Searching for the Native Structures of
Proteins

PHD THESIS
BY
GLENNIE HELLES

University of Copenhagen, Department of Computer Science
The PhD School of Science, Faculty of Science, University of Copenhagen, Denmark

May 17, 2010

Supervisor:
Associate Professor Martin Zachariasen

Contents

PREFACE e

1 Introduction
1.1 Motivation
1.2 Goals. o
1.3 Achievements and Contributions

1.4 Outline.

2 Ab initio Protein Structure Prediction
2.1 Background
2.2 The basic structure
2.2.1 Local structures
2.3 The PSP problem

2.4 Paper: A Comparative Study of the Reported Performance of Ab Initio
Protein Structure Prediction Algorithms

2.5 Postscript

3 Meta-heuristic Search in PSP
3.1 Background
3.2 Parallelism

3.3 Paper: Exploring Parallel Meta-heuristics for Protein Structure Prediction .

4 Restricting the PSP search space
4.1 Background

4.2 Paper: Predicting dihedral angle probability distributions for protein coil
residues from primary sequence using neural networks

S Ot R W W

J

11
12

12
32

33
33
34
34

4.3 Paper: Ranking Beta Sheet Topologies with Applications to Protein Struc-

ture Prediction 72
5 Other work 91
5.1 Background 91

5.2 Paper: Simulating Evolution of Drosophila
melanogaster Ebony Mutants Using a

Genetic Algorithmo 91
6 Conclusions 100
BIBLIOGRAPHY 102
APPENDICES 103

A Improving search for low energy protein structures with an iterative niche
genetic algorithm 104

Preface

This PhD thesis has been prepared at the Department of Computer Science, University of
Copenhagen, under academic supervision of Associate Professor Martin Zachariasen.

The thesis includes five papers, four of which have already been published - the fifth
is currently under review. Co-authors are clearly listed where appropriate. Most of this
thesis, and thus also most of the papers, pertains to protein structure prediction, which is
the main topic of this thesis. One paper stands out by relating to a different biological area:
population genetics. The paper has been included in the final chapter entitled Other work”.

The scientific work and contributions are documented in the papers in this thesis. It
should be emphasized that the introductory notes to the chapters are not intended to provide
a comprehensive introduction to the research areas. Rather they have been kept short and
concise and are intended only as a quick brush up on the topics. The readers of this thesis
are thus expected to have some background knowledge of the research area.

Acknowledgments

A number of people have provided priceless feedback and help during my PhD study. I
would like to thank Martin Zachariasen, Professor David Pisinger and the PhD students
of the former Algorithms and Optimization group who regrettably transferred to DTU last
winter. You provided invaluable support and a cheerful atmosphere during a difficult time.
I would also like to thank Professor Teresa Head-Gordon at the University of California in
Berkeley, with whom I had the pleasure of working with during my stay abroad. Finally, I
want to pay special thanks to Associate Professor Pawel Winter, who more than anyone else
has made me feel like I belonged in research, and to fellow PhD student Rasmus Fonseca for
sharing my interest in protein structure prediction and for being a fantastic colleague.

On a more personal level, I want to thank my parents for their constant love and support,
Bo Lange for his immense patience and all of my friends for listening to me as I rambled
on about protein structure prediction. Last but not least, I would like to pay a very special
thanks to my ex-husband, Morten Helles, without whom I would probably never have had
the confidence to start this PhD. Thank you for never letting me doubt that I could do this.

Chapter 1

Introduction

1.1 Motivation

Proteins are essential in all living organisms. They are key components in everything from cell
structure and inter-cell signaling to muscle tone and digestion. Because of their widespread
functioning, many illnesses are directly linked to proteins. General lack of proteins will
cause symptoms like weakening of muscles, anemia and low heart rate. Misfolded (deform)
proteins cause a number of very serious illnesses, like CreutzfeldtJakob disease, Alzheimer’s
and Cystic Fibrosis. Understanding how proteins fold is therefore of key importance not
only from a scientific point of view, but from a medical point of view.

All proteins are made up by a sequence of amino acids - referred to as the primary
sequence - that folds up into a unique and sequence dependent three-dimensional structure
within seconds of their synthesis. This structure unequivocally determines the function of the
protein. In 1973, Nobel Prize laureate Christian Anfinsen published his paper on “Principles
that Govern the Folding of Protein Chains” [1], which argued convincingly that the structure
of a protein is determined solely by the sequence of amino acids, and that proteins adopt
the configuration with the lowest free energy. This hypothesis has inspired a number of
researchers in both biology, biophysics and computer science to attack this problem in order
to “crack” the code and predict the three-dimensional structures of proteins from their
primary sequences alone, however so far with limited success. There are two main obstacles
to this problem: finding an appropriate and sufficiently accurate way of estimating the energy
of a protein, and finding a method that will take us to the lowest energy structures quickly
and reliably.

Estimating the energy of a protein can be done to various degrees of precision. Highly
accurate calculations are very time consuming though, and less accurate calculations may in
fact suffice. To be of any use in protein structure prediction, however, the only thing that
must be highly accurate is the mapping between the native structure and the lowest energy.
If this mapping is off and the native protein is not the structure with the lowest energy, even
the most thorough prediction method is bound to fail.

Devising an algorithm that can efficiently take us to the lowest energy structure reliably
seems almost unachievable since, theoretically, there are infinitely many ways a protein can
fold. The backbone of each amino acid has two degrees of freedom in a continues search space
that grows exponentially with the number of amino acids in the protein. Simply evaluating
all possible chain configurations is not possible. Instead, one of two different approaches
are employed in practice: either we search for the lowest energy structure or we attempt
to simulate to folding process thereby arriving at the lowest energy structure. Simulation
is likely to yield the best results, but unfortunately it is much too slow (in the order of
hundreds of thousands of CPU years for even the smallest of proteins), and searching is thus
the choice of preference by most research groups. Of course, searching can be done in many
different ways — as will be described in much further details in chapter 2 — and there has
yet to be defined a consensus in the community of the most efficient search strategy for this
particular problem.

In 1994, the first CASP (Critical Assessment of Techniques for Protein Structure Predic-
tion) competition was held and has since been held every other year. It is the ultimate blind
test where research groups can benchmark their prediction algorithms against one another
on proteins of yet unknown structure. The first couple of rounds of CASP did not yield any
remarkable results, but then prediction accuracy was suddenly improved significantly for
certain proteins, namely the ones for which the Protein Data Bank (PDB) contained other
proteins with high sequence identity to the unknown protein (so-called homologs). Since
then, proteins entered in CASP are split into two categories: template modeling (proteins
that contain a homolog in PDB) and ab initio prediction (proteins that do not contain a
homolog in PDB).

In this thesis, I focus solely on ab initio folding and specifically on ways that can efficiently
improve the search for low energy structures.

1.2 Goals

The focus of this thesis is ab initio protein structure prediction and the main goal is to
contrive, analyze and experiment with methods and theories that can facilitate faster and
more reliable predictions. After a thorough survey of previously published ab initio PSP
methods (Chapter 3), which provided good insight into formerly explored paths, I have
attempted to reach this goal by attacking the problem from two different but complementary
angles. On one hand, I have explored how parallelism can be used to greatly enhance search
efficiency of meta-heuristics, and on the other hand, I have looked at different ways to
decrease the conformational search space to make it more tractable.

1.3 Achievements and Contributions

I present five papers in this thesis. Four of them relate directly to protein structure prediction
while the fifth paper concerns an experiment with the application of genetic algorithms within
another biological area: population genetics.

The first paper (presented in chapter 2) provides an in-depth survey and comparison of
existing methods for ab initio PSP mehods. Such a survey has not previously been published.
It is especially useful for the computer scientists of the PSP research community who are
interested in algorithmic aspects of PSP and need a good overview of current trends and
results. Generally, little attention is paid to the differences in algorithmic performance in
this research field, and standardized test sets are completely absent, which makes it difficult
for computer scientists to investigate the exact effect of the choice of algorithm. In this
survey, I attempt to overcome this problem by identifying all parameters that may influence
performance and then compare the settings of these parameters for all recently published ab
initio PSP methods.

The second paper, presented in chapter 3 (short version in Appendix A), addresses al-
gorithmic performance in PSP. Parallel meta-heuristics are generally known to outperform
sequential meta-heuristics, but parallel versions appear to have been explored to a rather
limited extend in the field of PSP. In this report, however, we show experimentally the
vast improvements that can be achieved with parallel meta-heuristics in PSP if parallelism
is thought into the design of the algorithms, rather than just being seen as a way to run
multiple simulations at the same time (which to a large extend is the trend of current PSP
algorithms). Specifically, we propose a parallel iterative niche genetic algorithm (inGA), and
show how it outperforms parallel runs of sequential algorithms, simulated annealing and a
genetic algorithm, as well as the two parallel algorithms: the parallel tempering algorithm
and the traditional niche genetic algorithm.

The third paper (chapter 4) presents joint work with Rasmus Fonseca. We use a neural
network to predict a probability distribution for coil residues in proteins which can help
guide search algorithms to the most probable dihedral angle space of coil residues. While
the dihedral angles of helical and strand residues are usually confined to a rather small area
of the Ramachandran plot, coil residues are much more random. Predicting the structure of
coil residues is thus a most challenging issue in ab nitio PSP.

The forth paper (chapter 4) presents joint work with Rasmus Fonseca and Pawel Winter.
We look at the currently very challenging job of predicting (-topologies for proteins that
would be of significant importance in PSP if it could be done accurately. In particular,
we investigate the quality of two (-topology scoring functions and suggest an enumeration
scheme that identifies and ranks (-topologies. Ranking [-topologies allows us to make
realistic estimations of how many [(-topologies we need to sample for a given protein in
order to make it very likely that we have included the native g-topology.

The fifth paper is presented in chapter 5. It is not related to PSP but to another biological
research field: population genetics. Interestingly enough, despite the source of inspiration,
genetic algorithms have apparently never previously been explored as a simulation tool for

population geneticists. In this paper, we present a genetic algorithm that simulates evo-
lution of so-called ebony mutants in a population of Drosophila melanogasters, also known
as common fruit flies. Results from the simulation are directly compared to real life ex-
periments and show close to identical development. Genetic algorithms thus seem quite
adequate at mimicking the dynamics of evolution and seem highly suitable as a simulation
tool in population genetics.

1.4 Outline

The thesis contains four main chapters: 2, 3, 4 and 5. Each of the chapters contains a short
introduction to the research field leading up to the papers. Chapter five includes two papers,
and the other three chapters include one paper each.

e Chapter 2 is an introduction to the ab initio PSP research field. It provides short
background information about proteins and presents the protein folding problem. The
chapter is concluded by the paper “A Comparative Study of the Reported Performance
of Ab Initio Protein Structure Prediction Algorithms” which provides an in-depth
survey and comparison of existing methods for ab initio PSP.

e Chapter 3 opens with a brief introduction to meta-heuristics in protein structure
prediction. This leads up to the paper “Exploring Parallel Metaheuristics for Protein
Structure Prediction”, a technical report that explores and compares the efficiency of
parallel meta-heuristics in PSP. A short published version of the technical report is
included in Appendix A.

e Chapter 4 deals with ways to restrict the conformational search space of the PSP
problem. Aside from a brief introduction, it includes two papers “Predicting Dihedral
Angle Probability Distributions for Protein Coil Residues from Primary Wequence
using Neural Networks” and “Ranking Beta Sheet Topologies with Applications to
Protein Structure Prediction” that each offers a specific way of limiting the search
space.

e Chapter 5 bears the title “Other work” and includes the final paper “Simulating
Evolution of Drosophila melanogaster Ebony Mutants Using a Genetic Algorithm” on
the applicability of genetic algorithms in the population genetics research field.

The conclusions are summed up in chapter 6.

Chapter 2

Ab tnitio Protein Structure
Prediction

2.1 Background

Currently, the three-dimensional (tertiary) structure of a protein can only be determined
reliably by time consuming experiments, and the tertiary structure has thus only been de-
termined for a fraction of all the identified protein sequences. For many years, an ongoing
effort has been made to devise a computer algorithm that could predict the tertiary structure
from the primary sequence, but it has proven to be a very challenging task indeed. In ab
initio protein structure prediction, one attempts to come up with a method or algorithm that
can predict the structure of a protein without any knowledge of globally similar proteins.
This should theoretically be possible, because when a protein folds into its three-dimensional
structure it essentially follows the basic laws of physics — and it always folds into the same
structure. Different amino acids have different chemical properties, and atoms are thus con-
stantly attracted to and repelled by each other, drawing some amino acids close in proximity
and pushing others far apart. Unfortunately, the many degrees of freedom encountered in
proteins raise the complexity of the problem to a level where algorithms cannot seem to
effectively utilize this information to predict the structure, and approximations always seem
to be too crude to be reliable.

2.2 The basic structure

A protein is a macromolecule made up by a number of smaller molecules known as amino
acids. 20 different amino acids — or residues — are encountered in proteins (listed in Fig-
ure 2.3). Every amino acid consists of a backbone and a side chain. The backbone is shown
in Figure 2.1, and it is identical for all amino acids. The side chains, on the other hand, differ
from each other both in the number of atoms, physical structure and chemical characteris-
tics. In proteins, the backbone of one amino acid forms a covalent bond with the backbones

I O
g SN
LM

Figure 2.1: Common backbone structure of the 20 amino acids encountered in proteins

of the previous and succeeding amino acids - unless it is first or last residue, in which case
it is only bonded to the succeeding or previous amino acid, respectively.

The covalent bond is called a peptide bond, and unlike the bonds between the other
backbone atoms, this bond is partially double bonded and thus very rigid. In practice, this
means that the atoms around the N-C bond are more or less locked in a plane, leaving only
atoms around the C-C,, bond and the C,-N bond (see Figure 2.2) to rotate (relatively) freely.
The dihedral angle (rotation) around the N-C bond is referred to as the w-angle, and it is
close to 180° for nearly all peptide bonds. The only amino acid that frequently deviates from
this trans-conformation is proline, which due to its circular structure almost equally often
has an w-angle of close to 0° (cis-conformation). The dihedral angle around the C-C, bond
is referred to as the ¢-angle and the dihedral angle around the C,-N bond is referred to as
the 1-angle. Theoretically, atoms can rotate completely freely around the two latter bonds
although, as discussed elsewhere in this thesis, in practice they do not. The flexibility does,
however, still mean that the number of possible ways a protein can fold grows exponentially
with the number of amino acids in the chain.

The three-dimensional structure of a protein is adopted due to a mixture of biochemical
interactions. Probably the most significant contributer — often referred to as the driving force
of protein folding — is the hydrophobic effect. Some amino acids are highly hydrophobic,

v \
A Carboxyl
\ terminus

terminus

f—

Figure 2.2: The planar structure of peptide bonds

G

Alanine (Ala) A Arginine (Arg) R Asparagine (Asn) N Aspartic acid (Asp

= % e

Cysteine (Cys) C Glutamic acid (Gln) E Glutamine (Glu) Q Glycine (Gly)

o E BE

Histidine (His) H Isoleucine (Ile) I Leucine (Leu) L Lysine (Lys) F
&
* “ & “f;
¢
Methionine (Met) M Phenylalanine (Phe) F Proline (Pro) P Serine (Ser) S
® ¢
«
(™
Threonine (Thr) T Tryptophan (Trp) W Tyrosine (Tyr) Y valine (Val)

Figure 2.3: The 20 amino acids

Figure 2.4: Hlustration of an a-helix

and they quickly seek to the core of the protein far away from the watery surface. The
hydrophilic amino acids are thus pushed to the surface of the protein, forming a characteristic
hydrophobic core and hydrophilic surface. While the hydrophobic effect is probably largely
responsible for the overall structure, two other contributers, the van der Waals force and
hydrogen bonds, play significant roles in creation and maintenance of local structures. The
van der Waals force is the attractive/repulsive force between atoms caused by the fluctuating
polarization of molecules that arises because one side of a molecule is always somewhat
positive and the opposite side somewhat negative. A hydrogen bond, on the other hand,
typically forms between a hydrogen atom which is attached to a electronegative atom - like
nitrogen atoms in proteins - and another electronegative atom like oxygen. The bond is not
as strong as a covalent bond, but it is stronger than the van der Waals force, and it plays a
vital role in the different local structures encountered in proteins.

ATl % “'-R-,‘:_'- " _'4-'\‘,A e R
A ..'I\-u_\’ ..'I\—‘\’ -
e '-“_’“","?"\-v"'-_‘f‘""v"‘-h\ P
- \i__'__\ . \M_, & ,-'..«;’ ’f."‘-\

Figure 2.5: Illustration of parallel (left) and antiparallel (right) arrangements of 3-strands

10

2.2.1 Local structures

The dihedral angles adopted by the amino acids are influenced by both long-range and short-
range interactions. However, steric clashes between atoms in flanking residues put significant
restraints on the dihedral angles actually observed in proteins, regardless of their primary
sequence. This can be illustrated with a Ramachandran plot, like the one in Figure 2.6, that
shows ¢-values against 1-values. From the plot it is evident that certain combinations of ¢
and ¢ values are frequently encountered while others are never or very rarely encountered.

Many of the amino acids in a protein adopt dihedral angles from seemingly random areas
of the Ramachandran plot. These amino acids are commonly referred to as coil residues.
Sometimes, however, a number of successive amino acids all adopt dihedral angles within the
same, narrow area of the Ramachandran plot, causing them to form special kinds of local
structures, referred to as secondary structures.

A number of secondary structures are repeatedly observed in proteins. The most common
ones are helices and sheets. There are several different helices, but the a-helix (depicted in
Figure 2.4) is by far the most common one. All helices are formed by a number of amino
acids that are placed sequentially in the primary sequence. The structure is held firmly in
place by hydrogen bonds which form between the backbone C=0O-group of amino acid ¢ and
backbone N—H-group of amino acid i + 4.

(-sheets are formed by two or more (-strands (see Figure 2.5). While a [-strand, like
helices, are formed by a number of sequential amino acids, (G-sheets are formed by strands
that may be very distant in the primary sequence. The [-strand is in itself not a stable
structure, but in a (-sheet structure the strands form hydrogen bonds between them which
does make them very stable. The strands may pair up in a parallel or anti-parallel fashion as
shown in Figure 2.5. Approximately 80% of all S-strands pair up in an anti-parallel manner,
making anti-parallel parring significantly more frequent than parallel parring.

- +
EaE=

+

psi

L+

+ + i

Figure 2.6: A Ramachandran plot of proteins in the PDBSelect25 data set.

