SEMANTIC PATCH INFERENCE

JESPER ANDERSEN

Computer Science Department (DIKU)

The Graduate School of Science
Faculty of Science
University of Copenhagen

Copenhagen
November 2009

Supervisor: Julia L. Lawall

[November 13, 2009 at 10:43]

Dedicated to my loving wife and son. You are the sunshine that light up my day.

[November 13, 2009 at 10:43]

ABSTRACT

Collateral evolution the problem of updating several library-using programs in response to API
changes in the used library. In this dissertation we address the issue of understanding collateral
evolutions by automatically inferring a high-level specification of the changes evident in a given
set of updated programs.

We have formalized a concept of transformation parts that serve as an indication of when a
change specification is evident in a set of changes. Based on the transformation parts concept, we
state a subsumption relation on change specifications. The subsumption relation allows decision
of when a change specification captures a maximal amount of the evident changes in a set
of changes. We state two algorithms that find high-level change specifications evident in a
set of changes. Both algorithms have been implemented in a tool we call spdiff. Finally, a
few examples of change specifications inferred by spdiff in Linux are shown. We find that
the inferred specifications concisely capture the actual collateral evolution performed in the
examples.

SAMMENFATNING

“Medfert evolution” handler om nodvendigheden af at opdatere adskillige programmer medfert
af eendringer i et bibliotek brugt af alle programmerne. I denne athandling behandles emnet om
at forstd sidanne medferte evolutioner ved, automatisk, at aflede en hej-niveau specifikation of
endringer set i en given meengde af opdaterede programmer.

Vi har formaliseret et begreb vi kalder “transformationsdele”. Transformationsdele viser
hvornér en given specifikation af eendringer kan ses i en meengde af opdaterede programmer.
Baseret herpa, har vi defineret en relation som beskriver hvornar en specifikation af eendringer
er en del af en anden specifikation af eendringer. Dette kan yderligere bruges til at afgere om
en specifikation af eendringer er maksimal. Endelig har vi beskrevet to algoritmer til at finde
hej-niveau specifikationer af eendringer i en given meaengde af opdaterede programmer. Begge
algoritmer er implementeret i et veerktej, som vi kalder spdiff. Vi viser resultatet af nogle fa
anvendelser af spdiff pa eendringer i Linux. De afledte eendringer fanger pa en konsis made de
medforte evolutioner, som var blevet udfert.

iii

[November 13, 2009 at 10:43]

ACKNOWLEDGMENTS

There are numerous people that I would like to thank for somehow being helpful to me during
my Ph.D. studies. In particular I would like to thank my supervisor, Julia Lawall, for consistent,
quick, and helpful advise on just about any of the (more or less silly) questions I have had. Your
guidance changed the way I think about research in a way I think is better.

I would also like to thank Professor Siau-Cheng Khoo from the National University of
Singapore for being my host when I visited NUS during winter 2008. I have so many fond
memories of Singapore and I really enjoyed the collaboration with you.

Finally, I would like to thank David Lo who is now working as an assistant professor at
the Singapore Management University. Your energy with respect to research and general
helpfulness is an inspiration to me. I am grateful that you took the time to visit me and my
family in Copenhagen.

iv

[November 13, 2009 at 10:43]

CONTENTS

I SEMANTIC PATCH INFERENCE 1
1 INTRODUCTION 2
1.1 Example-based change inference 3
1.1.1 Tranformation parts 3
1.1.2 Algorithms and implementations
1.2 Structure of the dissertation 6
2 RELATED WORK 7
2.1 Change vocabulary 7
2.2 Program transformation systems 9

2.3 Program pattern discovery 10

2.3.1 Inference of program behavior 11

2.3.2 Clone detection 13
2.4 Change detection 24
2.4.1 Text based differencing 24
2.4.2 Tree differencing 27
2.4.3 Higher level approaches 31
3 SETUP 38
3.1 The language of TERMs 38
3.1.1 Constructing TERMs 38
3.2 Term patterns 40
3.2.1 Abstracting terms 42
4 TRANSFORMATION PARTS 46
4.1 Properties of common change descriptions
4.1.1 Towards a definition 47
4.2 Tree distance based transformation parts
4.2.1 Work-function 50
4.2.2 Term-distance 50
4.3 Subsumption of program transformations
4.4 Extending to changesets 53
4.5 Non-global common changes 55

II ALGORITHMS AND IMPLEMENTATION 58
5 CONTEXT-FREE PATCH INFERENCE 59
5.1 Motivating example 59
5.2 Context-free patches 62
5.2.1 Application function 62

49

52

[November 13, 2009 at 10:43]

III

5.3 Algorithm 63
5.3.1 A simple algorithm 64
5.3.2 Towards a refined algorithm 66
5.3.3 The refined spfind algorithm 71
CONTEXT-SENSITIVE PATCH INFERENCE 73
6.1 Motivating example 73
6.2 Semantic patches 75
6.3 Semantic patterns 76
6.4 Finding semantic patterns 77
6.4.1 Occurrences & Pruning Properties 77
6.4.2 Algorithm 78
6.4.3 Constructing semantic patches 79
6.5 Implementation 8o

REAL-WORLD APPLICATION 83
EXPERIMENTS 84
7.1 Examples of context-free patches 84
7.2 Examples of context-sensitive patches 86
CONCLUSION 89
8.1 Summary 89
8.2 Future work 89
8.2.1 Evaluation and engineering 89
8.2.2 Exploration of other transformation languages

BIBLIOGRAPHY 92

[November 13, 2009 at 10:43]

90

CONTENTS

Vi

Part 1

SEMANTIC PATCH INFERENCE

[November 13, 2009 at 10:43]

INTRODUCTION Chapter

In the case of open-source software, such as Linux, where the developers are widely distributed,
it must be possible to exchange, distribute, and reason about source code changes. One common
medium for such exchange is the patch [43]. When making a change in the source code, a
developer makes a copy of the code, modifies this copy, and then uses diff to create a file
describing the line-by-line differences between the original code and the new version. He then
distributes this file, known as a patch, to subsystem maintainers and mailing lists for discussion.
Once the patch has been approved, other developers can apply it to their own copy of the code,
to update it to the new version.

Patches have been undeniably useful in the development of Linux and other open-source
systems. However, it has been found that they are not very well adapted for one kind of change,
the collateral evolution [48]. A collateral evolution is a change entailed by an evolution that affects
the interface of a library, and comprises the modifications that are required to bring the library
clients up to date with this evolution. Collateral evolutions range from simply replacing the
name of a called library function to more complex changes that involve multiple parts of each
affected file. Such changes may have to be replicated across an entire directory, subsystem
implementation, or even across the entire source code. In the case of Linux, it has been shown
that collateral evolutions particularly affect device drivers, where hundreds of files may depend
on a single library [48].

The volume and repetitiveness of collateral evolutions strain the patch-based development
model in two ways. First, the original developer has to make the changes in every file, which is
tedious and error prone. Second, developers that need to read the resulting patch, either to check
its correctness or to understand what it will do to their own code, may have to study hundreds
of lines of patch code, which are typically all very similar, but which may contain some subtle
differences. An alternative is provided by the transformation system Coccinelle, which raises
the level of abstraction of patches to semantic patches [49]. A semantic patch describes a change
at the source code level, like an ordinary patch, but is applied in terms of the syntactic and
semantic structure of the source language, rather than on a line-by-line basis. Semantic patches
include only the code relevant to the change, can be abstracted over irrelevant subterms using
meta-variables, and are independent of the spacing and line breaks of the code to which they
are applied. The level of abstraction of semantic patches furthermore implies that they can be
applied to files not known to the original developer — in the case of Linux, the many drivers
that are maintained outside the Linux source tree.

Despite the many advantages of semantic patches, it may not be reasonable to expect develop-
ers to simply drop the patch-based development model when performing collateral evolutions.
For the developer who makes the collateral evolution, there can be a gap between the details of

[November 13, 2009 at 10:43]

1.1 EXAMPLE-BASED CHANGE INFERENCE

an evolution within a library and the collateral evolution it entails. Therefore, he may still find it
natural to make the required changes by hand in a few typical files, to better understand the
range and scope of the collateral evolution that is required. Furthermore, the standard patch
application process is very simple, involving only replacing one line by another, which may
increase confidence in the result. Thus, developers may find it desirable to continue to distribute
standard patches, with or without an associated semantic patch.

What is then needed is a means of mediating between standard patches and semantic
patches, by inferring semantic patches from standard patches. We propose a tool, spdiff, that
infers semantic patches from a collection of standard patches implementing a common set of
transformations. The Linux developer who makes a change in a library that affects its interface
can perform the collateral evolution in a few files based on his knowledge about how drivers
typically make use of the library, and then apply spdiff to produce a semantic patch that can
be applied to the other files automatically. Complementarily, the developer who needs to read
an existing standard patch implementing a collateral evolution can apply spdiff to the patch
to obtain a more concise, abstract representation of the changes that are performed, as well as
information about any deviations from these changes, which may represent bugs or special
cases of which he should be aware. If the developer maintains proprietary code outside the
Linux kernel source tree, he may furthermore use the inferred semantic patch to apply the
necessary changes.

1.1 EXAMPLE-BASED CHANGE INFERENCE

CONTRIBUTIONS The main contributions in the work presented in this dissertation are
A. An abstract definition of a concept of transformation parts, and

B. Two algorithms and implementations for performing common change inference of pro-
gram transformations expressed using the semantic patch language, SmPL provided by
Coccinelle [49].

In the following we give a brief overview of the two contributions and then proceed with a
brief overview of the structure of the dissertation.

111 Tranformation parts

Our approach for inferring semantic patches suitable for performing collateral evolutions
is based on finding changes from a representative set of programs and their corresponding
modified versions. For illustration suppose a set of pairs of programs is given such that the
tirst component of each pair corresponds to the original program and the second component
corresponds to the updated version of the program. The left part of Figure 1 illustrates such a
situation. Using a standard patch as extracted by the unix diff program, we can describe the
changes between between t; and t{. This is illustrated by the p; on the arrow from t; to t{.

[November 13, 2009 at 10:43]

1.1 EXAMPLE-BASED CHANGE INFERENCE

(Manual approach) (Inference-based approach)
/ L/ |
b P1 t1 t sp t1 P! t]
! L
t2 P1 4 t2 sp t2 P} t
th Pr th th —sp =~ AR Pﬁ """""" t]

Figure 1: Applying diff for each pair of programs (left). Applying spdiff to the set of all pairs of terms
(right).

The problem is now, that while each of the standard patches p; describe how to update t; into
t{, the set of these patches is too verbose to convey the common changes that were applied to all of
the original programs. In this dissertation we describe a method to extract the common changes
applied in a set of pairs of programs as illustrated in the right part of Figure 1. Thus, while the
situation on the left produces n standard patches (diff (ti,t{) = p; for 1 < i < n) when we
apply our tool spdiff {(ti,t{),...,(ti, t])} = sp we obtain just one description of the common
changes. In Figure 1 we furthermore illustrate with dotted arrows that after performing the
changes expressed in the common patch, there may still be changes that need to be performed
for each program.

In order for the description, sp, of the common changes that spdiff finds to be useful there
are two properties that it should have.

A. The changes it describes should be changes that are actually performed on each t; in its
transformation into t/.

B. The description should express as much of the common changes as possible.

DESCRIBING ONLY ACTUAL CHANGES The problem of detecting the changes actually per-
formed between just one version of a program and its updated version is not entirely straightfor-
ward. In Section 2.4 in Chapter 2 we describe several other approaches that address this problem.
The major difference between finding changes between one specific version of a program and
another and common changes between several programs is that the denotation of the locations
in the program to change needs to be different. For the single-program change detection, one
can rely on explicitly denoting the locations that change; e.g. line n of file f was modified or the
node in the abstract syntax tree with label q was removed. For the common change detection,
one can generally not expect that locations can be denoted in this manner. A more general
denotation of locations is needed. The problem is then to find a denotation of locations that is

[November 13, 2009 at 10:43]

1.1 EXAMPLE-BASED CHANGE INFERENCE

general enough to cover all the locations modified in all relevant files, but no so general that it
also denotes locations that were not changed. Consider a description such as “all calls to kmalloc
with two arguments were modified to call kzalloc with the same arguments instead”. It may
easily be the case that not all calls to kmalloc should be modified. In Chapter 4 we addresse
this issue in more detail by defining a notion of a “transformation part” which captures that a
change is in fact safe to perform in the sense just outlined.

DESCRIBING AS MUCH AS POSSIBLE The second property that we require of the description
of common changes that our method finds, is that it should express as much of the common
changes as possible. For example if a particular function call was renamed in all locations
but also had its arguments swapped, the change description should contain both of those
changes. In Chapter 4 we use the transformation parts concept to define a subsumption
relation on transformations. The maximal change is then the one that subsumes all others.
Maximality of the inferred change descriptions therefore naturally depend on our choice of
change description language. We therefore make this dependency a feature of our subsumption
relation by parameterizing the definition of transformation parts by an application function of
the descriptions. Thus, the definition of transformation parts relies only on the result of applying
a change description, not on knowledge of the language in which changes are specified.

112 Algorithms and implementations

The abstract definition of common change inference has been used to design two algorithms
that each solve the change inference problem for a specific change description language; more
precisely, the first algorithm finds common changes that can be expressed in a simple term
rewrite language while the second algorithm finds changes that can be sensitive to control-flow
paths. The set of transformations possible in the latter language is a superset of those of the
former. Both algorithms have been implemented in the functional programming language
OCaml.

COMMON PARTS OF THE ALGORITHMS As mentioned, the definition of transformation
parts is parametrized by an application function. For each algorithm we therefore present a
change description language and the associated application function for applying specifications
written in the language.

ALGORITHM FOR CONTEXT-FREE CHANGE INFERENCE The algorithm for finding context-
free changes finds changes that can be expressed as a sequence of simple rewrite rules. The
algorithm is split in two parts. The first part finds rewrite rules that express common changes
applied in the examples provided. The second part then tries to grow those rewrite rules into
a sequence of rules making use of the subsumption of change descriptions to only return the
largest of the change descriptions.

[November 13, 2009 at 10:43]

1.2 STRUCTURE OF THE DISSERTATION

ALGORITHM FOR CONTEXT-SENSITIVE CHANGE INFERENCE The second algorithm finds
common changes that can be expressed with temporal properties on the control-flow paths of
the programs. There are three main parts of the algorithm: 1. Finding changes between each pair
of programs, 2. Finding a description of common temporal properties, and 3. Constructing the
largest change description based on the common temporal properties and the changes found
for each individual pair of programs.

CHANGE DESCRIPTION LANGUAGE In this work, we have chosen to express changes in terms
of the SmPL language provided by the Coccinelle project. The SmPL language is specifically
designed to express common changes in several programs (collateral evolutions). SmPL provides
a WYSIWYG approach to the specification of changes in the sense that the descriptions of the
changes look like the pieces of code affected. We conjecture that the WYSIWYG feature of SmPL
eases the understanding of the actual impact of the changes described in the specification. This
is in particular important in our setting because we seek to provide a high-level description of
the changes made that makes it easy to see the common changes that have been performed
in the example programs given. SmPL specifications are called semantic patches to emphasize
their similarity with standard patches and their difference by allowing control-path (semantic)
sensitive change specification specifications.

1.2 STRUCTURE OF THE DISSERTATION

This dissertation is organized in three main parts. The first part introduces (Chapter 1) the
common change inference problem that we are addressing, presents related work, provides
a framework in terms of which our approach is formalized, and finally defines the problem
of common change inference that we are addressing (Chapters 1-4). The second part of the
dissertation presents two algorithms that solves the common change inference problem relative
to a particular language for describing changes. The final part of the dissertation presents a few
examples of applying the implementation of the algorithms to examples from the Linux kernel.
The final part also contains a conclusion that summarizes the main contributions of the work
presented in this dissertation as well as directions for future work.

[November 13, 2009 at 10:43]

RELATED WORK Chapter

In this chapter we present other work that is related to ours. Three topics are considered:
A. Transformation systems
B. Program pattern discovery
c. Change detection

A transformation system modifies a program given a transformation specification into a
new program. In order for a transformation system to be useful to help performing collateral
evolutions (i.e. updating library-using code in response to library changes) it is beneficial if it is
possible to specify transformations that enable updating any library-using program. We therefore
first present a few transformation systems that can be used to address the transformational part
of the problem of collateral evolution.

Tool support for updating several code locations in potentially many files is only part of the
collateral evolution problem. A main hypothesis in this work is that a significant problem is
also obtaining the transformation specification in the first place. We therefore next consider
work that relates to finding a collateral evolution transformation specification. A natural thing
to consider is that a specification that updates many code locations in a similar fashion must
somehow be able to identify common characteristics of the code locations to update. Under the
title “Program pattern discovery”, we consider work that identifies common characteristics of
code. Finally, being able to identify the changes made in a program can be helpful to either
manually or automatically construct a transformation specification for collateral evolution. We
therefore also consider related work that identifies changes in programs. Some approaches find
changes that are explicitly only useful for describing the changes made in a specific programs
whereas some are able to generalize the detected changes in order to describe more changes
compactly.

First however, we introduce concepts that will be used to classify the related work.

21 CHANGE VOCABULARY

The notion of change vocabulary is introduced by Kim et al. [32] as a characterization of the kinds
of changes that can be performed by a transformation system or discovered by change detection
approaches. For a program transformation system, the change vocabulary is the language
in which program transformations are expressed. For a change detection system, the change
vocabulary characterizes the kinds of changes that the system can detect.

7

[November 13, 2009 at 10:43]

2.1 CHANGE VOCABULARY

In the context of collateral evolution, it is natural to consider how to specify a transformation
in a manner which is able to express common characteristics. We identify two issues to consider
for the related work we consider in the following: 1. how are code locations denoted, and 2. how
can non-common or irrelevant details be abstracted.

DENOTATION OF LOCATIONS Transformation specifications can be split in two separate
concerns: identifying the locations to transform and performing the change in the identified
locations. Below, we state a taxonomy of location denotations in terms of expressiveness.

A. Explicit denotation of locations; The denotation of the location is specific to the program
in which the location occurs and is not generally usable as a denotation of locations in
other programs. If the program is represented as a tree with unique node labels, a location
denotation could simply be the node label. If there are no unique node labels, the path
from the root of the tree to the node in question could be used.

B. Context-free denotation of locations; The denotation of locations to update can only
depend on the subparts of the location being denoted. For example one can specify an
update of all function headers for functions of a certain type, but not an update of all
function calls occurring within function definition of a certain type because then the
locations to modify are dependent on the context in which they occur.

c. Context-sensitive denotation of locations; The denotation of locations to update can depend
on the context of the locations. For example one can specify an update of all method calls
occurring within a class of a certain type or all function calls performed after another
function call during execution of the program.

ABSTRACTION MECHANISMS Abstraction mechanisms are ways for the transformation spec-
ification to abstract irrelevant or non-common details of the locations to update. Below, we
consider three mechanisms for abstraction of parts of the code locations.

A. No abstraction mechanism; no abstraction of locations possible. This approach is mostly
used for tools that only ever consider the changes between two programs at a time.

B. Anonymous subpart abstraction; subparts of locations can be abstracted by a single
place-holder.

c. Named subpart abstraction; subparts of locations can be abstracted by multiple named
place-holders. We call named placeholders meta-variables. Using the same meta-variable
in multiple locations imposes an equality constraint on the subparts abstracted by the
meta-variable.

There is a subtle interaction between the denotation of locations and abstraction mechanisms.
One could imagine a system with a change vocabulary that allowed context sensitive denotation
of locations, but had no abstraction mechanisms. It could then be possible to specify such things

[November 13, 2009 at 10:43]

2.2 PROGRAM TRANSFORMATION SYSTEMS

as “all calls to close() that follows a call to open() should be changed into calls to close_all”.
However, if one added named subpart abstraction to the change vocabulary, it would be possible
to specify that only the calls to close(X) that follow calls open(X) where the argument abstracted
by X should be the same. L.e. only pair calls that handle the same resource.

22 PROGRAM TRANSFORMATION SYSTEMS

The goal of the work by Kingsum and Notkin [15] is to ease the update of application programs
in response to library changes; i.e. they are addressing the issue of collateral evolution. They
observe that, when there are many application programs using a library, putting the main part of
the burden of easing the collateral evolution on the library developer is less of a burden overall.
Therefore, the library developer is given the task of embedding special change descriptions
inside the interface definition files of a library whose interface has changed; i.e. for C programs,
he should put the change description inside the affected .h header files. The tool provided
by Kingsum and Notkin can then extract the change specification from the interface files. The
extracted change specification can subsequently be applied automatically to update application
programs.

The following kinds of changes are supported by the system presented by Kingsum and
Notkin:

¢ add and remove include files or change their names

® add, remove or rename function names.

e move a function from one include file to another

* add, remove and reorder function parameters

¢ change default arguments to non default

¢ change the return type of a function

¢ change the type of a function parameter

¢ change the meaning of an incoming function parameter
¢ remove, add, rename, or change a struct field

¢ remove, add, rename, or change a global variable

The changes that can be specified are context-free in the sense that it is not possible to
specify a transformation that depends on a location separate from the transformation site or a
transformation that depends on being in a specific context. For example, it is not possible to
update only the function calls that appear as a parameter of another function call. However, a
change can be dependent on information available at compile-time at the locations to be updated.
E.g. a transformation can be dependent on the value or type of subterms.

[November 13, 2009 at 10:43]

2.3 PROGRAM PATTERN DISCOVERY

Stratego/XT is a framework for constructing program transformation systems [55]. Trans-
formations are specified in transformation rules that are rewrite rules on the abstract syntax
trees of the input programs to transform. Rewrite rules may contain meta-variable. In order to
reduce the gap between the concrete syntax of programs and their abstract tree representation,
it is possible to specify rewrite rules in terms of the concrete syntax of the input language
instead of in terms of the abstract syntax trees. Transformation rules are applied according to
transformation strategies that are also specified by the user when instantiating the Stratego/XT
framework. A transformation strategy allows specification of how to traverse the ASTs and
in which order to apply transformation rules. Transformation strategies furthermore allows
information gather during traversal to be propagated to transformation rules. Propagating
information allows specification of context-sensitive rewrite rules.

JunGL is a domain-specific language for specifying refactorings. Programs are represented by
a graph structure that contains all the information that the language can query. The program
graph includes information about ASTs, variable bindings, control flow etc. JunGL uses features
of functional programming such as higher order functions and pattern matching to express
transformations and logic programming to formulate queries on the programs for collecting
information for use in the transformations. In particular regular expression path queries can
be used to identify paths in the program graph. Refactorings specified in JunGL may include
meta-variables (called logic variables because of the logic programming influence) and due to
the queries may be context-sensitive. In contrast to both Coccinelle and Stratego/XT, refactorings
specified in JunGL are not in terms of the concrete syntax of the programs.

Coccinelle is a program transformation and query engine. It provides a specification language,
Semantic Patch Language (SmPL), in which to specify transformations and queries on C code.
Coccinelle was initially designed to handle the collateral evolution problem in Linux, but has
since also been used to transform other systems as well as to find bugs [11, 54]. Specifications
are called semantic patches or semantic matches for transformation specifications and query
specifications respectively. A semantic patch (match) is similar in syntax to a standard patch as
shown in Example 2.5 but includes a number of additional features. Notably, a semantic patch
may specify 1. context sensitive transformations such as only changing function calls that appear
on specific control-flow paths, 2. it can abstract subparts of the program, 3. and finally since
semantic patches borrow syntax from that of standard patches, a semantic patch looks like the
code that should be transformed. The final point is important because it helps minimize the gap
between the specification of the transformation and the impact of the transformation on code.

23 PROGRAM PATTERN DISCOVERY

An underlying assumption in our approach is that common changes can be expressed in terms
of common patterns. We therefore next consider some approaches that find commonly occurring
patterns in programs.

We reuse the concepts of location denotation and abstraction mechanism introduced in
Section 2.1 to classify the kinds of patterns that can be found by a particular approach. In

[November 13, 2009 at 10:43]

10

2.3 PROGRAM PATTERN DISCOVERY

Section 2.3.2 we refine the concepts of location denotation and abstraction mechanisms to be
more suitable to classify clone detection approaches.

23.1 Inference of program behavior

When programs become large or just grow old, the documentation of the behavior of the
program may become incorrect or otherwise outdated. The problem can be even worse in case a
formal specification was given for the original version of the program. The specification (and
documentation) is useful to be able to verify, automatically or not, that the program behaves as
expected. Evolving the specification together with the program can be a difficult task and at least
for programs that initially had no specification it can be very difficult to define a specification of
the program behavior; There may be patterns in large programs that the developer is not even
fully aware of.

A solution to the problem of obtaining a program specification is to infer the specification
from the program itself. An issue that needs to be addressed is that programs may not exhibit
perfect behavior that can be inferred; There could be undiscovered bugs in the program or the
programmer may know that certain conditions are always satisfied so complete conformance
to, e.g., a strict open-close policy may not be needed. Engler et al. [19] made the observation
that in mature programs, one can expect the program to behave correctly in most of the cases.
Deviations from the common behavior can then be considered to be bugs, but also simply as
exceptions. This observation is the foundation of the approaches that we consider in this section.

An number of approaches for finding program patterns uses data mining techinques to find
sets of program elements (e.g. function or method calls) frequently occuring together. Data
mining can find many sets of frequently occurring program elements. Therefore, some sort of
filtering of the results is performed in order to reduce the number of patterns found.

The approach taken in PerraCotta by Yang et al. [61] is to look for a fixed set of pattern
templates in traces generated at run-time from instrumented programs. Specifically, Yang et al.
look for patterns of the form (PS)*; That is, repeated patterns where an event P is followed by an
event S. An example instantiation is acquiring and releasing a lock. Since the traces are obtained
from run-time generated traces, PerraCotta can take contextual information about the events into
account. For example, the acquire and release events can be associated with the object being ac-
quired and released. E.g. the trace may consist of (lockl.acq, lock2.acq, lock2. rel, lockl.rel).
Based on the two subsequences (lockl.acq, lockl.rel) and (lock2.acq, lock2.rel) Perra-
Cotta can generalize the subsequences by abstracting the name of the concrete object into
(lock.acq, lock. rel). When looking for such patterns, PerraCotta can find many uninteresting
patterns. To reduce the number of patterns, two heuristics are employed: 1. name similarity
of paired events and 2. non-embedding of events. The name similarity heuristic removes the
patterns where the events have non-similar names. This is based on an observation that related
events have similar names; E.g. lock is related to unlock. The second heuristic removes the
patterns where the first event simply serve as a “wrapper” for the second event. Suppose the
pattern is (a, b) and that a is a function call. If b occurs in the definition of the a function, we

[November 13, 2009 at 10:43]

11

2.3 PROGRAM PATTERN DISCOVERY

can say that a is a wrapper for b. Finally, once all patterns of the (PS)* form is found, PerraCotta
extends the found patterns by a transitive closure. The subsumed patterns are subsequently
removed.

