 multiparty symmetric sum types with assertions

[Rcv] Θ; Γ , x̃ : S̃ $ P�t̃ ∆, s̃ : T@(p,n)

Θ; Γ $ sk?(x̃);P�t̃ ∆, s̃ : k?xS̃y; T@(p,n)
(x̃X (fv(Θ)Y fv(∆)) =H)

[If] Γ $ e : bool Θ^ e; Γ $ P�t̃ ∆ Θ^ e; Γ $ Q�t̃ ∆

Θ; Γ $ if e then P else Q�t̃ ∆

[Deleg] Θ; Γ $ P�t̃ ∆, s̃ : T@(p,n)

Θ; Γ $ sk!xxt̃yy;P�t̃ ∆, s̃ : k!xT 1@(p’, |t̃|,n 1)y; T@(p,n), t̃ : T 1@(p’,n 1)

[Srec] Θ; Γ $ P�t̃ ∆, s̃ : T@(p,n), t̃ : T 1@(p’,n 1)

Θ; Γ $ sk?((t̃));P�t̃ ∆, s̃ : k?xT 1@(p’, |t̃|,n 1)y; T@(p,n)

[Sel] Θ; Γ $ P�t̃ ∆, s̃ : T@(p,n) h P L $ Θñ Ah

Θ; Γ $ sk � h;P�t̃ ∆, s̃ : k` ttAlu l : TlulPL@(p,n)

[Branch] @l P L : Θ^Al; Γ $ Pl �t̃ ∆, s̃ : Tl@(p,n)

Θ; Γ $ sk � tl : PlulPL �t̃ ∆, s̃ : k&ttAlu l : TlulPL@(p,n)

[Conc] Θ; Γ $ P�t̃1 ∆ Θ; Γ $ Q�t̃1 ∆
1 ∆ � ∆ 1 t̃1 X t̃2 =H

Θ; Γ $ P|Q�t̃1Yt̃2 ∆ �∆
1

[Inact] ∆ end only

Θ; Γ $ 0�t̃ ∆

[Nres] Θ; Γ ,a : xGy $ P�t̃ ∆

Θ; Γ $ (νa)P�t̃ ∆

[Cres] Θ; Γ ,$ P�t̃ ∆, s̃ : tTp@(p,n)unp=1 tTp@(p,n)unp=1 coherent s̃ � t̃

Θ; Γ $ (νs̃)P�t̃zs̃ ∆

[Var] @j.Γ $ ej : Sj ∆ end only

Θ; Γ ,X : (x̃ : S̃) ˜T@(p,n) $ Xxẽy(s̃1...s̃|T̃ |)�t̃ ∆, T̃ [ẽ/x̃]@(p,n)

[Def] Θ; Γ ,X : (x̃ : S̃) ˜T@(p,n), x̃ : S̃ $ P�H ˜T@(p,n) Θ; Γ ,X : (x̃ : S̃) ˜T@(p,n) $ Q�t̃ ∆

Θ; Γ $ def Xxx̃y(s̃1, ..., s̃|T̃ |) = P in Q�t̃ ∆

Plus queue rules

d.2 subject reduction

We include the proof of subject reduction in Proof D.2.2. The proof uses Lemma D.2.1
which is an extension of Lemma 5.18 from [61]. It states that the [Subs] rules can be
propagated upwards to the [Sel] and [Branch] rules.

Lemma D.2.1 (Extension of Lemma 5.18 from [61]: Permutation).

D.2 subject reduction 249

(1) If

[Subs]

[Subs]

D

Γ $ P�t̃ ∆

Γ $ P�t̃ ∆
1

Γ $ P�t̃ ∆
2 then

[Subs]

D

Γ $ P�t̃ ∆

Γ $ P�t̃ ∆
2 .

(2) If

[Subs]

[X] D

Γ $ P�t̃ ∆

Γ $ P�t̃ ∆
1 and the second last rule-application X is not Sel or

Branch then the last two rule-applications can be permuted.

Proof:
(1) Is immediate because ¤sub is transitive.

(2) Is proved for each possible rule X. This is done as in the original proof. There is
one new case, and we will prove it now.

Sync: In this case we consider a derivation

[Subs]

[Sync] @l P L2

Dl

Θ^Al; Γ $ Pl �t̃ ∆, s̃ : tTl@(p,n)u � � �

Θ; Γ $ syncs̃,nttBlu l : PlulPL2 �t̃ ∆, s̃ : tttAlu l : TlulPL;L 1@(p,n)u

Θ; Γ $ syncs̃,nttBlu l : PlulPL2 �t̃ ∆
1, s̃ : tttAlu l : T 1lulPL;L 1@(p,n)u

where Tl ¤sub T
1
l for each l P L2 and ∆ ¤sub ∆

1. We can therefore create

[Sync] @l P L2

[Subs]

Dl

Γ $ Pl �t̃ ∆, s̃ : tTl@(p,n)u

Θ^Al; Γ $ l : Pl �t̃ ∆ 1, s̃ : tT 1l@(p,n)u � � �

Θ; Γ $ syncs̃,nttBlu l : PlulPL2 �t̃ ∆
1, s̃ : tttAlu l : T 1lulPL;L 1@(p,n)u

2

Proof D.2.2 (Theorem 5.3.2: Subject Reduction).
We prove

If true; Γ $ P�s̃ ∆, ∆ coherent and P Ñ P 1

then true; Γ $ P 1 �s̃ ∆ 1where ∆Ñ0/1 ∆ 1.