11

2.3 The PSP problem

Essentially the protein structure prediction problem can be stated quite simply as a mini-
mization problem:

Given a sequence of amino acids, find the three-dimensional structure with the
lowest energy as defined by some energy function.

We know that a protein will always fold into the same three-dimensional structure under
normal conditions, and it will do so very fast — usually within milliseconds. Obviously,
proteins do not adopt every possible conformation in order to find the structure with the
lowest free energy. This would take far too long. In fact, Levinthal’s paradox [10] states that
even if a protein only consisted of 100 amino acids that each could take on only two different
¢ and 1) angles, there would be in the order of 103° possible conformations. This means that
even if a protein could try 100 billion different conformations per second, it would require
100 billion years — longer than the age of the universe — to try on all possibilities.

Levinthal’s paradox has led to the hypothesis of a folding pathway that proteins follow
when they fold, but if such a pathway exists it has yet to be discovered. The only pathway-
like observations that seem to be clearly observed during protein folding are the formation
of secondary structures which usually happens early on in the folding process. A research
field within PSP is exclusively concerned with prediction of these secondary structures, and
with success rates around 80% secondary structure prediction is generally considered to be
quite accurate, and most PSP algorithms include secondary structure predictions [6].

However, aside from inclusion of secondary structure predictions, algorithms can be and
are in fact constructed in many different ways. The following section contains a survey of the
many recently published PSP ab initio algorithms along with a comparison of their reported
performance. Only papers that have calculated RMSD (Root Mean Square Deviation) be-
tween their test proteins and the native proteins are included. There exists other ways of
measuring how close a given protein is to the native protein, but RMSD is the most common
one.

2.4 Paper: A Comparative Study of the Reported Per-
formance of Ab Initio Protein Structure Predic-
tion Algorithms

This paper was published online in December 2007 (in print April 2008) in the Journal of
the Royal Society Interface. It is followed by a supplement that adds a brief discussion of
the literature that has appeared since the publication of this paper.

12

A Comparative Study of the Reported
Performance of Ab Initio Protein Structure
Prediction Algorithms

Glennie Helles

Abstract

Protein structure prediction is one of the major challenges in bioin-
formatics today. Throughout the past five decades many different al-
gorithmic approaches have been attempted, and while progress has
been made the problem remains unsolvable even for many small pro-
teins. While the general objective is to predict the three-dimensional
structure from primary sequence, our current knowledge and compu-
tational power is simply insufficient to solve a problem of such high
complexity.

Some prediction algorithms do, however, appear to perform better
than others, although it is not always obvious which ones they are and
it is perhaps even less obvious why that is. In this review the reported
performance results from 18 different recently published prediction al-
gorithms are compared. Furthermore, the general algorithmic settings
most likely responsible for the difference in the reported performance
are identified, and the specific settings of each of the 18 prediction
algorithms are also compared.

The average normalized RMSD score reported range from 11.17
to 3.48. With a performance measure including both RMSD scores
and CPU time, the currently best performing prediction algorithm
is identified to be the I-TASSER algorithm. Two of the algorithmic
settings — protein representation and fragment assembly — were found
to have definite positive influence on the running time and the pre-
dicted structures respectively. There thus appear to be a clear benefit
from incorporating this knowledge in the design of new prediction
algorithms.

1 Introduction

Ram Samudrala once wrote “Proteins don’t have a folding problem. It’s we
humans that do”[37] and indeed that seems to be the case. For five decades
researchers all over the world have tried to break the code and predict the

13

3-dimensional structure of proteins from their primary sequence. There are
two very different approaches to protein structure prediction: comparative
modeling and ab initio prediction.

In comparative modeling predictions are based on knowledge of structures
of already known proteins, such that the sequence of an unknown protein is
aligned to known proteins and if a homology of more than 35% exists, then
the 3-dimensional fold is assumed to be the same [9]. Significant progress has
been made in comparative (also called homology) modeling, as the method
has proven to be quite efficient and applicable for a majority of proteins [44].

There are, however, three reasons why ab initio folding remains interest-
ing. First of all, there still exists a large number of proteins which do not
show any homology with proteins of known structure. Secondly, compara-
tive modeling does not offer any insight as to why a protein adopts a certain
structure, and thirdly, although some proteins show high resemblance to
other proteins they still adopt different structures, which in principle means
that predictions made by comparative modeling are never fully reliable.

Many different definitions of ab initio algorithms exists. The same defi-
nition as in [14] is adopted here, such that the term is taken to mean to start
without knowledge of globally similar folds, which allows for algorithms to
use statistical information, secondary structure prediction and fragment as-
sembly (refered to by some as de novo rather than ab initio prediction).

A vast number of ab initio algorithms have been proposed throughout the
years, with two prominent focus areas, rapidity and quality. Some model only
very general principles of protein folding [13, 15, 28], which is fast but typi-
cally not very accurate. On the other hand, some create an actual simulation
of the folding process [42], which yields excellent results but an unacceptable
running time. Most structure prediction algorithms try to balance the two
and lie somewhere in between.

This review compares a wide range of ab initio protein structure predic-
tion algorithms in order to both identify current state-of-the-art algorithms
and to make the effect of algorithm choice and algorithmic configuration
stand out. In order to design new and better prediction algorithms it is im-
portant to know the paths already traveled, and this review is also meant to
facilitate this.

Some of the algorithms proposed have competed in the bi-annual CASP
competition (Critical Assessment of Techniques for Protein Structure Predic-
tion)!, which provides an ultimate way for benchmarking prediction systems.
However, the CASP competition is only concerned with quality of the pre-
dicted structures. Neither the algorithmic details nor the running time is
considered. This review includes all elements that can effect performance.
Both algorithms proposed in connection with the CASP free modeling cat-
egory (for a review of the lastest CASP competition the reader is referred

thttp://www.predictioncenter.org/

14

to [17]), and algorithms proposed elsewhere are included if they have been
published along with their results within the past five years. Several systems
entered in the CASP competition are not published and although the results
are available on the Internet, the algorithmic details are unknown, and such
systems are therefore excluded. Incidently, the top performing algorithms
in the CASP competitions tend to be published, although the SBC system
entered by Elofsson and Wallner along with the MQAP-Consensus system
from Gattie and the Luethy system are all examples of systems that have
appeared to performed very well in the free modeling category of the latest
CASP VII competition 2, but to the best of our knowledge are unpublished.

In the next section, key parameters relevant for comparing prediction
algorithms are identified, and the following section concerns performance
comparison of the reported results from 18 prediction systems. The results of
the comparison are discussed in section 4 and our conclusions are summarized
in section 5.

2 Algorithmic performance factors

Many parameters influence the running time of a structure prediction algo-
rithm and the quality of the result. In order to determine why some pre-
diction systems are more successful than others, it is important to identify
all of the elements that can influence performance. Depending on the prob-
lem, some search algorithms (e.g. genetic algorithm or simulated annealing)
do for instance tend to perform better than others, and the choice of al-
gorithm may thus influence performance. Some prediction systems utilize
the same underlying optimization algorithm but differ in the configuration
of the chosen algorithm. In other words, they differ in the setting of algo-
rithmic parameters like protein representation, acceptable angle space and
energy function. Furthermore, they composition of the test set may also be
responsible for the differences in reported performance.

The effect of one particular setting compared to another is difficult to
document based on the results from the literature, because the configura-
tion of individual prediction algorithms typically differ on several settings.
Also, some configurations work well for one type of algorithm, but not for
other types of algorithms. This is perhaps particularly pronounced between
algorithms that employ a multiple solution search strategy — i.e., algorithms
that search the entire solution space at once (like genetic algorithms) — and
algorithms that employ a single solution search strategy — i.e., algorithms
that search neighborhoods (like Monte Carlo). When one thus looks at only
a single well-performing algorithm that utilizes a simplified protein repre-
sentation, it is difficult to know if the good performance has anything to

2When looking at RMSD values published on http://www.predictioncenter.org/casp7/Casp7.html

15

do with the protein representation or if it is really due to for instance the
chosen restrictions on angle space or perhaps the chosen set of test proteins.
However, if many systems achieve good performance using a specific protein
representation, then that protein representation is most likely a good idea.
Regardless of the algorithm used, the trick is to introduce restrictions to the
search space in a way that yields the proper trade-off where the relative gain
in speed does not exceed the relative loss in quality.

Protein structure prediction is highly complex, and restrictions that can
decrease the solution space in order to make the problem more tractable
are very attractive. The specific configuration of an algorithm reflects the
restrictions that are introduced and as mentioned it is usually distinct for
every prediction system. The purpose of this review is thus not simply to list
the results obtained with the different algorithms, but also to compare the
algorithms with respect to the settings in order to better understand why
some prediction systems appear to perform better than others.

The following subsections deal with different factors that may affect the
performance of the search algorithms used in prediction systems.

2.1 Representation

A protein can be represented in a number of ways ranging from an all-atom
to a simple C,-trace representation. The all-atom model is naturally the
most accurate representation, but unfortunately it typically has a very di-
rect negative effect on running time, as more atoms require more time per
iteration of the algorithm. Excluding the small hydrogen atoms from the
representation and compensating by making the binding atoms larger is a
restriction that intuitively seem rather harmless, and it greatly reduces the
number of atoms that need to be considered. Further reduction can be made
by substituting explicit side chain representation with a single point repre-
senting just the center of mass. The CABS (CAlpha,CBeta,Side chain) [22]
and the UNRES (UNified RESidue) [27] models are popular examples of this
type of reduction. Excluding side chains altogether and thereby including
only backbone atoms is yet another simplification that can be made, and at
the far end of the scale we have the C,-trace representation which is no doubt
the most optimal representation with respect to running time. Of course it
is also a rather crude approximation of the protein.

It should be noted that although these are the types of representations
typically encountered in protein structure prediction systems, even cruder
simplifications can be made. Experiments with designs of simplified residue
alphabets have been made where the amino acids are no longer viewed as
distinct, but grouped in categories according to their physical propensi-
ties. The best known property-based sequence representation is probably the
hydrophobic-hydrophilic alphabet, but many others exist (see for instance
[4]). However, such representations are primarily used in model systems

16

rather than real structure prediction systems.

2.2 Dihedral angle space

In principle, an infinite number of angles, dihedral angles and bond lengths
between atoms can be adopted, but due to the physical propensities of atoms,
certain bond lengths and angles are strongly favored. By analyzing known
proteins it is also clear that amino acids have a definite preferences for specific
dihedral angles [34]. A very common way to reduce the solution space is thus
to fix bond lengths and angles and put restriction on the dihedral angle space
by for example incorporating rotamer libraries [8] or operating on lattices.
Many restrictions on the dihedral angle space means that the algorithm
will typically converge more quickly than if there are none or only very few
restrictions. However, many restrictions on dihedral angle space also means
that a significant part of the solution space cannot be sampled, and that the
native structure may be unattainable. The dihedral angle space sampled by
prediction systems is nearly always restricted in one way or another.

2.3 Energy function

The energy function is probably the parameter that has received the most
attention throughout the years, and for good reason, as the energy function
has an unquestioned influence on the accuracy of the structures predicted. A
rather diverse set of functions that range from very simple to highly complex
exists, but a perfect energy function that will consistently identify the na-
tive structure among decoys independently of the protein has yet to be found.
Simple energy functions are typically based on some very general principles of
protein folding such as hydrophobic packing and hydrogen bonding whereas
the more complex functions incorporate many other kinds of physical, chem-
ical and statistical information, such as electrostatic potentials, secondary
structure tendencies and its like.

Much research has been done in the field of energy functions [39] and a
number of major energy functions (also known as force fields) exist, such as
CHARMM and AMBER (see for instance [30] for an overview), but most
prediction algorithms define and utilize their own versions. A thorough de-
scription of the different energy functions is beyond the scope of this study,
and the reader is referred to the individual papers for a detailed description
of the particular energy function used.

Generally, the energy functions can, however, be divided into two groups:
physics-based energy functions and statistics-based energy functions. Physics-
based energy functions rely on calculation of energy in the protein, whereas
statistics-based energy functions derive their potential from statistical ob-
servations. It is important to note that both types of energy functions are

17

approximations, although statistics-based energy functions are perhaps gen-
erally considered the cruder approximation of the two.

2.4 Folding strategy

Predicting the structure of small proteins is naturally easier (although still
hard) than predicting the structure of large proteins, since the solution space
grows exponentially with the number of amino acids. This fact has motivated
many to divide the proteins into a number of fragments whose structure is
predicted separately and subsequently assembled - a strategy known as frag-
ment assembly. The method is currently very popular and also very successful
when either secondary structure prediction algorithms (like PSIPRED [18])
or fragment libraries are used to predict fragment structures.

However, two things should be noted in this respect. First of all, by
using fragments one assumes that a fragment always folds into a number
of predefined ways. Once a fragment is selected it is considered rigid and
it can only be replaced by another fragment. Long range interactions in
the protein under investigation are therefore not directly involved in shaping
the fragments, which may not be prudent. Secondly, although algorithms
that are based on secondary structure prediction and/or fragment libraries
are currently better at generating native-like structures, they are, of course,
forever bound to the limitation of systems relying on known structures, as
secondary structure prediction algorithms are trained on known structures
and fragment libraries built from known structures.

2.5 Test set

Unfortunately, a standard protein test set does not exist, and so yet another
parameter that must be considered when evaluating the performance of a
prediction algorithm, is the set of test proteins. The number of proteins in
the test set is of interest for statistical reasons. For a large test set it is
less likely that good results are obtained by mere “luck” and the algorithm is
more likely to be generally applicable than if the test set contained only a few
test proteins. Since most prediction algorithms are quite time consuming,
test sets are most often of limited size (< 15), although the largest test set
seen in this study includes 125 test proteins [43].

The lengths of the individual test proteins (e.g., number of amino acids)
are of also interest, as the structures of small proteins are both easier and
faster to predict than the structures of larger proteins. Skolnick et al. [35]
have previously investigated the possibility of obtaining a native-like struc-
ture by mere chance, and concluded that generating a structure by random
(although compact) that has a RMSD below 6A is highly unlikely for a chain
greater than 60 amino acids, but naturally that chance increases for smaller
proteins. An algorithm that is able to predict the structure of a protein of,

18

say, 20 amino acids to an RMSD of 6A is much less impressive than an algo-
rithm that can predict the structure of a protein of, say, 100 amino acids to
an RMSD of 6A. Most test proteins contain less than 100 amino acids.

Finally, the structural classes of the test proteins are of interest. All pro-
teins can generally be classified as either «, 3, /8 or coil [31], where the
first three categories are by far the most populated. A good prediction algo-
rithm must be able to make equally good predictions regardless of structural
class. Hence confidence in an algorithm relies also on the structural classes of
the test proteins. It is much harder to conclude anything about the general
applicability of an algorithm that has only been tested on a few proteins
belonging to the same structural class than if the algorithm has been tested
on a larger number of proteins from all structural classes. Most — but not all
— prediction systems are tested on proteins from all structural classes (except
coil-structures which none of the systems included in this study are tested
on).

3 Performance comparison

When configuring an algorithm for structure prediction, focus can be put
on any or all of the parameters identified in the previous section, which is
reflected in the numerous prediction algorithms proposed. The aim of this
performance comparison is primarily to contrast different algorithmic ap-
proaches, but also to deduce any trends in the settings of the algorithms.
One must, of course, be cautious when drawing conclusions about a given
setting, as it is often tied to the algorithm and the test proteins, but when
comparing a relatively large number of algorithms, the results may neverthe-
less indicate some general trends that would be of interest in the design of
new algorithms.

Performance is here compared between the reported results of 18 recently
proposed prediction algorithms (published in the last 5 years). Several al-
gorithms have been excluded (even relatively known ab initio systems such
as [19] and [45]) because RMSD values between the native and predicted
structures have not been published in their papers. There exist a number of
alternative ways to compare structures (such as dRMSD, GDT_TS, TM score,
etc.), and while they may be better at expressing how well the algorithm per-
forms in terms of for example substructure formation or core packing, RMSD
is the most commonly used descriptor. Furthermore, an overall low RMSD
is the ultimate goal for a structure prediction algorithm if it is to be used in
practice. Algorithms designed to predict only specific types of proteins (like
for example membrane proteins) are excluded. Algorithms based on exact
knowledge of the native structure are naturally also excluded, although the
contribution from [7] is very interesting from an algorithmic point of view.
Finally, newer versions of the algorithms are assumed to be equally good or

19

better than older versions, and therefore only the latest versions have been
included.

Although two of the algorithms participated in the CASP VII competition
[3, 40], their results from the competition are not included. As mentioned
earlier, RMSD values are available on the internet, but have not yet been
explicitly documented in the literature.

3.1 Results

The result of the performance comparison is presented in Table 1. The three
columns ‘Avg. RMSD’, ‘Res. set size’ and ‘Running time’ constitutes the
collected results for each algorithm.

The ‘Avg. RMSD’ column specifies the average RMSD values for the
best selected structures of all the test proteins. The ‘Res. set size’ refers to
the size of the result set, i.e. the number of predicted structures selected by
the systems. For those systems that use clustering or refinement it refers to
the number of results selected after the initial results have been clustered or
refined. Many are reluctant to pick one cluster over another and thus return
a representative structure from each cluster. There may be significant dif-
ferences between the representative structures chosen (see for instance [40]),
but RMSD is usually not reported for all selected structures and thus only
the lowest RMSD value amongst the selected structures is included in the
RMSD average here.

The ‘Running time’ column indicates how quickly the algorithm finds a
solution for a protein. Running times generally depend on the length of the
proteins, but as mentioned earlier — and as evident from Table 1 — most test
proteins included in the test sets are of comparable length. The computer
power available differs greatly, but the time stated in the column gives a
rough estimate of the time required for a single standard PC processor to
reach a solution. Hence, if a group has used a cluster of 10 computers and
4 days to predict a structure, it will be marked as ‘months’ (=~ 40 CPU
days). The algorithms (and results) included have all been published in the
last 5 years; while that is a fairly short time range, it should be noted that
computer power has increased significantly in that period (a standard PC
is roughly 3 times faster today), and newer algorithms have thus not only
the benefit of previous experience, but also the benefit of significantly faster
computers.