PerraCotta has been used to find patterns in large Java programs and the kernel of Windows
Vista. When verifying one of the found patterns of Windows Vista a bug in the NTFS file system
was found.

DynaMine is tool that finds frequently occurring program patterns [42] in Java programs.
DynaMine uses data mining of revision histories to find candidate patterns and dynamic analysis
to validate the found patterns. The basic observation made by Livshits and Zimmermann [42]
is that methods calls checked into the revision history together often form a pattern. The data
mining process returns a set of methods that were frequently introduced into the revision history
together. In order to reduce the size of the returned set, DynaMine applies filtering and ranking
to the set. Filtering is applied to the input set to the data mining process. The main part of the
filtering removes calls to methods that are very common such as equals, add, getString, size,
and get. To further reduce the number of found sets of method calls, DynaMine applies ranking
of the found results. The ranking is based on a observation that small changes to the revision
history such as one-line additions, often represent bug fixes. If a one-line addition contained
a method call, DynaMine rank the found frequent sets of method calls that also include the
added method call higher than ones that do not. From the sets of frequent method calls, the
user can easily form simple patterns. Livshits and Zimmermann have found several patterns
corresponding to matching method calls—i.e. open followed by close. The selected candidate
patterns are then validated against an instrumented program analyzed using dynamic analysis.

The PR-Miner tool by Li and Zhou finds “programming rules” in large code bases that is
based on frequent itemset mining [2]. A programming rule is basically an association rule of the
form A = B with confidence ¢ where A and B are sets of program elements. The interpretation
of the rule is that if a function in the program contains the elements X it also contains the
elements Y with a probability of c. Program elements are taken from function definitions
and can be, in contrast to DynaMine, any part of the function. PR-Miner first parses the input
program and produces an itemset database. Each itemset is constructed from a function of the
program by hashing selected program elements of the function into numbers. In particular, local
variables are hashed based on their type instead of their name in order to capture more common
characteristics. In order to reduce the number of programming rules to construct and to make
the found programming rules more concise, PR-Miner only finds closed programming rules.
Closed rules subsume other rules that have the same support and therefore allow fewer rules to
be constructed while yielding more concise rules. The rules found by PR-Miner does not have to
conform to rule template as assumed by DynaMine. On the other hand the programming rules
can not capture the repetitiveness of the (PS)* rule template as found by DynaMine.

[November 13, 2009 at 10:43]

12

2.3 PROGRAM PATTERN DISCOVERY

2.3.2 Clone detection

In the following we give an overview of clone detection. Then we present individual work in
more detail. Very broadly speaking, clone detection is the process of finding similar pieces of
code scattered throughout a program. What is meant by “similar” and a “piece of code” varies
from one approach to another. We thus first present a general formulation of clone detection in
which the precise meaning of “piece of code” and “similarity” are parameters.

2.3.2.1 Clone detection framework

Let pcs denote a piece of code from a program Prg. Let pcs ~ pcs’ denote that the two pieces
of code denoted by pcs and pcs’ are similar according to some definition of similarity. When
pcs ~ pes’ holds, pes, pes’ is called a clone pair. A set of program pieces that are all similar is
called a clone class; i.e. cls is a clone class if and only if Vt,t’ € cIs : t ~ t’. The clone detection
problem is defined in Definition 2.1 below.

Definition (Clone detection problem) Given a program Prg, let P(Prg) be the multiset of all possible
pieces of code of Prqg. Clone detection is the problem of finding the set of all clone classes:

Clone(Prg) = {cls € P(Prg) | Vt,t' e cls: t ~ t'}

From Definition 2.1 we can see that that the similarity measure should at least be 1) reflexive
(pcs ~ pes) and 2) symmetric (if pcs ~ pes’ then pes’ ~ pes); if the similarity measure is not
reflexive and symmetric, the pair of two identical pieces of code does not constitute a clone pair.
A further consequence is that no code piece belongs in any clone class.

Definition 2.1 suggests a naive method to find all clone classes: Maintain a set of clone classes,
C found so far, and consider each piece of code, pcs (from P(Prg)): For each clone class found
so far, add the code piece to the class if it is similar to all code pieces in that class. Finally, add
a new singleton class to the set of clone classes {pcs} U C. The naive method has a run-time
complexity of O(2/P(P8)) because there are exponentially many clone classes.

PIECES OF CODE There are four common representations of pieces of code used in clone
detection. In some approaches, several representations of the same program are used.

Clear-text When using the clear text files as a representation of programs, a piece of code is
defined to be a sequence of lines of code. Representing code using clear-text means no
parsing of the source language is required and, in principle, approaches using clear-text as
their representation of code can therefore readily be applied to programs written in any
language.

Token-stream Representing a program as a stream of tokens implies that a piece of code is
defined as a sequence of tokens. As with the clear-text representation, little parsing is
needed.

[November 13, 2009 at 10:43]

13

2.3 PROGRAM PATTERN DISCOVERY

Abstract syntax tree When using an abstract syntax tree representation of programs, pieces of
code can be proper subtrees of the AST or a sequence of sibling subtrees—each sibling then
represent a statement-level term of the program. Approaches based on abstract syntax
trees require parsing of the programs. In most cases, a language specific front-end is
designed that transforms the input programs into some internal tree structure. The actual
clone detection is then done on this internal tree representation and the results then need
to be mapped back to the original code.

Program dependence graph A program dependence graph (PDG) [21] is a graph representation
of a program where the nodes of the graph are statements and predicates and edges
represent data and control dependencies. A piece of code is then a subgraph of the
program dependence graph.

SIMILARITY OF PIECES OF CODE The set of clones that can be detected by any approach
depends on how the similarity of two pieces of code is defined. In almost every approach
similarity of code pieces is defined in terms of a function that abstracts parts of the code pieces
in order to establish that the abstracted code pieces are identical. Bellon et al. [9] and Li et
al. [39] both identify a number of types of comparison functions and Evans et al. [20] further
identifies an additional similarity measure. Below we generalize the different types of code
similarity measures into four main groups:

Type 1 Identical code pieces: pcs ~ pcs’ <= pcs = pes’. Two pieces of code therefore only
constitute a clone pair when they are completely identical.

Type 2 Equivalence up to replacement of parts of the code. Two pieces of code pcs, pcs’ constitute
a clone pair when there is some way of replacing parts of pcs so that it becomes identical
to pcs’. As an example, pcs = axzx and pcs’ = ayqy constitute a clone pair because we can
replace x with y and z with q in pcs to obtain pcs’. Typically, only a certain restricted set
of parts of the code is allowed to be replaced; e.g. it is common to allow replacement of
identifiers and literals, but not keywords and operators.

Type 3 Equivalence up to replacement of parts of the code with the same symbol. Technically,
type 3 can be considered a special case of type 2 where every part is replaced by a special
symbol “_".

Type 4 Equivalence of properties of the code pieces. Instead of comparing the code pieces directly,
compare properties of the code pieces; for example Jiang et al. [28] compare characteristic
vectors of parse trees. The characteristic vectors capture syntactic information about the
parse trees such as the number of statements. Another example is to define code piece
similarity using a distance metric.

Generally, the set of clones that can be found using a type 1 (0 < i < 4) similarity measure is a
subset of the clones that can be found when using a type i+ 1 similarity measure.

[November 13, 2009 at 10:43]

14

2.3 PROGRAM PATTERN DISCOVERY 15

TyrE 2 TYPE 3 TYPE 4
CLEAR-TEXT dup
TokENS Wrangler CCFinder, Koschke JPlag
DECKARD,
AST CloneDigger CP-Miner, Asta Kontogiannis,
CloneDR
Gabel, GPLAG,
PDG Krinke, Komondoor

Table 1: Clone matrix

2.3.2.2 Description of clone detection approaches

In this section we describe the clone detection approaches mentioned in Table 1. The entries in
the table use the name of the tool implemented, if available and otherwise a surname of one
of the authors describing the approach. An author name is indicated by italic letters. In the
table, 15 approaches to clone detection are categorized according to their representation of code
pieces and similarity measure. Each approach is categorized according to where it fits in best.
Some of the approaches, however, are not perfect matches; e.g. CloneDR uses two measures for
comparing code pieces, but one of them can be considered primary.

CLEAR TEXT-BASED CODE CLONES

dup, 1992 dup is a program for finding duplicated pieces of code [5, 6, 7]. A program is
represented as a sequence of lines from the source text and a piece of code is a sequence of
consecutive lines within this source text. Two pieces of code constitute a clone-pair if there is a
one-to-one renaming of “parameters” such that the code pieces are identical. A parameter is
a substring of a line of code representing a variable, a constant, a macro name, or a structure
member name. dup finds subsequences of consecutive lines of code that appear more than one
time using a modified suffix tree construction algorithm [44]. The modification allows dup to
find parametrized matches.

2.2 Example (Parametrized matching) Consider the following two pieces of code.

X=y-2Z; x=b-c;
if (y>z) if (b>c)
m=1; n=1;
h=F(x); h=F(x);

y=X; c=X;

The first four lines of each piece constitute a code clone because of the following one-to-one
renaming: {y — b,z — c¢,m — b}. The line from both code pieces (y=x; and c=x) cannot be
included because then the renaming would have to include both y — b and y - c.

[November 13, 2009 at 10:43]

2.3 PROGRAM PATTERN DISCOVERY

dup is able to process large code bases in reasonable time. It has been applied to code that has
1.1 million lines of code [5]. Due to the fact that dup works on the clear-text of programs, the
clone detection process does not know about what subsequences constitute syntactic units of
the program being analysed. dup may therefore end up finding e.g. a clone that starts with the
last few lines of a function definition and the beginning of the next function definition. Another
problem is that it is sensitive to line-breaks in the code.

TOKEN-STREAM BASED APPROACHES The token-stream based approaches typically split the
process of detecting clones into two parts: A) a language dependent part that parses or scans
the input programs in preparation for B) the language independent part that finds subsequences
of tokens that constitute clones.

CCFinder, 2002 The CCFinder tool is split into a language dependent front-end and a
language independent back-end that performs the actual clone detection [30]. There are currently
front-ends for C/C++, Java, COBOL, VB, and C#.

The front-end takes a program and produces a sequence of tokens. When producing the token
stream, the front-end performs a number of normalizing transformations to the program with
the goal of the making code pieces with different syntactic structure but the same meaning,
syntactically identical. An example for the C front-end is to convert if (b)foo(); to if (b){ foo
(); }. Finally, all tokens representing types names, variables, and constants are replaced with
the special wildcard token.

The back-end clone detection takes a token-stream and constructs a suffix tree. Two subse-
quences of tokens from the program token-stream are considered to constitute a clone pair if
they are identical (type 3). CCFinder has been applied to large programs (millions of lines of
code).

CCFinder does not suffer from being sensitive to line-breaks as dup and it avoids detecting
subsequences of tokens that do not represent proper syntactic units, by only allowing certain
tokens to start and end a token subsequence.

JPlag, 2002 The JPlag tool described by Prechelt et al. [51] is a tool for detecting plagiarism.
It takes as input a number of programs and tries to find similar pieces of code in the programs.
If a substantial similarity is found, there is a good chance that one program is obtained by
plagiarizing the other. In that respect plagiarism detection is analogous to clone detection.
However, whereas CCFinder transforms a single program into a token-stream, JPlag transforms
several programs into several token-streams. One could then use the suffix-tree approach of
CCFinder to detect plagiarism by concatenating all the constructed token-streams into one long.

JPlag works in two steps: 1. Transform all input programs into token strings. 2. Compare all
token strings for plagiarism.

[November 13, 2009 at 10:43]

16

2.3

2.3 PROGRAM PATTERN DISCOVERY

Transforming programs to token strings The first step performed by JPlag is to convert the
given input programs to token strings. When producing token strings, JPlag ignores white-space
(including line breaks), comments, and identifiers. Some tokens can occur in multiple contexts
with different meaning. For example the open-brace token, { can denote both the start of a
method body and the start of a compound statement. Generally, the front-end process that
converts a program into a token string should therefore produce tokens that reflect the essential
program structure rather than the syntactic appearance; i.e. instead of using an OPEN_BRACE
token for the curly brace at the beginning of a method definition in Java, the front-end should
use a more descriptive METHOD_BEGIN. Not doing so could cause an OPEN_BRACE corresponding
to the beginning of a method to be matched with an OPEN_BRACE corresponding to a compound
statement. JPlag has front-ends for Java, Scheme, C++, C#, and plain text.

Comparison of similarity In order to compare two token strings for similarity, JPlag uses
the “greedy string tiling” algorithm described by Wise [58]. The overall aim is to find longest

substrings that occur in both token strings such that none of the substrings overlap each other.

Given a set of substrings found by string tiling, the similarity of two substrings is then given
by: sim(s1,s2) = 2 * coverage/(|s1| + |s2|), where coverage is the number of tokens on both strings
that occur in a found substring.

Example (Greedy string matching) Let the strings s7 and s; be given as:

s1 = xabcyz

s = yzabcxa

The result of greedy string tiling of the two strings is the following set of substrings: {abc,yz, x}.

]XV_ abc ,UZ\

’UZL abc X a]

The value of coverage is |abc| + [yz| + [x| = 6 so the value of sim(sy,s2) is 2% 6/(6 +7) =
12/13 ~ 0.92.

Using a different string tiling approach than the greedy used here, one could have selected a
different set of substrings: {ax, bc,yz}. This set of substrings gives rise to the same similarity of
the two strings being compared.

As illustrated in Example 2.3 similarity of two token strings as computed by JPlag is not
merely a matter of comparing whether one string can be renamed into the other. Therefore we
categorize JPlag as using a type 4 similarity measure.

[November 13, 2009 at 10:43]

17

2.4

2.3 PROGRAM PATTERN DISCOVERY

Koschke, 2005 Koschke et al. describes a clone detection approach that combines an abstract
syntax tree approach with a token-stream based approach [35]; the basic idea is to produce an
abstract syntax tree by parsing and then to flatten the AST into an isomorphic token-stream
by a pre-order traversal. Given a token-stream, Koschke then uses a suffix-tree algorithm to find
sequences that occur at least twice in the program.

The labels on the nodes of the AST correspond to the grammatical type of the subtree rooted
at that node. Tokens correspond to AST node-types and contain information about how many
of the subsequent tokens corresponds to the subtree rooted at the token, but not about the
actual values (lexemes) of identifiers and literals. We illustrate the conversion of an AST to a
token-stream in Example 2.4 below.

Example (Isomorphic AST flattening) Below two pieces of code and their corresponding ASTs are
shown.

Program 1: Abstract syntax tree
{ compound
b=1i;
foo(); /[\
{ bar(); = call compound
e /\ /N
}
} id id id call call
id id
Program 2: Abstract syntax tree
{ compound
a=1i;
foo();
{ bar(); = call compound
goto lab; A /\
}
} id id id call goto

id id

The token-streams are stated below. Numbers in sub-script on tokens correspond to the
number of subsequent tokens that occurs in subtree rooted at the token in the corresponding

AST.

compoundjo, =2,1do, ido, cally, idp, compoundy, cally, idp, cally, idg

compoundig, =2,1do, ido, cally, idp, compoundy, cally,idg, gotoq, idg

Assume the two pieces of code appear somewhere in the same program. The longest subsequence
of consecutive tokens occurring in both of the token-stream is:

compoundig, =2,1do, ido, cally, idp, compoundy, cally, idp

[November 13, 2009 at 10:43]

18

2.3 PROGRAM PATTERN DISCOVERY

However, that token-stream does not correspond to a complete subtree of the AST because it
misses the last statement which was not common. This information is already evident in the
token-stream because there are not 10 tokens following the compound;g token.

As illustrated in Example 2.4 there can be subsequences of tokens that appear multiple

times in the token-stream of a program that do not correspond to a complete syntactic unit.

Koschke extracts only the part of such invalid subsequences that does correspond to a syntactic
unit. Finally, Koschke is able to find sequences of clones that do not constitute a complete
syntactic unit. From the invalid subsequence in Example 2.4, Koschke would therefore find the
sequence (=2,1do,1do, cally,ido) instead of the two subsequences representing the assignment
and function-call.

Wrangler, 2006 We consider the description of the clone detection tool Wrangler by Li and

Thompson from their 2009 paper [39]. The Wrangler tool dates back to at least 2006 though.

Wrangler is a tool for refactoring of Erlang/OTP [4] programs that can additionally perform
clone detection. Wrangler detects clones in two steps. 1. In the first step clones are found from a
token stream representation of programs using a type 3 similarity measure and a suffix tree

method. The similarity measure considers all identifiers to be mapped to the same wildcard.

2. Then, the type 3 token based clones are mapped to their corresponding ASTs and the clones
are refined using a type 2 similarity measure where there are named wildcards for identifiers
and distinct wildcards for function names. During the refinement into type 2 clones, some of
the pieces of codes found to be clones in the first steps may not be type 2 clones because it
may not be possible to rename one code piece consistently into another. For example f(a+b,b+a)
and f(b+a,b+a) are considered type 3 clones because both can be renamed to f(_+_,_+_) but
Wrangler does not classify the two code pieces as type 2 clones because it is not possible to give
a one-to-one renaming of the identifiers a and b; The requirement of a consistent renaming is
similar to the requirement posed by dup. The mapping of token-based clones into AST based
allows Wrangler to rename bound variables more easily.

APPROACHES BASED ON ABSTRACT SYNTAX TREES

Kontogiannis, 1996 The approach taken by Kontogiannis et al. [34] is based on abstract syntax
trees. Two type 4 similarity measures are presented. The first measure computes feature vectors
of begin-end blocks and uses euclidian distance to decide whether the two pieces of code are
similar. An example feature for a piece of code is the number of functions it calls. The second
similarity measure uses a dynamic programming approach to compute the cost of transforming
one feature vector into the other.

CloneDR, 1998 Baxter et al. [8] present a tool called CloneDR, that finds clones based on

the abstract syntax tree of a program. Roughly, CloneDR works by comparing every subtree
with every other subtree of the tree representing the entire program to detect whether the

[November 13, 2009 at 10:43]

19

2.3 PROGRAM PATTERN DISCOVERY

compared-with subtree occurs elsewhere-if it occurs elsewhere a clone pair has been found.
Three issues are addressed by the tool: 1. near-miss clones, 2. sub-clones, and 3. scalability.

Near-miss clones are two subtrees that are not identical, but still similar. The similarity of
two subtrees is given as a ratio between the shared parts of the subtrees and the parts that are
different. This type 4 similarity measure is the main method used by CloneDR to detect when
two subtrees constitute a clone pair.

Sub-clones are simply subtrees that are embedded in larger subtrees also detected as clones.
CloneDR removes all sub-clones during the clone detection process.

Even for programs of moderate sizes, the number of subtrees can easily become large and
comparing every subtree with every other subtree then becomes infeasible. In order to address
the issue of scalability, two techniques are used: 1. pruning small subtrees and 2. pre-filtering
subtrees into equivalence classes using a more coarse-grained similarity measure. Small subtrees
are pruned from the multiset of code pieces (subtrees) P(Prg) based on the intuition that only
clones over a certain (user-specified) size are interesting. In order to avoid comparing every
code piece in P(Prg) with every other code piece, CloneDR first partitions P(Prg) into clone
classes according to a coarse-grained (type 3) similarity measure: two subtrees are in the same
clone class if and only if they are identical after all identifiers have been renamed to the same
wildcard. After the partitioning, each of subtrees in the clone classes are compared using the
more fine-grained similarity (type 4) function mentioned above. A further novel refinement of
the pre-filtering similarity measure is that it takes into account commutative operators. Thus,
two subtrees representing e.g. addition expressions but with swapped operand expressions
are considered identical. Finally, all subtrees found to be clones by the above process are
subsequently used to find sequences of subtrees that are all code clones.

CP-Miner, 2004 CP-Miner is a tool that looks for copy-pasted code in a program [40]. The
tool works by parsing the input program into a number of sequences of numbers representing
sequences of statements corresponding to a basic block of the program. A statement is turned
into a number using a hashing function. The hashing function is insensitive to the names of
variables and the values of constants. Thus two statements that are the same except for the
names of variables and the values of constants are hashed to the same number (type 3 similarity).

In order to find frequently occurring subsequences of statements CP-Miner uses a variant of
the sequence data mining algorithm by Agrawal and Srikant [1]. The subsequences found by the
sequence mining algorithm used by Agrawal and Srikant [1] are not necessarily contiguous in
the sequences from which it was found. For example, from the sequences (1,2,3) and {1, 5,4, 3)
the subsequence (1,3) can be mined with a frequency threshold of 2. The sequence mining
variant used by Li et al. [40] in CP-Miner adds a gap constraint. The gap constraint specifies the
maximum number of elements that may occur in supporting sequences of a mined subsequence.
With a gap constraint of 2 (or larger), the previous subsequence can be mined, but with a gap
constraint of 1 it can not because of the presence of both 5 and 4 between 1 and 3 in the sequence
(1,5,4,3). Strictly speaking, the similarity measure is no longer a type 3 measure because the
similarity of two pieces of code is not simply a matter of comparing normalized versions of the
code pieces.

[November 13, 2009 at 10:43]

20

2.3 PROGRAM PATTERN DISCOVERY

Once CP-Miner has found all frequent subsequences it tries to form larger sequences by
composing the found subsequences—recall that the initial subsequences are mined from a set of
sequences corresponding to basic blocks in the program. Two subsequences can be composed if
they correspond to sequences of statements that are neighbors in the program.

The fact that CP-Miner allows gaps in the subsequences of statements it finds makes it able
to detect more clones than previously mentioned approaches. Naturally, CP-Miner may find
false positives. The main cause of false positives is the hashing of all identifiers to the same
value. In order to overcome this problem, Li et al. observe that when a developer copy-pastes a
piece of code and modifies the name of a variable, all of the occurrences should be expected to
be renamed in the pasted piece of code. When comparing whether two pieces of code one can
therefore make a mapping of names from one piece of code to the other. If not all (or most) of
the occurrences of a variable have been renamed in the other piece of code, it is deemed likely
that the two pieces of code should not be considered clones.

DECKARD, 2007 Jiang et al. present an clone detection tool, DECKARD, that is based on
characterizing subtrees using numerical vectors [28]. A vector contains information about the
number of various constituent elements of the subtree represented; e.g. the number of statements,
variables, conditionals. Two vectors are considered similar if their Euclidean distance is below
a given threshold (type 4 similarity measure). Vectors are generated both for single subtrees,
but also for sequences of (sibling) subtrees. Similar vectors are clustered into clone classes
using Locality Sensitive Hashing [17]. Locality Sensitive Hashing hashes two vectors with small
Euclidean distance to the same hash value and distant vectors to different hash values. Finally,
DEckARD removes subsumed clones and clusters that contains only one vector—i.e. a vector is
not a clone if there is only one occurrence of the represented tree.

DECkARD has been applied to large code bases such as Linux and compared with other clone
detectors (CP-Miner and CloneDR). Jiang et al. report that DECKARD finds more clones than
both approaches using comparable running-times.

Asta, 2007 The Asta tool by Evans et al. [20] finds type 3 clones by abstracting parts of the
AST representing the program in question with the same wildcard. In contrast the approaches
considered previously, Asta allows replacement of any subtree and not only a fixed set of
elements such as identifiers and constants. For an AST t containing n subtrees, there are 2™
possible ways to replace subtrees with the wildcard subtree which is too many even for small
programs.

In order to address this issue, Asta first finds a set of candidate trees from subtrees of the input
AST and subsequently refine the candidates, to find more detailed clones. A set of candidate
trees is constructed from an AST by producing all possible trees with wildcards until a user-
specified depth in the AST. Le. for t = a(b(f(x), g(x)), h(y)) and depth of 2, Asta generates the
candidates {t,a(_,_), a(b(_,_), h(_))}. In the refinement phase, Asta considers each wildcard of
the candidate patterns and tries to refine it further with the restriction that the refined pattern
should match the same locations as the candidate pattern. Subsequently, subsumed patterns are
removed. Finally, Asta allows ranking of the found clones by their size, frequency, and similarity.

[November 13, 2009 at 10:43]

21

2.3 PROGRAM PATTERN DISCOVERY

The similarity ranking considers the ratio between the size of the pattern and average size of the
subtrees of the original that the pattern matches. Thus, the similarity ranking is a measure of
how different the pattern is from the subtrees it matches. If a pattern contains no wildcards it
has a similarity ranking of 1. If the subtrees abstracted by wildcards in a pattern are on average
very large, the similarity ranking approaches o.

A potential benefit of allowing replacement of more than identifiers and constants with a
wildcard is that it allows finding structural clones; e.g. a pattern foo(argl,_) can match both
foo(argl, arg2->bar) and foo(argl,arg2) which approaches merely abstracting identifiers
would not find. The difference in the two function calls may indicate an mistake in the latter
where the developer forgot to reference the bar field of the arg2 structure.

CloneDigger, 2008 The work by Bulychev and Minea refines the approach of Evans et al. by
allowing subtress to be replaced with several named wildcards (type 2). Bulychev and Minea
describe [12, 13] an method for finding clones based on anti-unification [50]. The algorithm has
been implemented in a tool called CloneDiggerthat finds clones in Python and Java programs.

The basic idea is similar to the naive clone detection algorithm outlined in Section 2.3.2.1:
A set of clone classes found so far is maintained. Each clone class is represented by a tree
with named wildcards obtained by anti-unification. When deciding whether to add an AST
representing a statement to a clone class, the statement AST is anti-unified with the anti-unifier
representing the clone class. If the obtained anti-unifier has a low (user defined) tree edit
distance from the representing anti-unifier, the statement AST is added to the clone class. Finally,
the representative anti-unifiers are used to find sequences of statements that occur more than
twice using a suffix tree approach.