By induction on the derivation of P Ñ P 1.
We prove the case Sync. The remaining cases can be generated by adding assertion argu-
ments to the proof in [61]. Assume

[Sync] h P
�n
i=1 Li B1h Ó true . . . Bnh Ó true

syncs̃,nttB1lu l : P1lulPL1 | ... | syncs̃,nttBnlu l : PnlulPLn Ñ P1h | ... | Pnh

250 multiparty symmetric sum types with assertions

We can assume that the typing true; Γ $ synct̃,nttB1lu l : P1lulPL1 | ... | synct̃,nttBnlu l :
PnlulPLn �s̃ ∆, t̃ : tttAilu l : TilulPL;L 1@(i,n)uiPt1..nu starts with n� 1 applications of
the Conc rule each containing one application of the Sync rule because of the extension of
Lemma 5.18 in D.2.1. This gives us the subderivations:

[Sync]

@l P Li.

Dil

true^Ail; Γ $ Pil �s̃i ∆i, t̃ : tTil@(i,n)u

@l P Li. $ true ñ (Bil ñ Ail) � � �

true; Γ $ synct̃,nttBilu l : PilulPLi �s̃i ∆i, t̃ : ttAilu l : TilulPL 1;L@(i,n)

for i=1..n such that s̃i X s̃j = H for all i � j in 1..n,
�n
i=1 s̃i = s̃ and ∆1 � (∆2 � (. . . �

∆n)) = ∆.
Since each of these subderivations starts with the Sync rule we get that

Dih

true^Aih; Γ $ Pih �s̃i ∆i, t̃ : tTih@(i,n)u for i = 1..n

Since for each i: Bih Ó true we have that $ Bih, and since $ true ñ (Bih ñ Aih) we
get that $ Aih by cut elimination of Bih. Finaly by applying cut-elimination of Aih to
each proof in Dih we get that

D 1
ih

true; Γ $ Pih �s̃i ∆i, t̃ : tTih@(i,n)u for i = 1..n

Now we can apply Conc n� 1 times to create a derivation of
true; Γ $ P1h | . . . | Pnh �s̃ ∆, t̃ : tTih@(p,n)upPt1..nu.
Since ∆, t̃ : tttAilu l : TilulPL;L 1@(i,n)uiPt1..nu Ñ ∆, t̃ : tTih@(i,n)uiPt1..nu, subject
reduction is fulfilled in the Sync case. 2

B I B L I O G R A P H Y

[1] Apims project page. http://www.thelas.dk/index.php/apims.

[2] Boost.join: C++ asynchronous message coordination and concurrency library.
http://channel.sourceforge.net/.

[3] The danish patient security database. http://www.dpsd.dk/.

[4] Parallel c#. http://www.parallelcsharp.com/.

[5] Patientsikkerhed i primærsektoren – eksempler på utilsigtede hændelser. Dansk
Selskab for Patientsikkerhed, 2010.

[6] Business process model and notation (bpmn) version 2. http://www.omg.

org/spec/BPMN/2.0/PDF, 2011.

[7] Martín Abadi and Marcelo P. Fiore. Syntactic considerations on recursive
types. In Proc. 1996 IEEE 11th Annual Symp. on Logic in Computer Science
(LICS), New Brunswick, New Jersey. IEEE Computer Society Press, June 1996.

[8] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: principles, techniques, and
tools. Reading, MA,, 1986.

[9] Alexandre Alves, Assaf Arkin, Sid Askary abd Charlton Barreto, Ben Bloch,
Francisco Curbera, Mark Ford, Yaron Goland, Alejandro Guízar, Neelakantan
Kartha, Canyang Kevin Liu, Rania Khalaf, Dieter König, Mike Marin, Vinkesh
Mehta, Satish Thatte, Danny van der Rijn, Prasad Yendluri, and Alex Yiu.
Ws-bpel oasis web services business process execution language. URL http:

//docs.oasis-open.org/wsbpel/2.0/wsbpel-specification-draft.html.

[10] Roberto M. Amadio and Luca Cardelli. Subtyping recursive types. ACM
Transactions on Programming Languages and Systems (TOPLAS), 15(4):575–631,
September 1993.