20

i T g/o [97] T
e T 0 [04-7€] ¢ ,SINOTY SOISAY PoIoLI}SIY oN woye-y [9] 18001\
Yo0oLddp fiupuonynjoasy 201302Lqo-1npy -
LT G ol [26-02] z
&y G 0 [9r-8¢] ¢ sotsAy g PaIOLIISaY S0k AuOqRy [9z ‘gg] Lsejo1g
(VSD) buypouuy 20ndg [puonu.iofuoy) -
v G g/o [L11-L7] 9%
8¢ g ol [L11-L7] Al
¢e G 0 [STT1-6¥] 91 smoy so1ys1IelS CAIURT IERCR | SOX °D [0F] HHSSV.LT
0]4D;) QU0 21]0QUdAE -
ey G g/o [69] T
0G G 0 [ec] I STYUOIN so1IsIjeYg PIROLISNY ON wWoye-[[y [9T] OANILOYd
99 00% g/o [z-82] zl
) 00 ¢ [z2-87] 01
6¢ 00% 0 [601-€9] 71 SUJUOIN[PoxIN PooLISOY SO ONI-SIVD [1T] proquits
buypouuyy pagpjnwing 054n,) 2JUOH] -
9'¢ g g/o 88-6] I
0'8 G ¢ [29-6¢] 4
¢'1 g 0 [cL-67] ¢ STYUOTN sonsIyelg PojILIISANY SOX WOye-[[y [9¢ ‘g] epresoy
014D)) 2JUOPY $1)0d04PI P\ -
0€ T g/o [1¢-c¢] i
1'e I ol [9z-62] z
0¢ T 0 [€L-97] ¢ SUPUON oAy pojoLIsay SOA woje-[[y [ze] IWVZ
9% T g/o [92-9¢] 4
g8 T ol [Le1-67] ¢
8¥ I 0 [98-99] id ske(] so1IsIYRYG CalEkicy | SOX SdvD [¢] dnois mysuroyf
€8 96-C g/o [L1-L¥] |3
z'8 z9¥ g [eq1-6€] 13
L9 eard 0 [26T1-9¢] 97 sdeq SO1ySIYRYG oo13eT] SOx SavD [eF] 11 uoysypnay,
i q1 g/o [cL-1¢] €
T'g a ol [29-72] ¢
ey GI 0 (L2-97] L SYOOA soTysTYR)S 1A% ON woye-[[y [1§] dnois yoraouyseys
QN&@D mﬁxbg wmﬁsﬁu&m @UEQQMN -
6°¢ 01 g/o 87] I
9T 0T 0 [6L-97] id SINOY] So1sAY nv ON SHYNN 4[62] dnois omry
L1 T 0 [9¢] I SIBOX sosAyq 18 ON woje-[y [cp] dnois opueq
QQ‘SES\SN% Q.EN -
(ASINY RINE (OZIS 198 SN SB[FO8URI [)SUOT me@aoa Jo # owry Suruuny prouny A310Uu7] o0rds [RIpOYI(] @.mfm » Aoy

"Swy3I038[e uo13orpaid aInjonijs |1 jo uostreduiod 20URULIONS T 9[qR],

"oouepu0dsor100 [euosiod woiy,

"(100yseoq /eyde pue 100yseIoq) 98I0AUO0D SABM[E JOU PIP WYILIOS[E oYL,

"SSBD [RINJONIYS ST} 0 SUISuoeq sutejold 4893 [[B 10§ PUNOJ SOINJONIIS PIJOI[RS 359(O3 JO sonfea ([SINY o8eioar oy,
“posprd ST oanj3onays (JSINY 1SOMO0[03 (OIYA WOy ‘(SULIOSI[D 103€) SWo)sAS o) AQ POUINIOI SUOIII0S JO IOqUINU Y,
‘surejord §893 93 JO SSR[O [BINIONIYG,,

‘surejoxd 1899 o1} JO a8url Y)Sus| oouenbag,

surpjord 4893 JO ToquIny

*108s9001d 9[3UIS ® SUISN PUNOJ ST UOIIN[OS © A[YOIND MOY JO 9)RWIISS [SNOI Y,
"poseq so1s4Td 10 $O1)STIRYS IOYII0 dre suolpduny AZmoug porjdde uorouny AS1oug],

‘SofSue [RIPSYIP 9[qISSO],
‘Alquuasse juowderq,
‘pordde uoryejussordor urejord oy,

¢’ q1-¢
69 q1-¢
9°¢ g1-¢
67 !
9°¢ !
¢9 1
€9 0000T
0°¢ 0000T
97 0000T
91 T
6'F 1
[01-¢
91 0T1-¢
6°¢ 0T

g/o

Q.
BQE 3

g/o

3

T T

8T
€l
1¢

™

—

i

i

SIoY

SYO9M

sAe(

SImoy

sAe(q
SINOF]

SO1sIIRYg

SOISAYJ

SONSTRYG

SOISAYJ

SOISAYJ
SOISAYJ

v

SO °o [og] YONIVdOUd

uoypzIw)do fagou0db 20UDISIP 2135119VQOL] -

PooLIISay

PoIOLIISNY

pogoLIIsey

[18%
PooLIISay

SO woreIy [1g] ATOI0UILSYV
AN/ vso/a4dm -

[e€] pismozsnreq
puUNOg Puv YOUDL -

SOX o)

Sox wWoYe-[y [1] wreynen)
SWYNLOBID 21790UD-STON -

ON woje-[[y [€2] 195014
N H% [8¢] Snudg
swysob flavuoyynjoasy -

((ASINY "Sae 0718 198 'S0y SSB[) OSueI [psuo] suwjord jo # owr) Suruunyy

p

-ouny ASrouy ,eoeds [RIpayI(,Ser] , doy

N
(o]

4 Discussion

4.1 Algorithmic configuration

Detailed MD simulation of all-atom protein models such as [42] is typically
performed in order to allow researchers to observe the folding pathways —
not merely to predict protein structure. MD simulation has, however, proved
to be very accurate (for at least small proteins), and it has been included
here because it is technically possible to use MD simulation for structure
prediction, although it is computationally extremely heavy and renders the
problem intractable for all but the smallest of proteins. In a sense one might
say that the goal of a prediction algorithm is to combine the accuracy of MD
simulation with the speed of (most) search algorithms.

Different flavors of the Monte Carlo (MC) search strategy are by far the
most common types of algorithms used, but results for all algorithms are for
the most part comparable with respect to accuracy. Studies that compare
different MC search strategies are performed regularly [12]. They typically
show that one algorithm performs slightly better than the ones it is compared
to, but this may be related to the test proteins rather than the algorithm
as such. From Table 1 it would certainly seem like all types of MC searches
show roughly the same performance. The I-TASSER algorithm [40] based
on a Hyperbolic Monte Carlo scheme stands out with results being superior
to the others, particularly when it comes to running time.

Interestingly, excellent results are obtained quickly by the Liwo group
[29] who also use MD simulation but with a simplified residue representa-
tion. The force field used is designed to compensate for the missing atoms,
and while some simulations — particularly of proteins containing J-sheets
— do not converge to a final structure, the fact that the algorithm reached
good results extremely fast indicates an enthralling potential. In fact, sim-
plified residue representation appears to generally have a positive effect on
the running time of the algorithms but a more or less undetectable effect on
accuracy irrespectively of the type of algorithm used. As mentioned previ-
ously, most prediction algorithms differ on multiple settings, and it is thus
usually difficult to make any general conclusions about a particular setting.
Nevertheless, in this case where many algorithms are aligned, it seems clear
that the effect of a simplified protein representation on overall accuracy is
minimal.

Algorithms based on fragment assembly are generally considered more
successful than others (many of the best algorithms in the CASP competi-
tion use this folding strategy), and it certainly seems intuitively right that
fragment assembly would be much faster. This is not evident from the results
reviewed here where the strategy does not appear to have any major influence
on running time. However, fragment assembly is most likely an important
factor in the high accuracy achieved by algorithms such as I-TASSER and

23

Rosetta, but one should also bear in mind that the use of fragments makes
the system a borderline “comparative modeling”-system, which relies heavily
on existing structures.

Aside from MD simulation, the dihedral angle space is restricted in nearly
every algorithm. PROPAINOR stands out as it takes a completely different
approach to the problem by sampling residue distance space rather than
angle space — thereby making all dihedral angles possible. Of course, the
restrictions they put on residue distances for a given protein may in fact
translate into restrictions on dihedral angle space for that particular protein,
but a common set of restrictions are not build into the algorithm. Most
algorithms are off-lattice, but some make use of a lattice (at least for parts of
the protein) and with an expected positive influence on at least the running
time [24, 40, 43]. It should also be noted that the restrictions on dihedral
angle space used by most do not appear to have a detectable influence on
the quality of the predicted structures.

With regards to the two types of energy functions it would appear from
this comparison that algorithms that utilize a physics-based energy function
find solutions that are marginally better than the solutions found by algo-
rithms with a statistics-based energy function. No influence on the running
time of the algorithms can be observed. It should be noted that statistics-
based energy functions vary greatly in the number of parameters they include
and thus a general trend should not be extracted from this study.

4.2 Test set specific parameters

From Table 1 it can be seen that only 11 of the 18 algorithms have been
tested on proteins from all structural classes (except coil). The Liwo group
[29] did in fact test on proteins from the three main structural classes, but as
the algorithm did not converge for 3-sheet structures, they have not reported
any results for these proteins. The smallest test sets used included only one
structure [38, 42] while the largest set included 125 structures.

Surprisingly, there appears to be no correlation between running time and
quality — in fact the fastest algorithms obtain some of the best results even
when the lengths of the proteins are taken into consideration. Algorithms
that have been tested on test sets, which include many and/or significantly
larger proteins, would be expected to obtain a higher average RMSD, but the
results would also be more reliable as it is very difficult to tune parameters —
intensionally or not — to produce good results on large test sets (as discussed
in section 2). TOUCHSTONE II (large test set) and to a certain extent
PROPAINOR (large proteins) support this assumption, but the I-TASSER
algorithm actually maintains excellent performance despite being tested on
the second largest test set with proteins that are both structurally diverse
and have an average length of 81 amino acids (Table 2).

From the results presented, it is evident that predicting [3-sheets is much

24

proteins * Avg. length® Avg. RMSD® Avg. RMSD; 0% Run time®

Pande group [42] 1 36 1.7 3.48 Years

Liwo group [29] 6 57 4.0 5.56 Hours
Shakhnovich group [41] 13 58 4.5 6.18 Weeks
Touchstone IT [43] 125 87 7.7 8.28 Days

Kolinski group [24] 9 78 6.2 7.08 Days

ZAM [32] 9 46 2.8 457 Months
Rosetta [2, 36] 16 69 3.8 4.66 Months
SimFold [11] 38 76 5.9 6.84 Months
PROTINFO [16] 2 61 AT 6.24 Months
I-TASSER [40] 56 81 4.2 4.69 Hours
Profesy [25, 26] 4 38 3.5 6.78

Nicosia [6] 4 52 3.5 5.20 Hours
Schug [38] 1 60 3.9 5.24 Hours
Profet [23] 3 28 4.0 11.17 Days

Gautham [1] 5 33 4.2 9.42 Hours
Paluszewski [33] 6 60 5.2 6.96 Days

ASTROFOLD [21] 8 76 5.3 6.15 Weeks
PROPAINOR [20] 52 98 6.4 6.47 Hours

“Number of test proteins.

b Average length of the test proteins.

¢Average RMSD values of the best selected structures found for all test proteins.
4 Average RMSD values are normalized with respect to protein lengths.

€A rough estimate of how quickly a solution is found using a single processor.

Table 2: Summarized results

more difficult, and most algorithms that are tested on proteins belonging to
different structural classes perform worse on proteins that contain (3-sheets,
indicating that the energy function used is biased toward one kind of sec-
ondary structure (usually a-helices). The results reported for the ZAM [32]
and Profesy [25, 26] algorithms along with the results reported by Gautham
[1] actually showed better results for (-class structures, but that is most
likely due to the short length of the selected (-class proteins. A few of the
groups [20, 21, 40, 41] stand out as they seem to obtain equally good results
for all their proteins regardless of structural class.

4.3 Performance results

Generally, most results reported look impressive. It should of course be em-
phasized that the RMSD values reported here are for the selected structures
with the lowest RMSD values found by the prediction systems. Note that
most algorithms return numerous structures, some with high RMSD values
and some with low RMSD values. A large result set size is generally less at-
tractive — even if it includes a near native structure — because the algorithm
as such is unable to separate that structure from the decoys. Returning
many solutions does, however, not necessarily pose a problem, if there is

25

some way to separate the ‘good’ structures from the ‘bad’ by for example
using clustering [41] or other filtering techniques [10]. As shown by the ‘Res.
set size’ column in Table 1 many systems return several solutions even after
the results have been clustered and the best solution is then picked based
on its RMSD score to the native protein. Of course, in order to function
as a reliable prediction system, one must be able to pick the good structure
without knowledge of the native structure.

Table 2 summarizes the performance result of the predictions. In the
‘Avg. RMSDjgo’ column, the average RMSD values have been normalized
with respect to the length of the test proteins [5], which makes it easier to
compare RMSD values for proteins of different lengths. Most of the included
published results have an average RMSD;qq value around GA. Although the
result reported by the Pande group using the MD simulation is the lowest, it
has two major draw backs: there are too few test proteins and the running
time is very poor. Furthermore, the protein folded is very small (only 36
amino acids). From the RMSDjg, values it is clear that the Rosetta algorithm
[3] and the I-TASSER algorithm [40] are at a near tie, which was also seen
in the latest CASP VII competition [17]. The Rosetta algorithm [3] holds a
long standing record for achieving good results at the CASP competitions,
and so the results of the 16 test proteins is considered quite reliable. The I-
TASSER algorithm is, however, tested on a much larger test set of 56 proteins
(including the same proteins as Rosetta was tested on), and with an excellent
running time that clearly outperforms Rosetta, it is here concluded to be the
overall best performing algorithm. As mentioned previously, the CASP VII
results from I-TASSER and Rosetta are available on the internet, but not
included here. However, analysis of the RMSD values from CASP VII reveals
a picture similar to what is seen here. Both I-TASSER and Rosetta use a
MC sampling scheme (although different variants), fragment assembly and
a statistics-based energy function, but they differ in protein representation
and acceptable dihedral angle space.

Finally, the need for a standard protein test set of appropriate size must
be emphasized. The trends observed concerning parameter settings in this
study are based on (sparse) statistics, but could perhaps be made into actual
conclusions if all research groups used the same test set (as it is seen in other
research areas). Furthermore, a standard test set would make it difficult
to cheat and would allow for a more systematic and reliable evaluation of
algorithms.

5 Conclusion

The parameters for proper comparison of protein structure prediction al-
gorithms have been identified and the performance of 18 different ab initio
prediction algorithms have been compared with respect to these parameters.

26

In lack of a standard protein test set, it is usually difficult to evaluate the
importance of one particular parameter setting over another, but because
of the relatively large number of algorithms compared here, certain trends
in parameters settings could be identified. Simplified protein representa-
tion was found to have seemingly undetectable influence on accuracy, but
a definite positive influence on running time. The (very popular) fragment
assembly folding strategy is most likely responsible for the high accuracy
achieved by some groups [3, 40], but it does not appear to have any general
influence on running time. Half of the algorithms use a physics-based energy
function and although they appear to slightly outperform those utilizing a
statistics-based energy function, the complexity of energy functions makes it
impossible to draw any reliable conclusions about the effect of physics-based
versus statistics-based energy functions. Surprisingly, the overall best per-
forming algorithm — the I'-TASSER algorithm [40] — is also one of the fastest
algorithm included in this study.

As a final note, it should be mentioned that this type of performance
comparison is made particularly difficult because research groups test their
algorithms on their own selected proteins. A standard protein test set would
greatly enhance any possible trends in parameter settings and could facilitate
designs of new algorithms.

References

[1] J. Arunachalam, V. Kanagasabai, and N. Gautham. Protein Structure
Prediction using mutually orthogonal Latin squares and a genetic algo-
rithm. Biochem. Biophys. Res. Com., 342:424-433, 2006.

[2] P. Bradley, L. Malmstroem, B. Qian, J. Schonbrun, D. Chivian, D. E.
Kim, J. Meiler, K. M. S. Misura, and D. Baker. Free modeling with
Rosetta in CASP6. Proteins, 7:128-134, 2005.

[3] P. Bradley, K. M. S. Misura, and D. Baker. Towards High-Resolution de
Novo Structure Prediction for Small Proteins. Science, 309:1868-1871,
2005.

[4] A. C. Camproux and P. Tuffery. Hidden Markov model-derived struc-
tural alphabet for proteins: the learning of protein local shapes captures
sequence specificity. Biochem. Biophys. Acta, 1724:394-403, 2005.

[5] O. Carugo and S. Pongor. A normalized root-mean-spuare distance for
comparing protein three-dimensional structures. Protein Sci., 10:1470—
1473, 2001.

27

(6]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

V. Cutello, G. Narzisi, and G. Nicosia. A multi-objective evolution-
ary approach to the protein structure prediction problem. J. R. Soc.
Interface, 3:139-151, 2006.

K. W. DeRonne and G. Karypis. Effective optimization algorithms
for fragment-assembly based protein structure prediction. Comp. Sys.
Bioinf. Conf., pages 19-29, 2006.

R. L. Dunbrack. Rotamer libraries in the 21st century. Curr. Op. Struct.
Biol., 12:431-440, 2002.

Y. J. K. Edwards and A. Cottage. Bioinformatics Methods to Predict
Protein Structure and Function. Mol. Biotech., 23:139-166, 2003.

E. Eyal, M. Frenkel-Morgenstern, V. Sobolev, and S. Pietrokovski. A
pair-to-pair amino acids substitution matrix and its applications for pro-
tein structure prediction. Proteins, 67:142-153, 2007.

Y. Fujitsuka, G. Chikenji, and S. Takada. SimFold Energy Function
for De Novo Protein Structure Prediction: Consensus with Rosetta.
Proteins, 62:381-398, 2006.

D. Gront, A. Kolinski, and J. Skolnick. Comparison of three Monte Carlo
conformational search strategies for a proteinlike homopolymer model:

Folding thermodynamics ad identification of low-energy structures. J.
Chem. Phy., 113:5065-5071, 2000.

Y. Z. Guo, E. M. Feng, and Y. Wang. Optimal HP configurations
of proteins by combining local search with elastic net algorithm. J.
Biochem. Biophys. Met., 70:335-40, 2007.

C. Hardin, T. V. Pogorelov, and Z. Luthey-Schulten. Ab initio protein
structure prediction. Cur. Op. Struct. Biol., 12:176-181, 2002.

J. Hockenmaier, A. K. Joshi, and K. A. Dill. Routes are trees: the
parsing perspective on protein folding. Proteins, 66:1-15, 2007.

L. Hung, S. Ngan, T. Liu, and R. Samudrala. PROTINFO: new al-
gorithms for enhanced protein structure predictions. Nuc. Acids Res.,
33:Online, 2005.