APPROACHES USING SEMANTIC INFORMATION

Komondoorand Krinke, 2001 Komondoor and Horwitz make use of the program dependence
graph to look for clones in a program [33]. The approach works by converting each procedure in
the program to its PDG and finding isomorphic subgraphs. Given the PDGs for two procedures,
the tool then uses program slicing [56] to find isomorphic subgraphs. A sub-graph of the PDG
for a procedure does not necessarily correspond to contiguous pieces of the procedure. Rather,
the subgraph corresponds to dependent (control or data) parts of the procedure.

Because the ordering in the PDG is given by the data- or control-dependence of the procedure
as evident in the PDG, the approach used by Komondoor and Horwitz can detect that two
pieces of code constitute a clone pair even though they have different interleaved statements in
the procedure in which the pieces of code appear-or even different orderings of the statements
of the code pieces. The main drawback of the approach is that it does not scale well to very
large code bases—deciding subgraph isomorphism is NP-complete in general. Komondoor and
Horwitz describe the application of their tool to programs of 11.540 lines of code with a running
time of about 1 1/2 hour.

A similar approach is taken by Krinke. Instead of considering standard PDGs, Krinke consider
fine-grained program dependence graphs which are more detailed versions of the standard PDGs

[November 13, 2009 at 10:43]

22

2.3 PROGRAM PATTERN DISCOVERY

[36]. The approach taken by Krinke uses a different approach for finding isomorphic subgraphs
in the constructed PDGs that relies on limiting the lengths of paths search in the PDGs. Krinke
report better running times than those of Komondoor and Horwitz but are still not able to scale
the approach to very large programs.

GPLAG, 2006 Liu et al. describe a tool called GPLAG that looks for plagiarized code in
programs based on PDGs [41]. GPLAG compares the PDGs of two functions in order to detect
whether one of the functions can be considered a plagiarized version of the other. A PDG
is considered a plagiarized version of another if a subgraph of one graph is isomorphic to a
subgraph of the other and the subgraph is larger than a given value vy. In that case the PDGs are
said to be y-isomorphic.

In order to make the approach scalable to large programs, parts of the search space is pruned
by two filtering techniques. In order to avoid comparing every PDG with every other PDG,
GPLAG applies two filters:

¢ A lossless filtering in which small PDGs are removed completely from the set of PDGs
that needs to be compared and also it avoids comparison of a pair of PDGs when one
is larger than the other by the given value vy. The filter is considered lossless because no
pairs of PDGs that could be have isomorphic subgraphs are removed.

* A lossy filtering in which historgrams of the PDGs are used in combination with statistical
methods [37] to decide whether it is likely that two PDGs are y-isomorphic. The lossy
filter is faster to compute that subgraph isomorphism but may cause GPLAG to miss some
pairs of y-isomorphic pairs of PDGs.

Liu et al. show that GPLAG can find more detailed cases of plagiarized code than previous
tools for detecting plagiarized code and that the filtering techniques applied have a major
impact on the running time. Still, testing of subgraph isomorphism is NP-complete so some
programs can cause a running-time of hours or more. GPLAG circumvents such problems by
using a timeout value for y-isomorphism testing so that other PDGs can be compared. Using a
timeout is both unsound and incomplete, but allows GPLAG to proceed to testing other PDGs
for isomorphism.

Gabel, 2008 A recent approach for clone detection that uses semantic information is given
by Gabel et al [24]. The algorithm described by Gabel et al. finds clones from a selected set of
sub-PDGs of functions, but maps the PDGs to their corresponding ASTs and use a tree similarity
measure to detect clone pairs. The tree similarity measure used is the same as the one employed
by DeckarDp: Euclidean distance between characteristic vectors representing the trees. Selection
of sub-PDGs to compare for similarity is done using a program slicing technique.

The algorithm presented by Gabel et al. have been implemented in a tool. Gabel et al have
applied the tool to five open source projects-Linux being the largest of those. The tool is shown
to find more clones with larger average sizes.

[November 13, 2009 at 10:43]

23

2.5

2.4 CHANGE DETECTION

24 CHANGE DETECTION

In this section we describe related work that focuses on finding changes in programs.

241 Text based differencing

The diff tool [26, 43] is one of the earliest tools for finding differences between two versions of
a text-file. It finds the minimum number of changes between two text files with a line based
granularity by using a dynamic programming scheme. The basic idea is to compute a minimal
edit script that can be used to update the original program to obtain the new. The only edit
operations available are insertion and deletion of lines. Finding a minimal edit script is therefore
dual to finding the longest common subsequence of the two programs. The run-time complexity
of the differencing algorithm is in the worst case O(n?) where n is the number of lines of the
longest of the two input programs. The original UNIX version described by Hunt and Mcllroy
[26] is non-heuristic, but later implementations such as GNU diff [43] make use of heuristics
to further improve the typical run-time behavior. GNU diff is based on a O(md) algorithm
where m is the sum of the lengths of the input programs and d is the length of the shortest
edit script transforming one program into the other [45]. In the following we do not distinguish
between the two implementations of the differencing algorithm. The result of applying diff to
two programs is frequently referred to as a patch. A patch describes the line-by-line differences
of the two files by explicitly denoting the lines in the original program to delete or keep, and
also explicitly denoting where new lines should be added. An example of a patch is shown in
Example 2.5 below. Furthermore, diff does not provide any form of abstraction mechanisms,
so the changes reported are usually very verbose and low-level.

Example (Application of diff) The following two programs are retrieved from http://alfedenzo.

livejournal.com/170301.html which discusses the patience sorting based differencing algorithm
presented next.

[November 13, 2009 at 10:43]

24

http://alfedenzo.livejournal.com/170301.html
http://alfedenzo.livejournal.com/170301.html

2.4 CHANGE DETECTION

#include <stdio.h>

// Frobs foo heartily
int frobnitz (int foo)

{
int i;
for (1 =0; 1 < 10; i++)
{
printf ("Your answer is: ");
printf ("%d\n", foo);
}
}
int fact (int n)
{
if (n > 1)
{
return fact (n - 1) x n;
}
return 1;
}

J

#include <stdio.h>

int fib (int n)
{
if (n > 2)
{
return fib (n - 1) + fib (n - 2);
}

return 1;

// Frobs foo heartily
int frobnitz (int foo)

{
int i;
for (1 =0; 1 < 10; i++)
{
printf ("%d\n", foo);
}
)

Part of the result of applying GNU diff with the left program as original and right program

as updated program, is show below.

@ -1,26 +1,25 @@
#include <stdio.h>

- // Frobs foo heartily
-int frobnitz (int foo)
+int fib (int n)

{
- int i;
- for (1 =0; i< 10; i++)
+ if (n > 2)
{
- printf ("Your answer is: ");
- printf ("%d\n", foo);
+ return fib (n - 1) + fib (n - 2);
}
+ return 1;
}

[November 13, 2009 at 10:43]

25

2.4 CHANGE DETECTION

From the patch in Example 2.5 one can see that GNU diff have matched the definition of
frobnitz in the original program with the definition of fib in the new program. The only thing

these two functions have in common, however, are the curly braces used for grouping statements.

A more likely description of the changes the developer intended between the two programs
can be stated as: 1. move the definition of frobnitz below the definition of fib and 2. remove
printf-statement from the fib function. Implementing these two changes in a patch would result
in a patch that first removes all the lines of the frobnitz function definition, removing the line
with the printf-statement and finally inserting all the original lines of the removed function
after the fib function. Because of the large amount of common curly braces, this patch has the
same edit cost as the one in Example 2.5 above.

The Patience diff algorithm tries to overcome the “curly-braces” problem outlined above. It
does so by trying to group the original and updated program into blocks that should correspond

to each other. The grouping is based on unique common lines in the two input programs.

Thus, lines which only contains curly braces or other program elements that are frequent in
all programs are less likely to be used to group the input program. Instead lines containing
names of functions defined are more likely to be used for grouping. The algorithm is based on
finding longest common subsequences using patience sorting [10]. For Example 2.5, Patience
diff would find the following patch which was previously mentioned as the more likely change
the programmer intended.

#include <stdio.h>
+int fib (int n)

if (n > 2)
{

+
+
+ return fib (n - 1) + fib (n - 2);
+
+

}

return 1;

// Frobs foo heartily
int frobnitz (int foo)

{
int 1i;
for (i = 0; i < 10; i++)
{

- printf ("Your answer is: ");
printf ("%d\n", foo);

}

}

[November 13, 2009 at 10:43]

26

2.4 CHANGE DETECTION 27

-int fact (int n)

-{

- if (n>1)

- A

- return fact (n - 1) % n;
-}

- return 1;

-}

A reason the text based differencing algorithms sometimes does not capture the potential
intend of the programmer is that they do not know anything about the structure of the programs
they are extracting differences from. On the other hand they can readily be applied to programs
written in any language and even programs written in multiple languages combined in the
same text file. In the following we consider change detection approaches that are based on a
more structured representation of the programs. The benefit is that more precise changes can
be reported, but the issue is usually that the approaches are restricted to the programs that
can be represented and that they have a higher run-time complexity than the simple text based
differencing.

242 Tree differencing

A tree differencing algorithm takes as input two trees, one being the old version of the tree
and the other the new version. The differencing algorithm then tries to find a minimal set of
operations on the old version of the tree that transform it into the new version of the tree.

We next consider an number of tree differencing algorithms though the first algorithm is
not designed specifically for finding changes in programs, but rather “structured information”.
The rest of the approaches are specifically designed for finding changes in trees representing
programs.

CLASSIFICATION OF TREE OPERATIONS Common to all of the considered approaches is
that the tree operations are specific to the tree to which they are applied; the tree operations
use explicit denotation of the subtrees to modify. Typical operations are: 1. inserting of new a
leaf node with a specific label and value, 2. deleting a node, 3. moving a node from one place to
another, and 4. updating the value of a node to a different value. These tree operations can be
viewed as having no abstraction mechanism because they can not depend on the values of the
nodes to modify, only the location of the node matters.

An early approach to finding changes between two C programs is given by Yang [62]. Yang
describe the cdiff tool that is based on similar dynamic programming methods as diff, but finds
differences between two trees representing the programs. The differences are given in terms
of removals or additions and are presented by synchronous printing of the programs. Le. the
programs are printed side-by-side and annotations on the printed programs mark the differences.
The cdiff tool works by parsing the input programs into an internal tree representation and then

[November 13, 2009 at 10:43]

2.6

2.4 CHANGE DETECTION

traverses the two constructed trees in parallel. Non-leaf nodes represent a non-terminal node
with further structure whereas leaf-nodes represent terminal nodes such as identifiers that have
no further structure. When comparing two non-terminal nodes it uses dynamic programming
recursively to find the best matching of embedded nodes. Example 2.6 illustrate the matching of
non-terminal nodes.

Example (Matching of non-terminal nodes) Consider the following two sub-parts of two programs.
The left piece is intended to be part of the original program while the right piece is intended to
be part of the modified program.

while(p) { while(p) {
X =Yy + z; X =Yy + z;
a=b+ c; }
} while(p) {
a=b+ c;
)

When finding the changes between the two pieces of code, cdiff finds that in the left while
block the second assignment statement was deleted and that a while-statement was inserted
after the existing while-statement (cdiff does not detect moves). In contrast, the text-based diff
tool would simply find that two lines were inserted in the middle of the while-statement.

As with all the tree-differencing approaches considered, the changes found by cdiff have no
abstraction mechanisms and use an explicit denotation of the modified locations. Therefore,
a renaming of a variable name is reported as the deletion of the old variable and subsequent
insertion of a new variable for every location in the tree in which the variable is used.

Chawathe et al. [14] describe a method to detect changes in structured information based
on a ordered tree representation of the original and updated version. Their goal is to derive a
compact description of the changes between the original and updated tree. To this end, they
define a notion of a minimum cost edit script. An edit script is a sequence of operations where
each operation has an associated cost determined by some measure of structural similarities
between the values of the nodes. In order to find the minimum edit script, a matching of the
nodes in the two input trees needs to be made. The matching maps nodes of the original tree to
nodes of the updated tree. Nodes that are mapped by the matching should be considered equal.
Nodes from the orignal tree not in the domain of the mapping are considered deleted and nodes
in the new tree not in the range of the mapping are considered to be newly inserted nodes. In
order to compute a matching of the tree nodes, a leaf node comparison function is used. Under
the assumption that only one pair of leaf nodes is considered similar by the comparison function,
the mapping of nodes from the old tree to the new can be deterministic. The consequence is
that the edit script constructed from the node mapping is also a minimum edit script. This
assumption generally holds for documents where the internal nodes only serve a structural
role whereas the main content is found in the values of the leaf nodes; a IXIEX document is an
example where the assumption holds when paragraphs are taken to be the value on leaf nodes,

[November 13, 2009 at 10:43]

28

2.7

2.4 CHANGE DETECTION

because then it is almost certain that all leaf nodes will have different values. The leaf node
comparison function used by Chawathe et al. is the Levenshtein string edit distance [38] finds a
the minimum edit distance between two strings using only insertion and deletion operations on
characters.

The CHANGEDISTILLER tool developed by Fluri et al [23] provides a version of the tree differ-
encing algorithm by Chawathe et al. [14] better suited for finding changes in (the abstract syntax
trees of) programs. Fluri et al. find that the basic assumption underlying the tree differencing
method suggested by Chawathe et al. does not hold for programs when the leaf nodes represent
non-compound statement-level elements of the program. It is not uncommon that very similar
statements, for example printing of debugging information, are spread throughout a program.

Example (Simple tree change) Consider the following two trees representing the old version of
part of a program body (left) and the updated version (right). For inner nodes, the labels of
nodes are shown while for leaf nodes, the value is shown.

£ R)

.[:

random();) 7 \ random() ; foobar();
N P
~ - ?irst

Matching of nodes is illustrated with stippled lines. Using the matching approach of Chawathe
et al. the foo(); leaf node will be matched with the foobar(); leaf node in the tree on the right.
Using the best-match approach of CHANGEDISTILLER, the foo(); node will be matched with the
foo(); node in the tree on the right.

The consequence of matching foo(); with foobar(); is that the node is considered to have
changed. The edit script generated by the algorithm of Chawathe et al. would first move the
foo(); node to be a sibling of the random() ; node, update foo(); into foobar();, and finally
insert a new node as child of body with value foo() ;. In contrast, CHANGEDISTILLER can simply
generate an edit script that consists of inserting a new node with the value foobar() ;.

In order to make the tree differencing approach by Chawathe et al. more suitable for finding
changes in programs, CHANGEDISTILLER matches leaf nodes according to the best match instead
of the first. CHANGEDISTILLER also uses a bigram string similarity comparison function instead
of the Levenshtein string edit distance metric used by Chawathe et al. Bigram string similarity is

[November 13, 2009 at 10:43]

29

2.8

2.4 CHANGE DETECTION

better at identifying permutations of substrings than the Levenshtein comparison. For example,
a renaming of verticalDrawAction into drawVerticalAction is detected as such by the bigram
similarity comparison.

The changes found by CHANGEDISTILLER are in terms of tree operations. The tree operations
are then used by Fluri et al. to classify the changes made in a program across versions using
change types [22]. A change type is a high level summary of possibly more than one tree operation.
A simple example is “Statement Ordering Change” which summarizes a particular node moving
tree operation but does not reveal what statements were moved. Example 2.8 below illustrate
the difference between tree operations and change types.

Example (Simple program update) A function and its updated version is shown below

void foo () { void foo () {
int x = 42; long y = 42;
X = X + X; y =y +y;
bar(x); bar(y);

} }

Three tree update operations are necessary to update the program. In terms of the operations
defined by Fluri et al., the operations needed to update the original program are:

Upd(ny,long y = 42;)
Upd(nz,y =y + ;)
Upd(ns,bar(y);)

Each of the update operations explicitly denotes the node in which to set a new value (non
compound statement). In terms of the change types, there would be just one: “Statement update”
with a count of three.

The change types of CHANGEDISTILLER can provide a classification of the changes performed
in a program update. However, change types are not very useful as a measure of what actually
changed in the program. The approach taken by Neamtiu et al. [46] can be seen as a middle-
ground between the very low level tree operations and the very high level change types.
Neamtiu et al. finds differences on the function level between two programs by matching the
ASTs computing a bijection between types and variables along the way. The bijection makes it
possible to influence matching of ASTs, so that once a variable have been identified as renamed
(i.e. it is put into the bijection), the matching of two ASTs representing the variable can result in
a match stating that the two ASTs does not correspond any further changes. For example, from
Example 2.8 Neamtiu would extract a more concise description of what was changed in the
original program: “the variable x was renamed to y everywhere in the function” and “the type of
x changed to long”. Neamtiu et al. compute such changes from original and updated programs
by attempting to match the ASTs of the old functions with the corresponding new function.
Neamtiu et al. use the name of the function in order to identify which of the functions in the
original program should be matched with which functions in the updated program. Names

[November 13, 2009 at 10:43]

30

2.4 CHANGE DETECTION

which disappear in the new programs are reported as removed and new names in the updated
program are reported as added functions. Thus, the approach is not well adapted to changes
where an old function is renamed but otherwise not changed as is the case for rename-method
refactorings because it would report the old function as removed and the renamed function as
added.

Matching two ASTs involves traversing the two ASTs in parallel and computing a bijection
between variables (for both local and global variables) and a bijection between types. Based on
these variable- and type-maps Neamtiu et al. can then report whether a program merely had
its variables renamed or types changed as illustrated in Example 2.8—or whether some other
change was applied in a function body.

Dex is a tool that finds changes between two C-programs represented by “abstract semantic
trees” [52]. An abstract semantic tree is a traditional AST with additional semantic information
about types and binding of local variables. The result of applying Dex to two trees is an edit
script that transforms the original tree into the updated tree. Like in previous tree differencing
approaches the edit scripts returned provides no abstract mechanism and denote locations to
modify explicitly. Raghavan use Dex to collect statistics about changes related to bug-fixes. The
statistics are similar to the change types that Fluri et al. find. A major difference between Dex
and CHANGEDISTILLER and the method described by Chawathe et al. is that when computing
the matching of tree nodes, previous matches are taken into account. For example if a node
correspond to a variable declaration is matched with a node in the updated tree that is also a
variable declaration but with a different name, the variable is considered to have been renamed

and this information is used when matching nodes where the variable is subsequently used.

The ability to take such previous matches into account is similar to the variable name bijection
computed by Neamtiu et al.

2.4.3 Higher level approaches

Another approach to extracting high-level descriptions of the changes made in a two versions of
a program is given by Jackson and Ladd [27]. The basic approach is based on the semantics of
the program being analysed. Concretely, Jackson and Ladd define the semantics of a function in

a program in terms of an approximate relation between the inputs and outputs of the function.
The relation basically states that the value of a variable depends on the value of another variable.

Their “Semantic Diff” tool can then compute the dependence relation for the old and new
version of the function and report the differences between the relation.

Example 2.9 is taken from the article by Jackson and Ladd [27] because it is very illustrative
of one of the strengths of their semantic diff tool.

2.9 Example (Semantic diff) Suppose the old version of a function is given as follows:

void add (int x) {
if (x != HI)
TOT = TOT + x;
else

[November 13, 2009 at 10:43]

31

2.4 CHANGE DETECTION

TOT = TOT + DEF;
}

The dependence relation then contains the following pairs:
(TOT,TOT),(TOT,x), (TOT,DEF), (TOT, HI), (x, x), (DEF, DEF), (HI, HI)

The meaning of a pair (a, b) is that the value of a depends on the value of b. For example we
notice that TOT depends on both itself and x and the value of x depends on nothing but itself.

We now swap the branches of the conditional and invert the conditional expression. We do
not intend to change the behavior of the function.

void add (int x) {

if (x = HI)

TOT = TOT + DEF;
else

TOT = TOT + x;

}

The dependence relation now contains
(TOT,TOT), (TOT, DEF), (TOT, HI), (x, HI), (DEF, DEF), (HI, HI)

The difference is that T0T no longer depends on x and x no longer depends on itself but HI
instead. The reason for the change in the dependence relation is simple: we made an error in the
update of the function. The conditional expression is now an assignment instead of an equality
test because we wrote = where we should have written ==.

As illustrated in Example 2.9, extracting the semantic differences between two versions of
a program is useful to understand the behavioral impact of the changes. Changes such as

simply renaming variables or modifying code-style are not detected as semantic differences.

Likewise, semantic differences may not be able to express the changes that occur when a
collateral evolution is applied to a program; A program update in response to an API update in
a used library need not modify the semantics of the program in terms of observable changes in
input/output behavior.

The JDr1FrF tool by Apiwattanapong et al. is a tool for finding changed in Java programs
[3]. The tool is an implementation of a graph differencing algorithm that finds changes in
special control-flow graphs for object oriented programs. The algorithm (CALcDIFF) underlying
JD1rF works by first matching classes and interfaces of the original and updated version of the
program being analysed. The matching of classes and interfaces is based on a name-similarity
measure. Once classes and interfaces have been matched, the methods of matching classes are

compared. To compare methods, CALCDIFF first constructs control-flow graphs for the methods.

The constructed control-flow graphs explicitly encode features particular to object-oriented
programs. For example method calls are represented in the CFGs by multiple “callee” nodes
denoting the class from which the method is defined and for each such node its incoming edge
is labeled with the class from which the method is invoked. Example 2.10 shows two programs
and CFGs for a method in the program.

[November 13, 2009 at 10:43]

32

2.4 CHANGE DETECTION

2.10 Example (Extended CFGs) Below, we show two Java programs. The right-most is a slightly modi-
tied version of the left-most. The modification is that class B now provides a definition of the
method m1. Below each program we have constructed the extended CFG for the method m3.

public class A { public class A {
void ml () {...} void ml () {...}

} }

public class B extends A { public class B extends A {

void ml () {...}

void m2 () {...} void m2 () {...}

} }

public class D { public class D {
void m3 (A a) { void m3 (A a) {

a.ml(); a.ml();

} }

} }

J
CFG for original program CFG for updated program

Entry

call a.ml()
A B

A.ml())

A.m1()

Er;/

Exit

Entry

call a.ml()
A B

B.ml()

Eﬁ/

Exit

Because the CFGs encode information about behavior related to object oriented programs,
JD1FF can find both direct changes, e.g. that a particular statement was changed syntactically,
and indirect changes. Indirect changes are changes to the potential behavior of the program
caused by some other change in the original program. Indirect changes are not immediate from
the program text and would be missed by e.g. diff. Example 2.10 shows an example of an
indirect change. A class that extends another class is modified to override the definition of a
method inherited from the superclass. The consequence is that the method m3 which calls m1
may exhibit new behavior in the modified program. JD1FF reports these indirect changes as well
as the direct ones by explicit denotation of the locations in the code that have changed.

[November 13, 2009 at 10:43]

33

2.4 CHANGE DETECTION

Kim et al. propose a method to infer “change-rules” from two versions of the same program
[32]. Their goal is to construct a small set of change rules that capture many changes. Change
rules express changes related to program headers (method headers, class names, package names,
etc.). The basic shape of a change rule is given as: Vx € scope : transformation, meaning that
every match described by the scope is modified by the transformation. The scope, described
using a variant of regular expressions, ranges over the textual representations of the previously
mentioned headers. By using regular expressions as an abstraction mechanism the scope can
be extended to e.g. all calls to a method that starts with the prefix foo. Thus, change rules can
express that a given transformation was applied to a set of entities, which is more compact than
simply enumerating all entities. The regular expressions do not support naming of abstracted
subparts, so we classify the abstraction mechanism of the approach as “anonymous subpart
abstraction”.

Kim et al. also describe an extended version of the previously mentioned [31]. The method,
implemented in a tool called LSdiff, finds systematic changes in programs. A systematic change
is a high-level description of changes made in several locations and locations are no longer
restricted to method headers only. The specification language provides an abstraction mechanism
that allows abstracting subparts of locations by named meta-variables.

In LSdiff programs are represented by a set of facts that hold of the programs. For each
program entity LSdiff computes the difference between the original and the updated entity.
Based on all fact sets and difference sets, LSdiff can infer systematic changes evindent in
the updates of the programs given. LSdiff expresses changes using logic rules. An example
of a logic rule is deleted_method(m, "getHost", t) = added_inheritedfield ("getHost",
"Service", t). The rule should be interpreted as “all types t that deleted the method with
fully-qualified name m and short name getHost method, inherit getHost from Service instead.

Henkel and Diwan propose a system (CarcHUP!) for evolving programs in response to library
refactorings that is based on recording a log of the refactorings performed in the library [25].
CarcuUr! makes use of the in build refactoring support in the Eclipse IDE to record refactorings
performed to library in a log. The user can chose not to include refactorings in the log that
he knows has no visible impact in libraries using the library. The log can subsequently be
“replayed” to update programs that use the library. Eclipse performs refactorings by creating
a refactoring object that when applied performs the specified refactoring. The create object
traverses the internal representation of the source-code and produces new code. The refactoring
object takes care of updating both the specific refactored location as well as usage-locations—i.e.
for a rename method, it renames the method in the method declaration but also renames
occurrences of the method name where it is used. To replay a refactoring log in order to update
a program, CATCHUP! reconstructs the refactoring object from the log. The intention is to have
the refactoring object update usage locations in the program that needs updating. The system is
implemented in an Eclipse plugin but there is no support for using the recorded log in other
IDEs or otherwise outside of Eclipse.

Weifsgerber et al. present a technique to identify likely refactorings in the changes that have
been performed in Java programs [57]. Like Kim et al., they search for a fixed set of transfor-
mation types (in this case, rename method, add parameter, etc). Each transformation type has

[November 13, 2009 at 10:43]

34

2.4 CHANGE DETECTION

an associated precondition that enables the transformation. They first collect various signature
information about the old and new versions of a given file, and then use this information to
determine whether the preconditions of any of the transformation types is satisfied. If a precon-
dition is satisfied, the transformation is considered a refactoring candidate. They furthermore
use clone-detection (CCFinder) to check whether the change performed by a candidate is likely
to semantics preserving. The transformation types given by Weifsgerber et al. do not support
any kind of abstraction mechanisms such as meta-variables. Thus, two detected changes can not
be generalised into a more compact description that covers both of them, as could potentially
be done by the method given by Kim et al. Finally, the method is not able to detect when two
refactorings have been applied to the same entity. According to Weifsgerber et al. this is the main
cause of impreciseness of their method.