[11] Valentin Antimirov. Rewriting regular inequalities. In Proc. 10th International
Conference, FCT ’95 Dresden, Germany, volume 965 of Lecture Notes in Computer
Science (LNCS), pages 116–125. Springer-Verlag, August 1995.

[12] Valentin Antimirov. Partial derivatives of regular expressions and finite
automaton constructions. Theor. Comput. Sci., 155(2):291–319, 1996. ISSN
0304-3975. doi: http://dx.doi.org/10.1016/0304-3975(95)00182-4.

251

http://www.thelas.dk/index.php/apims
http://channel.sourceforge.net/
http://www.dpsd.dk/
http://www.parallelcsharp.com/
http://www.omg.org/spec/BPMN/2.0/PDF
http://www.omg.org/spec/BPMN/2.0/PDF
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-specification-draft.html
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-specification-draft.html

252 bibliography

[13] Valentin M. Antimirov and Peter D. Mosses. Rewriting extended regular
expressions. Theor. Comput. Sci., 143(1):51–72, 1995. doi: http://dx.doi.org/
10.1016/0304-3975(95)80024-4.

[14] Chagit Attiya, Danny Dolev, and Joseph Gil. Asynchronous byzantine consen-
sus. In PODC ’84: Proceedings of the third annual ACM symposium on Principles
of distributed computing, pages 119–133, New York, NY, USA, 1984. ACM.
ISBN 0-89791-143-1. doi: http://doi.acm.org/10.1145/800222.806740.

[15] Joshua S. Auerbach, Charles Barton, Mark Chu-Carroll, and Mukund
Raghavachari. Mockingbird: Flexible stub compilation from pairs of declara-
tions. In ICDCS, pages 393–402, 1999.

[16] J. E. Bardram. Activity-based computing for medical work in hospitals. ACM
Transactions on Computer-Human Interaction (TOCHI), 16(2):10, 2009.

[17] Lorenzo Bettini et al. Global progress in dynamically interleaved multiparty
sessions. In CONCUR, volume 5201 of LNCS, pages 418–433, 2008.

[18] P. Bille and M. Thorup. Faster regular expression matching. Automata,
Languages and Programming, pages 171–182, 2009.

[19] OpenMP Architecture Review Board. Openmp. http://www.openmp.org.
URL www.openmp.org.

[20] Laura Bocchi, Kohei Honda, Emilio Tuosto, and Nobuko Yoshida. A theory
of design-by-contract for distributed multiparty interactions. CONCUR 2010-
Concurrency Theory, pages 162–176, 2011.

[21] Eduardo Bonelli and Adriana B. Compagnoni. Multipoint session types for a
distributed calculus. In TGC, volume 4912 of LNCS, pages 240–256. Springer,
2007.

[22] Claus Brabrand and Jakob Thomsen. Typed and unambiguous pattern
matching on strings using regular expressions. In Proc. 12th International
ACM SIGPLAN Symposium on Principles and Practice of Declarative Program-
ming (PPDP), 2010.

[23] Michael Brandt and Fritz Henglein. Coinductive axiomatization of recursive
type equality and subtyping. Fundamenta Informaticae, 33:309–338, 1998.

[24] D. Breslauer. The suffix tree of a tree and minimizing sequential transducers.
Theoretical Computer Science, 191(1-2):131–144, 1998.

[25] Janusz A. Brzozowski. Derivatives of regular expressions. J. ACM, 11(4):481–
494, 1964. ISSN 0004-5411. doi: http://doi.acm.org/10.1145/321239.321249.

http://www.openmp.org
www.openmp.org

bibliography 253

[26] Luís Caires and Hugo Torres Vieira. Conversation types. In ESOP ’09, pages
285–300, Berlin, Heidelberg, 2009. Springer. ISBN 978-3-642-00589-3. doi:
http://dx.doi.org/10.1007/978-3-642-00590-9_21.

[27] R. D. Cameron. Source encoding using syntactic information source models.
Information Theory, IEEE Transactions on, 34(4):843–850, 1988. ISSN 0018-9448.

[28] Giuseppe Castagna and Luca Padovani. Contracts for mobile processes. In
CONCUR ’09, LNCS, pages 211–228, Berlin, Heidelberg, 2009. Springer.

[29] Hubie Chen and Riccardo Pucella. A coalgebraic approach to kleene algebra
with tests. Theor. Comput. Sci., 327(1-2):23–44, 2004.

[30] N. Chomsky. On certain formal properties of grammars*. Information and
control, 2(2):137–167, 1959.

[31] S. Conchon and F. Le Fessant. Jocaml: Mobile agents for objective-caml.
In Agent Systems and Applications, 1999 and Third International Symposium on
Mobile Agents. Proceedings. First International Symposium on, pages 22–29, 1999.

[32] J. F. Contla. Compact coding of syntactically correct source programs. Soft-
ware: Practice and Experience, 15(7):625–636, 1985. ISSN 1097-024X.