R. Jauch, H. C. C. Yeo, P. R. Kolatkar, and N. D. Clarke. Assessment of
CASP7 structure predictions for template free targets. Proteins, online,
2007.

D. T. Jones. Protein secondary structure prediction based on position-
specific scoring matrices. J. Mol. Biol., 292:195-202, 1999.

28

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

D. T. Jones, K. Bryson, A. Coleman, L. J. McGuffin, M. I. Sadowski,
J. S. Sodhi, and J. J. Ward. Prediction of Novel and Analogous Folds
Using Fragment Assembly and Fold Recognition. Proteins, 7:143-151,
2005.

R. R. Joshi and S. Jyothi. Ab-initio prediction and reliability of protein
structural genomics by PROPAINOR, algorithm. Comp. Bio. Chem.,
27:241-252, 2003.

J. L. Klepeis and C. A. Floudas. ASTRO-FOLD: A Combinatorial
and Global Optimization Framework for Ab Initio Prediction of Three-
Dimensional Structures of Proteins from the Amino Acid Sequence. Bio-
phys. Jour., 85:2119-2146, 2003.

A. Kolinski. Protein modeling and structure prediction with a reduced
representation. Acta Biochimica Polonica, 51:349-371, 2004.

F. Koskowski and B. Hartke. Towards Protein Folding with Evolutionary
Techniques. J. Comp. Chem, 26:1169-1179, 2004.

D. Latek, D. Ekonomiuk, and A. Kolinski. Protein Structure Prediction:
Combining De Novo Modeling with Sparse Experimental Data. Wiley
InterScience, online, 2007.

J. Lee, S. Kim, K. Joo, I. Kim, and J. Lee. Prediction of Protein Ter-
tiaru Structure Using PROFESY, a Novel Method Based on Fragment

Assembly and Conformational Space Annealing. Proteins, 56:704-714,
2004.

J. Lee, S. Kim, and J. Lee. Protein structure prediction based on frag-
ment assembly and parameter optimization. Biophys. chem., 115:209—
214, 2005.

J. Lee, A. Liwo, and H. A. Scheraga. Energy-based de novo protein fold-
ing by conformational space annealing and an off-lattice united-residue
force field: Application to the 10-55 fragment of staphylococcal protein
A and to apo calbindin D9K. PNAS, 96:2025-2030, 1999.

Z. Li, X. Zhang, and L. Chen. Unique optimal foldings of proteins on a
triangular lattice. Appl. Bioinf., 4:105-16, 2005.

A. Liwo, M. Khalili, and H. A. Scheraga. Ab initio simulations of
protein-folding pathways by molecular dynamics with the united-residue
model of polypeptide chains. PNAS, 102:2362-2367, 2005.

A. D. MacKerell. Empirical Force Fields for Biological Macromolecules:
Overview and Issues. J. Comp. Chem., 25:1584-1604, 2004.

29

[31]

32]

[33]

[34]

[35]

[39]

[40]

[41]

[42]

[43]

[44]

C. A. Orengo, A. D. Michie, S. Jones, D. T. Jones, M. B. Swindells, and
J. M. Thornton. CATH-a hierarchic classification of protein domain
structures. Structure, 5:1093-1108, 1997.

S. B. Ozkan, G. A. Wu, J. D. Chodera, and K. A. Dill. Protein folding
by zipping and assembly. PNAS, 104:11987-11992, 2007.

M. Paluszewski and P. Winter. Branch and Bound Algorithm for Protein
Structure Prediction Uning Efficient Bounding. Unpublised, 00:00, 2007.

G. N. Ramachandran and V. Sasisekharan. Conformations of polypep-
tides and proteins. Adv. Prot. Chem., 23:283-437, 1968.

B. A. Reva, A. V. Finkelstein, and J. Skolnick. What is the probability
of a chance prediction of a protein structure with an rmsd of 6 A. Fold.
Des., 3:141-147, 1998.

C. Rohl, C. E. M. Strauss, K. M. S. Misura, and D. Baker. Protein
Structure Prediction Using Rosetta. Met. Enzym., 383:66-93, 2004.

R. Samudrala. Genes, Macromolecules & Computers
http://www.ram.org/ramblings/dream/, 1990.

A. Schug and W. Wenzel. An Evolutionary Strategy for All-Atom Fold-
ing of the 60-Amino-Acid Bacterial Ribosomal Protein L20. Biophys.
Jour., 90:4273-4280, 2006.

J. Skolnick. In quest of an empirical potential for protein structure
prediction . Curr. Op. Struct. Biol., 16:166-71, 2006.

S. Wu, J. Skolnick, and Y. Zhang. Ab initio modeling of small proteins
by iterative TASSER simulations. BMC' Biol., 5:0Online, 2007.

J. S. Yang, W. W. Chen, J. Skolnick, and E. I. Shakhnovich. All-Atom
Ab Initio Folding of a Diverse Set of Proteins. Structure, 15:53-63, 2006.

B. Zagrovic, C. D. Snow, M. R. Shirts, and V.S.Pande. Simulation
of Folding of a Small Alpha-helical Protein in Atomistic Detail using
Worldwide-distributed Computing. J. Mol. Biol., 323:927-937, 2002.

Y. Zhang, A. Kolinski, and J. Skolnick. TOUCHSTONE II: A New
Approach to Ab Initio Protein Structure Prediction. Biophys. Jour,
85:1145-1164, 2003.

Y. Zhang and J. Skolnick. The protein structure prediction problem
could be solved using the current PDB library. PNAS, 102:1029-1034,
2004.

30

[45] H. Zhou and J. Skolnick. Ab initio protein structure prediction using
chunk-TASSER. Biophys J., Epub, 2007.

31

2.5 Postscript

Since the publication of the paper in 2008, there seems to have been a shift of focus in the
PSP society. Devising new ab initio prediction algorithms for large scale structure predic-
tion appears to have given way to devising algorithms specialized for structure prediction of
fragments, short loops, peptides or mini-proteins [3, 8, 9, 11, 12]. The reported performance
of these algorithms cannot be fairly compared with the performance of the algorithms pre-
sented in [6], as both RMSD and runtime are expectedly better for short fragments. To this
date, the i-Tasser and Rosetta algorithm thus remain the best performing algorithms.

32

Chapter 3

Meta-heuristic Search in PSP

3.1 Background

The PSP problem has been shown to be N P-hard [2], and we thus cannot expect to find
a polynomial time algorithm for this problem unless P = NP. Like for many other N P-
hard problems, most attempts to find the native structure involve the use of some meta-
heuristic. Meta-heuristics are typically inspired by nature. Whether it be evolution, cooling
of molecules, dancing bees, food-gathering ants or the flocking behavior of some animals we
seem to be able to extract some governing principles that can assist us in various optimization
problems. The general idea behind these nature-inspired algorithms is to utilize the fact that
nature always seems to find the best and most appropriate or efficient way of doing things.
As Fred Gratzon, author of the book “The Lazy Way to Success” [5] said:

Hard Work is Passe. The paradigm-shifting concept is ‘Smart Laziness’ - where
success comes through cleverly avoiding work but still getting the job done. In
this oasis, we celebrate those magical ways where doing less accomplishes more.

A number of meta-heuristics for general purpose applications have been proposed over
the years. The most well-known and frequently used meta-heuristics are probably genetic
algorithms and simulated annealing, but new variants surface on a regular basis. Common
for all meta-heuristics is their ability to navigate around (infinitely) large solution spaces
and find good solutions relatively fast. Unlike exact methods, there is no guarantee that
the solution is at a global optimum or even that it is not at a global optimum, but in
practice meta-heuristics are able to locate better solutions than exact methods. In fact,
exact methods are very rarely encountered at all in this research field.

Creating a good search algorithm is of course of vital importance for a complex problem
like PSP, but investigations into performance differences between different meta-heuristics for
PSP have been paid surprisingly little attention. For meta-heuristics it is largely the hyper-
parameters that are responsible for how efficient the algorithm turns out to be. It could
thus be argued that if we use the same hyper-parameters for all meta-heuristics they will do

33

equally well, which is very much in keeping with the “no-free-lunch” theorem that states that
all optimization algorithms will on average do equally well over the set of all mathematically
possible problems. The problem here is, of course, that there may be significant performance
differences within a specific area, and although some hyper-parameter counterparts can easily
be identified across different meta-heuristics, others are unique in their nature. A mutation
strategy from a genetic algorithm, for instance, can readily be used to control alterations
in a simulated annealing procedure, but the cross-over operator, on the other hand, has
no counterpart in simulated annealing. One thus cannot assume that the choice of meta-
heuristic is irrelevant.

3.2 Parallelism

Parallel meta-heuristics have been known for decades, but they do not seem to have been
fully integrated in the PSP field yet. Although attempts have certainly been made, most
PSP methods still rely on sequential meta-heuristics.

Essentially, parallel meta-heuristics are a specific class of meta-heuristics that are de-
signed to run in parallel. Many instances or re-runs of the same sequential meta-heuristic
can, of course, always be executed simultaneously, but in parallel meta-heuristics parallelism
is built into the design. The niche genetic algorithm and the parallel tempering algorithm
are two examples of parallel meta-heuristics that are explored in much further detail in this
chapter. The interesting thing about parallel meta-heuristics is that they are not only much
faster, they also improve solution quality by a factor that vastly exceeds what would be
expected from running multiple instances of the sequential algorithm.

3.3 Paper: Exploring Parallel Meta-heuristics for Pro-
tein Structure Prediction

This paper is written as a technical report. It presents and compares performance of different
meta-heuristics, sequential as well as parallel, for PSP. It focuses specifically on the role of
parallelism and demonstrates how parallelism can and should change the way we construct
PSP algorithms. A short paper summarizing the main results has been presented at the
BIOINFORMATICS 2010 conference and published in the conference proceedings. The
short paper is included as Appendix A.

34

Exploring Parallel Metaheuristics for Protein
Structure Prediction

Glennie Helles

Abstract

For many high-complexity problems exhaustive search is infeasible and
researchers thus rely on meta-heuristics to solve the problems in a satisfac-
tory way. The problem of predicting the structure of proteins from their
primary sequence is NP hard and falls into this category. Looking at the
literature, the most frequently applied meta-heuristics for protein structure
prediction are without a doubt simulated annealing (or a variant hereof)
followed by genetic algorithms. Aside from the terminological advantages of
simulated annealing for this particular problem, there are no obvious rea-
sons why simulated annealing would be preferred over genetic algorithms.
Although simulated annealing, as the only meta-heuristic, enjoys the luxury
of a theoretical guarantee of finding the global optimum, it is well known
that this theoretical guarantee bears little importance in practice, since the
guarantee only holds given infinite time.

Both simulated annealing and genetic algorithms exist in parallel ver-
sions, but neither seems to have gained any real popularity in the field
of protein structure prediction. This is despite the fact that the parallel
versions have been shown to outperform their sequential counterparts for
many other problems. In this report, we describe these two most promi-
nent meta-heuristics and investigate how they compare to each other in the
field of protein structure prediction. Focus is given especially to the par-
allel versions of these algorithms, and we propose a special version of the
niche genetic algorithm and demonstrate how low energy structures can be
obtained much faster than with any of the other algorithms - both parallel
and sequential. The algorithm is highly elitist which would normally set off
the exploitation-exploration balance, but in the proposed algorithm, paral-
lelism is specifically used to ensure that the balance is maintained. Using
parallelism is a very attractive feature, as multi-core processors and clus-
ters are becoming readily available to most researchers and the “cost” of
parallelization is thus close to nothing.

35

1 Introduction

Meta-heuristics are known to perform well on high-complexity problems where the
search space becomes too big for exhaustive search to be feasible. Prediction of the
three-dimensional structure of proteins from their primary sequence alone, known
as ab initio or de novo folding !, is such a problem, and meta-heuristics are nearly
always used in attempts to solve this problem [11, 21].

Proteins are made up by amino acids that are strung together like pearls on
a string, such that each amino acid is connected to its neighboring amino acid(s)
via a peptide bond. The peptide bond is very rigid and the dihedral angle —
denoted w — around this bond is quite rigid. The dihedral angles around the two
other backbone bonds, the N-C, bond and the C,—C’ bond, are denoted ¢ and
1 respectively. Atoms can in theory rotate freely around these two bonds which
means that, just like a pearl necklace, a protein can be folded up in infinitely
many ways, which is the reason that protein structure prediction poses such a big
problem. Fortunately, steric clashes between atoms in neighboring amino acids do
impose a considerable restraint on the flexibility of the ¢ and v angles actually
observed for amino acids [23], but searching exhaustively for the structure with
the lowest energy remains intractable.

Judging from the literature, the Monte Carlo variant known as Simulated An-
nealing appears to be the preferred meta-heuristic for ab initio structure pre-
diction with Genetic Algorithms [11] as the second most popular choice. Both
meta-heuristics can be parallelized, and the parallel versions are generally be-
lieved to perform better in rugged energy landscapes like those associated with
protein structure prediction [7]. Oddly enough, the parallel versions are neverthe-
less used to a much lesser extent than their sequential counterparts in the field of
protein structure prediction. We speculate that that is mostly because the effect
of the choice of meta-heuristics has been paid little attention in this field that is
notoriously haunted by many other fundamental problems. The most significant
obstacle is probably to find an appropriate energy function that can be used to
score a protein, which has by far received the most attention over the years.

While measuring how close a predicted protein is to the native protein can
easily be done by various distance measurements like RMSD (Root Mean Square
Deviation) or GDT (Global Distance Test), these measurements naturally can-
not be used to score the quality of structures during the search procedure, where

!The term ab initio traditionally refers to prediction methods that start without any knowl-
edge of any globally similar folds, thereby setting them aside from homology modeling tech-
niques. However, many so called ab initio methods do in fact use secondary structure prediction
algorithms that are trained from knowledge of already known structures, or they use fragment
assembly compiled from known structures. Some choose to refer to this as de movo prediction
rather than ab initio prediction. The term ab initio will be used in this publication

36

the native protein is unknown. Instead, we have to come up with some other
way of measuring how close a given structure is to the native state without actu-
ally knowing the native state. Myriads of energy functions that attempt to achieve
this have been proposed, and most research groups utilize their own version. Some
energy functions, the physics-based energy functions, strive to calculate an approx-
imation of the actual free energy of a structure, because the native structure is
believed to be have the lowest free energy. Statistics-based energy functions, on
the other hand, calculate pseudo-energies based on statistical information about
known structures.

In this report, we investigate meta-heuristic performance in protein structure
prediction, focusing especially on the parallel versions of simulated annealing and
genetic algorithms. In particular, we explore how parallelism can be brought into
the design of a parallel genetic algorithm as a hyper-parameter on equal terms as
selection strategies, population size and mutation frequencies. The GA variant,
which T dub inGA (iterative niche genetic algorithm), adds an iterative layer to
the classical nGA and is designed to increase search efficiency by locating and
converging on the low energy structures much faster than both nGA and PT.

1.1 Simulated annealing

Simulated annealing (SA) is a stochastic optimization method that can be used to
find a good approximation of the optimal solution of a given objective function.
Like most stochastic optimization methods, it is primarily warranted when the
search space is too big (possibly even infinitely big) to be searched exhaustively,
and it has been successfully applied to a number of NP-hard problems [6, 20, 15].

SA uses the analogy of the process that takes place when metals cool and freeze.
Initially, when temperature is high, the system is disordered (melted metal), and
atoms move around freely. When the temperature is then slowly lowered, atoms
begin to arrange themselves in a way that minimizes the Gibbs free energy of the
system. If the system is cooled slowly enough, the atoms will at the end have ar-
ranged themselves in a way that is believed to be at the Gibbs free energy minimum
for that system. SA starts off with a (possibly random) start configuration, s, and
then at each iteration of the algorithm it considers some neighbor, s’, and moves
to that state with a given probability, P. The probability depends on the current
temperature, T', of the system and on the energy of the solution, F,, usually such
that

~EBy-E)T E,>FE
€T s = Lig
Placcept) :{ L By <E (1)

Equation 1 will ensure that high temperatures will increase the likelihood of a move
to a state with a higher energy than the current state whereas low temperatures

37

will decrease the likelihood of such a move. The temperature is set at each iteration
according to a cooling scheme. The cooling scheme, i.e. how much the temperature
is lowered at each step, needs to be chosen in a way that the algorithm will be
allowed to search as much of the search space as possible while still allowing the
algorithm to converge within the available time. It has been proven that if the
cooling time is infinitely slow, the simulated annealing algorithm is guaranteed to
find the optimal solution, but in practice there is, of course, little advantage of
this theoretical proof as time is usually limited.

SA has proved to perform well in a number areas, such as lotto design [18],
chip design [20] and of course protein structure prediction [2, 9, 12]. In fact, SA is
without a doubt the most widely used algorithm for protein structure prediction
[11]. One of the attractive features about SA for this particular problem is that
because protein folding is also a molecular process, the terminology transcribes
nicely. One might say that SA in a way mimics the actual folding process by
continuously making small adjustment to the structure until it reaches its native
state. Of course, SA is far too coarsely grained to actually simulate the folding
process in practice - a molecular dynamics algorithm would be needed for that
- but the approach still seem intuitively correct. In this respect, it should be
noted that experiments have shown that molecular dynamics can in fact be used
to successfully simulate the folding process and thereby predict protein structure
[29]. Unfortunately, molecular dynamics is a very time consuming technique, and
it is therefore currently not a serious option for predicting structures of any but
the smallest of proteins.

Many of the best performing systems that compete in the CASP (Critical As-
sessment of protein Structure Prediction methods), including Rosetta, which has
consistently won the competition for many years, are based on the SA-algorithm.
However, it is very difficult to determine whether it is the simulated annealing ap-
proach that is responsible for the success achieved by the best-performing groups,
or if it is in fact due to other circumstances such as choice of fragment library
and energy function. A number of studies show that other algorithms outperform
SA in various problems (see for instance [17]), but to my knowledge documenta-
tion of an actual benchmark between SA and any other algorithm for the protein
structure prediction problem does not exist. We can merely conclude that it is a
popular choice.

SA does not converge and is never completely trapped, but the algorithm may
spend a long time escaping a local minima. Many researchers thus apply a re-
heating scheme that allow the SA process to escape local minima much faster.
When the algorithm shows no improvement for a period of time, the temperature
is simply elevated, thereby increasing the probability of the choosing a solution
with a higher energy.

38

Because SA is a stochastic method, re-runs of the algorithm are typically per-
formed. How many re-runs are required depends on the energy-landscape, but for
the protein structure prediction problem re-runs are typically performed in the
order of 300-400 times.

The pseudocode for a general SA algorithm is given in Algorithm 1.