Xing and Stroulia present a system, called Diff-Catchup, that helps developers update an
program in response to refactorings in a library used by the program [60]. Given a point in
the program that no longer compiles due to refactorings in a used library, the Diff-Catchup
then 1) searches for changes to the API used at that point using UMLDIff[59], 2) tries to find
suitable replacements using heuristics, and 3) collects usage examples for the found potential
replacements. When collecting usage examples, Diff-Catchup looks for three specific usage
examples: 1) obtain-object usage where the example shows how to obtain an object for nonstatic
methods/fields of the required type in the new code, 2) parameter-list usage where the examples
shows how to obtain values for added parameters to a method, and 3) replacement usage where
the example shows how to update references to removed or replaced methods, constructors, or
fields. In contrast to Henkel and Diwan [25] the developer is not dependent on using the same
IDE as the developer of the library since no recorded log of refactorings is required. Also, the
update of a program is not dependent on the library developer having constructed a complete
update specification as required by Kingsum and Notkin [15]. To effectively use Diff-Catchup it
is required that there is code already updated to use the new library. However, Xing and Stroulia
find that the library code itself often contains enough such voluntary migrations. A drawback of
using Diff-Catchup is related to its interactive approach. When a program does not compile due
to library changes, the developer has to go through all of the compilation errors or warnings
and invoke Diff-Catchup. After having performed a number of such assisted updates to the
program, the developer might have learned what to do and is able to update the remaining
code sites without assistance, but Diff-Catchup does not provide generalization features in order
to automate the remaining updating. Indeed, one can classify Diff-Catchup as using explicit
denotation of locations and providing no abstract mechanism.

Dig et al. propose a tool called RefactoringCrawler that is able to recover the refactorings
performed by analysing two versions of a program (the original and refactored) [18]. The tool
is finds refactorings in two steps. In the first step RefactoringCrawler identifies similar pairs
of packages, classes, methods, and fields using a syntactic similarity measure. The similarity
measure compares the entities by first hashing each entity into a sequence of numbers so that
similar sequences represent similar entities. Thus, minor edits of entities results in only minor
changes to the hashed numbers. This similarity measure is comparable to the one used by
CP-Miner. Based on the found pairs of similar entities, RefactoringCrawler proceeds by iterating

[November 13, 2009 at 10:43]

35

2.4 CHANGE DETECTION

a semantic analysis. In the iteration a log of refactorings discovered so far is used for discovering
more refactorings which are subsequently added to the log. The semantic analysis can identify
seven kinds of refactorings:

1. RenamePackage

2. RenameClass

3. RenameMethod

4. PullUpMethod

5. PushDownMethod

6. MoveMethod

7. ChangeMethodSignature

To detect that e.g. a pair of two syntactically similar methods constitute a particular refactoring,
RefactoringCrawler consults a graph of “references” for the methods. The nodes of the reference
graph are the packages, classes, and methods of the program. There is an edge between two
nodes if the entity represented by one node somehow references the entity represented by the
other node. An example of a reference is whether the entity (method) calls the other. Thus, to
detect that a pair of syntactically similar entities corresponding to two methods constitute a
RenameMethod refactoring, RefactoringCrawler essentially checks whether the two methods
are used and occurs in similar contexts in the old and new program. If so, the pair is deemed a
RenameMethod refactoring. The benefit is that RefactoringCrawler is able to detect refactorings
when the old code is not removed after the refactoring, but merely declared deprecated.

In an approach based on data-mining, Schifer et al. find framework usage changes based on
already ported programs. The ported programs can be test programs within the framework
itself or programs external to the framework that make use of the framework. The approach
first extracts so-called usage facts, creates a transaction database from usage facts, and finally
uses data mining to find association rules. Usage facts are extracted from pairs of corresponding
classes in the old and new version of the program and includes such things as methods called
by methods in the class, fields accessed, classes instantiated and classes extended etc. Usage
facts additionally contains information from which version of the program it was extracted.
Usage facts are then grouped into subsets according to a specific set of change patterns identified
by Schéfer et 1. Change patterns encode what usage facts correspond to specific changes in
the program. An example is “calls becomes accesses” which encodes that a method call was
replaced with a field reference and have the effect of grouping a usage fact in the original
program about a method call with usage facts about field access in the new version into a
transaction. Furthermore only usage facts from corresponding program entities are combined
into transactions. L.e. usage facts from a particular method is only combined with usage facts
from the corresponding updated method. Finally, transactions which do not corresponding to
changes are removed. The rules found by association mining are of the form A = B where A and

[November 13, 2009 at 10:43]

36

2.4 CHANGE DETECTION

B are singleton sets of usage facts from the old and new version of the program respectively—in
contrast to PR-Miner where A and B could be larger sets. In case multiple rules with the same
antecedent (A) but different consequent (B) is found, only one is selected as the most likely
valid change rule. The decision of which association rule should be considered the most likely
is based on how similar A and B are when compared with a string similarity function.

The goal of the approach of Schifer et al. and RefactoringCrawler is very similar, but since
the former is able to find changes that are not caused by refactorings, it finds some changes that
RefactoringCrawler is not able to. However, RefactoringCrawler is also able to find some changes
that the approach of Schifer et al. is not able to. The reason is that the ported programs analyzed
by Schifer et al. did not make use of the those particular parts of the framework. Finally, the
approach of Schifer et al. can find framework usage changes even when the framework did
not remove the old code, but merely marked it as deprecated. The reason for this, is mainly to
be found in the choice to analyze framework-using code over analyzing the changes within the
framework itself as done by e.g CarcuHUP! and RefactoringCrawler.

[November 13, 2009 at 10:43]

37

SETUP Chapter

In this chapter we present a simple framework in terms of which we define our change inference
method. The framework consists of a simple term language and term patterns. The term
language consists of just two types of terms, atomic and compound. Using the term language
we can represent the abstract syntax trees of C code. Term patterns are used to represent several
terms in one compact representation, which is called pattern matching in the framework. We
present a computable mechanism by which we can construct a unique pattern representing a
set of terms.

31 THE LANGUAGE OF TERMS

While the approach described in this thesis targets C code, we formalize it using a simpler
language, which we call the language of TERMs. The syntax of TERMs is given in Definition 3.1
below. C code is then translated to the simpler term-language, making sure that the results
we find are presented in using the syntax of the C language. The two main benefits of such a
separation are:

¢ Stating the formalization in using a simpler language allows us to focus on the core issues
of change inference and makes the definitions much simpler to state and reason about.

* Separating the change inference process into a language dependent front-end and a
language independent back-end makes it more easy to adapt our approach to other
languages than C.

Definition (Syntax of Terms) TERM ::= ATOM | ATOM(TERM ")

In this definition, and subsequently, t* indicates one or more comma-separated occurrences of
the nonterminal t. Furthermore, terms will be written as a and a(ts), for atomic and compound
terms respectively. Intuitively, we represent a C AST by using the ATOM term to represent
symbols of the grammar and AToM(ts) to represent trees labeled with a symbol represented by
AToM at the root and subtrees ts.

311 Constructing TERMs

Given an AST obtained by parsing a C program, we wish to construct an isomorphic TErRM tree.
We now discuss some of the issues considered in translating a C AST to a TErRM tree.

38

[November 13, 2009 at 10:43]

3.1 THE LANGUAGE OF TERMS 39

3.2 Example (Translation of C code to TERM) Below we present a simple C function and a simplified
AST of the function. Nodes are labelled with their corresponding nonterminal or terminal

symbol. Only leaf nodes are considered to have values, which correspond to the lexeme of the
terminal represented at the node.

int foo(int x) {

bar(x, 42);
return x * X;
}
fdef
fhead tbody
int id params stmt stmt
arg call returnstmt
int id id args binary

N TN

id lit id op id

mul

The result of translating the AST into a TErwm is shown below.

fdef (
fhead(int, id(x), params(arg(int, id(x)))),
fbody (
stmt(call, (id(bar),
args(id(x), 1it(42)))
),
stmt (returnstmt(
binary(id(x), op(*), id(x))
)

As can be seen from Example 3.2, terminal (leaf) nodes of the AST are not represented by an
ATOM tree, but rather a compound a(a’) where a represents the terminal fype (identifier, constant,

[November 13, 2009 at 10:43]

33

34

35

3.6

3.7

3.2 TERM PATTERNS

etc.) and a’ represents the lexeme of the terminal. Since the C code and the corresponding TERM
representation is isomorphic, we will present larger examples using the syntax of real C code,
while examples that serve to illustrate points about definitions are given using their TErRm
representation. Also, we shall not go into any detail about the parser we have used to parse C
programs as the parser used is the same as the one used in the Coccinelle project [48, 47].

32 TERM PATTERNS

Our approach for finding common changes in a set of changed programs is based on the
assumption that there should be common characteristics about the locations that were modified.
In particular, we find that it is the case that it is often possible to characterize the locations that
have changed similarly by their structural commonality.

A term pattern is a TERM that may additionally contain meta-variables, which are placeholders
for concrete terms. Re-using the concept of change vocabulary from Chapter 2, term patterns
can be said to provide a context-free denotation of locations with named subpart abstraction. In the
following we use the words term patterns and patterns interchangeably. The syntax of patterns
is as follows:

Definition (Syntax of Patterns) p = ATOM | ATOM(p ™) | Meta
Where Meta denotes a set of meta-variables. In the examples, we use uppercase letters to denote meta-
variables.

Definition A sequence of patterns py to pr is denoted {p1,...,pn). The empty sequence is denoted ().

Definition Pattern size The size of a pattern is the number of atomic patterns in it plus the number of
constructors. The size of a pattern p is denoted |p.

|l = 1
|a(t]/---/tn)| —]+|P1|++|Pn|
We extend the pattern size function to sequences of patterns {pi,...,pn) by
[Kp1, - Pl = 2 Ipil

Definition (Environments) An environment is a deterministic function mapping meta-variables to pat-
terns: © : p — p. The domain of © is the set of meta-variables that it maps.

Definition (Environment application) Applying the environment © to a pattern yields a new pattern
with meta-variables occurring in p from the domain of © substituted.

0X _ t le —teo
X otherwise

fa = a

Oa(pi,...pn) = a(Op1,...,0pn)

[November 13, 2009 at 10:43]

40

39

3.10

3.2 TERM PATTERNS

Sometimes, we will need to do a reverse substitution. That is, given a term and an environment,
we wish to substitute subterms of the term with the meta-variables binding the subterm in the
environment.

Definition (Reverse substitution) Given term t and environment 0, the pattern obtained by reverse sub-
stitution of © to t is given as 0 't.

Reverse substitution is only well-defined when the environment maps distinct meta-variables
to distinct terms.

A pattern p matches a term t if there exists a substitution 6 of meta-variables for terms such
that applying the substitution to the pattern yields a term that is syntactically equivalent to t,
i.e.,, Op =t where 0p denotes application of 6 to p.

Definition (Pattern match) We denote that pattern p matches a term t evidenced by environment © by
pJet:

plgt<=0Op=t
We sometimes omit the explicit reference to © and say that p matches t:
pdt<<310:0p=t

We extend the notation to sets of terms such that when a pattern matches all the terms in a set of terms
ts we simply say that p matches ts:

pdts<=Vtets:pJt

We also define pattern matching for patterns with patterns reusing the notation and definitions from
above.

A meta-variable may occur more than once in a pattern, in which case all occurrences of the
meta-variable must match the same concrete term. For example, the pattern f(X,X) matches
any concrete term that is a call to f with two syntactically equal arguments. We call a pattern
which is simply a meta-variable a trivial pattern. We furthermore say that a pattern matches a
set of terms if it matches all of the terms in the set.

Definition (Alpha equivalence of patterns) Two patterns p and p' are said to be alpha equivalent if and
only if they differ only in choice of names of meta-variables denoted p ~ p'. We first define an auxiliary
relation © - p ~ p’ and then let p ~ p’ denote 30 : 0 - p ~ p’.

X X' €0 0sisn OFpi~p]
Oa~a O X~X' O aPi, - Pn) ~ alpy, - Pn)

[November 13, 2009 at 10:43]

41

3.11

3.12

3.2 TERM PATTERNS

321 Abstracting terms

A problem that we will frequently run into is the problem of finding a pattern that matches a
set of terms. The goal of this section is to define a computable mechanism with which we can
find patterns matching a set of terms. We end up with a definition of a function that given a
set of terms returns a unique pattern such that the pattern matches all of the terms. We denote
the function applied to a set of terms as xts where ts is the set of terms. This section contains a
number of definitions that are important to show the uniqueness of the pattern finding function
and reveal in what sense the pattern is the “best” pattern, but the main point should be clear by
Definition 3.12. Readers more interested in the core of our change inference approach can skip
to Chapter 4 on a first reading.

In general, there may be more than one pattern matching a set ts. In particular the trivial
pattern matches any set fs. Thus, we define a notion of a “most informative” pattern that
matches the set of terms given.

MOST INFORMATIVE PATTERN Relative to a set of terms ts, the most informative pattern is
intuitively a pattern that 1. matches fs, 2. retains information about which subterms are equal,
and 3. abstracts as little as possible. Example 3.11 below shows gives an illustration of patterns
that satisfy the properties mentioned above.

Example (Pattern abstracting two terms) Let two terms be given:

t1 = h(f(42),9(y),y)
t2 = h(f(42),9(x),x)

The following three patterns all match {tq,t,}:

p1 = h(f(X),g(Y), 2)
p2 = h(f(X),g(Y),Y)
P33 = h(f(42)/g(Y)/Y)

The first pattern only satisfy the first condition: p; < {t1,t2}. The second pattern in addition
satisfies the second condition that information about which subterms are equal should be
retained in the pattern. The third pattern also satisfies the condition that as little as possible
should be abstracted.

Concretely, we define the most informative pattern with respect to a set of terms as the
most specific pattern matching the terms. The concept of the most specific pattern is similar to
the concept of most specific generalization or anti-unifier first presented by Plotkin [50]. Our
algorithm for computing most specific patterns, presented shortly, is similar in spirit to the one
presented by Scerensen and Gliick [53].

Definition Most specific pattern Given terms ts, a pattern p is the most specific pattern for ts if and only

if:

[November 13, 2009 at 10:43]

42

3.13

3.14

3.2 TERM PATTERNS

1. p <'ts (the pattern matches all terms)
2. Vp':p’ <Its = p’ <p (other patterns are more general)

We denote that pattern p is the most specific pattern for a set of terms ts as msp(p, ts).

One can show that the most specific pattern for a set of terms is unique up to alpha equiva-
lence.

Theorem (Uniqueness of most specific pattern) Given terms ts, the set of patterns MSP(ts) = {p |
msp(p, ts)} are all alpha equivalent:

vp,p' € MSP(ts) : p ~ p’

Proof (Proof of Theorem 3.13) Given terms ts and two patterns p; and p; such that msp(p1, ts,)
and msp(pz, ts,), we show that py1 ~ pa.

By the second clause of the definition of msp(p, ts) we infer that p; <p; and p2 <p;. Unfolding
the definition of pattern matching we get: a) 361 : ©1p1 = p2 and b) 36, : 0,p2 = p1.

We now proceed by induction on the structure of p; to prove that 01p71 =p2 A 02p2 =pl =
P1 ~ P2.

Cask: p1 = a. From a) and b) above, we get p, = a and a ~ a holds by definition.

Cask: p1 = X. From a) and b) above, we obtain 67 = {X — p2} and from b) we have 6,p, = X.
Since the domain of substitutions is a set of meta-variables, we obtain 0, = {X’ — X} and
p2 = X’. We can then conclude X ~ X'.

Cask: p1 = a(p1, ..., pn)- From a) and b) above, we obtain p> = a(pj, ..., pn). By definition of
substitution application we can infer 61p; = p{ and 0,p; = p; for 1 < i < n. By the structural
induction hypothesis we conclude p; ~ p{ and by definition of alpha equivalence we conclude

that a(p1,...,pn) ~ a(p], .-, Pr)- .

COMPUTATION OF MOST SPECIFIC PATTERN Since the set of most specific patterns with
respect to a set of terms consists of all alpha equivalent patterns, any one of those patterns
represents the most specific pattern equally well. We can therefore define a deterministic
function, that finds a most specific pattern relative to a set of terms. Below we define a function
that takes two patterns and returns a most specific pattern for those two patterns. Later we
extend the function to compute the most specific pattern for a set of patterns.

[November 13, 2009 at 10:43]

43

3.2 TERM PATTERNS 44

3.15 Definition (MSP function) Given patterns p1 and py, p1 * p2 is the most specific patten for p1 and p;.
The definition of - x - is given below:

P1*P2 = 3 if fuse(p1,p2,) = (p3,0)
where
(p, 00) ifp=p'
(a(py, .. Pn), on) ifp#p Ap=alpr,...pn) A
P =a(pj, - Pn) A
fuse(pi, pi, 0i-1) = (p{,0¢) for T<i<m
(Z,00) ifp#p' n(Z(p,p')) € 00
| Xiol, 0[Xjo = (p,P")]) otherwise

fuse(p,p’, 00) = 14

In order to show that p; * p2 = p3 computes a most specific pattern relative to the patterns
p1 and p2 we must show that p3 < {py,p2}and Vp :p < {p1,p2} = p Ips.

3.16 Proof (msp(p,p’) computes a matching pattern) We show by induction on the derivation of
fuse(p,p’,0) = (p”,0’) that p” < {p,p’} for any o. msp(p,p’) <{p,p’'} then follows directly.
There are four cases to consider.

fuse(p,p’,0) = (p, o) (THE FIRST CLAUSE IN fuse): From the definition of fuse we know that
p =p’ and that p” =p = p’. We conclude that p” < {p,p’}.

fuse(p,p’, 0) = (a(py,....Ppr), 0n) (THE SECOND CLAUSE IN fuse): We infer that p = a(p1,..., pn)
and p’ = a(pj, ..., pn). Using the inductive hypothesis, we show that p{ <p; and p{ <p! for
1 <1i<n. It follows that a(py, ... pn) <{a(p1,....Pn), a(pj, ... Pr)} as required.

fuse(p,p’,0) = (X,0) (THE THIRD AND FOURTH CLAUSE IN fuse): It follows directly that X <
{p,p’} for any meta-variable X. .

3.17 Proof (msp(p,p’) is most specific) We show that fuse(p,p’,0) = (p”,0’) = Vpq : pa Ip” for
any o by induction on the derivation of fuse(p,p’,0) = (p”, o). It then follows that Vpq :
pa Imsp(p,p’).

There are four cases to consider.

fuse(p,p’, o) = (p,0) (THE FIRST CLAUSE IN fuse): Since p = p’ and p” = p = p’ by definition
of fuse it follows that Vpq : pa < {p,p’'} = pa Ip”.

fuse(p,p’, o) = (a(pf, ... PL), on) (THE SECOND CLAUSE IN fuse): We infer that p = a(p1,...,pn)
and p’ = a(p}, ..., pp). From this we can see that Vp : pa <{p,p’} = p=Xvp =a(pa1, .- Pan)
for some meta-variable X. If p, = X we can conclude X < a(p{, ..., pp) as required. If p, =
a(pa,1,-Pan) we need to show that (*) pg,i <p{ for 1 <1i < n because then we can conclude
a(pa,i,Pan) Ja(py, ... pn). We can show (*) using the inductive hypothesis.

fuse(p,p’,0) = (X,0) (THE THIRD AND FOURTH CLAUSE IN fuse): We know that p # p’ and
that =(p = a(p1,....pn) AP’ = a(p}, ..., prn)). By case analysis on the structure of p and p’ one
can show that Vpq : pa <{p,p’} = pa =Y for some meta-variable Y. It follows that Y <X as
required. .

[November 13, 2009 at 10:43]

3.18

3-19

3.20

3.2 TERM PATTERNS

Theorem (p = p’ is the most specific pattern for p and p') Given patterns p and p' the pattern computed
by p = p’ is alpha-equivalent to a most-specific pattern according to Definition 3.12.

P >l<p/ _ p// - V]Z)”/ . msp(p///, {P,p'}) - p// N p///
Proof (Proof of Theorem 3.18) The theorem follows from Proofs 3.16 and 3.17. .

We can extend the - x - function to sets of patterns with the same properties as for pairs of
patterns, denoted *ps where ps is a set of patterns; We wish to obtain a definition of *ps such
that 1. p <ps and 2. Vp': p' <p.

Define Q(ps) as Q(ps) = {p | ps’ € ps Ap Ips’}i.e. Q(ps) is the set of all patterns that match
any subset of ps. We can then define an ordering of the patterns in Q(ps) as p = p’ < p’ <Ip.
We show that (=, Q(ps)) is a partially ordered set by showing that - = - is reflexive, anti-
symmetric, and transitive.

(Reflexivity) p = p follows from the first clause of the definition of fuse.

(Anti-symmetry) p € p’ Ap’ £ p’ = p ~ p’. This was already proved in the latter part of

Proof 3.14.

(Transitivity) p E p' Ap’ E p” = p C p”. We unfold the definition of E to get 30,0’ : op’ =
p A o'p” = p’. Thus, we can compose o and o’ to obtain a ¢” such that ¢”p” = p by
o(o’p") =op’ =p.

When p E p’ holds, p is more specific than p’ (or p’ is more general than p). The least upper
bound of a pair of patterns from Q(ps) is given by p uip’. Thus, when p L p’ = p” it should
hold thatp S p”" Ap' Ep”" AVPa : PEPa AP EPa=p” E pa. By Theorem 3.18 we can set
pup’ =px*p’. Thus, the least upper bound of a set ps such that ps € Q(ps) is given by | |ps
which means that we can compute it by py *...*pn if ps = {p1,...,pn}.

Definition (Set-extension of - -) Let ps be a set of patterns ps = {p1,...,pn}. We denote least upper
bound or ps with respect to the ordering given above as xps. Above, we have already shown that sps
has the properties of being the most specific pattern for ps.

[November 13, 2009 at 10:43]

45

TRANSFORMATION PARTS Chapter

In this Chapter we present an abstract description of the common change inference problem
outlined in Section 1.1. Concretely, we define a concept of a transformation part that captures
when one transformation is part of another. We present the defintions in terms of the TErm
language described earlier.

41 PROPERTIES OF COMMON CHANGE DESCRIPTIONS

In this section we revisit the properties mentioned in Section 1.1 that should hold of the change
descriptions that we infer.

A set of pairs of terms {(t1,t}),...,(tn, t},)} that represents a set of original and updated
programs is called a changeset and is denoted CS. Recall the right part of Figure 1 repeated
below for ease of reference.

t) —M =t/ —t!
pt ! P]

t, —— > t ot
pt 2 P) 2

t, ——— >t t/
" pt " Ph "

The picture is meant to illustrate the common change inference problem by indicating that for
each program t;, a common change pt is applied as part of turning t; into t{. Stated differently:
Given a changeset CS we are looking for a change description (we will henceforth use the
simpler term program transformation instead) pt such that:

V(ti, t]) € CSIt! : [[pt]|(t) = tf
and the inferred program transformation pt should satisfy the following two properties:

A. The changes performed by pt on each t; should be part of turning t; into t] and,

B. pt should express as much as possible of the common changes applied in the changeset.

46

[November 13, 2009 at 10:43]

4.1 PROPERTIES OF COMMON CHANGE DESCRIPTIONS

Our problem is now to figure out what these two properties actually mean. In the following
section we investigate a number of possibilities before presenting the one that turned out to be
most useful. Section 4.1.1 discusses two attempts at defining the meaning of pt < (t,t). In the
end, both attempts are rejected for an third definition, however the discussion of the attempts
leads to the definition of the meaning of pt < (t,t’) that turned out to be useful. Readers more
interested in our actual definition can skip to Section 4.2 on a first reading.

411 Towards a definition

We start our investigation of how to formalize properties A and B from above by fixing some
notation and defining the composition of program transformations. Specifically, let pt < (t,t’)
denote that the program transformation pt is part of turning t into t’. The composition of
two program transformations pt and pt’ is denoted pt’ o pt with the meaning [[(pt’ o pt)[|(t) =

[pt' ([Pt (t))-

coMPOSABILITY Our first way to approach the problem of the meaning of pt < (t,t’) is by
saying that pt should be considered part of (t,t’) if the transformation of t into t’ can be split
into two parts one of which is pt.

pt < (t,t") < Ipt’ [ptopt'NI(t) =t' v [[pt’ opt]|(t) =t

The biggest problem with this definition is that it potentially admits any program trans-
formation to be part of any pair of terms. E.g. suppose [[pt[|(t) = t” and t” # t’. We can
now let pt’ behave such that Vt” : [[pt'[|(t”) = t’ which in turn satisfies the requirement that
[[pt’ o pt]|(t) = t'. Therefore, we can conclude that Vpt, t,t" : pt < (t,t').

coMMUTATIVITY The problem in the previous definition is that we allow the existentially
quantified program transformation pt’ to “undo” some of the changes that application of pt have
already performed. We can try to overcome the problem by strengthening the requirement on pt’
by requiring that pt commutes with pt’. The intuition is that commutativity of pt and pt’ implies
that the two transformations are independent somehow. Alternatively, we could explicitly state
in the definition of < that their domains should be disjoint. However, commutativity can be
specified without knowledge of the underlying transformation language. We therefore obtain
the following definition:

pt < (t,t') <= It : [pt' opt]|(t) = [[ptopt'](t) = t'

The previous problem where any pf can be part of any pair (t,t’) is less evident now, because
the existentially quantified pt’ needs to commute with pt. Example 4.1 shows an example of a
program transformation that is not admitted by the commutative definition.

[November 13, 2009 at 10:43]

47

4.1

4.2

4.1 PROPERTIES OF COMMON CHANGE DESCRIPTIONS

Example (Non-commuting transformation) Let the following three terms be given:

t7 = f(a, b, C)
to = ¢
t3 = f(d,¢)

Assume [[pt]|(t1) = t2 and for all other t, pt behaves as the identity function. We now wish to
decide whether pt < (t1,t3). To do so, we need to find a pt’ that commutes with pt. We could
let [[pt']|(t2) = t3 but we also need to specify the result of [[pt’]|(t1). However, if [[pt']|(t1) = t4
and t4—t; then [[pt]](ta) = t4 which is not equal to the “goal” term t3. On the other hand, if
ts = t1 then [[pt]|(t4) = t2 and t; is also not the goal term t3. The conclusion is that there can
be no commuting transformation pt’ and thus it is not the case that pt < (t1, t3).