[33] J. H. Conway. Regular Algebra and Finite Machines. Printed in GB by William
Clowes & Sons Ltd, 1971. ISBN 0-412-10620-5.

[34] Russ Cox. Regular expression matching can be simple and fast. http:

//swtch.com/~rsc/regexp/regexp1.html. URL http://swtch.com/~rsc/

regexp/regexp1.html.

[35] Roberto Di Cosmo, Francois Pottier, and Didier Remy. Subtyping recursive
types modulo associative commutative products. In Proc. Seventh International
Conference on Typed Lambda Calculi and Applications (TLCA 2005), 2005.

[36] Danny Dubé and Marc Feeley. Efficiently building a parse tree from a
regular expression. Acta Informatica, 37(2):121–144, September 2000. doi:
10.1007/s002360000037.

[37] Institute of Electrical and Electronics Engineers (IEEE). Standard for informa-
tion technology –- Portable Operating System Interface (POSIX) –- Part 2 (Shell
and utilities), Section 2.8 (Regular expression notation). New York, 1992. IEEE
Standard 1003.2.

[38] Marcelo Fiore. Isomorphisms of generic recursive polynomial types. SIG-
PLAN Not., 39(1):77–88, 2004. ISSN 0362-1340. doi: http://doi.acm.org/10.
1145/982962.964008.

http://swtch.com/~rsc/regexp/regexp1.html
http://swtch.com/~rsc/regexp/regexp1.html
http://swtch.com/~rsc/regexp/regexp1.html
http://swtch.com/~rsc/regexp/regexp1.html

254 bibliography

[39] Marcelo P. Fiore. A coinduction principle for recursive data types based
on bisimulation. Information and Computation, 127:186–198, 1996. Conference
version: Proc. 8th Annual IEEE Symp. on Logic in Computer Science (LICS),
1993, pp. 110-119.

[40] Michael J. Fischer. The consensus problem in unreliable distributed systems
(a brief survey). In Proceedings of the 1983 International FCT-Conference on Fun-
damentals of Computation Theory, pages 127–140, London, UK, 1983. Springer.
ISBN 3-540-12689-9.

[41] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of
distributed consensus with one faulty process. J. ACM, 32(2):374–382, 1985.
ISSN 0004-5411. doi: http://doi.acm.org/10.1145/3149.214121.

[42] The Royal Dutch Society for Physical Therapy (KNGF). Kngf evidence-
based clinical practice guidelines. https://www.kngfrichtlijnen.nl/654/

KNGF-Guidelines-in-English.htm. URL https://www.kngfrichtlijnen.

nl/654/KNGF-Guidelines-in-English.htm.

[43] C. Fournet, L. Maranget, C. Laneve, and D. Rémy. Implicit typing à la ml for
the join-calculus. CONCUR’97: Concurrency Theory, pages 196–212, 1997.

[44] J. Fox, N. Johns, and A. Rahmanzadeh. Disseminating medical knowledge:
the proforma approach. Artificial Intelligence in Medicine, 14(1-2):157–182,
1998.

[45] N. Freemantle, E. L. Harvey, F. Wolf, J. M. Grimshaw, R. Grilli, and L. A. Bero.
Printed educational materials: effects on professional practice and health care
outcomes. Cochrane Database Syst Rev, 2, 2000.

[46] A. Frisch and L. Cardelli. Greedy regular expression matching. In Proc. 31st
International Colloquium on Automata, Languages and Programming (ICALP),
volume 3142 of Lecture notes in computer science, pages 618–629, Turku, Fin-
land, July 2004. Springer.

[47] Vladimir Gapeyev, Michael Y. Levin, and Benjamin C. Pierce. Recursive
subtyping revealed. J. Funct. Program., 12(6):511–548, 2002.

[48] S. Gay and M. Hole. Subtyping for session types in the pi calculus. Acta
Informatica, 42(2):191–225, 2005.

[49] Gerhard Gentzen. Investigations into logical deductions. In M. E. Szabo,
editor, The Collected Papers of Gerhard Gentzen, pages 68–131. North-Holland,
Amsterdam, 1969.

https://www.kngfrichtlijnen.nl/654/KNGF-Guidelines-in-English.htm
https://www.kngfrichtlijnen.nl/654/KNGF-Guidelines-in-English.htm
https://www.kngfrichtlijnen.nl/654/KNGF-Guidelines-in-English.htm
https://www.kngfrichtlijnen.nl/654/KNGF-Guidelines-in-English.htm

bibliography 255

[50] A. Ginzburg. A procedure for checking equality of regular expressions. J.
ACM, 14(2):355–362, 1967. ISSN 0004-5411. doi: http://doi.acm.org/10.1145/
321386.321399.

[51] Daniele Gorla. Towards a unified approach to encodability and separation
results for process calculi. In CONCUR ’08, LNCS, pages 492–507, 2008.