Algorithm 1 Simulated Annealing
temp «— tempg
solution < solutiony
energy «— evaluate(solution)
for i =0 ton do
newSolution «— neighbour(solution)
newEnergy «— evaluate(newSolution)
deltaEnergy < (newEnergy — energy)
if random() < exp(—(deltaEnergy/temp)) then
solution «— newSolution
energy < newEnergy
end if
temp «— adjustTemp()
end for
return solution

1.2 Genetic algorithms

Genetic algorithms (GA) belong to the set of so-called population-based search
algorithms. Unlike simulated annealing that operates on refining a single solution,
population-based search algorithms operates on multiple solutions at the same
time.

GA uses the analogy of genetic evolution to refine solutions by applying crossover
and mutation to an initial population of (usually) random solutions. In each it-
eration of the algorithm, solutions are picked according to some selection criteria
which usually depend heavily on the fitness of the solutions as calculated by some
predefined fitness function. New solutions are then generated by pairing the se-
lected solutions and combining parts of one solution with parts of the other solution
(crossover) and altering the new solutions with a probability set by the mutation
rate.

The GA does not allow the same degree of molecular process simulation as
SA, and for the protein structure prediction problem, crossover definitely imposes
a challenge because recombining part of one possible structure of a protein with
a part of another possible structure of the protein easily results in steric clashes

39

between atoms. This may also occur with SA, but in SA the changes are usually
small, and the likelihood is thus less than with GA.

The advantage of GA over SA is that GAs tend to find good solutions faster be-
cause they cover a much larger and more diverse area of the search-space in a single
run than do SA. However, because a GA jumps around on the energy-landscape
it often makes only a very superficial scan of the different neighborhoods and may
end up choosing to leave the neighborhood of the correct solution prematurely.

Genetic algorithms are also widely used to predict protein structures [26, 14],
although not quite as popular as SA. The pseudocode for a standard genetic algo-
rithm is given in Algorithm 2

Algorithm 2 Genetic Algorithm

population «— createlnitial Population()

evaluate(population)

while !done do
selected Population «— select(population)
population «— breed(selected Population)
evaluate(population)

end while

1.3 Parallelism

With multi-core computers and clusters becoming more and more common, de-
signing parallel algorithms that can utilize parallelism to improve both solutions
quality and the speed with which we are able to obtain the solutions are in high de-
mand. Both simulated annealing and genetic algorithms exist in parallel versions,
and both outperform their sequential counterparts.

Due to the stochastic nature of meta-heuristics many re-runs are usually per-
formed. Intuitively, we know that with N available processors we can perform
N re-runs simultaneously, thereby gaining an overall speedup of factor N. How-
ever, it turns out that if the meta-heuristics are specifically designed to utilize
parallelism, the solution quality actually exceeds that which can be expected from
simply executing more re-runs [7].

Parallelism is an extra layer that can usually be added effortlessly to an existing
sequential meta-heuristic. However, an optimal setting of the hyper-parameters
for a sequential meta-heuristic is not necessarily the most optimal setting of the
hyper-parameters for a parallel meta-heuristic. One of the key things for a suc-
cessful meta-heuristic is to maintain a proper balance between exploration and
exploitation. For simulated annealing, we traditionally use temperature to con-
trol this balance, and in genetic algorithms the selection strategy is responsible

40

for maintaining the balance. In a parallel meta-heuristic, exploration is, however,
largely maintained by running many parallel executions, which actually allow us
to set the other hyper-parameters such that they favor exploitation to a much
greater extent.

In the following two subsection we describe how the parallel versions of GA
and SA work and propose a special variant of a parallel GA that is designed to
specifically depend on parallelism to maintain the exploration-exploitation balance.

1.3.1 Parallel Tempering

To our knowledge, there exists only one truly parallel version of the SA algorithm
known as the Parallel Tempering (PT) or Monte Carlo Replica Exchange algorithm
27, 7]. In PT, many simulations, or replicas, are started and run in parallel.
The solutions are sampled in the same fashion as in the regular SA approach by
making small alterations to the solution and accepting the change with a certain
probability.

However, in a traditional SA process, the temperature is initially set high
and then slowly lowered, but in PT each replica is run at a different but steady
temperatures throughout the simulation. Replicas at lower temperatures favor
exploitation whereas replicas running at higher temperatures favor exploration. To
help replicas overcoming local minima barriers and to ensure proper exploration
of the search space, replicas at temperatures ¢ and j are periodically exchanged —
traditionally with a probability of:

p =min(1, 6(1/Tj71/Ti)(Ez‘*Ej)> (2)

where T; and F; are the temperature and energy of replica i respectively. In prac-
tice, this swapping scheme means that only structures at adjacent temperatures
are swapped as the probability of replicas at distant temperatures approaches zero
exponentially fast. A more aggressive swapping scheme may possibly improve the
results of PT [4, 3].

PT (also know as replica exchange Monte Carlo search) is a parallel extension
to the SA paradigm that has been shown to boost performance to an extent that
exceeds the computational overhead associated with running multiple simulations
[7]. It has been successfully applied to protein structure prediction previously
(28, 30, 16, 22]. The pseudocode is given in Algorithm 3

1.4 Parallel genetic algorithm

Several parallel variants of the genetic algorithm exist and generally offer signif-
icant improvements by converging much faster at better solutions than the non-
parallel version. There are two major approaches to parallelism in genetic algo-

41

Algorithm 3 Parallel Tempering
atialize Nreplicas
nitialize Ntemperatures
bestSolution
while !done do
for : =0 to N do
EzxecuteSimulated snnealing(replica;, steps)
if Energy(replica;) < Energy(bestSolution) then
bestSolution «— replica;
end if
end for
fori:=0to N —1do
for j=7+1to N do
if random() < exp(f(deltaTemp) * deltaEnergy) then
Swap(i,
end if
end for
end for
end while
returnbestSolution

rithms. One is often referred to as the master-slave model, where a single process
(the master) controls the genetic algorithm, but uses a number of other processes
(the slaves) to evaluate and possible breed the individuals. The slave processes are
run in parallel. Compared to the sequential GA, this parallelization scheme will
only have an impact on speed — not on solution quality.

Another parallelization paradigm that will generally also have a positive effect
on solution quality is the niche model (also known as the island hopping or deme
model). A niche genetic algorithm (nGA) is a parallel implementation of a genetic
algorithm where sub-populations evolve independently from each other on different
islands, which can be run in different threads or on different processors. At certain
points during evolution, individuals migrate from one niche to another and become
part of the population of that niche. nGA exploits the fact that different runs of
the same genetic algorithm are likely to produce different suboptimal solutions
that combined are likely to yield better results. The convergence rate of a nGA is
strongly affected by the migration scheme [1]. Migrating and replacing only a few
randomly chosen individuals leads to very slow convergence whereas migrating the
best and replacing the worst leads to the fastest convergence. Pseudocode of a
traditional nGA is given in Algorithm 4

As a special version of nGA, we propose an iterative niche genetic algorithm

42

Algorithm 4 nGA
Initialize Nniches
X «— NumberO fIndividual stomigrate
bestSolution
while !done do
for n=0to N do
EzecuteGeneticalgorithm(n, steps)
if Energy(niche,) < Energy(bestSolution) then
bestSolution < niche,,
end if
end for
for n=0to N do
migrants < CloneIndividuals(n, X)
Remove FromPopulation(X)
Migrate(migrants,n + 1)
end for
end while
returnbestSolution

(inGA). Instead of simply migrating m individuals between niches at different time
intervals like the nGA, inGA evolves populations for a certain time ¢, then picks
the best individual from each niche, makes n copies and place one copy on n new
niches. The old niches are discarded completely. The algorithm is iterated until
convergence or until a certain criterion is met. The pseudocode for the algorithm
is shown in Algorithm 5

Essentially, the strategy corresponds to letting all niches converge before mi-
grating individuals between them and restarting as described by Cantu-Paz and
Goldberg [5]. However, while running each niche to convergence worked well for
the problem instances chosen by Cantu-Paz and Goldberg, work by Heiler [10]
suggests that for protein structure prediction the quality of predicted structures
decreases when the individuals are locally optimized before the genetic operators
are applied. This is actually somewhat surprising and seems to oddly go against the
general idea of genetic algorithms, but we recognize that the biggest improvements
happen during the first generations, and rather than running to convergence we
thus suggest a kind of early stopping. This way, we generate low energy structures
without spending too much time on refining suboptimal structures.

The appeal of inGA is that it actually depends on parallelism rather than time
to improve solution quality. In order to find good solutions in highly rugged fitness
landscapes, the exploration-exploitation must be maintained. For a standard GA
the exploration-exploitation balance is usually maintained by the selection strat-

43

egy alone. For nGA the migration scheme and the number of niches also exert
control over this balance although, it does not depend on parallelism to maintain
it. The nature of inGA is, however, highly elitist, and it is thus crucial to include a
large number of niches as exploitation would otherwise be far too heavily favored.
Fortunately, CPU power continues to steadily improve and computer clusters are
more and more common, and making solution quality depend on parallelism rather
than on time is thus a very attractive feature indeed.

Algorithm 5 inGA
Initialize Nniches
bestSolution
bestSolutions «— Create RandomInitial Solutions()
while !done do
population «— Clone(bestSolutions)
for n=0to N do
ExecuteGeneticalgorithm(population, n, steps)
if Energy(niche,) < Energy(bestSolution) then
bestSolution < niche,,
end if
end for
for n=0to N do
bestSolutions|n| < CloneBestSolution(n)
end for
end while
returnbestSolution

2 Experiments

Experiments with the different meta-heuristics have been carried out. In order
to easily compare the performance, the same energy functions and test proteins
are used in all experiments. The same move set is also constructed, such that the
accessible part of the conformational space is the same in all experiments. The
meta-heuristic settings are described in detail in the following subsections.

2.1 Encoding

A physics-based energy potentials, called POISE [19], which requires a full atom
model is used as the objective function for the search algorithms. We thus need to
encode the protein either with every atom and its position explicitly represented or

44

in a way that allows us to calculate the position of all atoms. The latter is usually
preferred over the former, because it is much easier to enforce restrictions in the
space of dihedral angles, bond angles and bond lengths than in the Cartesian
space. In the following, we refer to the dihedral angles, bond angles and bond
lengths of an amino acid as the set of structural variables, S. Note that given S
the exact positions of all atoms for that amino acid can be calculated directly by
using standard matrix operations. An entire protein is thus encoded as a vector
of S, where S; represents the structural variables of the amino acid at position .

One of the problems often encountered during encoding of proteins is the oc-
currence of clashing atoms. In real life, this will never happen, as the energy
of such a protein would rapidly grow towards infinity and the atoms would be
forced apart. However, in a simulation one of two strategies can be utilized: one
can either explicitly check and make sure that atoms do not clash and simply
discard solutions where clashes do occur, or clashes can be tolerated but heavily
penalized by the energy function, such that solutions with clashing atoms stand
little chance of being accepted /selected. The latter works best in conjunction with
statistics-based energy function where the “energy” term is usually an artificial
pseudo energy made up from many parameters that are non-numerical in nature.
With a pure physics-based energy potential, the infinitely large increase in energy
caused by two clashing atoms will cause overflow on a computer which, needless
to say, is highly unfortunate. As we utilize a pure physics-based potential, a check
for clashing atoms is thus carried out before a solution is evaluated, and only
clash-free structures are accepted.

The protein is encoded sequentially, and for every new residue added we check
whether the S; chosen for residue ¢ causes any of the atoms of the new amino
acid to clash with atoms in the residues that have already been added. If a clash
occurs a new S; for the amino acid is chosen. If the problem with atom clashes has
not been resolved after 20 different S; have been tried, we backtrack and choose a
new S;_; for the previous residue. Although the theoretical running time for this
strategy is O(2"), the running time was not found to be an issue in practice.

In order to avoid spending time on checking for clashes between atoms that
are too far away in space, the space is divided into cubes. The cubes can be
of arbitrary size, but as we want to limit the amount of calculations we need to
perform, they should be kept quite small. We have chosen a size of 2x2x2 A. We
use a hash map with buckets to store and associate cubes with atoms to ensure
fast retrieval of atoms. Every time the coordinates of an atom is calculated, the
corresponding cube is determined, and the atom is then placed in the hash map
entry corresponding to that cube. A check it performed to ensure that the atom
does not clash with any of the atoms already in the same or in an adjacent cube.

45

2.2 DMove set

The move set is defined as the set of possible combinations of bond lengths, angles
and dihedral angles for each amino acid. Theoretically, the move set is unrestricted,
but in practice we know that bond lengths and angles vary very little and dihedral
angles are heavily biased towards certain areas of the dihedral angle space. Here,
we thus choose bond angles and bond lengths for amino acids randomly from
within a small interval (up to £0.1 A) of the optimal angles and lengths as defined
in the AMBER 99 parameters.

The dihedral angles space is likewise restricted. In Helles and Fonseca [8] a
probability distribution is predicted for each amino acid in a sequence by consid-
ering the neighboring amino acids. This probability distribution is used here such
that the dihedral angles are chosen from this sequence-dependent distribution,
thereby maximizing the probability of sampling a realistic area of the dihedral
angle space.

2.3 Energy function

It is well known that the success of search algorithms is correlated with the en-
ergy function used [25], and it is thus important to use an energy function that is
representative for the problem at hand - in this case protein structure prediction.
Generally speaking, energy functions in this field of research can be divided into
two categories: physics-based energy function and statistics-based energy func-
tions. The energy function used here, called POISE, is a purely physics-based
potential, described in more details in [19]. It combines the AMBER force field
27]:

bonds angles

Eprotein = Z Kb(bz - b0)2 + Z K@(ei — 90)2

dihedrals
+ > ke[l +cos(ng —)]+

Sy (e | (2) - (2)])

ii<j

with a Generalized Born component:

b (- D)

€ € G
p w i<y 7

46

-

—T i 3
R)
and a hydrophobic mean force potential:

NC NC

VHMFP = Z tanh(SAz) Z tcmh(SAj)
1€ESA;>A. JESA;>A. jF#i

xihkexp <— [Tr) (5)

We refer to [19] for an in-depth explanation of the parameters.

The potential considers interatomic energies between all pairs of atoms, and the
time complexity of calculating the potential is thus quadratic (O(n?)). Fortunately,
the vast majority of atoms in a protein are simply too far apart to exert any power
over each other and by simply omitting calculations of these interactions, the
function is implemented such that the potential is calculated in linear time.

It should be noted that in this current work we are primarily concerned with
exploring parallel meta-heuristics for the protein structure prediction problem. We
have chosen the POISE energy function, because it gives a realistic impression of
the very rugged fitness landscape that the algorithms have to navigate around
in. We do not have an opinion about which energy function is better. Indeed,
another energy function may direct the search in a very different direction than
the POISE potential, but for evaluating the performance of meta-heuristics this
is of little interest. We are only concerned with minimizing energy according to
some realistic energy function.

2.4 Test set

In lack of a standardized, diverse set of proteins that is guaranteed to provide an
adequate representation of protein structures, we have constructed a test set that
includes 2 proteins from each of the categories o, 5 and o3 in the PDB Select 25%
2 data set. Only small to medium sized proteins have been included. The smallest

protein includes 46 amino acids and the largest protein includes 81 amino acids
(Table 1).

2.5 Sequential algorithms

Although the parallel algorithms are expected to perform better, we have included
the sequential algorithms in the experiment as a baseline for performance.

Zhttp:/ /bioinfo.tg.fh-giessen.de/pdbselect /recent.pdb_select25

47

Category Residues
1C75 o) 71
INKD o 59
1YK4 6] 52
2095 ¢ 67
1EJG af 46
11Q7Z af 81

Table 1: Test proteins

2.5.1 Simulated annealing

The simulated annealing procedure starts at a high temperature where solutions
of higher energy still have a fair chance of being selected and then cools down ac-
cepting fewer and fewer high-energy solutions. What exactly constitutes a “high”
energy depends on the differences between energies of different structures. If the
average difference in energy between two solutions is large then “high” also trans-
lates into a large number, like say 10.000 or more. If, on the other hand, the energy
difference on average is small, then “high” may translate into a number that we
would normally consider low, like 100 or less. Start and final temperatures are
here determined in the way proposed in [24], such that

Tstart = _5Emax/ln(PA(6Ema:p)) (6)

and

Tfinal = _5Emzn/ln(PA(5Emm)) (7)

Initial experiments measuring differences in the energy, E, between neighboring
structures were run to determine the values of E,,,, and E,,. PA((SEmM) and
PA(0Eppin) were set to 0.95 and 0.05 respectively. This resulted in Ty = 3800
and sz’mzl = 10.

In each time step, we attempt N moves for a N-residue long protein. A move
consists of randomly selecting an amino acid and picking a new set of structural
variables, S;, for that amino acid. We use the standard probability of accepting a
neighboring structure as described in section 1.1.

The standard exponential cooling scheme is applied

Tk+1 = (v * Tk (8)

where « is the cooling rate. « was set at 0.99 resulting in ~1000 steps to cool
down the system. Once the system has been cooled down and shows signs of

48

convergence (i.e. the solution has not improved for a number of iterations), we
re-heat the system, thereby allowing it to escape local minima faster.

2.5.2 Genetic algorithm

We used a population size of 20 individuals. All individuals are encoded as de-
scribed above and evaluated using the POISE energy potential. Before evaluation
the exact positions of all atoms are calculated from the set of structural variables,
S, using standard matrix operations.

The selection strategy of the GA employes both an elitism strategy and the
fitness proportionate selection strategy known as a roulette wheel. The elitism
strategy copies and transfers the 10% top scoring individuals unaltered to the next
generation, thereby ensuring that the best individuals are always kept. However,
the 10% best individuals are also allowed to compete in the roulette wheel selection
where each individual is chosen with a probability corresponding to its fitness value.
This strategy is chosen over rank selection to ensure a better chance for low scoring
individuals to be selected.

Individuals selected by the roulette wheel are subjected to crossover and muta-
tion. A multi-point crossover strategy is used where the number of crossover sites,
n, are chosen according to a Gaussian distribution and the n actual sites chosen
at random. The advantage of multi-point crossover over single point crossover is
that it eliminates the bias of the end segments that is commonly raised as an issue
with the vector representation employed by most genetic algorithms. Addition-
ally, multi-point crossover typically results in bigger alterations of the solutions,
causing the genetic algorithm to explore very different regions of the search space.

As is often the choice in genetic algorithms, the mutation rate is set fairly low
to a value of 0.001. Mutation is thus not the driving force in the folding process,
but is used mainly as a way to introduce new genes into the existing gene pool.