The commutative definition of < is more restrictive than the previous one, but there is still
a problem. Suppose the underlying transformation language allows specification of transfor-
mations that depend on the input in the following sense: when some pt is applied to t it
returns t; and if pt is applied to ty, it returns t,. For any pair (t,t’) it seems reasonable that
one can specify two transformations pt , and pt, such that [[pt_[|(t) = tq and [[pt, [|(t) = tv, and
furthermore [[pt, [|(ta) = t’ and [[pt,[|(ty) = t’. In terms of Example 4.1, we would be able to
decide that pt < (t1,t3) if pt was such a dependent transformation. The problem is that it is
not at all obvious that such a pt should be considered part of turning t into t’ even though the
underlying transformation language allows it. A variant of this problem goes in the opposite
direction: there might be a pt for which it seems perfectly obvious that it should be considered
part of some pair (t,t’), but the underlying transformation language may not be expressive
enough to capture this. Example 4.2 shows such a situation.

Example Let the following terms be given:

t7 = f(a, b)
t, = f(b,b)
t3 = f(b, a)

Assume that the underlying transformation language can only express “one-shot” term rewrites
with no abstraction mechanisms. Let rewrite specifications be denoted p v p’ with the
meaning: when applying the specification to a term, rewrite all subterms matching p into p’.
Let pt = a v b. Thus, [[pt]|(t1) = t2. It would seem reasonable to assume that pt should be
considered part of (t,t’); what remains is simply to replace the second b with a. Thus, we need
to find a pt’ such that pt commutes with pt’. We could define pt’ = t, v t3, but it can be seen
that this does not commute with pt. Alternatively, we could define pt’ = b v a which implies
[pt'l(t2) = f(a, a) which is not equal to t3. In fact, one can show that there is no pt’ with which
pt commutes in the sense that [[pt’ o pt]|(t1) = [[pt o pt'[|(t1) = t3.

[November 13, 2009 at 10:43]

48

4.2 TREE DISTANCE BASED TRANSFORMATION PARTS

The reason the first definition of the meaning of pt < (t,t’) is rejected is because it can admit
any pt, while the latter may not admit reasonable ones because of the underlying transformation
language may not be expressive enough. Finally, both of the definitions are not constructive in
the sense that they can be decided only if we are able to find a certain existentially quantified
program transformation.

The reason the first definition admits any transformation as part of any pair (t,t’) is that the
existentially quantified program transformation pt’ is allowed to “undo” changes already made
by pt. We tried to overcome this, by requiring commutativity of pt and pt’ with respect to (t,t’),
but commutativity brings its own problems to the definition. Instead, we could try to formulate
the no-undoing property directly. This is the goal of the following section.

42 TREE DISTANCE BASED TRANSFORMATION PARTS

In this section we state the final definition of the meaning of pt < (t,t’). The intuitive meaning
is “pt should be considered part of turning t into t’ when the changes pt makes when applied
to t does not need to be undone again in order to reach t’”. We motivate the definition in terms
of an example.

MOTIVATING EXAMPLE Consider the following four terms:

t; = m(f(10),£(100))
t, = m(f(42),£(100))
t; = m(f(42),f(42))
ty = m(f(42),£(420))

Suppose now, that we are given two program transformations pt, and pt, and we wish
to decide whether pt; < (t1,ts4). The diagram below illustrates the application of pt; to t;.
Underlined subterms mark subterms that have changed with respect to t;. The arrows from t;
(m(f(10),f(100))) are labelled with the program transformation that needs has been applied.

ta = m(f(42),£(100))

t; = m(£(10), £(100)) ts = m(f(42), f(420))

t3 = m(f(42),f(42))

From the diagram it evident that in order to transform the top-most term t, we simply need
to modify the occurrence of 100 into 420 in order to obtain t4. However, to reach t4 from t3 we
need to modify the second occurrence of 42 which is already changed as can be seen from the
underlining. We conclude that pt; should be considered part of (t,t4) while pt, should not.

[November 13, 2009 at 10:43]

49

4.3

4.2 TREE DISTANCE BASED TRANSFORMATION PARTS

421 Work-function

We can capture the no-undoing property using a “work-function” that formalizes the changes
performed between two terms. For any t, and ty, suppose W(tq, ty) denotes the work required
to turn t, into t, somehow.

Given a pt and (t,t’) such that [[pt]](t) = t” then either t” = t' or t” # t’. If t” = t’ it is the
case that no more work should be required to turn t” into t’:

W(t, t") = W(t, t)

If t” # t’ there is still some work to do in order to reach t’. It may be that pf made a change
that needs to be undone in order to reach t’ from t”. Thus, it must be the case that more work is
done when first changing t into t” and then changing t” into t’ than the work done by changing
t directly into t”:

W(t, t') < W(t, t") @ W(t”,t))

On the other hand, if pt did not make a change that needs to be undone, the work remaining
from t” to t’ should be exactly the work between t and t’ that pt did not perform.

W(t, t") ®@W(t”,t') = W(t, t)
From the discussion above, we can define the no-undoing property using the work-function as

Definition (Transformation part) The work required to turn t into t” and subsequently turning t” into
t’ should be exactly the same as the work required just transforming t into t'.

pt < (t,t') = [[pt]|(t) =t" AW(t, t") DW(",t') = W(t, t')

We next turn our attention towards finding a concrete work-function with which to instantiate
the above definition.

422 Term-distance

We can now define a concrete version of the W(t,t’) function. Specifically, we define a term
distance function on terms which is a metric function. Being a metric directly implies that the
term-distance function satisfies the requirements of the work-function stated above. We denote
the term distance between terms t and t’ by 5(t, t’).

[November 13, 2009 at 10:43]

50

4.2 TREE DISTANCE BASED TRANSFORMATION PARTS

4.4 Definition (Term distance) The term-distance function takes two terms as input and returns a number

representing the number of primitive term operations (insertion, deletion) needed to transform one into
the other.

5(a,a’) Z{ (1) fa=d

otherwise
5(a,c(ts)) = d(c(ts), a) = |a|] + |c(ts)]
(ar(ts1), az(ts2)) = { Altsy, ts2) o — @
14+ A(tsy,ts2) otherwise
8(t,t') + A(ts, ts'),
A((t:ts), (t':ts')) =min{ A((t:ts), ts') +[t’],
Alts, (t': ts”)) + [t
A(e, ts) = A(ts, €) = [ts]
The definition of 5(t, t") makes use of a distance function on sequences of terms, A(tsy, tsz).
The distance between two sequences is found using a dynamic programming scheme. Overall,

the distance function is comparable to the one used by Yang [62]. The main difference is that we
have fixed all constants to 1 whereas Yang allow user-specified weights.

4.5 Example Recall the four terms from the motivating example above.

t; = m(f(10),£(100))
t, = m(f(42),£(100))
t; = m(f(42), f(42))
ty = m(f(42),£(420))

Some term distances are shown in the diagram below. Like in the previous diagram, subterms
that have changed with respect to t; (left-most) have been underlined.

We see that 5(t1,t2) +8(t2, ta) = 8(t1, t4) but also that 5(t1, t3) +d(t3,t4) > 5(t1, t4) supporting
the intuition that a program transformation turning t; into t3 should not be considered part of
(t1 , ‘t4).

[November 13, 2009 at 10:43]

51

4.6

4.7

4.3 SUBSUMPTION OF PROGRAM TRANSFORMATIONS

The definition of when a program transformation is part of a pair of terms can now be state
simply as follows.

Definition (Term-distance based transformation part) Given pt and (t,t’), pt is called a transformation
part of (t,t") if and only if:
Mptl(t) =t" A 8(t, t") +8(t",t") = 8(t, ")
Although strictly it is redundant, we will sometimes say that a pt which satisfies Definition 4.6

is a safe transformation part of simply safe for (t,t"). We add the term “safe” to indicate that
when applying pt to t nothing will be changed in t that should not have been changed with

respect to t’. Definition 4.6 provides a meaning to the first property (a) mentioned in Section 4.1.

In the next section we define what it means for a program transformation to express the maximal
amount of common changes.

43 SUBSUMPTION OF PROGRAM TRANSFORMATIONS

Recall the second (B) of the two properties from Section 4.1 stating the following about the
common changes, pt inferred from a changeset CS

pt should express as much as possible of the common changes applied in the
changeset.

We formalize the notion of expressing more changes by giving a subsumption relation on
program transformations. While a safe transformation part describes the relationship between
a program transformation and a pair of terms (t,t’), program transformation subsumption
describes the relationship between one program transformation and another. Intuitively, given a
pair of terms (t,t’), a program transformation is subsumed by another if the former performs a
safe transformation part of the latter, relative to transforming t into t’. The subsumption relation
is defined in Definition 4.7 below.

Definition (Subsumption relation) Let pt and pt’ be two program transformations. We say that pt is a
sub-transformation of pt' relative to a pair of terms (t,t') denoted pt < 1) pt' if and only if

1. pt’ < (t,t')
2. [pt'I(t) =t”

3. pt < (4, t")

[November 13, 2009 at 10:43]

52

4.4 EXTENDING TO CHANGESETS

4.8 Example Let the following terms be given:

4.9

t1 = m(ab,c)
t, = m(a,b’)
t3 m(a’,b)
ty = m(d,b,c)
ts = m(a,b)

Also, let there be three program transformations pt,, pt,, and pt; such that [[pt;]|(t1) = t3,
[pt,1(t1) = ta, [[pt5]](t1) = t5 as indicated by the arrows in the diagram below. The numbers
on the arcs in the diagram indicate term distances. Solid arcs represents that a program
transformation (also shown on the arc) was responsible for the change. Dotted or curly arcs are
labelled with the term distance between the connected terms.

3

ty =m(a,b,c) St = m(al, b)

2 V]r
Ph tszm(all)
1 A <

2\\\\ 1
g
ts = m(a,b)

pt3

The top-most dotted arc is labelled with 3, thus any other path from t; to t; that has a
summarized cost of 3 is somehow indicative of a transformation part or subsumption relation.
Using the diagram, one can therefore verify that, for i € {1,2,3}, pt; < (t1,t2). It can also be
seen that pt; <((, +,) pt; and pt, <y, 1,y pt; by the paths m(a,b,c) —» m(a,b) —» m(a’,b) —
m(a’,b’) and m(a,b,c) —» m(a’,b,c) » m(a’,b) - m(a’,b’) respectively. However, we can
also see that it is not the case that pt; <, ,) pt,. This is evident from the cost of the path
m(a,b,c) - m(a,b) - m(a’,b,c) - m(a’,b’) which equals 5 but should equal 3.

44 EXTENDING TO CHANGESETS

Both the transformation part relation and the subsumption relation are defined relative to a
single pair of terms (t,t"). We can extend them straightforwardly to a changeset by quantifying
over all pairs of terms in the changeset:

Definition (Common transformation part) Given program transformation pt and a changeset CS, the
transformation part relation is extended to CS by the following. We denote the extension pt < CS.

pt < CS < V(t,t') e CS:pt < (t,t')

[November 13, 2009 at 10:43]

4.4 EXTENDING TO CHANGESETS

When pt < (t,t") holds we also say that pt is a common part of CS or that pt is a safe for CS.

4.10 Definition (Changeset subsumption) Given program transformations pt and pt and a changeset CS, the
program transformation relation is extended to a changeset by the following. We denote the extension as

pt <cs pt'
pt <cs pt' <= V(t,t') € CS : pt <(y¢ry pt’

We can now state a formal interpretation of the maximality property B as a program transfor-
mation for which there exists no larger program transformation according to the subsumption
relation. We call such a program transformation a maximal common transformation (relative to
a given changeset).

4.11 Definition (Maximal common transformations) Given a changeset CS the set of maximal common trans-
formations, denoted LCT(CS) is the following set:

LCT(CS) = {pt | pt < CS A Vpt' : pt’ < CS = pt' <cs pt}

There is a problem with the above definition in that depending on the transformation
language, there could be two program transformations pt; < CS and pt, < CS such that neither
of pt; <cs pt, or pt, <cs pt; holds and at there same time there is no third pt; which subsumes
both pt; and pt,. Example 4.12 shows such a situation. An alternative definition replaces the
implication of Definition 4.11 with the following.

Wpt':pt’ < CS = —(pt <cs pt') v V(t,t') € CS: [pt]|(t) = [[pt'] (1)

4.12 Example Assume the transformation parts concept is instantiated with the transformation
language of Example 4.2. Let the following terms be given:

t1 = f(a,b)
= f(c,d)
t2 = g(ab)
ty = g(cd)

Let CS = {(t1,1}), (t2,t5)} and define pt; = a wv ¢ and pt, = b v d. The below diagram
illustrates the application of the two transformations to both t; and t5.

f(c,b) g(c,b)
Pty 1 pty 1
1 1
f(a,b) 2 flc,d) g(ab) R g(c, d)
1 . 1
pt, T Pt e
f(a,d) g(a,d)

By using the diagram, one can verify that pt; < CS and pt, < CS. However there is no way to
construct a simple term-rewrite rule that correctly updates both t; and t, and consequently there

[November 13, 2009 at 10:43]

54

4.13

4.5 NON-GLOBAL COMMON CHANGES

is no pt; such that it subsumes both pt, and pt,. Using the direct formulation of maximality
given in Definition 4.11, we obtain LCT(CS) = . Using the indirect definition we get LCT(CS) =

{rt;, pto}.

Although the problem solved using the indirect definition of LCT(CS) illustrate in Exam-
ple 4.12 there can still be cases where the set LCT(CS) is empty though. For example when the
underlying transformation language is not expressive enough to capture the common character-
istics of the locations in which the changes are to be made. Another cause could simply be that
the changeset is “buggy”. In Section 4.5 we therefore present an approach that address both of
the mentioned problems.

Example (“Buggy” changeset) Assume the following four terms are given and that the transfor-
mation language used is the same as in Example 4.12. We let CS = {(t1,t}), (t2,t5)}.

t1 = f(a,a)

] f(a’,a’)

t = 9(‘1/ 0.)

ty = g(a’a)

One can quickly verify that the set of maximal common program transformations is empty.
However, consider the program transformation pt = a v~ a’. The two diagrams below illustrate
application of pt to t; and t,.

f(a, a)4p2t>f(a’, a’) g(a’,a’)

Although pt is not safe for CS it is safe for (t1,t]). The reason pt is not safe for (t,,t5) is that
it changes all occurrences of a into a’ whereas, according to t), only one occurrence should
have been modified. Since all other occurrences of a in t; and t,; was changed, one could
wonder whether this particular a should not also have been changed. Maybe the developer
forgot to update this last occurrence of a. In Section 7.1 we will see cases where precisely this
has happened when a developer performed the collateral evolution of a number of files by hand.

45 NON-GLOBAL COMMON CHANGES

The ideal case with respect to computing LCT(CS) is when the same changes were performed in
all of the original programs and the underlying transformation language is able to express them,
because then the program transformations in the set LCT(CS) are precisely all of those common
changes. However, it may be the case that some changes were performed only in a subset of the

[November 13, 2009 at 10:43]

55

4.14

4.5 NON-GLOBAL COMMON CHANGES

original programs. The set of maximal common program transformations, LCT(CS) does not
capture any of those as is illustrated in Example 4.14 below.

In this section we therefore relax the definition of transformation parts extended to changesets.
Specifically, we modify the requirement of the definition of pt < CS to not require that pt is safe
for all pairs of terms in CS.

Example (Non-global common changes) Assume we extend the transformation language from pre-
vious examples to additionally including a composition operator denoted pt; pt’. The interpre-
tation of the program transformation pt; pt’ is then that [[pt; pt’]|(t) = [[pt'|([Ipt]l(t)). Let the
following terms be given:

ty = f(a,b,c) tj = f(aa,bb,c)
to = h(a,b,c) t; = h(aa,bb,cc)
t3 = g(a,b,c) t; = g(aa,b,cc)

Let CS = Uf:] (ti, t/). One can now verify that the set of maximal changes is given by the
singleton set LCT(CS) = {a v~ aa}. However, if we restrict CS to the subset CS’ = Uizzl (ti, t])
we would get LCT(CS) = {a v aa;b v bb}. On the other hand if CS is restricted to the
subset CS” = | J;_,(ti, t}) we get LCT(CS") = {a v aa;c w cc}.

THRESHOLDS The idea is to introduce a user-specified threshold to specify for how many
pairs of terms in the changeset, the program transformation must be safe for. Let n be the
threshold. Initially, one could conceive the following definition of safety relative to a threshold:

pt <™ CS:3CS' = CS:|CS'| =n Apt <CS'

The definition of safety relative to a threshold makes use of the previous definition without
thresholds. The somewhat subtle notational difference is in the subscripted n. The problem
with this definition is that it can classify a program transformation as safe for a changeset even
though it is actually “unsafe” for some of the pairs. Le. there can be a (t,t’) € CS such that
(t,t') ¢ CS" and pt % (t,t'). Instead, we wish that all program transformations pt € CS\CS' are
not unsafe for any pair of terms in that set. We have not explicitly defined a notion of unsafety,
but intuitively unsafety means that the program transformation performed some changes that it
should not have with respect to a pair of terms (t,t’). Consider the negation of a transformation
part (without threshold) of a pair of terms (t, t'):

—(pt < (t,t)) <= —-3Ft":(Ipt](t) =t" A 8(t, t") +6(t",t") = 8(t, 1))
= W' [ptht) =t" v It": [pt](t) =t" A 8(t, t") +5(t",t') # 5(t, t')

When program transformation is not part of a pair of terms there can be two reasons: either
the application of the program transformation failed or the changes made by the program
transformation were not compatible with the changes needed. The first part of the disjunction
tits very well with what not unsafe should mean: the transformation does not “do” anything
wrong, because it does not do anything. We therefore get the following definition of a safe
transformation part relative to a given threshold:

[November 13, 2009 at 10:43]

56

4.15

4.16

4.17

4.5 NON-GLOBAL COMMON CHANGES

Definition (Transformation part with threshold) Given program transformation pt, a changeset CS, and
a threshold n, pt is said to be a safe transformation part of the changeset, denoted pt <™ CS when the
following is satisfied:

pt <™ CS <= CS' = {(t,t') | pt < (t, ') AICS'| = Apt < CS' AV(t,t') € CS\CS': #t" : [pt](t) =

The definition of the subsumption relation can also be stated relative to a threshold similarly

Definition (Changeset subsumption with threshold) The supsumption relation on program transforma-
tions relative to a threshold is denoted pt <7 pt’

pt <fspt' = CS, ={(t,t")eCS|pt' < (t,t')} A
CSy = {(t,t') € CS | pt < (t,t))} A
CSy € CSL AICS:| >=n A
pt <cs, pt' A
It v(t,t') € CS\CSy : [pt]I(t) = t" A
7 V(t,t') € CS\CS, : [pt'](t) = t”

The definition may look a little intimidating at first. The essence is that the subsumption relation
specifies that everywhere pt’ is safe, pt performs only part of the changes performed by pt’.
Specifically, one can derive the following property:

Property (Safety of subsumed transformations) Let a changeset CS and two program transfor-
mations pt and pt’ be given. From Definition 4.16 we derive:

pt <™ CS A pt’ <gpt = pt' <™ CS .

The converse variant of the above property states that if a program transformation is not safe
for a changeset, then there is no subsuming transformation which is also safe for the changeset.
Finally, the set of maximal common changes LCT(CS) relative to a threshold is defined below.

CSy = {(t,t') € CS | pt <™ CS} A
LCT(CS,n) = { pt | pt <™ CS¥pt' <™ CS: CS, = {(t,t') e CS | pt' <" CS} A = pt' <Tspt
CS, < CSy

One can verify that LCT(CS, |CS|) = LCT(CS). In the following, when we omit the threshold we
assume a threshold set to the size of the changeset; e.g. LCT(CS) should be read as LCT(CS, |CS]).

In the next part we describe two algorithms that attempts to find the set LCT(CS,n) in
terms of two different transformation languages. The first transformation language is a simple
term rewrite language similar to what have been used above, except it additionally includes
an abstraction mechanism for subterms and allows several rewrites to be specified in one
transformation. The second transformation language is a simple version of the SmPL language
that is provided by Coccinelle. The transformation language extends the previous language
with a context-sensitive denotation of locations to update.

[November 13, 2009 at 10:43]

57

_tl/

Part 11

ALGORITHMS AND IMPLEMENTATION

[November 13, 2009 at 10:43]

CONTEXT-FREE PATCH INFERENCE Chapter

In this chapter we develop an algorithm which we call spfind for finding program transforma-
tions specified in a language with named-subpart abstractions and context-free denotation of
locations. We call such a program transformation a context-free patch for two reasons: 1. The
program transformations are basically sequences of term rewrite rules, so they have a strong
similarity with context-free grammar production rules, and 2. the specifications can be viewed
as a subset of the semantic patches specified using the SmPL language.

We begin with a motivating example that illustrate the kinds of patches that can be inferred
by the context-free patch inference method.

5. MOTIVATING EXAMPLE

To motivate the design of spfind, we begin with a simple example of a collateral evolution
from March 2007"' and consider the issues involved in inferring a context-free patch for it. The
collateral evolution required replacing uses of the general-purpose memory copying function
memcpy that manages network buffers by calls to a special-purpose function, skb_copy_from_-
linear.

Figure 2 shows extracts of two files affected by this collateral evolution and the updates
to these files. The lines prefixed with - and + indicate where code was removed and added,
respectively. Furthermore, the line that is prefixed with ! has superficially the same form as the
others, in that it represents a call to memcpy, but it is not affected by the collateral evolution. In
the first file, two calls to memcpy are present initially and only one is affected and in the second
file only one such call is affected.

A summary of the changes is shown in in the bottom-right part of Figure 2. The summary
reveals that although there are differences in how the two files were modified, there are also
compelling similarities:

1. All calls to memcpy where the second argument references the field data from a sk_buff
structure are changed into calls to skb_copy_from_linear_data. On the other hand, in the
call to memcpy marked with a !, the second argument does not reference the field data.

2. The first argument becomes the second.

Git SHA1 identification codes

la4e2d093fd5f3eaf8cffc04alb803f8b0Oddefbd and
d626762b11e00c16e€81e4308ab93d3f13551812a.

All patches in this chapter can be obtained from

http:/ /git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=summary

59

[November 13, 2009 at 10:43]

static int ax25_rx_fragment(
ax25_cb *ax25,
struct sk_buff xskb)

struct sk_buff xskbn, *skbo;
if (ax25->fragno !'= 0) {
/* Copy data from the fragments x/

while ((skbo = skb_dequeue(
&ax25->frag_queue))

1= NULL) {
- memcpy (skb_put(skbn, skbo->len),
- skbo->data,
- skbo->len);
+ skb_copy_from_linear_data(
+ skbo,
+ skb_put(skbn, skbo->len),
+ skbo->len);
kfree_skb(skbo);
}
}
static int ax25_rcv(
struct sk_buff xskb, ...)
{
if (dp.ndigi == 0) {

kfree(ax25->digipeat);
ax25->digipeat = NULL;
} else {
/*Reverse the source SABM’s pathx/
! memcpy (ax25->digipeat, &reverse_dp,
! sizeof(ax25_digi));

File: net/ax25/ax25_1in.c

+

5.1 MOTIVATING EXAMPLE

static
struct sk_buff xdnrmg_build_message(
struct sk_buff *rt_skb,
int xerrp)
{
struct sk_buff xskb = NULL;

if (!skb)
goto nlmsg_failure;

memcpy(ptr, rt_skb->data,
rt_skb->len);
skb_copy_from_linear_data(
rt_skb, ptr, rt_skb->len);

nlmsg _failure:
if (skb)
kfree_skb(skb);

File: net/decnet/netfilter/dn_rtmsg.c

memcpy (skb_put(skbn, skbo->len),
skbo->data,
skbo->1len);
skb_copy_from_linear_data(
skbo,
skb_put(skbn, skbo->len),
skbo->1len);

memcpy (ptr, rt_skb->data,
rt_skb->len);
skb_copy_from_linear_data(
rt_skb, ptr, rt_skb->len);

Set of changes for the two files

Figure 2: Extracts of the two files and the set of changes for the two files. (bottom-right).

3. The field reference to data in the second argument is dropped. The resulting expression
becomes the first argument of the new function call.

4. The third argument of memcpy is copied as-is to the third argument of the new function

call.

The changes made to the two mentioned files can be summarised compactly as the following

context-free patch derived by spfind:

@@
expression X0;

[November 13, 2009 at 10:43]

60

5.1 MOTIVATING EXAMPLE

struct sk_buff x X1;
expression X2;

@@
memcpy (X0, X1->data, X2)
+ skb_copy_from_linear_data(X1,X0,X2)

where X0, X1, and X2 serve as placeholders (meta-variables) for concrete arguments. The meta-
variables are declared to match arbitrary expressions (X0 and X2) and an expression of type
struct sk_buff x (X1). Intuitively, the context-free patch is an abstract representation of the
changes made: in the context of a call to memcpy where the first and third arguments are arbitrary
expressions and the second is of type struct sk_buff x and references the data field of the
sk_buff structure, then change the called function to skb_copy_from_linear_data, move the
first argument to the second position, remove the data field reference of the second argument
and make it the first argument in the new function call, and copy the third argument as-is. Thus,
the combined requirements on the context in which to make a transformation ensure that only
the calls marked with - are affected and leave out the call to memcpy marked with !, as required.

There are two main issues to be considered when inferring context-free patches: 1) compact-
ness and 2) safety.

COMPACTNESS The most trivial way to construct a context-free patch is simply to enumerate
the changes, as initially done for the example earlier in this section. The result, however, would
be no better than a standard patch, and it would generally not be applicable to files other
than the ones used for the inference. Finally, it would generally not be readable as high-level
documentation of the changes performed. We prefer, therefore, a more compact description of the
changes. We produce the more compact description by replacing subterms that are not affected
by the transformation by meta-variables. The use of meta-variables is illustrated in the context-
free patch above where e.g., X0 is used rather than the concrete terms skb_put (skbn, skbo->len)
(in the file ax25_in.c) and ptr (in the file dn_rtmsg. c).

sAFETY The safety of a context-free patch requires that only things that actually changed in
the original file should be changed by the inferred context-free patch. In our example, one of the
calls to memcpy was not changed. We saw that we could ensure safety by imposing structural and
type-based restrictions on the second argument to memcpy: only those calls where the second
argument had the correct type and referenced the data field should be affected.

INSTANTIATION OF TRANSFORMATION PART FRAMEWORK In the following we define the
syntax and semantics of context-free patches precisely. Our aim is to instantiate the transforma-
tion part and subsumption relation given in Chapter 4 to the language of context-free patches. In
the following we will use the term subpatch to denote the program transformation subsumption
relation instantiated with the context-free patch language. Once, the transformation language,
and in particular the application function for context-free patches have been defined, we can the
state an algorithm that tries to find the set LCT(CS).