[52] Clemens Grabmayer. Using proofs by coinduction to find “traditional” proofs.
In Proc. 1st Conference on Algebra and Coalgebra in Computer Science (CALCO),
number 3629 in Lecture Notes in Computer Science (LNCS). Springer, Septem-
ber 2005.

[53] A. B. Haynes, T. G. Weiser, W. R. Berry, S. R. Lipsitz, A. H. Breizat, E. P.
Dellinger, T. Herbosa, S. Joseph, P. L. Kibatala, M. C. Lapitan, et al. A surgical
safety checklist to reduce morbidity and mortality in a global population. N
Engl J Med, 360(5):491–499, 2009.

[54] R. Hempel. The mpi standard for message passing. In High-Performance
Computing and Networking, pages 247–252, 1994.

[55] Fritz Henglein and Lasse Nielsen. Declarative coinductive axiomatization of
regular expression containment and its computational interpretation (prelimi-
nary version). Technical report, Department of Computer Science, University
of Copenhagen (DI, February 2010. D-612.

[56] Fritz Henglein and Lasse Nielsen. Declarative coinductive axiomatization
of regular expression containment and its computational interpretation. In
Proc. 38th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages (POPL), January 2011.

[57] A. S. Henriksen. A contraction-free focused sequent calculus for classical
propositional logic. Technical report, http://www.diku.dk/hjemmesider/

ansatte/starcke/, 2010.

[58] Thomas Hildebrandt, Karen Lyng, and Raghava Mukkamala. From paper
based clinical practice guidelines to declarative workflow and linear-time
temporal logic. 2009.

[59] Tony Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[60] Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language primitives
and type disciplines for structured communication-based programming. In
ESOP’98, volume 1381 of LNCS, pages 22–138. Springer, 1998.

[61] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asyn-
chronous session types. In POPL’08, pages 273–284. ACM, 2008.

http://www.diku.dk/hjemmesider/ansatte/starcke/
http://www.diku.dk/hjemmesider/ansatte/starcke/

256 bibliography

[62] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, 1979.

[63] Haruo Hosoya, Alain Frisch, and Giuseppe Castagna. Parametric polymor-
phism for xml. In Jens Palsberg and Martín Abadi, editors, POPL, Proceedings
of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL 2005, Long Beach, California, USA, January 12-14,
2005, pages 50–62. ACM, 2005. ISBN 1-58113-830-X.

[64] Haruo Hosoya, Jerome Vouillon, and Benjamin C. Pierce. Regular expression
types for xml. ACM Trans. Program. Lang. Syst., 27(1):46–90, 2005.

[65] G. Hripcsak, P. D. Clayton, and T. Pryor. The arden syntax for medical logic
modules. In 14. Annual Symposium on Computer Applications in Medical Care,
pages 200–204, 1990.

[66] Raymond Hu, Nobuko Yoshida, Andi Bejleri, and Kohei Honda. The sj frame-
work for transport-independent, type-safe, object-oriented communications
programming. 2009. URL http://www.doc.ic.ac.uk/~rhu/sessionj-ti.

html.

[67] Intalio. Intalio|bpmn. http://www.intalio.com/bpms.

[68] P. Jansson and J. Jeuring. Polyp–-a polytypic programming language ex-
tension. In Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL), page 482, 1997.

[69] P. Jansson and J. Jeuring. Polytypic compact printing and parsing. Program-
ming Languages and Systems, pages 639–639, 1999.

[70] Mette Lundsby Jensen and Kirstine Zinck Pedersen. Utilsigtede hændelser i
den kommunale plejesektor. Online: dsi.dk, 02 2010.

[71] J. A. Kalman. Automated reasoning with Otter. Rinton Press, 2001.

[72] S. C. Kleene. Representation of events in nerve nets and finite automata.
Automata studies, 34:3–41, 1956.

[73] S. C. Kleene. Representation of events in nerve nets and finite automata.
Automata Studies, 1956.

[74] D. E. Knuth. Semantics of context-free languages. Theory of Computing
Systems, 2(2):127–145, 1968.

[75] Naoki Kobayashi, Shin Saito, and Eijiro Sumii. An implicitly-typed deadlock-
free process calculus. In CONCUR’00, volume 1877 of LNCS, pages 489–503,
2000.

http://www.doc.ic.ac.uk/~rhu/sessionj-ti.html
http://www.doc.ic.ac.uk/~rhu/sessionj-ti.html
http://www.intalio.com/bpms

bibliography 257

[76] Dexter Kozen. A completeness theorem for kleene algebras and the algebra
of regular events. Information and Computation, 110(2):366–390, May 1994.

[77] Dexter Kozen. Kleene algebra with tests. Transactions on Programming Lan-
guages and Systems, 19(3):427–443, May 1997.

[78] Dexter Kozen. On the coalgebraic theory of kleene algebra with tests. Techni-
cal report, March 2008. URL http://hdl.handle.net/1813/10173.