The crossover and mutation operations frequently result in clashing atoms. We
solve this in much the same way as during encoding. Thus, when the atoms of
an amino acid clash with another, we allow 20 attempts of local adjustments (i.e.
picking a new set of structural variable) for that amino acid. If it continues to clash,
we backtrack and allow 20 attempts of local adjustments of the previous amino
acid. The clashing problem is nearly always resolved within a few backtracks,
although it may occasionally require more than 10 backtrack attempts.

2.6 Parallel algorithms

In order to make a fair comparison of the different approaches, the parallel algo-
rithms are constructed such that the hyper-parameters are the same as for the
sequential algorithms where possible. Of course, some alterations to the GA and

49

SA are needed, because parallelism adds an extra layer of complexity that requires
minor adjustments.

2.6.1 Parallel Tempering

The PT algorithm is implemented such that it utilizes the same encoding strategy,
energy function, move set and probability of accepting a move as described above.
The lowest temperatures is equivalent to the one stated in the sequential SA ap-
proach (10). The highest temperature is slightly higher at 4200 (see Equation 9).
PT does not employ a cooling scheme but instead runs replicas at different tem-
peratures within the interval of the lowest and highest temperature. Temperatures
can be either spaced in any arbitrary way, but Kone and coworkers suggested that
the observed average probability of accepting a swapping move between neighbor-
ing replicas should be roughly 20% [13]. Temperatures for our experiments have
been spaced according to:

Treplicai+1 =20z + Treplicai (9)

This results in lower temperatures being closer than higher temperatures. We
have chosen this to increase the likelihood of swapping replicas running at lower
temperatures, because low temperature replicas otherwise stand little chance of
escaping local minima. Replicas running at higher temperatures will always have
a higher probability of choosing a higher energy structure and will thus not easily
be trapped.

The probability of accepting a swap between to replicas, ¢ and j, was given by:

P(i < j) = min{1, expl%i=F)Ei~Ely (10)

where [is the inverse temperature 5 = 1/T and 3; > (3;. Defining the probabil-
ity of swapping replicas such that it decreases exponentially as the gap between
temperature increase is usually employed in PT [7] and also the reason why it was
chosen here.

We ran 20 parallel simulations which ensured proper communication between
replicas, e.i. swapping did occur between adjacent replicas as expected.

2.6.2 Niche genetic algorithms

We made experiments with two different niching algorithms: the traditional nGA
and the proposed iterative nGA (inGA). For both parallel algorithms we used the
sequential GA described above to evolve all sub-populations, except we exchanged
the combination of roulette wheel and elitist selection with a pure elitist selection
strategy. In order to also make them comparable with the PT algorithm, we ran
20 parallel niches for both nGA and inGA.

50

For nGA we settled on a rather strong migration scheme such that every 100
generation we chose the 50% best individuals from each population, cloned them
and migrated them to another niche where they replaced the 50% worst individuals.
We chose this migration scheme over a softer migration scheme to ensure faster
convergence and make it more comparable with inGA.

inGA evolves each niche for 100 generations and then chooses the best from
each niche, clones them, distributes them and continues evolution.

We chose 100 generations for the niche algorithms, because we observed the
by far largest improvement during the first 100 generations. As the best solution
from each niche was guaranteed to proceed into the next iteration, allowing further
refinement of that particular solution, it thus seemed prudent to stop at this point.
We did run a few experiments with more generations, but found no improvement
in final solution quality and therefore settled on 100 generations.

3 Results and discussion

Results from experimentation with the three different parallelization schemes on
the test proteins are shown in Table 2. We made 200 restarts of the sequential
algorithms, SA and GA, and 20 restarts of the parallel algorithms, PT, nGA and
inGA. The algorithms were executed on a HP ProLiant DL360 G6 server with 2
Xeon X5550 2.66 GHz quad core processors, and each algorithm was allowed a
maximum of 72 hours of CPU time. We report the average result.

From the results it is evident that inGA is quickly and consistently locating
structures of lower energy than both nGA and PT. Please note that we have not
calculated RMSD of the final structures, because as such the search algorithms
are all oblivious to the concept of a native structures. They seek merely to min-
imize energy as specified by the POISE potential, and in this experiment we are
only interested in determining how efficient the different algorithms are in find-
ing low energy structures in the highly rugged energy landscape associated with
protein structure prediction energy functions. A different energy function would
most likely lead to different (either better or worse) quality of the final struc-
tures in terms of RMSD to the native structure, but the differences in how well
the algorithms perform with respect to each other would (expectedly) remain the
same.

Given unlimited time, all meta-heuristics would probably find the same low
energy structures. Unfortunately, time is usually not unlimited in practice, and
designing search algorithms that increase search efficiency such that we can obtain
better results faster becomes important. Parallelization has in itself increased
search efficiency, but from the results presented here it is evident that how the
algorithms are parallelized can also have a profound impact on how efficiently the

o1

nGA inGA PT GA SA

1C75 | 368.0 267.4 476.1 9385 1219.8
INKD | 340.0 13.6 267.3 613.9 1345.1
1YK4 | 212.8 148.7 239.8 589.6 9024
209S | 78.6 0.4 191.3 312.0 538.0
1EJG | 42.7 -23.8 8.0 270.1 299.1
1IQZ | 589.7 359.49 911.6 1967.3 2345.7

Table 2: Average results obtained with the different algorithms after 72 hours of
execution time on 8 CPUs (see text). Energies are calculated with the POISE
potential. Lower energies are better

algorithms travel the energy surface in their search for the global minima.

The solution space for a given protein sequence is infinitely big and the key
to success for a meta-heuristics is usually a good balance between exploration
and exploitation. Minima should be explored thoroughly while still allowing the
algorithm to move relatively freely across energy barriers. PT, nGA and inGA all
differ from each other in this exploration-exploitation balance.

In PT the balance between exploration and exploitation is kept by running
parallel simulations at different temperatures. The advantage of PT is that it
can be run for exactly as long as time permits, because while it may settle at a
minima, it does not really converge but rather keeps exploring for a preset num-
ber of iterations or until it is interrupted. As such, the PT algorithm enjoys the
same theoretical guarantee of finding the global minima as the simulated anneal-
ing algorithm. However, while parallel tempering reaches low energy structures
faster than sequential Monte Carlo simulations [7], the number of replicas used
depends not so much on available processors, but on what makes sense in order
to maintain proper communication between the different replicas. In other words,
there appears to be an upper limit to what we can expect to gain in performance
that depends on the problem and not on CPU power. For proteins of the length
used here, 20 replicas ensure appropriate communication across temperatures, and
more replicas would thus only increase the level of communication, thereby setting
off the exploration-exploitation balance which would not be desirable. Of course,
for larger proteins where the energy span between different structures is likely to
be greater than for the proteins used here, more replicas would most likely be
required to ensure proper communication.

One of the reasons why PT does not reach the low energy structures as fast
as the genetic algorithms is that, although many replicas are run at the same
time, they do not exchange information between replicas. If a good solution is
encountered at one temperature, it may be exploited by swapping it to a lower

52

temperature, but it does not share its favorable characteristics with any of the other
replicas. Parallel tempering would most likely reach the same results as achieved
by inGA, but we postulate that because of the lack of information sharing it can
generally be assumed to take much longer.

The genetic algorithms, on the other hand, have a high degree of information
sharing via their crossover operator, which explains why the genetic algorithms
reach the lower energy structures much quicker. The migration scheme we have
used here for nGA is fairly aggressive to ensure faster convergence that would be
comparable with inGA. From the results it is evident that while nGA finds lower
energy structures than PT, it does not reach structures with energies as low as
inGA. We did initially experiment with a less aggressive migration scheme (that
migrated only the best individual), but energies were significantly worse after the
20 iterations than with the chosen migration scheme.

An issue with inGA is that it may simply converge prematurely. The iterative
strategy of inGA is highly elitist, and with 20 niches it does usually converge or
show sign of convergence within 20 iterations for the small to medium sized pro-
teins used here. An elitist strategy (always picking the best) favors exploitation
heavily and will normally only work well in smooth energy landscapes. The en-
ergy landscape of proteins is obviously anything but smooth, but interestingly a
balance with exploration does nevertheless appear to be maintained in inGA by
the niche approach. Exploration can thus be controlled by simply adding more
or less niches. This is indeed a nice feature, since it allows us to focus all our
computational power on finding better local energy minima — without having to
worry about escape options — which in turn leads us faster towards structures of
lower energy. Obviously, adding more niches would most likely require more it-
erations, but the number of iterations required to find the low energy structures
would expectedly grow much slower for inGA than for nGA thereby making the
difference in performance between inGA and nGA greater as the number of niches
increase.

4 Conclusion

PT and nGA, with N replicas and niches respectively, essentially require /N times
more computational time than a single run of their sequential counterparts. How-
ever, with multi-core computers and CPU clusters being readily available to most
researchers, they can be executed in parallel, and the extra computational time
required does not impose a problem. The experiments in this report confirm that
PT and nGA search more efficiently and arrive at much better results than their
sequential counterparts. They further demonstrate that the actual parallelization
scheme have a significant impact on search efficiency with the proposed algorithm,

53

inGA, clearly outperforming both the PT algorithm and the traditional nGA.

References

[1] E. Alba. Parallel Metaheuristics. Wiley, 2005.

[2] P. Bradley, K. M. S. Misura, and D. Baker. Towards High-Resolution de Novo

Structure Prediction for Small Proteins. Science, 309:1868-1871, 2005.

[3] P. Brenner, C. R. Sweet, D. VonHandorf, and J. A. Izaguirre. Accelerating
the replica exchange method through an efficient all-pairs exchange. J. Chem.

Phys., 126:074103+, 2007.

[4] F. Calvo. All-exchanges parallel tempering. J. Chem. Phys, 123:124106+,

2005.

[5] E. Cant-Paz and D. E. Goldberg. Modeling idealized bounding cases of par-
allel genetic algorithms. In In, pages 353-361. Morgan Kaufmann Publishers,

1996.

[6] W. Chiang and R. A. Russell. Simulated annealing metaheuristics for the

vehicle routing problem with time windows. A. Oper. res., 63:3-27, 1996.

[7] D. J. Earlab and M. W. Deem. Parallel tempering: Theory, applications, and

new perspectives. Phys. Chem, 7:3910, 2005.

[8] R. Fonseca and G. Helles. Predicting dihedral angle probability distributions
for protein coil residues from primary sequence using neural networks. BMC

Bioinf., 20009.

9] Y. Fujitsuka, G. Chikenji, and S. Takada. SimFold Energy Function for
De Novo Protein Structure Prediction: Consensus with Rosetta. Proteins,

62:381-398, 2006.

[10] M. Heiler. Massively parallel gas for protein structure, 1998.

[11] G. Helles. A comparative study of the reported performance of Ab Initio
protein structure prediction algorithms. J. R. Soc. Interface, 5:387396, 2008.

[12] L. Hung, S. Ngan, T. Liu, and R. Samudrala. PROTINFO: new algorithms
for enhanced protein structure predictions. Nuc. Acids Res., 33:0Online, 2005.

[13] A. Kone and D. A. Kofke. Selection of temperature intervals for parallel-

tempering simulations. J. Chem. Phys., 122:206101, 2005.

o4

[14]

[15]

[16]

[17]

[20]

[21]

F. Koskowski and B. Hartke. Towards Protein Folding with Evolutionary
Techniques. J. Comp. Chem, 26:1169-1179, 2004.

P. J. M. Van Laarhoven, E. H. K. Aarts, and J. K. Lenstra. Job shop schedul-
ing by simulated annealing. Operation research, 40:113-125, 1992.

D. Latek, D. Ekonomiuk, and A. Kolinski. Protein Structure Prediction:
Combining De Novo Modeling with Sparse Experimental Data. Wiley Inter-
Science, online, 2007.

T. W. Leung, C. H. Yung, and M. D. Troutt. Applications of genetic search
and simulated annealingfo the two-dimensional non-guillotine cutting stock
problem. Comp. Ind. Eng., 40:201-124, 2001.

P.C. Li and G.H.J Van Rees. Lotto design tables. J. Comb. Designs, 10:335—
359, 2002.

M. S. Lin, N. Lux Fawzi, and T. Head-Gordon. Hydrophobic potential of
mean force as a solvation function for protein structure prediction. Structure,

15:727-740, 2007.

H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani. VLSI module place-
ment based on rectangle-packing by the sequence-pair. IEEE Trans. Comp.
Des. Int. Circ. Sys., 15:1518-1524, 1996.

M. T. Oakley, D. Barthel, Y. Bykov, J. M. Garibaldi, E. K. Burke, N. Krasno-
gor, and J. D. Hirst. Search strategies in structural bioinformatics. Curr.
Prot. Pep. Sci., 9:260274, 2008.

S. B. Ozkan, G. A. Wu, J. D. Chodera, and K. A. Dill. Protein folding by
zipping and assembly. PNAS, 104:11987-11992, 2007.

G. N. Ramachandran and V. Sasisekharan. Conformations of polypeptides
and proteins. Adv. Prot. Chem., 23:283-437, 1968.

H. Sanvicente-Snchez and J. Frausto-Sols. A method to establish the cooling
scheme in simulated annealing like algorithms. LNCS, 3945:755-763, 2004.

A. Schug, T. Herges, A. Verma, and W. Wenzel. Investigation of the parallel
tempering method for protein folding. J. Phys., 17:S1641-S1650, 2005.

A. Schug and W. Wenzel. An Evolutionary Strategy for All-Atom Fold-
ing of the 60-Amino-Acid Bacterial Ribosomal Protein L20. Biophys. Jour.,
90:4273-4280, 2006.

95

[27] Robert H. Swendsen and Jian-Sheng Wang. Replica monte carlo simulation
of spin-glasses. Phys. rev. let., 57:2607-2609, 1986.

(28] J. S. Yang, W. W. Chen, J. Skolnick, and E. I. Shakhnovich. All-Atom Ab
Initio Folding of a Diverse Set of Proteins. Structure, 15:53—63, 2006.

[29] B. Zagrovic, C. D. Snow, M. R. Shirts, and V.S.Pande. Simulation of Fold-
ing of a Small Alpha-helical Protein in Atomistic Detail using Worldwide-
distributed Computing. J. Mol. Biol., 323:927-937, 2002.

[30] Y. Zhang, A. Kolinski, and J. Skolnick. TOUCHSTONE II: A New Approach
to Ab Initio Protein Structure Prediction. Biophys. Jour, 85:1145-1164, 2003.

56

Chapter 4

Restricting the PSP search space

4.1 Background

The probability that a search algorithms will uncover the global optimal solution to a given
problem depends highly on the ruggedness of the search landscape. Figures 4.1a and 4.1b
show a smooth and a rugged energy landscape respectively. Clearly, it is much easier to
locate the global minimum in a smooth landscape than in a rugged landscape. In fact, a
smooth landscape seem to guide us directly towards the global optimum.

(a) Smooth landscape (b) Rugged landscape

Figure 4.1: Energy landscapes
Unfortunately, the energy landscape of proteins tends to be extremely rugged. Especially
physics-based energy potentials are difficult, because even the slightest change in structure

can cause huge differences in energy, creating a landscape that is more or less impossible to

o7

navigate in. Statistics-based energy potentials generally result in smoother (but still rugged)
energy landscapes, but of course suffer from being more imprecise than the physics-based
potentials.

Since a perfect energy function that would direct a search algorithm straight to the global
optimum is thus out of our (current) reach, we are forced to explore other paths. A particular
appealing approach is to try to narrow down the search space. We may, for instance, choose
to discard the part of the search space that contains structures where two non-covalently
bound atoms get within their van der Waals radii, because we know that the energy grows
exponentially fast in those cases, and the structure will thus not be at a energy minimum.
We may even take it a little further and choose to cut away parts of the search space simply
because we find it unlikely to contain the native structure. Or we could look at it the
other way around and instead choose to concentrate our search in areas that contain certain
substructures that we deem highly probably. PSP algorithms that use fragment assembly or
secondary structure predictions are examples of this.

The following two papers pertain to restrictions of the search space for PSP.

4.2 Paper: Predicting dihedral angle probability dis-
tributions for protein coil residues from primary
sequence using neural networks

This paper has been published in BMC Bioinformatics in 2009 [4]. It is joint work with
Rasmus Fonseca.

58

Predicting Dihedral Angle Probability
Distributions for Protein Coil Residues from
Primary Sequence using Neural Networks

Glennie Helles Rasmus Fonseca

Abstract

Predicting the three-dimensional structure of a protein from its
amino acid sequence is currently one of the most challenging prob-
lems in bioinformatics. The internal structure of helices and sheets is
highly recurrent and help reduce the search space significantly. How-
ever, random coil segments make up nearly 40% of proteins and they
do not have any apparent recurrent patterns, which complicates overall
prediction accuracy of protein structure prediction methods. Luckily,
previous work has indicated that coil segments are in fact not com-
pletely random in structure and flanking residues do seem to have a
significant influence on the dihedral angles adopted by the individual
amino acids in coil segments. In this work we attempt to predict a
probability distribution of these dihedral angles based on the flanking
residues. While attempts to predict dihedral angles of coil segments
have been done previously, none have, to our knowledge, presented
comparable results for the probability distribution of dihedral angles.

In this paper we develop an artificial neural network that uses an
input-window of amino acids to predict a dihedral angle probability
distribution for the middle residue in the input-window. The trained
neural network shows a significant improvement (4-68%) in predict-
ing the most probable bin (covering a 30° x 30° area of the dihedral
angle space) for all amino acids in the data set compared to base-
line statistics. An accuracy comparable to that of secondary structure
prediction (= 80%) is achieved by observing the 20 bins with highest
output values.

Many different protein structure prediction methods exist and each
uses different tools and auxiliary predictions to help determine the na-
tive structure. In this work the sequence is used to predict local con-
text dependent dihedral angle propensities in coil-regions. This pre-
dicted distribution can potentially improve tertiary structure predic-
tion methods that are based on sampling the backbone dihedral angles
of individual amino acids. The predicted distribution may also help
predict local structure fragments used in fragment assembly methods.

59

Background

The primary sequence of a protein is believed to define the three-dimensional
(tertiary) structure of the protein and many attempts at predicting the ter-
tiary structure from primary sequence has been made (see for instance [2] for
an overview of the CASP VIII experiment).

The main reasons that predicting protein structure from sequence alone is
so difficult, is that the possible ways the amino acids can twist and turn with
respect to each other are enormous. However, large parts of most proteins
are arranged in secondary structures like helices and sheets, in which the
dihedral angles of the amino acids lie within fairly limited areas as can be
observed in Ramachandran plots [1,21,25]. Fortunately, predicting secondary
structures can be done quite accurately [4,11,20,23], and since roughly 60%
of amino acids in most proteins are arranged in these secondary structures [5],
the number of possible amino acid conformations is dramatically decreased
by this information. When attempting to predict the tertiary structure of
proteins, the intermediate step of determining the secondary structure is thus
typically performed.