[November 13, 2009 at 10:43]

61

5.2

5.2 CONTEXT-FREE PATCHES

5 CONTEXT-FREE PATCHES

A context-free patch is specification of a program transformation that consists of a sequence
of rewrite rules. We call the rewrite rules term replacement patches and a sequence of such
patches a context-free patch. The examples in Chapter 4 made use of a simple variant of this
language without multiple rules and meta-variables.

TERM REPLACEMENT PATCHES A term replacement patch describes how to transform any
(sub)terms that match a given pattern.

Definition (Syntax of Term Replacement Patches) The syntax of term replacement patches is a combina-
tion of two term patterns p. Recall that we have already defined the syntax of term patterns in Defini-
tion 3.3.

frpi=p~p

521 Application function

The application of a term replacement patch to a term is defined by the rules shown in Figure
3. Rule a is concerned with the case where a term t matches the pattern p according to some
substitution 0. The matching term is replaced with 0p’. We further require that the meta-
variables in the right-hand side pattern MV (p’) be a subset of those in the left-hand side pattern
MYV (p)-otherwise a right-hand side could contain meta-variables for which no value would be
known. The remaining rules traverse the term top-down along all subterms of the term (rule
b) until reaching a subterm at which rule a applies or until reaching an atomic term (rule c).
(Note that rules b and ¢ only apply if rule a does not.) If there is no matching subterm, the
application of a term replacement patch behaves as the identity function.

The application of a term replacement patch additionally returns a flag T, when a match has
been found, or L, when no match has been found. These are ordered as L = T. Note that even
if there is a match, the resulting generated term might be the same as the original one, e.g., if
the term replacement patch specifies that the two arguments of a function would be switched,
and they are actually textually equal.

CONTEXT-FREE PATCHES A context-free patch is a sequence of one or more term replacement
patches, as defined by the following grammar:

Definition (Syntax of Context-free Patches) A context-free patch is either a term replacement patch or a
sequence of context-free patches.

gp = p~plgprgr

Note that although term replacement patches have the form of rewrite rules, they are not applied iteratively as done
in term rewriting systems.

[November 13, 2009 at 10:43]

62

5.3 ALGORITHM

B:0p=t Op'=t' MV(p')<c MV(p)

@ (P~ PO =1, T
—-30:0p = a(to,...,tn)
(p~p)ti) =t fiforall0 <i<n
F=||f;

) , b

(p~p')(a(to,..., tn) = a(ty, ..., ty),F
—30:0p=a
(c) .

(p~p)a)=a L
Figure 3: Application of a term replacement patch.

Subsequently, whenever we say “patch,” we mean context-free patch unless stated otherwise.
Also, we say that a context-free patch is non-abstract if no pattern used in the context-free patch
contains any meta-variables.

The rules for applying a context-free patch are shown below. The application of a term
replacement patch p; ~» p2 is defined according to the rules of Figure 3, but here the application
only succeeds if the pattern matches somewhere, as indicated by the flag T. A sequence of
patches gp,; gp, first applies gp, to the term and then applies gp, to the result.

[p~pt = t” if (p~p)(t)=t",T
lgri:gpolit = lgp (g, 1It)

It is possible to show that application of context-free patches is associative. Le. [(gp;;8p,); P31t =

[gp,; (gP2;8p3)It. If the result of applying gp,;gp, to a term is independent of the ordering of
gp; and gp,, the patches are said to be commutative.

Two context-free patches are equivalent with respect to a set of terms T if and only if
application of the patches have the same effect on all terms:

gp1 = gp, == Vte T:[gpy]It = [gp, it

Two context-free patches are equivalent with respect to a changeset CS if and only if applica-
tion of the patches have the same effect on all left-hand side terms in CS:

8Py =c gp, <= V(4 t') € CS: [Igp, It = lIgp, It
Whenever the changeset, CS, is clear from the context, we will write gp; =~ gp, instead of

8P =cs bpa.

53 ALGORITHM

We now present an algorithm for finding the set of maximal common subpatches given a set of
pairs of terms, CS, as well as details about the implementation of the algorithm.

[November 13, 2009 at 10:43]

63

5.3 ALGORITHM

We first present a very simple algorithm for computing maximal common subpatches that
leaves out any performance concerns and other details that must be addressed when imple-
menting the algorithm. This very simple algorithm is mainly to be considered as an outline of
the algorithm’s basic structure. Based on an observation about a “sufficient level of abstraction”
we then refine the algorithm in two steps. The refined algorithm returns a subset of what the
simple algorithm returns such that all patches returned are of minimal abstractness. Finally, we
present the main two remaining issues we have addressed in our implementation: noise in the
input data and constant-time comparison of terms.

531 A simple algorithm

We now present the simple version of our algorithm to compute the set of maximal common
subpatches for a given changeset. The algorithm is denoted spfind. Overall, spfind works in two
steps: 1) finding term replacement patches (i.e. patches of form p ~» p’) and 2) growing larger
sequential patches (i.e., patches of form bpy;...; bpy) from the set of found term replacement
patches.

The pseudocode of the spfind algorithm is written in the style of a functional programming
language, such as O’Caml or Standard ML. In the pseudocode we frequently make use of
set-comprehensions to compute sets.

5.3 Definition (spfind — simple version) The simple version of the algorithm finding context-free patches is

given below.

simple_pairs CS =
{ p->p’ | (lhs,rhs) € CS,
t is a subterm of 1lhs,
t’ is a subterm of rhs,
10,p,p': Op =t , Op’' = t’,
p~p’=<(lhs,rhs)

computeNext CS B cur = {p~p’| p~p’' €B, (cur;p~p’') < (S}

gen CS B cur =
let next = computeNext CS B cur in
if next == {}
then {cur}
else {gp | p~p’ € next, gp € gen CS B (cur;p~p’)}

spfind CS =

let B = simple_pairs CS in
{gp | gp € gen CS B bp, bp € B}

[November 13, 2009 at 10:43]

64

54

5.3 ALGORITHM

The main functions in the algorithm are simple_pairs and gen. The function simple_pairs
constructs term-replacement patches and the function gen grows larger sequential context-free
patches.

CONSTRUCTION OF TERM-REPLACEMENT PATCHES The simple_pairs function takes a set
of pairs of terms CS and constructs the set {gp | gp < CS} by considering abstractions of all
subterms in the given set of pairs of terms CS. In the pseudocode, patterns p and p’ (that may
contain meta-variables) more or less “magically” appear in the line with existential quantification.
In the refined algorithm in Section 5.3.2 we describe a method to construct such patterns from
a set of terms. Another, more serious, issue is that even for small examples, the simple_pairs
function can return many term replacement patches—an upper bound for p ~ p’ is O(2/P!*/P"l)
where | - | denotes the number of subterms in a pattern. We illustrate this in Example 5.4 below.

Example Let the following be given

tl = g(f(42)) tl'= g(f(117))
t1'= g(f(42,42)) t2'= g(f(117,117))
S = { (t1,t1’) , (t2, t2') }

Part of the result of simple_pairs C is show below. Recall that capital letters denote meta-
variables.

simple_pairs C =

{
g(f(X)) ~ g(f(X,X)), g(Y(X)) ~ g(f(X,X)),
Z(f(X)) ~ g(f(X,X)), Z(Y(X)) ~ g(f(X,X)),
g(Y(X)) ~ g(Y(X,X)), Z(f(X)) ~ Z(f(X,X)),
Z(Y(X)) ~ Z(Y(X,X)),

}

The above result-set for simple_pairs illustrates that many very similar patches can be returned.
In this example the complete set contains 9(2°*®) term replacement patches where 5 is the
number of subterms of g(f(42)) and 6 is the number of subterms of g(f(42,42)). A few of
those are not safe for the changeset, but most are. Thus, we need to find a way to limit the size
of this set to return fewer representative patches. This will be done in Section 5.3.2.

GROWING SEQUENTIAL CONTEXT-FREE PATCHES The gen function takes three inputs: a
changeset CS, a set of term-replacement patches B, and a context-free patch cur. The function
then tries recursively to extend the context-free patch cur with term replacement patches
from the set B. Thus, a call to gen CS B cur returns a set of patches that have the shape
cur;py ~» py;--- ;Pn ~ Pl where p; ~ p{ € Band cur;py ~> py;---;pn ~ pp < CS.

The main function of the spfind algorithm calls gen for each term replacement patch bp (cur
in gen) found by simple_pairs.

[November 13, 2009 at 10:43]

65

55

5.3 ALGORITHM

RELATIONSHIP BETWEEN ALGORITHM AND SPECIFICATION Unfortunately, the spfind
algorithm is neither sound nor complete in the strict sense. There are patches in LCT(CS) that
spfind will not find and indeed some patches found by spfind are not largest. An example
illustrate both cases and hints at why the lack of soundness and completeness is not as bad as it
sounds.

Example (No soundness or completeness) Assume the following definitions are given:

tl = h(f(1),1)

t1’ = h(f(2),3)

t2 = t(f(1),42,1,117))
t2' = t(f(2),42,3,117))
CS = {(t1,t1"), (t2,t2")}

We notice that gp; = (1) ~ f(2) is safe for CS while gp, = 1 ~~ 3 is not because it updates too
many occurrences of 1. However, gp,; gp, is safe for CS because now, when gp, is applied, there
is only one occurrence of 1 and that occurrence is supposed to be updated to 3. In fact, gp,; gp,
is one of the largest common subpatches for CS.

All patches returned by spfind are either term replacement patches or sequences of term
replacement patches all of which are individually safe for the changeset given. Therefore, spfind
C will not contain a patch that is composed of 1 ~» 3. It can also be shown that spfind CS cannot
contain a patch that is equivalent to gp,; gp, because the occurrences of 1 in t1 and t2 that have
to be changed have no common term structure expressible in a context-free patch.

Therefore, we can conclude that spfind is not complete. The result of spfind CS will contain
gp; which is not in LCT(CS). We can therefore also conclude that spfind is not sound in the
strict sense that for all patches found by spfind CS, there must exist an equivalent patch in
LCT(CS).

Example 5.5 gives a counterexample that shows that spfind is neither sound nor complete.

However, it is the case that the patches returned by spfind CS are either equivalent to some
in LCT(CS) or they are each a subpatch of some patch in LCT(CS) and the application of the
subpatch has an impact on the changeset (i.e. it is not the identity patch). Thus, each patch
found by spfind CS is safe for CS and when applied, it will have some safe effect on the terms.

532 Towards a refined algorithm

There are two problems in the simple version of the spfind algorithm:

Term replacement patches: In the function simple_pairs, we use existential quantification to
introduce patterns that contain meta-variables. There are two problems to tackle: 1) how
do we actually find such patterns and 2) is there a sufficient subset of this set of patterns?

[November 13, 2009 at 10:43]

66

5.3 ALGORITHM

Search-space pruning: The gen function uses the computeNext function to find a subset of the
set of term replacement patches B that can be used to extend the context-free patch being
generated (cur). For each term replacement patch in this subset, gen will try to extend the
current context-free patch with the particular element. Thus, if we can limit the size of the
next subset, fewer calls to gen ensue.

SUFFICIENT TERM REPLACEMENT PATCHES Consider once more the terms from Example
5.4:

tl = g(f(42)) tl’'= g(f(117))
tl'= g(f(42,42)) t2'= g(f(117,117))
S = { (t1,t1") , (t2, t2") }

As shown in Example 5.4 there are many potential term replacement patches that are safe for
the set CS. Let B = {p ~> p’ | p ~ p’ < CS}. In order to define a sufficient subset of B, we observe
that some of the term replacement patches are needlessly abstract. A term replacement patch is
needlessly abstract if there is an equivalent term replacement patch that is less abstract. For the
set CS above, the most abstract patch is X(Y(Z(Q))) ~» X(Y(Z(Q,Q))) and the least abstract is
g(f(X)) ~ g(f(X,X)).Itis easy to see that in this example all elements of B are equivalent. The
important property of two equivalent term replacement patches is that the patches that can be
grown from one are equivalent to the patches that can be grown from the other:

Lemma Equivalent patches imply equivalent suffix extensions

Vtrp,, trp,,8p : trpy = trp, = trpy;Qp = trp,; 8P

The conclusion one can draw from Lemma 5.6 is that for a set of equivalent term replacement
patches, we only need to return one of them.

FINDING TERM REPLACEMENT PATCHES Given the set {p ~ p’ | p ~ p’ < C} we can
construct the sufficient subset of term replacement patches based on the above observations.
The naive approach takes the result of simple_pairs a returns only those that are not needlessly
abstract according to the description above. The thusly found sufficient term replacement
patches can then be partitioned in equivalence classes and we then only need to return one term
replacement patch from each (cf. Lemma 5.6).

However, we would still need to construct the initial set and that is potentially very time-
consuming. With the goal of avoiding the construction of the complete initial set, we now define
a fusion operator on term replacement patches, trp,; @ trp,. The patch fusion operator constructs
a new term replacement patch subsuming both of the given patches. The patch fusion operator
relies on a pattern fusion operator which we state requirements for below. The definition of
patch fusion is then given in Definition 5.7.

In order to perform patch fusion, we need to be able to fuse two patterns into a new pattern
that is a superpattern of both given patterns. A simple definition of the pattern fusion function
could be one that always returns the trivial pattern X but such a definition is useless for our

[November 13, 2009 at 10:43]

67

5.3 ALGORITHM

purpose. Instead we would like the pattern resulting from p « p’ to abstract as little as possible
in order to obtain a pattern that matches both p and p’. In Chapter 3 we defined the concept
of the most specific pattern, which matches the current requirements precisely. The function
computing the most specific is given in Definition 3.15. We denote the fusion of patterns p and
plaspx*p’.

Using the pattern fusion function we can define fusion of term replacement patches gp ® gp’
as the fusion of the embedded patterns in the patches and a renaming of meta-variables. The
definition can be seen in Definition 5.7 below.

5.7 Definition (Fusion of term replacement patches) Fusion of two patches into a new one is defined as:

P1~ PI®Pp2 ~ p; =p3 ~ (03p3) =
01 - p1*p2=p3A
02 Pl *pPy=p3A
0, renamed_by 61 = 03

0 renamed_by ©' renames meta-variables in © using those in ©'. The resulting 0" is therefore a mapping
from meta-variables to meta-variables.

0 renamed_by 0’ = 0" —
Y i3V 0/(Y) =0(X)

VX € dom(0) : 0" (X) = ~
X otherwise, where X ¢ dom(0")

It is instructive to consider an example of term replacement patch fusion to see what is going
on.

5.8 Example (Patch Fusion) Let the following be given:

f(42,h(117)) ~» f(43,h(117+117))
(42,9(118)) ~» f(43,q(118+118))

gpl
gp2

We now compute gpl ® gp2, step by step. First we need to fuse the two left-hand sides and the
two right-hand sides corresponding to the first two conjuncts in Definition 5.7.

[left-hand sides]
f(42,h(117)) = f(42,9(118)) = f(42,X0(X1))

[right-hand sides]
f(43,h(117+117)) = f(43,9(118+118)) = f(43,X1(X3+X3))

The environments associated with each fusion are as follows:

[November 13, 2009 at 10:43]

68

59

5.3 ALGORITHM

env { X0 — (h,q), X1 — (117,118) }
env’ { X1 — (h,q), X3 — (117,118) }

When fusing patterns we are allowed to select any meta-variable names as long as the inference
rules in Definition 3.15 can be used to derive the desired fused patterns. For illustration,
when fusing the left hand side (non-abstract) patterns we used the meta-variables X0 and X1
while when fusing the right hand side (non-abstract) patterns, we used X1 and X3. In fact, the
environments need not be consistent with each other. For example, X1 in the left hand side
pattern maps to (117, 118) while in the right hand side pattern X1 maps to (h, q). This selection
of names is mainly done to illustrate how 6 renamed_by 8’ works and why it is needed.

env'' = env’ renamed_by env = { X1 — X0, X3 — X1}

One can verify that env” satisfies the requirements set out in the definition of p renamed_by p’
in Definition 5.7 above. Finally, we can construct the fused term replacement patch as:

gpl®gp2 = (42,X0(X1)) ~» env’’' (f(42,X1(X3+X3)))
= f(42,X0(X1)) ~» f(42,X0(X1+X1))

SEARCH-SPACE PRUNING Even with the above mentioned refinements of the simple_pairs
function, the gen function can end up constructing an exponential number of context-free
patches. We now consider how to further reduce the number of generated context-free patches.

The gen function in the simple version of the spfind algorithm is given a set B of term
replacement patches and tries to grow sequential patches starting from each patch in B. If all
those patches are safe for the changeset CS also given to gen, the gen function would have
to compute the powerset of B. Suppose however, that all term replacement patches in B are
commutative. The gen function will first try to grow context-free patches starting from some
element gp in B. After having found all context-free patches that start with gp, the gen function
then tries to grow context-free patches starting with some other element gp’ from B. Since we
assumed all patches in B to be commutative, all context-free patches starting with gp found
by gen are equivalent to those found to be starting with gp’. The following corollary is a
generalization of the observation just made that whenever the gen function has already found
some safe context-free patch for CS denoted gp, there is no need to try to grow from a subpatch
gp’. The corollary holds even when there are non-commutative patches in the set B as otherwise
assumed above.

Corollary (Search-space pruning) For any context-free patches gp,gp’, gp”:

" SCS

gp € LCT(CS) A gp’ < gp A gp’;9p" < CS = gp’;gp sp

The corollary follows directly from the definition of what it means for a program transformation
to be maximal and the subsumption relation. (Definitions 4.11 and 4.10).

[November 13, 2009 at 10:43]

69

5.3 ALGORITHM 70

simple_pairs_one (t,t’) =
let loop lhs rhs =
if lhs == rhs
then {}
else case (lhs,rhs) of
| (al(tsl), a2(ts2)) ->
let R = {tu | t1 € tsl, t2 € ts2,
tu € simple_pairs_one t1 t2
} in
{lhs~»rhs} U R
| otherwise -> {lhs~»rhs}
in
{tu | tu € loop t t’, tu<(t,t")}

simple_pairs C =
let loop tu_lists = case tu_lists of
[11 ->{}
| [tu_list] -> tu_list
| (tu_list::tu_lists) ->
let tu_merged = {tu | tu € loop tu_lists} in
{tu ® tu_merged | tu € tu_list, tum € tu_merged,
(tu ® tum) < CS}
in
let lists = map find_simple_updates_one CS
in
loop lists

Figure 4: Generation of term replacement patches

[November 13, 2009 at 10:43]

5.3 ALGORITHM

533 The refined spfind algorithm

We now proceed to describe the refined spfind algorithm making use of the solutions to the
two problems identified for the simple algorithm.

The spfind_refined algorithm is split into two main parts just like the simple version, spfind.
The former part (the simple_pairs function) can be seen in Figures 4 and the latter (the gen
function as well as the entry point of the algorithm) in Figure 5.

GENERATION OF TERM REPLACEMENT PATCHES In order to generate a set of term replace-
ment patches based on a given changeset, we first find a set of sets of non-abstract patches and
then fuse them to obtain term replacement patches with meta-variables.

The function simple_pairs_one defined at the top of Figure 4 finds non-abstract term replace-
ment patches. The function works by taking a pair of terms and finding non-abstract patches
that all satisfy the safety criterion: t; ~» t{ < (t,t’). The function does so by traversing the given
pair of terms simultaneously. If the two terms are not equal, a non-abstract patch is added to an
intermediate result set. If the two terms are also compound, the function calls itself recursively
on the embedded subterms. Once the traversal is done, all non-safe patches are filtered out and
only the safe ones are returned.

The simple_pairs function (bottom Figure 4) is given a changeset C = {(ty,t}),..., (tn, t5)}
and applies the simple_pairs_one function to each pair, obtaining a set of sets of non-abstract
term replacement patches:

!
RN tna
. ty,2 ~ 1] tho =t
tu_lists = T V2 o 2
tyx ~ tqlk tn,q ~ t;l,q

where ti; ~~ t; ; corresponds to the jth non-abstract patch for the ith pair in C. This function now
uses the patch fusion operator frp @ trp’ to construct more abstract patches. In the following, let
tu_merged denote the fused patches so far. We describe the three cases of the local 1oop function
of simple_pairs below. When loop is done, tu_merged will contain a set of term replacement
patches that are safe for all pairs in the changeset.

tu_lists is empty: If tu_lists is empty, the changeset CS was also empty and thus tu_merged
should also be empty.

prgtu_lists is a singleton: In this case there is no other set of patches to fuse with, so we simply
let tu_merged be the only list in prgtu_lists at this point. Doing so ensures that the patches
returned are minimally abstract.

prgtu_lists contains two or more sets of patches Let tu_lists; denote one set of patches tij ~ t;;
for some i and tu_lists’ denote tu_lists\tu_lists;. The loop function first fuses the
patches in tu_lists’ and then combines each of the fused patches with one from tu_lists;.

[November 13, 2009 at 10:43]

71

5.3 ALGORITHM

computeNext C B cur = { p~p’ | p~p' € B, cur;p~p’ < C}

gen C B acc_res cur =
let next = computeNext C B cur in
if next == {}
then {cur} U acc_res
else fold (Aacc_res bp ->
if dgp € acc_res:(cur;bp)=<cgp (%)
then acc_res
else gen C B acc_res (cur;bp)
) acc_res next

spfind_refined C =
let B = simple_pairs C in
fold (Aacc_res bp ->
if Jgp € acc_res:bp=<cgp
then acc_res
else gen C B acc_res bp
) [1B

Figure 5: Growing sequential context-free patches and entry point of the refined algorithm.

If the fused patch is not safe for the changeset, it is not included in tu_merged and
otherwise it is. Using the safety check to limit the size of tu_merged is crucial to reduce
the running time of the loop function. If we had deferred the safety check to outside of the
Loop function it would need to compute [prgtugists;| x [prgtuists,| x - -- x [prgtugists,,|
fused patches.

GROWING SEQUENTIAL CONTEXT-FREE PATCHES The essential difference between the re-
fined gen function shown in Figure 5 and the simple version is that before each recursive call
to gen, the refined version checks that the extended patch (cur;bp) is not a subpatch of one it
already found in the accumulated results, acc_res. The conditional test is marked with *xx to
indicate the essential difference between the old and new version of the gen function. Based on
Corollary 5.9 we can see that extending cur with bp will only allow us to find patches that are
subpatches the patches that are already in acc_res. Therefore, the recursive call is not performed
and instead acc_res is taken as the result.

[November 13, 2009 at 10:43]

72

CONTEXT-SENSITIVE PATCH INFERENCE Chapter

In this section we instantiate the transformation parts framework of Chapter 4 with a trans-
formation language that is more expressive than the one used to express context-free patches.
Specifically, the transformation language described in the following is a simple subset of the
SmPL language used in the Coccinelle project. The language we describe allows specification of
transformations with a context-sensitive denotation of locations (control-flow paths) and named
subpart abstractions (meta-variables). We therefore refer to such programs transformations as
semantic patches. We first present a motivating example that shows a collateral evolution that can
not be expressed as a context-free patch. We then describe the transformation language along
with some key properties and then finally the actual algorithm for finding the set LCT(CS,n)
expressible with semantic patches.

61 MOTIVATING EXAMPLE

We consider a collateral evolution that was performed between May and July 2007." The
corresponding evolution changed the way file-system drivers clear certain memory regions.
Before the evolution, memory was cleared by a call to memset, preceded and followed by calls to
kmap_atomic and kunmap_atomic, respectively. To reduce the amount of duplicated code, a new
library function was introduced to handle all three operations. This evolution then required a
collateral evolution: replacing the associated fragments of code in drivers by a call to the new
library function.

Below is an excerpt of the first standard patch in a sequence of standard patches implementing
the collateral evolution mentioned above.

--- inode.c.orig 2009-08-24 14:23:31.000000000 +0200
+++ inode.c.new 2009-08-24 14:23:31.000000000 +0200
@@ -1767,7 +1767,6 @@ static int ext3_block_truncate_page(hand
@@ -1835,11 +1831,7 @@ static int ext3_block truncate_page(hand
goto unlock;
}

- kaddr = kmap_atomic(page, KM_USERO);
- memset(kaddr + offset, 0, length);

- flush_dcache_page(page);

- kunmap_atomic(kaddr, KM_USERO);

+ zero_user_page(page, offset, length, KM_USERO);
BUFFER_TRACE(bh, "zeroed end of block");

The initial change occurs with git SHA1 identification code o1f2y05daf5a36208e69d7cfg5dbgc330f843af6. obtained
from http:/ /git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=summary

73

[November 13, 2009 at 10:43]

6.1 MOTIVATING EXAMPLE

The standard patch code removes the call to memset and associated calls to kmap_atomic
and kunmap_atomic, and replaced them with a call to zero_user_page. A call to the function
flush_dcache_page is also removed. The following is another excerpt from the same standard
patch:

--- loop.c.orig 2009-08-18 15:28:16.000000000 +0200
+++ loop.c.new 2009-08-18 15:28:16.000000000 +0200
@@ -243,17 +243,13 @@ static int do_lo_send_aops(struct loop_d
transfer_result = lo_do_transfer(lo, WRITE, page, offset,
bvec->bv_page, bv_offs, size, IV);
if (unlikely(transfer_result)) {
- char xkaddr;

/*
* The transfer failed, but we still write the data to
* keep prepare/commit calls balanced.
*/
printk(KERN_ERR "loop: transfer error block %llu\n",
(unsigned long long)index);
- kaddr = kmap_atomic(page, KM_USERO);
- memset (kaddr + offset, 0, size);
- kunmap_atomic(kaddr, KM_USERO);
+ zero_user_page(page, offset, size, KM_USERO);

}
flush_dcache_page(page);

This standard patch code also replaces the call to memset and associated calls to kmap_atomic
and kunmap_atomic with a call to zero_user_page. In addition, the declaration of the kaddr
variable is removed, as it is no longer useful. In contrast to the previous standard patch, however,
the call to flush_dcache is not removed.

While there are some differences in what changes are performed by the above two standard
patches, there are also some very compelling similarities: 1) a wrapped call to memset and the
wrapping functions are removed and replaced with a call to zero_user_page, 2) the arguments
to the removed functions are passed to the newly inserted function call. These similarities are,
however, obscured by the large size of the patch (over 300 lines), and by the small variations in
the instances as described above. We would thus like to see a more high-level specification of
the common changes.