[79] Dexter Kozen, Jens Palsberg, and Michael Schwartzbach. Efficient recursive
subtyping. Mathematical Structures in Computer Science (MSCS), 5(1), 1995.
Conference version presented at the 20th Annual ACM SIGPLAN-SIGACT
Symp. on Principles of Programming Languages (POPL), 1993.

[80] Daniel Krob. A complete system of b-rational identities. In Mike Paterson,
editor, ICALP, volume 443 of Automata, Languages and Programming, 17th
International Colloquium, ICALP90, Warwick University, England, July 16-20,
1990, Proceedings, pages 60–73. Springer, 1990. ISBN 3-540-52826-1.

[81] L. Lamport. The weak byzantine generals problem. J. ACM, 30(3):668–676,
1983. ISSN 0004-5411. doi: http://doi.acm.org/10.1145/2402.322398.

[82] N. G. Leveson and C. S. Turner. An investigation of the therac-25 accidents.
Computer, 26(7):18–41, 1993.

[83] Kenny Zhuo Ming Lu and Martin Sulzmann. Rewriting regular inequalities.
In Proc. Second Asian Symposium, APLAS 2004, Taipei, Taiwan, November 4-6,
2004, volume 3302 of Lecture Notes in Computer Science (LNCS), pages 57–73.
Springer, November 2004.

[84] Karen Lyng, Thomas Hildebrandt, and Raghava Mukkamala. From pa-
per based clinical practice guidelines to declarative workflow management.
In ProHealth ’08, 2008. URL http://www.itu.dk/people/hilde/Papers/

ProHealth08.pdf.

[85] Karen Lyng, Thomas Hildebrandt, and Raghava Mukkamala. The resultmaker
online consultant: From declarative workflow management in practice to ltl.
In In Proc. of 1st International Workshop on Dynamic and Declarative Business
Processes (DDBP 2008), Munich, Germany, 2008. URL http://www.itu.dk/

people/hilde/Papers/DDBP08.pdf.

[86] R. Milner. A complete inference system for a class of regular behaviours. J.
Comput. Syst. Sci., 28(3):439–466, 1984.

[87] Mehryar Mohri. Minimization of sequential transducers. In Combinatorial
pattern matching: 5th annual symposium, CPM 94, Asilomar, CA, USA, June 5-8,
1994: proceedings, volume 807, page 151, 1994.

http://hdl.handle.net/1813/10173
http://www.itu.dk/people/hilde/Papers/ProHealth08.pdf
http://www.itu.dk/people/hilde/Papers/ProHealth08.pdf
http://www.itu.dk/people/hilde/Papers/DDBP08.pdf
http://www.itu.dk/people/hilde/Papers/DDBP08.pdf

258 bibliography

[88] Dimitris Mostrous, Nobuko Yoshida, and Kohei Honda. Global principal
typing in partially commutative asynchronous sessions. In ESOP’09, LNCS.
Springer, 2009. To appear.

[89] George C. Necula and Shree Prakash Rahul. Oracle-based checking of
untrusted software. In POPL, pages 142–154, 2001.

[90] Uwe Nestmann. What is a "good" encoding of guarded choice? Inf. Comput.,
156(1-2):287–319, 2000.

[91] Uwe Nestmann and Benjamin C. Pierce. Decoding choice encodings. Inf.
Comput., 163(1):1–59, 2000.

[92] Lasse Nielsen. Regular expression compression parser. http://www.thelas.
dk/index.php/Rcp. URL http://www.thelas.dk/index.php/Rcp.

[93] Lasse Nielsen. A coinductive axiomatization of xml subtyping. Graduate
term project report, DIKU, University of Copenhagen, 2008.

[94] Lasse Nielsen and Fritz Henglein. Bit-coded regular expression parsing. In
LATA 2011 - 5th International Conference on. Language and Automata Theory and
Applications. Springer-Verlag, Berlin, Heidelberg, 2011.

[95] Lasse Nielsen and Fritz Henglein. Bit-coded regular expression parsing.
Submitted to International Journal of Computer Mathematics, 2011.

[96] Lasse Nielsen, Nobuko Yoshida, and Kohei Honda. Multiparty symmetric
sum types. Arxiv preprint arXiv:1011.6436, 2010.

[97] L. Ohno-Machado, J. H. Gennari, S. N. Murphy, N. L. Jain, S. W. Tu, D. E.
Oliver, E. Pattison-Gordon, R. A. Greenes, E. H. Shortliffe, and G. Barnett.
The guideline interchange format. Journal of the American Medical Informatics
Association, 5(4):357, 1998.

[98] Luca Padovani. Fair subtyping for multi-party session types. COORDINA-
TION 2011, 2011.

[99] Catuscia Palamidessi. Comparing the expressive power of the synchronous
and asynchronous pi-calculi. MSCS, 13(5):685–719, 2003.