It is important to note, though, that even if all helices and sheets in a
protein have been predicted correctly, finding the complete tertiary structure
is still a problem of daunting size. First of all, the dihedral angles of residues
in secondary structures are still relatively flexible. Secondly, the dihedral
angles of residues in coil segments are very flexible and they do not show any
simple recurrent pattern like those in helices and sheets.

By inspecting the Ramachandran plot of large sets of proteins it is evident
that although coil residues generally populate a much larger and more diverse
area than helical and strand residues, certain dihedral angles are nearly never
encountered. Steric overlap between atoms in the side chains of adjacent
resides are believed to be responsible for this, indicating that flanking residues
have a significant effect on the dihedral angles of a given residue, but exactly
how big an effect remains unclear. Erman et al. [15] showed that, although
the exact structure cannot be unequivocally determined by flanking residues,
the structure is largely affected by these. On the other hand, Kabsch et al.
[13] have shown that identical sequences of five residues in different proteins
may still adopt different structures, which means that the exact dihedral
angles of a residue cannot be determined strictly from the local environment.

Predicting the exact dihedral angle area of a coil residue based only on
flanking residues thus appears to be infeasible, but we may still be able to
predict the most probable dihedral angle areas. When residues are predicted
as helix or strand residues, we are also provided with a most probable dihedral
angle area. Using this information, de novo protein structure prediction
methods allow us to direct the search to areas of the dihedral angle space
where we are most likely to find the correct conformation.

A predicted probability distribution can therefore be used as either an

60

alternative to fragment assembly, which, although it has improved tertiary
structure prediction significantly, suffers from the fact that it relies heavily on
known structures, or as a tool that can help improve the prediction success of
the local fragment predictions used by fragment assembly algorithms [16,18,
26]. A significant amount of work has already been done in predicting these
local fragments [7-10,14,24], but as noted in [8], dihedral angle propensities
are used in this prediction process and a neural network prediction of dihedral
angle preferences could likely aide the prediction.

In this work we attempt to predict a dihedral angle probability distribu-
tion for coil regions that can be used by tertiary structure prediction algo-
rithms to sample the conformational space more efficiently. Using a dihedral
angle probability distribution does not restrict the dihedral angle space, but
rather suggests a frequency to which we should search different areas of the
dihedral angle space in order to increase the probability of finding the right
dihedral angles for an amino acid.

Neural networks are well known for their ability to learn and extract
patterns from massive amounts of data, so we have chosen to use this method
to generate probability distributions. Neural networks have also previously
played an important role in predicting secondary structures [11, 20, 23].

To our knowledge, predicting dihedral angle probability distributions of
coil residues only have not previously been done. However, both Kuang et
al. and Zimmermann and Hansmann have attempted to predict dihedral
angle areas of coil residues and we have used them for inspiration. Both
groups divide the Ramachandran plot into three main areas representing
approximately 90-100% of the dihedral angle space and then they try to
predict in which of the three areas the dihedral angles a coil residues would be
in. Kuang et al. used both a neural network and support vector machine but
they reported only marginal differences in performance for the two different
prediction methods and ended up with an overall prediction accuracy of 77%
for the 25% PDBSelect data set (February 2001 version) [17]. Zimmermann
and Hansmann used support vector machines to create three classifiers; one
for each part of the Ramachandran plot. They report a higher accuracy of
between 81.7% and 93.3% for the 50% PDBSelect data set [27]. We wish to
emphasize that unlike Kuang et al. and Zimmermann and Hansmann we are
not concerned with predicting a single predefined area containing the correct
dihedral angles. Instead, we attempt to predict a probability distribution
that will yield the most probable dihedral angle area for a given residue in
a given sequence. Hamelryck et al. developed a hidden markov model to
predict probability distributions of dihedral angles [3], but their analysis was
not limited to coil-regions and comparable results were not presented.

In the Methods section the method for constructing and training the
neural network is described. Section Discussion presents and discusses the
results, and section Conclusions draws the final conclusion.

61

Methods

A fully connected feed-forward neural network was constructed and used to
predict a 30° x 30° dihedral angle bin corresponding to the (®, ¥)-coordinates
of the target residue.

We used the May 2008 25% PDBSelect data set (http://bioinfo.tg.th-
giessen.de/pdbselect /recent.pdb_select25), which consists of 3881 chains (553016
residues) with less than 25% sequence identity (20 chains were omitted in
our data set because we were unable to obtain information about secondary
structures with DSSP). In this experiment we are only interested in predict-
ing probability distributions for coil residues, so we used information about
secondary structures from the DSSP-algorithm [12]. A reduction from the
eight groups of DSSP (310-helix, a-helix, m-helix, (5-bridges, 3-sheets, turns
and bends) was performed by classifying all residues that are either 3-bridges,
(-sheets, 31p-helices or a-helices as secondary structure’ and the rest as coil’.
This reduction corresponds to method A described in [6]. The neural network
was trained on coil’-residues alone, though secondary structure’ residues were
often present in some part of the input window. Residues at the end of chains
where either ® or ¥ values are undefined were omitted.

The data set was split randomly in two equally sized sets, PDBSelect25 4
and PDBSelect255. PDBSelect25,4 was used to determine an appropriate
network configuration and PDBSelect255 was then used to obtain the pre-
diction results reported in this work.

The input to the neural network was a window that spanned W residues
of the amino-acid sequence with the target residue in the center. A number
of experiments were run to determine the neural network configuration that
would yield the highest prediction accuracy. Prediction accuracy was calcu-
lated as the percentage of coil residues from a validation set for which the
neural network could predict the correct bin. Window sizes, W, of 5, 7 and
9 were used with various numbers of hidden neurons, H. Generally speak-
ing, more hidden neurons are needed for larger input windows, but rather
than experimenting with a fixed number of hidden neurons we simply kept
increasing the number of hidden neurons with 50 until performance showed
no improvements. Based on these experiments we settled on a window size
of W = 7 and a neural network with H = 100 hidden neurons in a single hid-
den layer. We emphasize that while we have made experiments with many
different architectures, we have not systematically verified that the neural
network is optimal for this task, but as all architectures achieved almost the
same prediction accuracy we feel confident that changing the architecture is
unlikely to change the prediction accuracy in any major way.

The neural network was designed so it had 23 input neurons per residue
in the input window. One neuron was used to specify if the residue was part
of a secondary structure (helix or strand), one was used to specify if the
residue was part of a coil, one neuron was used to indicate if the input was

62

a dummy (outside a chain or an unknown amino acid) and the 20 remaining
input neurons were used to uniquely identify each of the 20 amino acid types.
Neither the dummy nor the secondary structure input neurons are ever set
to 1 for the middle residue. Using 20 input neurons to represent the residue
is common and the procedure roughly corresponded to the one used by [20]
to predict secondary structure. Figure 1 shows an overview of the neural
network design.

THR
LYS
{LYS 00000000000010000000000) Input
W 4 PHE 00000000001000000000000}—>
LEU 00000000000001000000000
ALA
ALA

Figure 1: Network configuration. The residues in the input-window is encoded and used
as input to the neural network that passes values through a hidden layer. The predicted
(®, U)-area can be read from the output-layer.

The 144 neurons in the output-layer each correspond to a 30° x 30° area of
the Ramachandran-plot. It was estimated that this size would be sufficiently
small to be of use and sufficiently big to ensure that uncertainties in dihedral
angles would not prevent the neural network from being able to learn. The
expected output value of a certain area was 0.9 if the & and W-angles of the
middle residue of the input window fell within the boundaries of this bin,
and 0.1 otherwise. We used 0.9 and 0.1 rather than 1 and 0 to ensure faster
convergence with the standard logistic sigmoid activation function that was
used in all layers. We used the standard sigmoid function because it is fast
and because we are essentially only interested in finding the highest output
signals and not the output value per se. The neural network was trained
using standard back-propagation with learning momentum. The learning
parameters of the back-propagation algorithm was set to v = 0.05 (learning
rate) and o = 0.1 (learning momentum).

For the initial experiments with different neural network configurations
we split the PDBSelect25 4 data set randomly into five subsets. Four of them
was used for training one for validation. Training was then carried out for
10.000 epochs with the weights updated after each training example. The
highest prediction accuracy was achieved within the first 1000 epochs in all
experiments. After 1000 epochs the prediction accuracy showed the slow
decline for the unknown validation set and the slow increase in the training
set that is the typical sign of over-fitting.

Once we settled on a neural network configuration we trained and vali-
dated the network on the PDBSelect255 data set. Like the PDBSelect25 4
data set, the PDBSelect255 data set split randomly into five subsets where
four were used for training and one was used for validation. Since we previ-

63

Prediction accuracysingiebin
Split A 16.2 %
Split B 15.0 %
Split C 15.9 %
Split D 15.9 %
Split E 15.8 %
AVg 15.7 %

Table 1: 5-fold cross validation results. The data set was randomized and split into five
separate sets and we carried out a 5-fold cross validation. The results from each fold is
listed here along with the average.

ously achieved the highest prediction accuracy within the first 1000 epochs,
we cut the training time down to 5000 epochs, but otherwise the hyper-
parameters were identical to the ones already described. We ran a tradi-
tional 5-fold cross validation to ensure that the PDBSelect255 data set had
not been split inappropriately. As is evident from Table 1, the neural net-
work was able to predict the correct 30° x 30° bin approximately 16% of the
times regardless of the way the data set was split.

Results and Discussion

Two methods of evaluating the neural network are used. The first method
measures the accuracy using only a single bin. The second include several
bins and describe the accuracy of the predicted dihedral angle distribution.

Lower bound on prediction accuracy

While a probability distribution can be constructed based on the results,
the neural network is trained to predict a single bin. Table 2 shows the
prediction accuracy for each type of amino acid. The prediction accuracy
is the percentage of coil-residues for which the neural network had highest
output in the bin corresponding to the correct dihedral angle. In order to
determine the significance of the results presented, it is useful to compare
them with the probability of guessing the right bin based on the distribution
of dihedral angles in the data set. Simply guessing at the most populated
bin for coil residues would yield a successful guess at a rate of:

(1)

Where R, is the number of residues in the most populated bin and
Riotar is the total number of residues in the data set. We may think of G as
a lower bound on the prediction accuracy. This lower bound can be tight-
ened by analyzing plots specific to each type of amino acid. For instance

64

Figure 4 B shows the probability distribution for threonines that has been
calculated using this equation. Lower bounds for the neural networks pre-
diction accuracy, specific to each type of amino acid, GA*"%P¢, can thus be
determined.

AA-type | Property GAAtPe NN Improvement
Prediction
arg I 9.7% 13.6% 40.2%
asn I 8.3% 13.3% 60.2%
asp I 8.2% 13.7% 67.1%
gln I 8.7% 13.3% 52.9%
glu I 10.6% 15.1% 42.5%
his I 7.7% 12.0% 55.8%
lys I 9.7% 14.9% 53.6%
ser I 10.9% 16.5% 51.4%
thr I 9.1% 15.3% 68.1%
gly - 15.0% 16.2% 8.0%
ala O 12.4% 17.3% 39.5%
cys O 10.5% 14.0% 33.3%
ile O 14.3% 15.3% 7.0%
leu O 12.5% 16.0% 28.0%
met O 9.8% 12.3% 25.5%
phe O 10.4% 12.6% 21.2%
pro O 21.4% 27.0% 26.2%
trp O 13.5% 15.2% 12.6%
tyr O 9.4% 12.0% 27.7%
val @) 13.7% 14.2% 3.6%

Table 2: Improvements in prediction accuracy. Prediction accuracy of the neural network
is compared to a lower bound derived from a purely statistical analysis of the data set. O’
and I’ in the “property” column denotes hydrophobic and hydrophilic residues respectively

As can be seen from Table 2 the trained neural network yield better accu-
racies than G2A%P¢ and the number of correctly predicted bins are improved
for all types of amino acids. Improvements of more than 50% compared to
guessing are observed for 7 out of the 20 residues. The largest improvement
observed is for threonine where the correct bin is predicted by the neural
network 68% more frequently than guessing at the most populated bin. Pre-
dicting dihedral angles for valine shows the smallest improvement of only
4%.

Interestingly, the neural network appears to perform better on hydrophilic
residues, as 7 of the 9 hydrophilic residues are the ones that showed improve-
ments of more than 50%. Only the hydrophilic residues, arginine and glu-
tamic acid, showed improvements of less than 50% (but still >40%). In
contrast, prediction for most hydrophobic residues showed improvements

65

of less than 35%. This distinction between hydrophobic and hydrophilic
residues may of course be mere coincidence, but it does seem to indicate that
hydrophilic residues are much more controlled by their local environment
than the hydrophobic residues, which are not as easily influenced. This is
completely in keeping with the assumption that hydrophobic packing is the
driving force in protein folding.

Guessing based only on the distributions observed in Ramachandran plots
would yield a success rate of roughly 8-15% for all residues except proline
that has an unusual high accuracy of 21%. Even large improvements of 4-68%
will thus only bring the overall prediction accuracy up to roughly 12-27%,
which is of course insufficient for reliable coil prediction. However, Figure 2
shows the prediction accuracy of the neural network compared to simple
statistics based prediction when observing more than one bin. On average,
neural network based prediction performs better as long as we look at an
area that includes less than 55 bins. The highest gain in prediction accuracy
compared to baseline statistics is achieved when we look at the 8 bins with
highest output values.

Prediction success rate vs. statistics based successrate

T
—————Predicion ———

_— - Baseline statistics

0.8

06

04} /

Success rate

02

Bins

Figure 2: NN prediction vs. baseline statistics

Accuracy of probability distribution

The above comparison with the lower bound indicates that the neural net-
work is learning more than just baseline statistics, and that the flanking
residues do in fact play a role for the local structure. However, our goal is
not to predict a single bin, but rather to create a probability distribution
for an area of the Ramachandran plot that will give us as high a prediction
accuracy for any given sequence. With a prediction accuracy of =~ 80% for

66

secondary structures most tertiary structure prediction algorithms incorpo-
rates secondary structure predictions as a way to limit the search space. As
already mentioned, residues in secondary structures do in fact span a rather
large dihedral angle subspace, and so the question is whether we are able to
obtain a similar accuracy for an equally sized area.

The increase in success rate for each included bin is depicted for each type
of amino acid in Figure 3. As can be seen the average prediction accuracy
for all residues is just under 80% (78%) within the 20 top scoring bins. For
proline, which appears to be the easiest to predict, an accuracy of 80% is
achieved within the dihedral angle area covered by the top eight scoring bins
whereas glycine, which is by far the most difficult to predict, need to span
an area covering 40 bins in order to achieve an ~ 80% accuracy.

Area size dependent success rate

B
c
D
E
F
G-
H
1
g -
= Lo
2 M
s N
Q P
& Q
R
s
T
Voo
W
Y
0 L L L L L L L
0 20 40 60 80 100 120 140

Bins

Figure 3: Area size dependent success rate. Each bin represents a 30° x 30° area of the
Ramachandran plot.

Comparison

Both Kuang et al. [17] and Zimmermann & Hansmann [27], who attempted
to predict dihedral angle areas of coil residues, divided the Ramachandran
plot into three areas. Their smallest area (area A in [17], area H in [27])
has roughly the same size as 21 of our 30° x 30° bins. The second smallest
area (area B in [17], area E in [27]) has an area corresponding to 25 of our
bins and the largest area (referred to as area E/G in [17] and area O in [27])
corresponds to more than 80 of our bins - in fact in [27] area O simply takes
up the remaining part of the Ramachandran plot.

Kuang et al. report an overall prediction accuracy of 77% and we thus
achieve a higher accuracy per area ratio. Zimmermann et al. report an accu-
racy of 82.1% for area H, 81.7% accuracy for area E and 93.3% accuracy for

67

their outlier area O. Again all areas are larger than ours and their improved
accuracy over Kuang et al. are likely due to their use of the 50% PDBSelect
data set, rather than the 25% PDBSelect data set used by both [17] and us.
Generally, sequences with 50% or more sequence identity can be assumed
to adopt the same three-dimensional structure whereas structures with only
25% cannot [22]. The classification algorithm used by Zimmermann and
Hansmann thus have a natural advantage as their data set is not as diverse.
Comparing the accuracy per area ratio, however, is not completely fair, since
we are essentially trying to solve two different problems. Large areas like
those in [17,27] are well suited for some tasks, but for limiting the search
space in de novo protein structure prediction, we deem smaller bins more
useful.

Figure 4 C shows an example of the area predicted for threonine in a
randomly chosen sequence from the data set. Figure 4 A and B show plots
drawn directly for all residues and only threonine in the data set respectively.
The neural network clearly learns a different distribution based on the sur-
rounding amino acids that will yield a better prediction accuracy for that
specific sequence.

180 180

T
i TS T

- 180 180
-180 90 0 % 180 -180 90 0 %0 180 -180 90 0 9% 180
phi phi phi

“n

-

Figure 4: Bin distribution. The plot to the left (A) shows the distribution of the 20 most
populated 30° x 30° bins for all coil residues in the training set. The plot in the middle
(B) shows the distribution for just threonines in the training set, and the plot to the right
(C) shows the predicted bins for threonine in the sequence Glu-Leu-Asp-Thr-Glu-Asp-Ala
taken from a randomly chosen protein in the data set. The neighboring residues are used
by the neural network to suggest a different distribution to yield a higher success rate.
The darker the color of the bin the more likely it is that the angle set is within this bin.

Future work

An extension of the neural network, that may improve the results, would be to
distribute the bins differently but still keep them relatively small. Preferred
areas of turns [19] could be represented explicitly with bins or the optimal
size of bins could be examined in more detail. Another possibility for future
work is to assign higher target value to bins near the target (®, V) point
during training of the neural network. In this work the bin containing the
target point is assigned 0.9 and all others 0.1. Due to the flexibility of the

68

backbone the real point may easily be in one of the neighboring bins, so
these could be assigned a target value of e.g. 0.5 during training. This could
possibly help the neural network to generalize better.

Another extension is to train 20 individual neural networks, one for each
amino acid. We have here chosen the network that had the best overall
prediction accuracy for all of the amino acids, but from our experiments it
is clear that individual residues often peaked at different times during the
training procedure. We thus expect that the results we have reported here
can be improved by training a network for each amino acid type.