Below is a semantic patch inferred by our tool. The semantic patch compactly summarizes
the common changes mentioned.

@@
expression X0, X1, X2, X3;
@@
- X3 = kmap_atomic(X2, KM_USERO);

- memset(X3 + X0, 0, X1);

- kunmap_atomic (X3, KM_USERO);
+ zero_user_page(X2, X0, X1, KM_USERO);

[November 13, 2009 at 10:43]

74

6.2 SEMANTIC PATCHES

Intuitively, the semantic patch removes calls to kmap_atomic that are always followed by a call
to memset that is again always followed by a call to kunmap_atomic. In contrast, context-free
patches could only propose rewriting all instances of these three kinds of terms individually,
which would be incorrect, as there are e.g. many other uses of memset that should not be affected
by this transformation. The semantic patch furthermore leaves out the changes that are not
common, i.e., it does not specify that in one case the call to flush_dcache is to be removed while
in the other case the declaration of a variable kaddr should be removed.

The use of meta-variables in this semantic patch furthermore enforces some necessary rela-
tionships between the arguments of the various affected calls. In particular, the first argument
to memset should be an addition expression where the first argument to the addition expression
is syntactically equal to both the variable assigned to by the preceding call to kmap_atomic
and the first argument to the succeeding calls to kunmap_atomic. This expression is not used in
the generated call, but instead only the second operand of the addition is used, as the second
argument.

We now describe our approach for finding semantic patches from a change set, as implemented
by our spdiff tool. The approach is split in two steps: 1) find common patterns in functions that
contain transformations, and 2) add transformation operations to the found patterns, resulting
in semantic patches.

This section defines semantic patches and the subpatch relation between them.

62 SEMANTIC PATCHES

A semantic patch is a specification of a transformation. We consider two types of transformations:
term removal, denoted by -, and term addition, denoted by +. A semantic patch is matched
against the terms of the input program and transforms it according to the specified operations.
The minimal element of a semantic patch is a patch term (PT), which is either a meta-variable,
a wildcard (denoted _), an atom or a collection of several patch terms composed by the term
constructor c. Patch terms that are unannotated or annotated with “-” are matched against the
terms of the input program. The syntax of semantic patches is given below.

pt == €|Opt
O = PT|...|-PT|+PT
PT == Meta|_|atom | a(PT™)

A semantic patch pt consists of zero or more operations O. O is either a patch term, “...”, or
one of the transformation operations: -PT or +PT. The “...” operation matches a sequence of
zero or more terms. A wildcard patch term matches any term in the code the semantic patch is
applied to.

Previous work [11, 29, 49] has defined the application of various kinds of semantic patches.
In this dissertation we omit the formal definition of semantic patch application, instead relying
on the intuition developed in Section 6.1, as our main focus is on inference of semantic patches.
Application of a semantic patch to a term is written [[pt]|(t).

[November 13, 2009 at 10:43]

75

6.2

63 SEMANTIC PATTERNS

63 SEMANTIC PATTERNS

As outlined above, the algorithm for finding semantic patches starts with finding common
patterns. Concretely, we look for semantic patterns. The grammar of semantic patterns can be
given as the following subset of the grammar of semantic patches:

pt == €|Opt
O == PT|...
PT := meta-variable | wildcard | ATom | a(PT")

As can be seen, a semantic pattern is a semantic patch that contains no +’s or -’s. We will
therefore refer to the left-hand side of a semantic patch as the semantic pattern obtained by
removing all -’s and all +PT’s from the semantic patch.

In the following we define a pattern containment relation used by pattern finding algorithm
to prune the search space and reduce the number of returned patterns. In order to define the
subpattern relation, we first define when a patch term pt; is contained in another patch term
pt2 denoted as pty < pt,. This is the case if either:

1. pty = pty, or
2. pta=_,or
3. pt1 =ci(pty,..., ptn) and c2(pt},...,pt)) and ¢; =cz and V1 <i < n:pty Ipt].

Example Let the following three terms be given:

tr = m(f(42),f())
ta = m(f(),f(100))
t3 = m(f(), f()

One can verify that t; <t3 and t, <t3 and that no other containments hold.

The subpattern relationship is defined in Definition 6.2. Note that the subpattern definition
provides a containment relationship between semantic patterns that can be checked by only con-
sidering the syntactic structure of the semantic patterns while the previous subpatch definition
provides a containment relationship between semantic patches that requires consideration of
the result of applying the semantic patches to specific terms.

Definition (Subpattern) A semantic pattern p = {ey,---,en) is a subpattern of another semantic

pattern p' = (e},--- el) if and only {eq,--- ,en) is a subsequence of {e},--- ey in which the

corresponding elements are compared using the patch-term containment relation defined above. Formally,

pisa subpattern of p’ if there exists zntegers 1< <ip < <ip < mwheree; < e er < e{z,
-,en g ein. We denote this as p E p’.

[November 13, 2009 at 10:43]

76

6.3

6.4

6.5

64 FINDING SEMANTIC PATTERNS

Example Given the following three semantic patterns

p1 = (m(10,2),9(1))
P2 = <TTL(_, —)r 9(—)>
P33 = <f(—)/ m(—/—)r 9(1)>

one can verify that p; = p3 and p; E p2, but not p2 = p3 because g(_) < g(1) does not hold.

64 FINDING SEMANTIC PATTERNS

We now present our algorithm for finding maximal semantic patterns. First, however, we
describe the properties that we use to prune the search space.

6.41 Occurrences & Pruning Properties

A semantic pattern can match zero or more fragments of code in the left-hand side of a change
set. We define the occurrences of a semantic pattern p with respect to a change set as follows. Let
p F g denote that semantic pattern p matches the control-flow graph g and let CFG(t) denote
the control-flow graph of the term t. Then

Ocees(p) = {t | (4,t') € CS,CFG(t) = ¢,p - g}

The number of occurrences of a semantic pattern is the size of the set Occcs(p). We elide
the CS on Occcs(p) when it is clear from the context. A pattern is frequent if the number of
occurrences is larger than a user-defined minimum occurrence threshold th. Occurrences of a
pattern follow some properties described in Properties 6.4 and 6.5 below.

Property (Anti-monotonicity of occurrences) Consider two patterns p; and p; and a change
set CS. If p2 =p1 ... evs where evs is also a semantic pattern, the number of occurrences of p
is greater or equal than that of p;. .

Property (Pattern occurrence inference) Consider two patterns p; and p, where each patch
term may contain wildcards, but not meta-variables, and a change-set CS. If py and p; have the
same set of occurrences in CS, then for any pattern evs, the patterns py ... evsand p2 ... evs
have the same set of occurrences. .

The algorithm described below uses the above properties to prune the search space when
looking for patterns with a significant number of occurrences.

[November 13, 2009 at 10:43]

77

64 FINDING SEMANTIC PATTERNS

6.42 Algorithm

Our approach takes as input the change set CS and a minimum occurrence threshold th. The
goal is to extract all maximal patterns that are frequent. Our approach is outlined in Algorithm 1,
in the procedure Find Patterns, below.

The semantic patterns found by Algorithm 1 all conform to the following regular expression:
PT(...PT)*. We use (p1,---,Pn, as a short-hand notation for such patterns.

There might be many semantic patterns that are frequent in a given change set. These patterns
may be overlapping and some might not match any node in the control-flow that was changed.
Therefore, we find the maximal patterns according to the semantic pattern containment relation.
There are fewer maximal patterns and by looking for maximal patterns, we can further employ
a search-space pruning technique (defined in Section 6.4.1).

The algorithm proceeds in three steps: a) Infer semantic patterns where each PT of the pattern
may contain wildcards, but not meta-variables, starting from length 1 and increasing to longer
lengths (lines 1—4), b) Remove non-maximal patterns (line 5), and c) Infer meta-variable bindings
on maximal patterns (line 6).

Our approach starts by first finding patterns of length 1 that are frequent in CS (line 1). We
then grow each length 1 pattern to form longer patterns using Grow (line 4). The procedure Grow
recursively grows the patterns by appending new patch terms one by one.

Several pruning strategies are employed to stop the growth process. These are based on
the properties presented in Section 6.4.1. Based on Property 6.4, if a pattern does not have
sufficient occurrences, there is no need to grow it further as its extension would also have
insufficient occurrences. This check is made at line 10. Also, there is no need to grow a pattern
if its super-pattern having the same set of instances has been considered before. This is the
case as Property 6.5 dictates that all extension of the sub-pattern would have the same set of
occurrences as the corresponding extension of the super-pattern. Since we are only interested in
finding the maximal patterns, there is no need to keep the sub-pattern. This pruning prevents an
exponential growth in the number of patterns, as would occur if all subsequences of a pattern
with a sufficient number of occurrences were also occurring frequently.

For every pattern that is not pruned by the properties, Grow tries to grow the pattern further
by making a recursive call (lines 12-15). If the pattern cannot be grown further, then we add this
pattern to the candidate pattern set found so far, R (lines 15-16). The procedure Grow returns a
boolean value indicating whether R has been updated.

Because Grow only tries to extend patterns at the end, the final value of R may contain some
patterns that are not maximal and that are indeed suffixes of other, maximal, elements of R. We
remove these non-maximal patterns at line 5. For each remaining pattern in the result Ry qx, we
infer its meta-variable bindings, based on the change set CS (lines 6-7). The algorithm looks for
the strongest bindings, i.e., the ones that convert as many wildcards as possible to the smallest
number of different meta-variables, that assign a unique variable name for patch terms that
always map to the same terms in the change set CS under consideration. The set of maximal
patterns with meta-variable bindings is the output of Find Patterns and is fed to the next step:
patch construction, described in the next section.

[November 13, 2009 at 10:43]

78

6.6

64 FINDING SEMANTIC PATTERNS

6.4.3 Constructing semantic patches

To construct patches from patterns, we first collect the individual modifications in the code, in
a format that we refer to as chunks. Given two terms t and t’, we have implemented a simple
graph differencing tool* that produces a list of term additions, removals, or contextual terms.
From this list we construct chunks, as defined in Definition 6.6 below.

Definition (Chunks) A chunk is a sequence of term additions, term removals, and contextual terms, as
described by the following reqular expression:

(+)7(t] -t)(+t7)

A chunk contains a unique term removal or contextual term, referred to as the context point. Given a
chunk ch we denote its context point as ch.cp. This context point cp is matched by a patch term pt iff
there is a binding of the term pattern meta-variables resulting in the context point. We denote this as
cp — pt.

To make the description of the patch construction algorithm simpler, we introduce an operation
PairChunk. This operation takes a patch pt, a term pattern fp within pt, and a chunk ch. It
incorporates the transformation operations within ch into tp, and generates meta-variable
bindings for the transformation operations within ch, resulting in a new pattern. As a simple
example, let pt be the patch “-a(X); ... b(X);” and ch the chunk “-a(42); +a(42,42)”. The
result of PairChunk(pt, -a(X), ch) is then the semantic patch -a(X);+a(X,X); ... b(X);. Notice,
that the X in -a(X); has been matched with the 42 of -a(42); so that 42 is replaced by X in
+a(42,42).

The algorithm to construct patches from patterns is shown in Algorithm 2. It first constructs
a chunk set CHS from the input change set CS (line 1). We process each pattern one by one
by adding it to the working queue (line 3). For each pattern, we try to map each term pattern
within it with each corresponding chunk ch in CHS (lines 6-8). If this succeeds, we create a new
patch p’ by incorporating the transformation operations in the chunk ch into the current pattern
(patch) under consideration p (line 9). If this patch does not appear in the output set Out and is
a safe transformation with respect to CS, we add this patch to the output set and the working
queue (lines 10-12). At line 13, non-maximal patches are removed. Maximal patches are output
at line 14.

In practice the running time of the algorithm depends the structure of the programs given in
the change set. If the programs have very little in common except for the locations related to the
common change made, the algorithm is faster than if the programs have much in common.

2 One can use an off-the-shelf tree-differencing algorithm, sequence differencing, or graph-differencing tool.

[November 13, 2009 at 10:43]

79

65 IMPLEMENTATION

65 IMPLEMENTATION

All of the algorithms mentioned have been implemented in a tool called spdiff using the
O’Caml programming language in roughly 10.000 lines of code for (excluding the parser which
is again the same as the one used in Coccinelle). In the implementation two further issues have
been addressed. The first issue is the problem of noise in the input data and the second is a
performance issue.

NOISY INPUT DATA We have so far assumed that the given changesets C are “ideal” in the
sense that it is possible to find a patch that is safe for all pairs in C. When applying our tool to
updates in Linux device drivers we found that this was often not the case. Rather, one patch
was found safe for a number of pairs while another patch was found safe for a different set of
pairs. Our tool would then say that it could find no globally safe update.

To relax the requirement that all changes have to be safe for all pairs we introduced a user-
specified threshold. The threshold states for how many pairs a change has to be safe before it
is considered safe for the given changeset C. In Section 4.5 we introduced thresholds to the
definitions of transformation parts and the subsumption relation which have been implemented
in our tool so that the user can specify a desired threshold. One can show that Corollary 5.9 also
holds when thresholds are introduced, so the refined algorithm also works when thresholds are
involved. Allowing a user given threshold is essential when dealing with input that is either
buggy or expresses a collection of several incompatible collateral evolutions.

IMPROVING PERFORMANCE In the definitions given above that relate program transforma-
tions or terms, we make frequent use of equality checks on terms. A simple implementation of
term equality would compare the two given terms structurally:

let t_equal tl t2 = case (tl, t2) of

| al, a2 -> al == a2
| al(tsl), a2(ts2) ->
al == a2 && |tsl| == |ts2] &&

V tletsl, t2ets2: t_equal tl1 t2

Clearly, the time complexity of t_equal is O(n) where n is the size the smaller of the two terms.
Our initial implementation used the above equality check and it was not very fast. Pointer-
equality is more efficient to compute than structural equality. Concretely, we have made use of a
technique called hash-consing (or value numbering) as implemented in the module Hashcons by
Conchon and Filliatre [16]. Their implementation of hashconsing works very well in our setting
and allows constant time equality checks.

[November 13, 2009 at 10:43]

8o

Procedure: Find Patterns
Inputs: CS: Change set

th: Minimum number of occurrences
Output: All maximal patterns obeying th

1let Py = patterns without any meta-variables

with length 1 appearing > th in CS
2:LetR=¢
3: For each p € Py:
4. Call Grow (p, P1, R, th, CS)
5:Let Ryax = {p [pe R A (=3p' € R\{p}) : pEp')}
6: For each p € Ry
7: Infer strongest bindings for meta-variables in p

over all occurrences of p in CS.
8: Output Ryux

Procedure: Grow

Inputs: p: Pattern being grown
P;: Patterns of length 1
R: Candidate patterns found so far
th: Min. number of occurrences
CS: Change set

Output: Boolean value indicating whether

R is updated with new patterns

9: Let gf = false
10: If p matches > th times in CS
11: If =3p’ e R.p & p’ A Oce(p) = Occ (p’)

12! For each e € Py:

13: Letnp=p ... e

14: gf =gf || Call Grow (np, Py, R, th, CS)
15: If —gf

16: R=Ru {p}

17: gf = true

18: Return gf

Algorithm 1: Finding maximal semantic patterns

[November 13, 2009 at 10:43]

65 IMPLEMENTATION

81

6.5 IMPLEMENTATION 82

Procedure: Construct Patches
Inputs: PS: semantic patterns

CS: Change set
Output: Patches corresponding to PS

1: Let CHS = all chunks from CS, obtained using diff
2: Let Out =g
3: Let WorkQ = PS
4: While WorkQ is not empty:
50 p = WorkQ.pop()
6: For each term pattern tp € p
not paired to a chunk
For each chunk ch € CHS

7

8: If tp — ch.cpt

9: Let p’ = PairChunk(p, tp, ch)

10: If p’ ¢ Out A¥epe CS:p’ <cp
11 WorkQ.push(p')

12 Out = Out u {p'}

13: Remove non-maximal patches from Out
14: Output Out

Algorithm 2: Construct patches from patterns

[November 13, 2009 at 10:43]

Part II1

REAL-WORLD APPLICATION

[November 13, 2009 at 10:43]

EXPERIMENTS Chapter

71 EXAMPLES OF CONTEXT-FREE PATCHES

We now provide a few examples of the use of spdiff, based on some recent patches committed
to Linux that we have identified using the patchparse collateral evolution mining tool [48]. For
each standard patch that we have tested, we have constructed the set of pairs of terms, C, from
the image of the Linux source tree just before the standard patch was applied and just after.

ADAPT TO STRUCTURE CHANGES The following commits, dated November 9, 2007, begin

” 1

with the log message “convert to use the new SPROM structure”.

95de2841aad971867851b59c0c5253ecc2e19832
458414b2e3d9dd7ee4510d18c119a7ccd3b43ec5
7797aa384870e3bb5bfd3b6abeaeble7c7a4c993

These commits comprise over 650 lines of patch code, and affect 12 files in the drivers/net
directory or its subdirectories, at 96 locations. In the role of an expert in the affected files, we
selected three files from the first commit that illustrate the set of required changes. From these
files, spdiff infers the following context-free patch:

X0->sprom.rl ~» XO->sprom ;
sprom->rl1.X0 ~-» sprom->X0

The inferred context-free patch fully updates all 12 original files in the same way the standard
patches did. By careful examination of the standard patch, a person could construct the inferred
context-free patch by hand. However, there would be no guarantee that the constructed patch is
safe, as this is not evident in the standard patch. To check safety manually, one would have to
consider 1) whether the constructed patch updates the proper locations correctly but does not
update locations that were not to be modified, and 2) whether the constructed patch is only a
part of the update that is to be performed to a particular file.

Furthermore, the inferred context-free patch updates some other files that were present at the
time of the original patches but were overlooked. These files were in other directories and were
not updated until February 18, 2008, by another developer.

The patches can be obtained from
http:/ /git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=summary

84

[November 13, 2009 at 10:43]

7.1 EXAMPLES OF CONTEXT-FREE PATCHES

STRUCTURE CHANGES Commit ¢32¢2f63a9d6c953aaf168c0b2551da9734f76d2 from Febru-
ary 14, 2008 affects 9 files at 12 locations. The message attached to the commit is “d_path:
Make seq_path() use a struct path argument”. The standard patch attached to the commit is
approximately 160 lines. The patch inferred by spdiff is:

seg_path(X1,X2->X3.mnt,X2->X3.dentry, X4)
~> seq_path(X1,&X2->X3,X4)

The inferred context-free patch fully updates all but one of the original files. The only file that
is not fully updated is the file fs/namespace.c in which a declaration struct path mnt_path is
also added.

RENAMING OF FUNCTION CALLS The following commits, dated December 20, 2007, begin
with some variant of the log message “Kobject: convert drivers/* from kobject_unregister()
to kobject_put()”.

€10997f6575f476ff38442fal8fd4ad0d803459d
78a2d906b40fe530ea800c1e873bfe8f02326f1e
197b12d6796a3bcal87f22a8978a33d51e2bcd79
38a382ae5dd4f4d04e3046816b0a41836094e538

These commits comprise almost 8oo lines of patch code, and affect 35 files at 79 locations.
Based on the changes in the 17 files in the first of the above commits, spdiff derives the
following context-free patch:

kobject_unregister(X0)~~ kobject_put(X0)

The inferred context-free patch fully updates all but 3 files in the same way the standard
patch did. The remaining files each include an additional change that goes beyond the collateral
evolution.

MODIFYING DECLARATIONS Commit cl1lca97ee9d2ed593ab7b5523def7787b461398f and 12
others from around December 7, 2007 change 21 files at 26 locations. The log messages are
“use LIST_HEAD instead of LIST_HEAD_INIT”. The standard patches total almost 300 lines. The
inferred context-free patch is:

struct list_head X0 = LIST_HEAD_INIT(XO);
~~ LIST_HEAD(X0);

The inferred context-free patch fully updates all 21 files. The original developer, on the other
hand, initially overlooked one case and had to create a second patch on the same file to correct it.
Furthermore, 6 files that contained relevant declarations at the time the patches were committed
were not updated by the original patches, and of those 5 files were still not updated as of several
months later. All of these files are fully updated by the context-free patch.

[November 13, 2009 at 10:43]

85

7.2 EXAMPLES OF CONTEXT-SENSITIVE PATCHES

USE kzalloc Over the past couple of years, around 100 patches have been committed that
convert the combination of calls to kmalloc and memset to kzalloc. One such commit, from
September 6, 2005 is dd3927105b6f65afb7dac17682172cdfb86d3f00 which affected 6 files at 277
locations. The transformation it performs can be represented as follows.

x = kmalloc(size, flags);
kzalloc(x, size, flags);

memset(x, 0, size);

Our tool is, however, not able to infer any safe context-free patch in this case because the
language of context-free patches is not able to express the temporal ordering of terms or the
sharing of meta-variables between disjoint code fragments.

ASSESSMENT These examples show that for a variety of collateral evolutions, spdiff infers
context-free patches that are much more concise, and we believe much more readable, than the
corresponding standard patches. In several cases, the original standard patches did not perform
part of the collateral evolution in some relevant files. In this situation, a developer could use
spdiff to infer a context-free patch from the provided standard patches to help complete the
collateral evolution. Using the Coccinelle transformation system, the context-free patch can be
applied everywhere in the Linux source tree.

While all of the inferred context-free patches inferred are simple enough that a person could
construct them by hand by inspecting the standard patches, it would require more work to
confirm that the manually constructed patch is indeed safe for all of the input files. Safety is
not evident from the standard patches which contain only the code that was changed, not any
similarly structured code that was not changed. In order to confirm safety, one would need to
apply the constructed patch to all original input files and check that for each file, the constructed
patch applies correctly to a subset of the locations that need to be modified in the file.

Our final example illustrates a limitation of context-free patches. The richer language of
context-sensitive patches can express the properties needed to treat such examples.

72 EXAMPLES OF CONTEXT-SENSITIVE PATCHES

We now revisit the motivating example given in Section 6.1. Our goal is to show how spdiff
can be used to obtain a high-level, but operational, description of the common changes in a
changset, and how this result can help developers avoid potential bugs in the changes made or
adapt their own code in accordance with the common changes found in the changset.

THE ORIGINAL COMMIT The commit with git SHA1 identification code o1f2705dafsa3620-
8e69dycfgsdbgc330f843af6 was the first in a series of standard patches committed starting in
May 2007 to the Linux version control system that implemented a refactoring of a commonly
occurring pattern for clearing pages found in filesystem code. This pattern consisted of the
following operations: 1) map a page into the kernel virtual memory using kmap_atomic, 2)

[November 13, 2009 at 10:43]

86

7.2 EXAMPLES OF CONTEXT-SENSITIVE PATCHES

clear this page using memset, 3) call flush_dcache_page to ensure that the cleared memory
gets written to disk, and 4) unmap the memory region using kunmap_atomic. The refactoring
introduced a new function, zero_user_page that does all of these operations. Core kernel
locations where memory was cleared in this way were modified to use the new function. In
subsequent commits, the remaining locations were updated to use the new function. These latter
changes amount to collateral evolutions.

THE INFERRED SEMANTIC PATCH Suppose now that the changset that we use as input to
spdiff consists of a subset of 8 pairs of the original and updated versions of some function that
was modified by the above commit. If spdiff is run with the changset and a minimum support
threshold of 3 we get the semantic patch already shown in Section 6.1:

@@
expression X0, X1;
struct page *X2;
char *X3;
@@
- X3 = kmap_atomic(X2, KM_USERO);

- memset (X3 + X0, 0, X1);

- kunmap_atomic (X3, KM_USERO);
+ zero_user_page(X2, X0, X1, KM_USERO);

Note that the generated semantic patch does not include the call to flush_dcache_page. As it
occurs in varying positions, i.e., sometimes before and sometimes after the call to kunmap_atomic,
it is not included in the initial semantic pattern. Furthermore, in one case the call was not
removed.

Applying this semantic patch to the files mentioned in the original commit causes it to
perform a safe part of the changes that were made by hand, in all but one case. This case is
represented by the following excerpt of the standard patch:

@@ -2108,10 +2100,8 @@ int cont_prepare_write(

- kaddr = kmap_atomic(new_page, KM_USERO);

- memset(kaddr+zerofrom, 0, PAGE_CACHE_SIZE-zerofrom);

- flush_dcache_page(new_page);

- kunmap_atomic(kaddr, KM_USERO);

+ zero_user_page(page, zerofrom, PAGE_CACHE_SIZE - zerofrom,
+ KM_USERO) ;

This standard patch code contains a small bug, that is not detected at compile time and thus
only manifests itself at run-time. The error is that in the added code at the end of the standard
patch, the first argument to zero_user_page is page, while, as shown by the other calls, it should
have been new_page. The updated function can still be compiled because the variable page is a

[November 13, 2009 at 10:43]

87

7.2 EXAMPLES OF CONTEXT-SENSITIVE PATCHES

parameter of the function being modified. At run-time, however a file system corruption occurs,
as described in the log message associated with commit ffibegad61e3ze17ba83702d8edobs34e5b-
8ee15sc.

This error would not have happened if the change were made using the semantic patch,
because the semantic patch specifies that the first argument to the newly inserted function call
should be the same as the first argument to the call to kmap_atomic. Since in all other updated
functions the name of the variable given as the first argument to kmap_atomic is indeed page, it
seems like the bug is the result of a copy-paste error. Linux code frequently but not always uses
stereotypical names for values of a given type, and thus there is a high potential for this sort of
erTor.

The bug was eventually fixed 11 days later by a different developer.

SUBSEQUENT CHANGES On February 4, 2008 all of the calls to the function introduced 8
months earlier, zero_user_page, were eventually replaced with a call to one of three different
functions: 1) zero_user, 2) zero_user_segment, and 3) zero_user_segments. 39 functions spread
over 22 files were updated as part of the commit.> When applying spdiff to the changset
constructed from the modified functions with a minimum support threshold of 11, two semantic
patches are returned:

@@ struct page *XO;
expression X1, X2;

@@
- zero_user_page(X0,X1,X2 - X1,KM_USERO);
+ zero_user_segment(X0,X1,X2);

and

@@ expression X0, X1;
unsigned int X2;

@@
- zero_user_page(X0,X1,X2,KM_USERO) ;
+ zero_user(X0,X1,X2);

spdiff detects that it is unsafe to apply the second before the first, as a subtraction expression
can also have type unsigned int, and thus it indicates that they must be applied in the specified
order. After application of the two inferred semantic patches, three calls to the zero_user_page
remain to be updated. In those cases, spdiff was not able to infer any common patterns and we
have indeed verified that it is not possible for one semantic patch to update all three locations.