[100] Benjamin C. Pierce and David N. Turner. Pict: A programming language
based on the pi-calculus. In Gordon Plotkin, Colin Stirling, and Mads Tofte,
editors, Proof, Language and Interaction: Essays in Honour of Robin Milner. MIT
Press, 2000.

http://www.thelas.dk/index.php/Rcp
http://www.thelas.dk/index.php/Rcp
http://www.thelas.dk/index.php/Rcp

bibliography 259

[101] K. V. S. Prasad. Broadcast calculus interpreted in ccs upto bisimulation.
In Electronic Notes in Theoretical Computer Science, volume 52, pages 83–100.
Elsevier, 2001.

[102] Vaughan Pratt. Action logic and pure induction. In Proc. Logics in AI:
European Workshop JELIA, volume 478 of Lecture Notes in Computer Science
(LNCS), pages 97–120. Springer, 1990.

[103] A. Riazanov and A. Voronkov. The design and implementation of vampire.
AI communications, 15(2, 3):91–110, 2002.

[104] G. Rosu and J. Goguen. Circular coinduction. 2000.

[105] G. Rosu and D. Lucanu. Circular coinduction: A proof theoretical foundation.
Algebra and Coalgebra in Computer Science, pages 127–144, 2009.

[106] J. Rumbaugh, R. Jacobson, and G. Booch. The unified modelling language
reference manual. 1999.

[107] Jan J. M. M. Rutten. Automata and coinduction (an exercise in coalgebra).
In Davide Sangiorgi and Robert de Simone, editors, CONCUR: Concurrency
Theory, 9th International Conference, Nice, France, September 8-11, 1998, Proceed-
ings, volume 1466 of CONCUR ’98, pages 194–218. Springer, 1998. ISBN
3-540-64896-8.

[108] Arto Salomaa. Two complete axiom systems for the algebra of regular events.
J. ACM, 13(1):158–169, 1966. ISSN 0004-5411. doi: http://doi.acm.org/10.
1145/321312.321326.

[109] Julian Seward. Bzip. http://www.bzip.org/. URL http://www.bzip.org/.

[110] Alexandra Silva, Marcello M. Bonsangue, and Jan J. M. M. Rutten. Non-
deterministic kleene coalgebras. Logical Methods in Computer Science, 6(3),
2010. URL http://arxiv.org/abs/1007.3769.

[111] Jes Søgaard, Anne Frølich, and Thomas Schiøler. Utilsigtede hændelser på
danske sygehuse. Online: dsi.dk, 2001.

[112] M. E. Stickel. Resolution theorem proving. Annual review of computer science,
3(1):285–316, 1988.

[113] Martin Sulzmann and Kenny Zhuo Ming Lu. Xhaskell - adding regular
expression types to haskell. In Olaf Chitil, Zoltán Horváth, and Viktória
Zsók, editors, IFL, volume 5083 of Implementation and Application of Functional
Languages, 19th International Workshop, IFL 2007, Freiburg, Germany, September
27-29, 2007. Revised Selected Papers, pages 75–92. Springer, 2008. ISBN 978-3-
540-85372-5.

http://www.bzip.org/
http://www.bzip.org/
http://arxiv.org/abs/1007.3769

260 bibliography

[114] Kaku Takeuchi, Kohei Honda, and Makoto Kubo. An interaction-based
language and its typing system. In PARLE’94, volume 817 of LNCS, pages
398–413. Springer, 1994.

[115] Annette ten Teije, Silvia Miksch, and Peter Lucas. Computer-based Medical
Guidelines and Protocols: A Primer and Currend Trends. Studies in Health Tech-
nology and Informatics. IOS Press, 2008. ISBN 978-1-58603-873-1.

[116] W. M. P. Van Der Aalst and A. H. M. Ter Hofstede. Yawl: yet another workflow
language. Information Systems, 30(4):245–275, 2005.

[117] Stijn Vansummeren. Type inference for unique pattern matching. ACM
Trans. Program. Lang. Syst., 28(3):389–428, 2006. ISSN 0164-0925. doi: http:
//doi.acm.org/10.1145/1133651.1133652.

[118] Margus Veanes Margus Veanes, Peli de Halleux, and Nikolai Tillmann. Rex:
Symbolic regular expression explorer. In Proc. 3d Int’l Conf. on Software Testing,
Verification and Validation, Paris, France, April 6-10 2010. IEEE Computer
Society Press.

[119] H. M. W. Verbeek, T. Basten, and W. M. P. van der Aalst. Diagnosing workflow
processes using woflan. The Computer Journal, 44(4):246–279, 2001. doi: http://
dx.doi.org/10.1093/comjnl/44.4.246. URL http://comjnl.oxfordjournals.

org/cgi/reprint/44/4/246.

[120] B. Victor and F. Moller. The mobility workbench—a tool for the π-calculus.
In Computer Aided Verification, pages 428–440, 1994.

[121] L. Wall, T. Christiansen, and J. Orwant. Programming perl. O’Reilly Media,
2000.

[122] D. Wang, M. Peleg, S. W. Tu, A. A. Boxwala, O. Ogunyemi, Q. Zeng, R. A.
Greenes, V. L. Patel, and E. H. Shortliffe. Design and implementation of
the glif3 guideline execution engine. Journal of biomedical informatics, 37(5):
305–318, 2004.

[123] P. H. Welch and F. R. M. Barnes. Communicating mobile processes: introduc-
ing occam-pi. In In 25 Years of CSP, 2005.

[124] S. A. White. Introduction to bpmn. IBM Cooperation, pages 2008–029, 2004.

[125] Glynn Winskel. The Formal Semantics of Programming Languages: An Introduc-
tion. Foundations of Computing series. MIT Press, feb 1993. ISBN 0-262-
23169-7.

http://comjnl.oxfordjournals.org/cgi/reprint/44/4/246
http://comjnl.oxfordjournals.org/cgi/reprint/44/4/246

	Dedication
	Publications
	Acknowledgments
	Introduction
	1 Introduction
	1.1 Background
	1.2 Contributions
	1.2.1 Regular expressions
	1.2.2 Session types
	1.2.3 Workflow based verification

	1.3 Existing workflow modelling frameworks
	1.4 Regular expressions and session types as workflow models
	1.4.1 Regular expressions
	1.4.2 Session types

	1.5 Field study
	1.6 Related work
	1.7 Future work
	1.8 Conclusions

	Regular Expressions
	2 Regular Expression Containment
	2.1 Introduction
	2.1.1 Contributions
	2.1.2 Prerequisites
	2.1.3 Notation and terminology

	2.2 Regular expressions as types and coercions
	2.2.1 Regular expressions as languages
	2.2.2 Regular expressions as types
	2.2.3 Regular expression containment as type coercion

	2.3 Declarative coinductive axiomatization
	2.3.1 Axiomatization
	2.3.2 Soundness
	2.3.3 Completeness
	2.3.4 Examples
	2.3.5 Parametric completeness

	2.4 Application: Compact bit representations of parse trees
	2.4.1 Bit coded strings
	2.4.2 Bit code coercions
	2.4.3 Tail-recursive -types

	2.5 Discussion

	3 Bit-coded Regular Expression Parsing
	3.1 Introduction
	3.2 Regular expressions as types
	3.3 Bit-coded parse trees
	3.4 Parsing algorithms
	3.4.1 Dubé/Feeley-style parsing
	3.4.2 Frisch/Cardelli-style parsing

	3.5 Empirical evaluation of algorithms
	3.5.1 Backtracking worst case: (an: (a+1)nan)
	3.5.2 DFA worst case (am+1: (a+b)a (a+b)n)
	3.5.3 Practical examples

	3.6 Transducer reduction
	3.6.1 Transducer semantics
	3.6.2 Reduction algorithm
	3.6.3 Reduction correctness

	3.7 Empirical evaluation of reduction
	3.8 Conclusion

	Session Types
	4 Multiparty Symmetric Sum Types
	4.1 Introduction
	4.2 Processes with synchronisation
	4.3 Symmetric sum types
	4.4 From symmetric sum to conducted branching
	4.4.1 Erasure definitions
	4.4.2 Correctness
	4.4.3 Encodability criteria

	4.5 Verifying CPG descriptions
	4.5.1 Implementation

	4.6 Related and future work

	5 Multiparty Symmetric Sum Types with Assertions
	5.1 Introduction
	5.2 The process language
	5.3 The type language
	5.4 Implementation
	5.5 Related and future work
	5.6 Conclusions

	Appendix
	A Introduction
	A.1 Process matrix
	A.1.1 Oncology example

	A.2 Session types
	A.2.1 rules
	A.2.2 Oncology example
	A.2.3 Urology example

	B Bit-coded regular expression parsing
	B.1 Transducer reduction
	B.1.1 Proof of transducer states lower bound (Lemma 59)
	B.1.2 Proof of soundness of (Lemma 60)
	B.1.3 Proof of completeness of (Lemma 61)
	B.1.4 Proof of minimality of result (Theorem 62)

	C Multiparty symmetric sum types
	C.1 Process congruence
	C.2 Symmetric sum types
	C.3 Subject reduction
	C.4 Erasure definition
	C.5 Type preservation
	C.6 Congruence preservation
	C.7 Erasure soundness
	C.8 Erasure completeness
	C.9 Encodability criteria
	C.10 Healthcare example
	C.11 Full abstraction
	C.12 Implementation
	C.12.1 Processes for example workflow

	D Multiparty symmetric sum types with assertions
	D.1 Definitions
	D.1.1 Process congruence
	D.1.2 Symmetric sum types

	D.2 Subject reduction

	Bibliography