This shows the value of automatic inference of patches to: 1) Reduce the need for manual
code updating that could be error prone, 2) Find anomalies in patches and provide feedback to
programmers to aid in patch and collateral evolution understanding.

2 SHA1 identification code: eebd2aa355692afaf9906f62118620f1alc19dbb

[November 13, 2009 at 10:43]

88

CONCLUSION Chapter

In this chapter we summarize the contributions of this dissertation and give directions for future
work.

81 SUMMARY

The main hypothesis that have been explored in this dissertation is that it is feasible and helpful
to infer high-level descriptions of common changes from a representative set of changes (the
changeset).

Concretely we have contributed with an abstraction definition of the notion of transformation
parts. Transformations parts capture when a specification of changes is witnessed in a changeset.
The definition of transformation parts is parametrized by an application function for the
underlying change specification language. Furthermore, we have presented two algorithms for
finding increasingly more expressive program transformations. Both of the algorithms have been
implemented in the programming language OCaml. The implementations have been applied to
real changesets found in the Linux repository. We have shown that for the examples tried, the
inferred transformations are much more compact than what is available in the current version
control system used in the development of Linux.

82 FUTURE WORK

The future work based on this dissertation falls in two categories: 1. evaluation and engineering
work, and 2. exploration of other transformation languages.

8.2.1 Evaluation and engineering

The work presented in this dissertation does not include extensive evaluation of the algorithms
implemented. In order to do an evaluation of our approach we would apply spdiff to a larger
set of changes. Also, it would be interesting to apply our approach to other projects than Linux.
Such an evaluation would be useful to make a more general statement about the usefulness of
our approach.

In terms of the implementation it could be helpful if the user could explore the information
that spdiff collects about the changesets. Currently, spdiff simply returns a list of the program
transformations it inferred, but it could be useful for the user to then select a transformation and

89

[November 13, 2009 at 10:43]

8.2 FUTURE WORK

ask whether subparts of it could be made more general-recall that we only abstract subparts if
it is needed for the pattern to match enough terms. Also, in the current implementation the user
can select a threshold and start the inference, and if no good results are returned, the user can
try to rerun the inference with a lower threshold. However, this process could be made more
efficient if the tool somehow kept a record of previous runs. Likewise, incremental analysis is
not well supported by our implementation. One could imagine the user initially providing a
small changeset and then when the transformation inferred seems too specific or general, add
more pairs to the current changeset. In such cases the results of previous runs of the tool could
be used to incrementally compute the results for the new changeset.

8.22 Exploration of other transformation languages

In this dissertation we have presented algorithms for finding common changes relative to a
context-free term-rewrite language and a context-sensitive transformation language. A nat-
ural thing to do is to instantiate our transformation part framework with respect to other
transformation languages—or simply to extend the presented ones to be more expressive.

CONTEXT-RESTRICTED REWRITES One suggestion is to extend the context-free rewrite lan-
guage with a limited form of context-sensitivity which we call context-restriction. Concretely, a
context-restricted term-rewrite rule rewrites all occurrences of the left-hand side of the rule
within a specific context. An example context could be “all functions taking two parameters of a
certain type with a specific return type”. The rewrite rule would then only consider rewriting
subterms within the restricted context and safety of the rule would only need to be relative to
the restricted context because elsewhere the rewrite rule does not apply. The consequence is that
the p ~ p’ rule could be more general and still safe. A very concrete example could be a rule
such as return 0; ~» return SOMECONST; which would change all return 0’s into a statement
returning the constant SOMECONST. In general this rewrite rule should not be applied everywhere
in all functions, but it may be the case that within functions that return a certain user-defined
type, it is actually safe to apply the rewrite rule.

MORE EXPRESSIVE TRANSFORMATION LANGUAGE Recall the inferred context-free patches
from Example 4.14 : pt; = a ~» aa;b ~ bb and pt, = a ~ aa;c ~ cc. In the example we saw
that the set LCT(CS) contained two elements when the threshold was set to 2 {pt;, pt,}. One can
see that the two context-free patches share the prefix which rewrites a into aa, but this sharing
is not expressed in the inferred patches. We could consider, and indeed the full SmPL language
supports it, allowing disjunctive transformations so that the two context-free patches could be
expressed in one

pt;,» =a~ aa; (b~ bb|c~ cc)

The above disjunctive patch specifies that first a ~» aa must be applied and then, depending
on which rule matches, either b ~» bb or ¢ ~» cc should be applied. The benefit of the above

[November 13, 2009 at 10:43]

90

8.2 FUTURE WORK

specification is that the shared part is directly evident from the patch rather than by inspection
of all the inferred transformations.

COMMON PROGRAM TRANSFORMATION INFERENCE TOOL GENERATOR A final direction
is to make our approach applicable to other languages than C. In our current approach we
already translate the C code to an internal representation (TERMs) and all inference is performed
on this internal representation. We could then make use of parser generator technology to be
able to instantiate our approach to any language for which a grammar exists. In particular
generation of a tool for inference of context-free patches is straight-forward given a grammar
for the subject language.

[November 13, 2009 at 10:43]

91

BIBLIOGRAPHY

[1] Rakesh Agrawal and Ramakrishnan Srikant. Mining sequential patterns. In ICDE '95: Pro-
ceedings of the Eleventh International Conference on Data Engineering, pages 3—14, Washington,
DC, USA, 1995. IEEE Computer Society. ISBN 0-8186-6910-1. (Cited on page 20.)

[2] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association rules.
pages 580-592, 1998. (Cited on page 12.)

[3] Taweesup Apiwattanapong, Alessandro Orso, and Mary Jean Harrold. Jdiff: A differencing
technique and tool for object-oriented programs. Automated Software Engg., 14(1):3—36, 2007.
ISSN 0928-8910. doi: http:/ /dx.doi.org/10.1007/s10515-006-0002-0. (Cited on page 32.)

[4] Joe Armstrong. Programming Erlang: Software for a Concurrent World. Pragmatic Bookshelf,
July 2007. ISBN 193435600X. URL http://www.amazon.com/exec/obidos/redirect?tag=
citeulike07-20&path=ASIN/193435600X. (Cited on page 19.)

[5] B. S. Baker. On finding duplication and near-duplication in large software systems. In
WCRE ’95: Proceedings of the Second Working Conference on Reverse Engineering, page 86,
Washington, DC, USA, 1995. IEEE Computer Society. ISBN 0-8186-7111-4. (Cited on
pages 15 and 16.)

[6] Brenda S. Baker. A program for identifying duplicated code. In Computer Science and
Statistics: Proc. Symp. on the Interface, pages 49-57, March 1992. (Cited on page 15.)

[7] Brenda S. Baker. Parameterized duplication in strings: Algorithms and an application
to software maintenance. SIAM]. Comput., 26(5):1343-1362, 1997. ISSN 0097-5397. doi:
http:/ /dx.doi.org/10.1137/50097539793246707. (Cited on page 15.)

[8] Ira D. Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna, and Lorraine Bier.
Clone detection using abstract syntax trees. In ICSM '98: Proceedings of the International
Conference on Software Maintenance, page 368, Washington, DC, USA, 1998. IEEE Computer
Society. ISBN 0-8186-8779-7. (Cited on page 19.)

[9] Stefan Bellon. Comparison and evaluation of clone detection tools. IEEE Trans. Softw.
Eng., 33(9):577-591, 2007. ISSN 0098-5589. doi: http://dx.doi.org/10.1109/TSE.2007.70725.
Member-Koschke, Rainer and Member-Antoniol, Giulio and Member-Krinke, Jens and
Member-Merlo, Ettore. (Cited on page 14.)

[10] Sergei Bespamyatnikh and Michael Segal. Enumerating longest increasing subsequences
and patience sorting. Inf. Process. Lett., 76(1-2):7—13, 2000. ISSN 0020-0190. doi: http:
//dx.doi.org/10.1016/50020-0190(00)00124-1. (Cited on page 26.)

92

[November 13, 2009 at 10:43]

http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/193435600X
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/193435600X

BIBLIOGRATPHY

[11] Julien Brunel, Damien Doligez, René Rydhof Hansen, Julia Lawall, and Gilles Muller. A
foundation for flow-based program matching using temporal logic and model checking. In
The 36th annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
Savannah, Georgia, January 2009. (Cited on pages 10 and 75.)

[12] Peter Bulchev and Marius Minea. An evaluation of duplicate code detection using anti-
unification. In 3rd International Workshop on Software Clones at CSMR’2009, March 2009.
(Cited on page 22.)

[13] Peter Bulychev and Marius Minea. Duplicate code detection using anti-unification. In
Spring Young Researchers Colloquium on Software Engineering, SYRCoSE, volume 2008, 2008.
(Cited on page 22.)

[14] Sudarshan S. Chawathe, Anand Rajaraman, Hector Garcia-Molina, and Jennifer Widom.
Change detection in hierarchically structured information. In SIGMOD ‘96: Proceedings of
the 1996 ACM SIGMOD international conference on Management of data, pages 493504, New
York, NY, USA, 1996. ACM. ISBN 0-89791-794-4. doi: http://doi.acm.org/10.1145/233269.
233366. (Cited on pages 28 and 29.)

[15] Kingsum Chow and David Notkin. Semi-automatic update of applications in response
to library changes. In ICSM ’96: Proceedings of the 1996 International Conference on Software
Maintenance, page 359, Washington, DC, USA, 1996. IEEE Computer Society. ISBN 0-8186-
7677-9. (Cited on pages 9 and 35.)

[16] Sylvain Conchon and Jean-Christophe Fillidtre. Type-Safe Modular Hash-Consing. In ACM
SIGPLAN Workshop on ML, Portland, Oregon, September 2006. URL http://www.lri.fr/
~filliatr/ftp/publis/hash-consing2.ps. (Cited on page 80.)

[17] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni. Locality-sensitive
hashing scheme based on p-stable distributions. In SCG "04: Proceedings of the twentieth
annual symposium on Computational geometry, pages 253—262, New York, NY, USA, 2004.
ACM. ISBN 1-58113-885-7. doi: http://doi.acm.org/10.1145/997817.997857. (Cited on

page 21.)

[18] Danny Dig, Can Comertoglu, Darko Marinov, and Ralph Johnson. Automated detection
of refactorings in evolving components. In Dave Thomas, editor, ECOOP, volume 4067 of
Lecture Notes in Computer Science, pages 404—428. Springer, 2006. ISBN 3-540-35726-2. (Cited

on page 35.)

[19] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin Chelf. Bugs as
deviant behavior: a general approach to inferring errors in systems code. In SOSP ‘o1:
Proceedings of the eighteenth ACM symposium on Operating systems principles, pages 57-72,
New York, NY, USA, 2001. ACM. ISBN 1-58113-389-8. doi: http://doi.acm.org/10.1145/
502034.502041. (Cited on page 11.)

[November 13, 2009 at 10:43]

93

http://www.lri.fr/~filliatr/ftp/publis/hash-consing2.ps
http://www.lri.fr/~filliatr/ftp/publis/hash-consing2.ps

BIBLIOGRATPHY

[20] William S. Evans, Christopher W. Fraser, and Fei Ma. Clone detection via structural
abstraction. In WCRE ’o7: Proceedings of the 14th Working Conference on Reverse Engineering,
pages 150-159, Washington, DC, USA, 2007. IEEE Computer Society. ISBN 0-7695-3034-6.
doi: http:/ /dx.doi.org/10.1109/ WCRE.2007.15. (Cited on pages 14 and 21.)

[21] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program dependence graph
and its use in optimization. ACM Trans. Program. Lang. Syst., 9(3):319-349, 1987. ISSN
0164-0925. doi: http://doi.acm.org/10.1145/24039.24041. (Cited on page 14.)

[22] Beat Fluri and Harald C. Gall. Classifying change types for qualifying change couplings.
In ICPC ’06: Proceedings of the 14th IEEE International Conference on Program Comprehension,
pages 35—45, Washington, DC, USA, 2006. IEEE Computer Society. ISBN 0-7695-2601-2. doi:
http:/ /dx.doi.org/10.1109/ICPC.2006.16. (Cited on page 30.)

[23] Beat Fluri, Michael Wuersch, Martin PInzger, and Harald Gall. Change distilling:tree
differencing for fine-grained source code change extraction. IEEE Transactions on Software
Engineering, 33(11):725-743, 2007. ISSN 0098-5589. doi: http://doi.ieeecomputersociety.
org/10.1109/TSE.2007.70731. (Cited on page 29.)

[24] Mark Gabel, Lingxiao Jiang, and Zhendong Su. Scalable detection of semantic clones. In
ICSE “08: Proceedings of the 30th international conference on Software engineering, pages 321—
330, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-079-1. doi: http://doi.acm.org/10.
1145/1368088.1368132. (Cited on page 23.)

[25] Johannes Henkel and Amer Diwan. Catchup!: capturing and replaying refactorings to
support API evolution. In ICSE "05: Proceedings of the 27th international conference on Software
engineering, pages 274-283, New York, NY, USA, 2005. ACM. ISBN 1-59593-963-2. doi:
http://doi.acm.org/10.1145/1062455.1062512. (Cited on pages 34 and 35.)

[26] J. W. Hunt and M. D. Mcllroy. An algorithm for differential file comparison. Technical
Report CSTR 41, Bell Laboratories, Murray Hill, NJ, 1976. (Cited on page 24.)

[27] Daniel Jackson and David A. Ladd. Semantic diff: A tool for summarizing the effects of mod-
ifications. In ICSM 94: Proceedings of the International Conference on Software Maintenance,
pages 243—252, Washington, DC, USA, 1994. IEEE Computer Society. ISBN 0-8186-6330-8.
(Cited on page 31.)

[28] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu. Deckard: Scalable
and accurate tree-based detection of code clones. In ICSE ‘o7: Proceedings of the 29th
international conference on Software Engineering, pages 96—105, Washington, DC, USA, 2007.
IEEE Computer Society. ISBN 0-7695-2828-7. doi: http:/ /dx.doi.org/10.1109/ICSE.2007.30.
(Cited on pages 14 and 21.)

[29] Neil Jones and René Rydhof Hansen. The semantics of “semantic patches” in Coccinelle:
Program transformation for the working programmer. In Fifth ASIAN Symposium on

[November 13, 2009 at 10:43]

94

BIBLIOGRATPHY

Programming Languages and Systems, number 4807 in Lecture Notes in Computer Science,
pages 303—318, Singapore, November 2007. (Cited on page 75.)

[30] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. CCFinder: a multilinguistic token-
based code clone detection system for large scale source code. IEEE Trans. Softw. Eng., 28(7):
654—670, 2002. ISSN 0098-5589. doi: http:/ /dx.doi.org/10.1109/TSE.2002.1019480. (Cited
on page 16.)

[31] Miryung Kim and David Notkin. Discovering and representing systematic code changes. In
ICSE “09: Proceedings of the 2009 IEEE 31st International Conference on Software Engineering,
pages 309—319, Washington, DC, USA, 2009. IEEE Computer Society. ISBN 978-1-4244-3453-
4. doi: http:/ /dx.doi.org/10.1109/ICSE.2009.5070531. (Cited on page 34.)

[32] Miryung Kim, David Notkin, and Dan Grossman. Automatic inference of structural changes
for matching across program versions. In ICSE “o7: Proceedings of the 29th international con-
ference on Software Engineering, pages 333—343, Washington, DC, USA, 2007. IEEE Computer
Society. ISBN 0-7695-2828-7. doi: http://dx.doi.org/10.1109/ICSE.2007.20. (Cited on

pages 7 and 34.)

[33] Raghavan Komondoor and Susan Horwitz. Using slicing to identify duplication in source
code. In SAS ‘o1: Proceedings of the 8th International Symposium on Static Analysis, pages
40-56, London, UK, 2001. Springer-Verlag. ISBN 3-540-42314-1. (Cited on page 22.)

[34] Kostas Kontogiannis, Renato de Mori, Ettore Merlo, M. Galler, and Morris Bernstein.
Pattern matching for clone and concept detection. Autom. Softw. Eng., 3(1/2):77-108, 1996.
(Cited on page 19.)

[35] Rainer Koschke, Raimar Falke, and Pierre Frenzel. Clone detection using abstract syntax
suffix trees. In WCRE ’06: Proceedings of the 13th Working Conference on Reverse Engineering,
pages 253—262, Washington, DC, USA, 2006. IEEE Computer Society. ISBN 0-7695-2719-1.
doi: http:/ /dx.doi.org/10.1109/ WCRE.2006.18. (Cited on page 18.)

[36] Jens Krinke. Identifying similar code with program dependence graphs. In WCRE ‘o1:
Proceedings of the Eighth Working Conference on Reverse Engineering (WCRE'01), page 301,
Washington, DC, USA, 2001. IEEE Computer Society. ISBN 0-7695-1303-4. (Cited on

page 23.)

[37] E.L. Lehmann and].P. Romano. Testing statistical hypotheses. Springer Verlag, 2005. (Cited
on page 23.)

[38] Vladimir I. Levenshtein. Binary codes capable of correcting deletions, insertions, and

reversals. Technical Report 8, 1966. (Cited on page 29.)

[39] Huiqging Li and Simon Thompson. Clone detection and removal for erlang/otp within
a refactoring environment. In German Puebla and German Vidal, editors, PEPM, pages
169-178. ACM, 2009. ISBN 978-1-60558-327-3. (Cited on pages 14 and 19.)

[November 13, 2009 at 10:43]

95

BIBLIOGRATPHY

[40] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. CP-Miner: a tool for finding
copy-paste and related bugs in operating system code. In OSDI’o4: Proceedings of the
6th conference on Symposium on Opearting Systems Design & Implementation, pages 20-20,
Berkeley, CA, USA, 2004. USENIX Association. (Cited on page 20.)

[41] Chao Liu, Chen Chen, Jiawei Han, and Philip S. Yu. Gplag: detection of software plagiarism
by program dependence graph analysis. In KDD “06: Proceedings of the 12th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 872-881, New York, NY,
USA, 2006. ACM. ISBN 1-59593-339-5. doi: http://doi.acm.org/10.1145/1150402.1150522.
(Cited on page 23.)

[42] Benjamin Livshits and Thomas Zimmermann. Dynamine: finding common error patterns
by mining software revision histories. SIGSOFT Softw. Eng. Notes, 30(5):296—305, 2005. ISSN
0163-5948. doi: http://doi.acm.org/10.1145/1095430.1081754. (Cited on page 12.)

[43] David MacKenzie, Paul Eggert, and Richard Stallman. Comparing and Merging Files With
Gnu Diff and Patch. Network Theory Ltd, January 2003. Unified Format section, http:
//www.gnu.org/software/diffutils/manual/html_node/Unified-Format.html. (Cited on
pages 2 and 24.)

[44] Edward M. McCreight. A space-economical suffix tree construction algorithm. J. ACM, 23
(2):262—272, 1976. ISSN 0004-5411. doi: http://doi.acm.org/10.1145/321941.321946. (Cited
on page 15.)

[45] Eugene W. Myers. An o(nd) difference algorithm and its variations. Algorithmica, 1(2):
251-266, 1986. (Cited on page 24.)

[46] Iulian Neamtiu, Jeffrey S. Foster, and Michael Hicks. Understanding source code evolu-
tion using abstract syntax tree matching. In MSR ‘05: Proceedings of the 2005 international
workshop on Mining software repositories, pages 1—5, New York, NY, USA, 2005. ACM. ISBN
1-59593-123-6. doi: http://doi.acm.org/10.1145/1083142.1083143. (Cited on page 30.)

[47] Yoann Padioleau. Parsing c/c++ code without pre-processing. In CC ‘09: Proceedings
of the 18th International Conference on Compiler Construction, pages 109-125, Berlin, Heidel-
berg, 2009. Springer-Verlag. ISBN 978-3-642-00721-7. doi: http://dx.doi.org/10.1007/
978-3-642-00722-4_9. (Cited on page 40.)

[48] Yoann Padioleau, Julia L. Lawall, and Gilles Muller. Understanding collateral evolution
in Linux device drivers. In The first ACM SIGOPS EuroSys conference (EuroSys 2006), pages
59-71, Leuven, Belgium, April 2006. (Cited on pages 2, 40, and 84.)

[49] Yoann Padioleau, Julia Lawall, René Rydhof Hansen, and Gilles Muller. Documenting and
automating collateral evolutions in Linux device drivers. In Eurosys 2008, pages 247-260,
Glasgow, Scotland, March 2008. (Cited on pages 2, 3, and 75.)

[November 13, 2009 at 10:43]

96

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[571

[58]

[59]

[60]

BIBLIOGRATPHY

G.D. Plotkin. A note on inductive generalization. Machine intelligence, 5(153-163):178, 1970.
(Cited on pages 22 and 42.)

Lutz Prechelt, Guido Malpohl, and Michael Philippsen. Finding plagiarisms among a set
of programs with jplag. Journal of Universal Computer Science, 8(11):1016—, 2002. (Cited on

page 16.)

Shruti Raghavan, Rosanne Rohana, David Leon, Andy Podgurski, and Vinay Augustine.
Dex: A semantic-graph differencing tool for studying changes in large code bases. In ICSM
"04: Proceedings of the 2o0th IEEE International Conference on Software Maintenance, pages 188—
197, Washington, DC, USA, 2004. IEEE Computer Society. ISBN 0-7695-2213-0. (Cited on

page 31.)

Morten Heine Serensen and Robert Gliick. An algorithm of generalization in positive super-
compilation. In J.W. Lloyd, editor, Logic Programming: Proceedings of the 1995 International
Symposium, pages 465—479. MIT Press, 1995. (Cited on page 42.)

Henrik Stuart, Rene Rydhof Hansen, Julia Lawall, Jesper Andersen, Yoann Padioleau,
and Gilles Muller. Towards easing the diagnosis of bugs in OS code. In 4th Workshop on
Programming Languages and Operating Systems (PLOS 2007), Stevenson, Washington, USA,
October 2007. (Cited on page 10.)

E. Visser. Program transformation with stratego/XT rules, strategies, tools, and systems in
stratego/XT o. 9. Lecture notes in computer science, pages 216—238, 2004. (Cited on page 10.)

Mark Weiser. Program slicing. In ICSE '81: Proceedings of the 5th international conference on
Software engineering, pages 439—-449, Piscataway, NJ, USA, 1981. IEEE Press. ISBN 0-89791-
146-6. (Cited on page 22.)

Peter Weissgerber and Stephan Diehl. Identifying refactorings from source-code changes.
In ASE 06: Proceedings of the 21st IEEE/ACM International Conference on Automated Software
Engineering, pages 231—240, Washington, DC, USA, 2006. IEEE Computer Society. ISBN
0-7695-2579-2. doi: http://dx.doi.org/10.1109/ASE.2006.41. (Cited on page 34.)

Michael J. Wise. Running Karp-Rabin matching and greedy string tiling. Technical report,
Basser Department of Computer Science Technical Report, Sydney University, March 1993.
(Cited on page 17.)

Zhenchang Xing and Eleni Stroulia. UMLDIff: an algorithm for object-oriented design differ-
encing. In ASE ‘05: Proceedings of the 20th IEEE/ACM international Conference on Automated
software engineering, pages 54—65, New York, NY, USA, 2005. ACM. ISBN 1-59593-993-4.
doi: http:/ /doi.acm.org/10.1145/1101908.1101919. (Cited on page 35.)

Zhenchang Xing and Eleni Stroulia. API-Evolution support with diff-catchup. IEEE Trans.
Softw. Eng., 33(12):818-836, 2007. ISSN 0098-5589. doi: http://dx.doi.org/10.1109/TSE.2007.
70747. (Cited on page 35.)

[November 13, 2009 at 10:43]

97

BIBLIOGRATPHY

[61] Jinlin Yang, David Evans, Deepali Bhardwaj, Thirumalesh Bhat, and Manuvir Das. Perra-
cotta: mining temporal api rules from imperfect traces. In ICSE "06: Proceedings of the 28th
international conference on Software engineering, pages 282—291, New York, NY, USA, 2006.
ACM. ISBN 1-59593-375-1. doi: http://doi.acm.org/10.1145/1134285.1134325. (Cited on
page 11.)

[62] Wuu Yang. Identifying syntactic differences between two programs. Softw. Pract. Exper., 21
(7):739-755, 1991. ISSN 0038-0644. doi: http://dx.doi.org/10.1002/spe.4380210706. (Cited
on pages 27 and 51.)

[November 13, 2009 at 10:43]

98

	Dedication
	Abstract
	Sammenfatning
	Acknowledgments
	Contents
	Semantic Patch Inference
	1 Introduction
	1.1 Example-based change inference
	1.1.1 Tranformation parts
	1.1.2 Algorithms and implementations

	1.2 Structure of the dissertation

	2 Related work
	2.1 Change vocabulary
	2.2 Program transformation systems
	2.3 Program pattern discovery
	2.3.1 Inference of program behavior
	2.3.2 Clone detection

	2.4 Change detection
	2.4.1 Text based differencing
	2.4.2 Tree differencing
	2.4.3 Higher level approaches

	3 Setup
	3.1 The language of Terms
	3.1.1 Constructing Terms

	3.2 Term patterns
	3.2.1 Abstracting terms

	4 Transformation parts
	4.1 Properties of common change descriptions
	4.1.1 Towards a definition

	4.2 Tree distance based transformation parts
	4.2.1 Work-function
	4.2.2 Term-distance

	4.3 Subsumption of program transformations
	4.4 Extending to changesets
	4.5 Non-global common changes

	Algorithms and implementation
	5 Context-free patch inference
	5.1 Motivating example
	5.2 Context-free patches
	5.2.1 Application function

	5.3 Algorithm
	5.3.1 A simple algorithm
	5.3.2 Towards a refined algorithm
	5.3.3 The refined spfind algorithm

	6 Context-sensitive patch inference
	6.1 Motivating example
	6.2 Semantic patches
	6.3 Semantic patterns
	6.4 Finding semantic patterns
	6.4.1 Occurrences & Pruning Properties
	6.4.2 Algorithm
	6.4.3 Constructing semantic patches

	6.5 Implementation

	Real-world application
	7 Experiments
	7.1 Examples of context-free patches
	7.2 Examples of context-sensitive patches

	8 Conclusion
	8.1 Summary
	8.2 Future work
	8.2.1 Evaluation and engineering
	8.2.2 Exploration of other transformation languages

	Bibliography