Conclusions

Our work shows that artificial neural networks can predict a probability
distribution of dihedral angle areas for residues in a protein fast and better
than simple statistics. For a dihedral angle area corresponding in size to
those associated with helices and sheets that can be predicted with a =~
80% accuracy we achieve comparable results with a 78% accuracy. To our
knowledge, results from attempts to predict probability distributions has not
previously been reported, but it could prove very useful in guiding search
algorithms for de novo protein structure prediction toward the most probable
areas of the search space, much in the same way that predicted secondary
structures do.

Authors contributions

GH conceived of the study and carried out implementation of the neural
network. RF has helped design the study and been responsible for data
acquisition. Both authors have been involved in the literature study and
both have drafted, read and approved the manuscript.

Acknowledgements
We would like to thank Pawel Winter for his help in drafting this manuscript

as well as the anonymous reviewers that gave helpful technical suggestions
for training neural networks.

References

[1] D. J. Barlow and J. M. Thornton. Helix geometry in proteins. .J. Mol.
Biol., 201:601-19, 1988.

69

2]

3]

[4]

[10]

[11]

[12]

[13]

[14]

M. Ben-David, O. Noivirt-Brik, A. Paz, J. Prilusky, J. L. Sussman, and
Y. Levy. Assessment of casp8 structure predictions for template free
targets. Proteins, epub:00-00, 2009.

W. Boomsma, K. V. Mardia, C. C. Taylor, J. Ferkinghoff-Borg,
A. Krogh, and T. Hamelryck. A generative, probabilistic model of local
protein structure. PNAS, 105:8932-8937, 2008.

W. Chu, Z. Ghahramani, and D. L. Wild. A graphical model for protein
secondary structure prediction. In Proc 21st Int. Conf. Mach. Learn.,
page 21, 2004.

T. Creighton. Proteins - Structures and molecular properties. Freeman,
1993.

J. A. Cuff and G. J. Barton. Evaluation and improvement of multiple

sequence methods for protein secondary structure prediction. Proteins,
34:508-19, 1999.

C. Etchebest, C. Benros, S. Hazout, and A. De Brevern. A structural
alphabet for local protein structures: improved prediction methods. Pro-
teins, 59:810-827, 2005.

N. Fernandez-Fuentes, B. Oliva, and A. Fiser. A supersecondary struc-
ture library and search algorithm for modeling loops in protein struc-

tures. Nucl. Acids Res., 34(7):2085-2097, 2006.

L. Fourrier, C. Benros, and A. G. de Brevern. Use of a structural alpha-
bet for analysis of short loops connecting repetitive structures. BMC
Bioinformatics, 5:58, 2004.

C. G. Hunter and S. Subramaniam. Protein local structure prediction
from sequence. Proteins, 50:572-579, 2003.

D. T. Jones. Protein secondary structure prediction based on position-
specific scoring matrices. J. Mol. Biol., 292:195-202, 1999.

W. Kabsch and C. Sander. Dictionary of protein secondary struc-

ture: pattern recognition of hydrogen-bonded and geometrical features.
Biopolymers, 22:2577-2637, 1983.

W. Kabsch and C. Sander. On the use of sequence homologies to predict
protein structure: Identical pentapeptides can have completely different
conformations. PNAS, 81:1075-1078, 1984.

S. Katzman, C. Barrett, G. Thiltgen, R. Karchin, and K. Karplus.
Predict-2nd: a tool for generalized protein local structure prediction.
Bioinf., 24:2453-2459, 2008.

70

[15]

[16]

[20]

[21]

22]

[23]

[24]

[26]

[27]

0. Keskin, D. Yuret, A. Gursoy, M. Turkay, and B. Erman. Relationships
between amino acid sequence and backbone torsion angle preferences.
Proteins, 55:992-998, 2004.

J. L. Klepeis and C. A. Floudas. ASTRO-FOLD: A Combinatorial
and Global Optimization Framework for Ab Initio Prediction of Three-
Dimensional Structures of Proteins from the Amino Acid Sequence. Bio-
phys. Jour., 85:2119-2146, 2003.

R. Kuang, C. S. Leslie, and A. Yang. Protein backbone angle prediction
with machine learning approaches. Bioinformatics, 20:1612-1621, 2004.

M. Paluszewski and P. Winter. Protein decoy generation using branch
and bound with efficient bounding. Alg. Bioinf., pages 382-393, 2008.

L. Perskie, T. O. Street, and G. D. Rose. Structures, basins and energies:
A deconstruction of the protein coil library. Prot. Sci., 17:1151-1161,
2008.

N. Qian and T. J. Sejnowski. Predicting the secondary structure of
globular proteins using neural network models. J. Mol. Biol., 202:865—
884, 1988.

G. N. Ramachandran, C. Ramakrishnan, and V. Sasisekharan. Stere-
ochemistry of polypeptide chain configurations. J. Mol. Biol., 7:95-99,
1963.

B. Rost. Twilight zone of protein sequence alignment. Prot. Eng., 12:85—
94, 1999.

B. Rost and C. Sander. Prediction of protein secondary structure at
better than 70% accuracy. J. Mol. Biol., 232:584-599, 1993.

Oliver Sander, Ingolf Sommer, and Thomas Lengauer. Local protein
structure prediction using discriminative models. BMC' Bioinformatics,
7(1):14, 2006.

B. L. Sibanda, T. L. Blundell, and J. M. Thornton. Conformation of
beta-hairpins in protein structures. a systematic classification with ap-
plications to modelling by homology, electron density fitting and protein
engineering. J. Mol. Biol., 206:759-77, 1989.

Y. Zhang, S. Wu, and J. Skolnick. Ab initio modeling of small proteins
by iterative tasser simulations. BMC' Biology, 5:174, 2007.

O. Zimmermann and U. H. E. Hansmann. Support vector machines
for prediction of dihedral angle regions. Bioinformatics, 22:3009-3015,
2006.

71

4.3 Paper: Ranking Beta Sheet Topologies with Ap-
plications to Protein Structure Prediction

This paper is submitted to the 9" international conference on Computational Systems Bioin-
formatics, CSB 2010, to be held at Stanford University in August 2010. It is joint work with
Rasmus Fonseca and Pawel Winter.

72

Ranking Beta Sheet Topologies with
Applications to Protein Structure Prediction

Rasmus Fonseca? Glennie Helles*and Pawel Winter*

Abstract

One of the main reasons why ab initio protein structure prediction
does not perform very well is the inability of structure predictors to re-
liable identify and model long-range interactions between amino acids.
One way of handling this is to predict which g-strands form hydrogen
pairs, ie. the G-topology. Since there is no reliable way of doing this,
we generate all potential J-topologies for a set of proteins, and use
two known (-topology scoring methods to rank them. An investiga-
tion of the rank-ordered list of potential 3-topologies is performed,
which has not previously been done. It is concluded that particu-
larly one of the methods consistently top-ranks native (-topologies.
Since the number of potential S-topologies grows exponentially with
the number of (-strands, it is unrealistic to assume that all potential
(-topologies can be enumerated and scored for large proteins. We
suggest an enumeration scheme that addresses this problem and show
that native-consistent (-topologies are often among the top-ranked.
Furthermore, prediction of g-topologies relies heavily on the correct
identification of strands, so we present a method for dealing with the
inaccuracies of secondary structure predictors. The results reported
in this paper are highly relevant for ab initio protein structure pre-
diction methods based on decoy generation. They indicate that decoy
generation can be constrained using top-ranked (-topologies as they
are very likely to contain native or native-consistent (-topologies.

1 Introduction

Predicting the tertiary structure of a protein from its amino acid sequence
alone is known as the protein structure prediction (PSP) problem. It is one
of the most important open problems of theoretical molecular biology. In

*{rfonseca, glennie, pawel}@diku.dk. Univ. of Copenhagen, Dept. of Computer Sci-
ence. Universitetsparken 1, 2100 Copenhagen O, Denmark

73

particular, ab initio PSP (especially needed when a similar amino acid se-
quence with known structure cannot be found in the protein database) poses
a significant problem. One of the reasons why ab initio methods struggle
is that the conformational space of most protein structure models increases
exponentially with the length of the primary sequence. The complexity of
the PSP problem can be reduced using auxiliary predictions such as sec-
ondary structures [1, 2, 3, 4], contact maps [5, 3, 6], structural alphabets
[7, 8] and local structure predictions [9, 10]. However, all these predictions
have a certain level of inaccuracy so they cannot be used to constrain the
conformational space, only to guide the search.

The native [-topology of a protein is a partition of (-strands into or-
dered subsets (each corresponding to a [-sheet) together with the [-pair
information (indices of paired strands and their orientation) between paired
[-strands within each 3-sheet. The order of #-strands within a (-sheet com-
bined with the (-pair information is referred to as the (-sheet topology. If
the native J-topology could be correctly predicted, it would greatly improve
the solutions to the PSP problem [11, 12, 13, 14, 15].

One approach to predict the [-topology of a protein, in the following
referred to as the pair scoring method, is to assign a pseudo-energy to every
(B-pair. The problem of determining the best 3-topology is then formulated
as a maximization problem in a complete graph where nodes correspond
to [(-strands and edge-weights correspond to the pseudo-energy of pairing
two strands [12, 16, 17, 18, 15]. Another approach, referred to here as the
topology scoring method, is to enumerate all potential 3-topologies, and to
assign a score to each based on the entire 8-topology [19, 20]. In general, the
B-topology with highest score is assumed to correspond to the native [13],
but the topology scoring method has also been used to filter decoy sets from
Rosetta [19].

We enumerate all potential S-topologies and use the pair scoring method
of Cheng and Baldi [16] and the topology scoring method of Ruczinski et
al. [19] to score and rank them. Our experiments show that for a large
percentage of examined proteins, the native S-topology can be found among
the 10% top-ranked potential [-topologies using the pair scoring method
(which outperforms the topology scoring method). An often used step when
solving the PSP problem is to generate a set of decoy structures. Using each
of the-ranked potential F-topologies as constraints (one at a time), a set of
decoy structures can be constructed. At least one of these decoy structures
will very likely be of high quality.

There are three serious problems with this approach. First of all, the
correct secondary structure has been assumed known. The solution to this
is to use predicted secondary structures. This leads to the second problem:;
secondary structure predictors are not always fully reliable. They sometimes
over- or underpredict [g-strands. In such cases, the native §-topology will

74

not be among those enumerated. Thirdly, even if the prediction of -strands
is correct, the number of (-strands may be so large that the combinatorial
explosion will make it impossible to enumerate all 3-topologies. In fact, such
combinatorial explosion occurs already when 8 3-strands are predicted.

In order to deal with these problems, the notion of the secondary structure
assignment (SSA) is introduced. This is a classification of each amino acid
as either helix, strand or coil. For example, PSIPRED [1], one of the best
secondary structure predictors, assigns to each amino acid the probability of
it being either in a helix, in a strand and in a coil. Amino acids with their
strand probabilities being higher than both helix- and coil probabilities are
classified as belonging to (-strands. The same goes for helix and coil. The
output of such a predictor is referred to as a predicted SSA.

To deal with the problem of over- and underprediction of strands in the
predicted SSA, we use the probability levels for strands to generate a set of
strand candidates. A subset of these strand candidates can be picked out
and used to generate strands in a SSA. A list of potential SSAs is generated
using every possible subset of strand candidates. The probability levels are
used to calculate a score for every potential SSA and, as with (-topologies,
they are scored and ranked.

The problem of combinatorial explosion is dealt with by introducing two
limitations when generating the set of SSAs. First, only the 15 strand can-
didates with highest average strand-probability levels are used. Secondly,
only potential SSAs with up to 7 strands are generated. Since only SSAs
with 7 strands or fewer are generated, there are proteins with many strands
whose native -topology cannot be generated. However, enumerating poten-
tial SSAs and (-topologies is still relevant for such proteins. To illustrate
this, the concepts of native-respecting SSA and native-respecting 3-topology
are defined. A native-respecting SSA is a SSA where every strand is present
in the native SSA as well (though the native SSA may have more strands).
Similarly, a native-respecting 3-topology is a topology where every g-pair is
present in the native S-topology as well (though the native S-topology may
contain more (-pairs). For proteins with many strands, a native-respecting
SSA with up to 7 strands can always be found among the potential SSAs.
For most of these, a native-respecting 3-topology will be generated. Even
though a native-respecting f-topology does not impose as strong a constraint
on the PSP problem as a native B-topology, it is still a valid constraint that
can reduce the search space significantly.

The results reported in this paper are highly relevant for PSP meth-
ods where decoy generation can be constrained or filtered by top-ranked (-

topologies. It can also be used in more elaborate contact prediction methods
[21, 15].

75

2 Methods

In the following two subsections the methods for generating potential (-
topologies and for calculating scores for these are described. Next it is de-
scribed how potential SSAs are generated and how scores are assigned to each
of them. The last two subsections describe how to compare both potential
SSAs and (-topologies and which datasets are used to assess the methods.

Generating potential §-topologies

A SSA specifies which amino acids are classified as helix, strand or coil.
Continuous segments of strand-classified amino acids are simply referred to
as strands.

Given a SSA and the corresponding strands, all possible [-topologies
can be generated. A [-topology generated from a SSA with m strands is
represented using a binary (3-topology-matriz, [a;j|mxm. Strands ¢ and j form
a parallel pair iff (a;; = 1) A (¢ > j). They form an antiparallel pair iff
(1 < j) A(a;; =1). Entries with 1 in the upper (respectively lower) triangle
of the matrix therefore represent antiparallel (respectively parallel) pairs.
All other entries are 0. A valid f-topology-matrix is characterized by the
following three rules:

1. No strand, i, is paired to itself: a; = 0.
2. No pair of strands, (i, j) is paired both parallel and antiparallel: a;; +
aj; < 2.
3. Every strand, i, is paired with at least one and at most two partners:
0< ZTzl (aij + Clji) < 31!
Given m strands, the complete set of valid S-topology-matrices is generated
beginning with the O-matrix and adding 1’s starting at the top row, from left
to right.

For m = 2,3 only [-topologies containing a single sheet is generated.
For m = 4,5 topologies with both one and two sheets are generated, and
for m = 6,7 topologies with up to 3 sheets are generated. Table 1 shows
the number of valid B-topology-matrices for up to 7 strands. The number

m 2 3 4 5 6 7
2 20 156 1744 23800 373008

Table 1: Number of matrices for m € [2,7].

of [-topology-matrices grows exponentially with m and it is infeasible to
enumerate all g-topology-matrices for m > 8. Later, it will be discussed how
to cope with this combinatorial explosion.

LA few proteins have 3-strands that form pairs with more than 2 partners which violates
this rule.

76

The definition of a valid g-topology-matrix corresponds largely to the
definition of ‘overall” sheet configuration’ used in [22] and ‘(-sheet topology’
from [16]. It is a representation of the [-topology that does not specify
the individual amino acid pairs but focuses on the overall description of the
(-pairs in the protein.

Assigning scores to (J-topologies

Two methods for assigning scores to S-topologies have been examined: The
topology scoring method [22, 19] and the pair scoring method [16].

The topology scoring method, as described in [19], works for proteins with
one (3-sheet only. It assigns a probability to each (-sheet topology based on
the following features: Number of strands, (-pairs, parallel §-pairs, parallel
[-pairs with short loops (less than 10 amino acids), jumps (sequential strands
that do not form [-pairs), jumps with short loops, the placement of the first
strand (near the edge or the center of the sheet) and the helical status of the
chain (either all-beta or alpha-beta). In order to deal with proteins with more
than one [3-sheet, a more elaborate topology scoring function is needed. In
[22] the probabilities of individual -sheet topologies are combined with two
more features, the number of sheets and number of crossings (consecutive (-
strands in different S-sheets), to assign a probability to the entire S-topology.

The pair scoring method is based on the neural network from [16]. The
network returns a pseudo-energy for each pair of amino acids in different
strands. The total pseudo-energy of a [-pair is calculated by finding an
optimal alignment (either parallel or antiparallel) of the two strands using
dynamic programming. The pseudo-energy of the (-pair is then the sum of
pseudo-energies for the resulting amino acid pairs. Since a (-topology can
be regarded as a set of G-pairs, we calculate the score of a G-topology as the
average pseudo-energy of all -pairs. This ensures that scores of S-topologies
are comparable even when they differ in the number of (-pairs.

Generating potential SSAs

To ensure that the S-topology of a proteins native structure can be repre-
sented it is important that the placement of all strands are identified cor-
rectly. PSIPRED can be used to predict the placement of strands. It pro-
duces three probability levels for each amino acid, a € [1,n], describing the
probability of a being either helix (pH,), strand (pE,) or coil (pL,). If
pE, > pH, \ pE, > pL, then amino acid a is classified as strand. This
method often fails to predict a strand entirely or predicts a strand where
there isn’t one. We have observed, however, that when it fails to predict a
strand there is often a hilltop in the pE-levels of the amino acids. A set of
strand candidates, representing possible placements of strands, are therefore
generated around hilltops in the pE-plot (see Figure 1). Each candidate,
i € [1,mg], is defined by the indices of its first and last amino acids: (s;, €;).

77

A potential SSA can be generated from a subset of strand candidates. When

GGKWSKSSVIGWPAVRERMRRAEPA

pL

. T

pE

_aliiisnlnn.

— —>
(2,6) (8,12)

H)

Figure 1: Probability levels for coil, helix and strand (pL, pH and pE) predicted
for 1ZEC using PSIPRED [1]. The bottom row illustrates three strand candidates
generated using the probability levels for strand and identified by their start and
end-indices, (s;,€;).

a strand candidate, i, is part of this subset, all amino acids from s; to e;
inclusive are assigned strand status. Since the results of both the topology
scoring method and the pair scoring method depends on the assignment of
helices as well, the status of the remaining amino acids is set to helix if
pH, > pL, and to coil otherwise.

Since a single SSA is generated using a subset of strand candidates, all
the potential SSAs are generated by using all possible subsets of strand can-
didates. Potential SSAs with one strand, however, are omitted, as valid (-
topologies must have at least 2 strands or none at all. Figure 2 illustrates all
the possible SSAs that can be generated using the coil and helix probability
levels and strand candidates from Figure 1.

GGKWSKSSVIGWPAVRERMRRAEPA

Figure 2: All possible SSA’s for 1ZEC using pL, pH and the strand candidates
from Figure 1.

Three improvements are performed to ensure that better strand candi-
dates are generated. The first is a smoothing of the pE-plot which is intro-
duced by setting

pE, — c-pE, 1+ (1 —2¢) -pE, +c-pEu (1)

where ¢ = 0.25. Also, pE-levels are reduced to 0 if they are below a threshold
of 0.05. Different values of ¢ and the threshold have been tested, but the
selected ones were the best for ensuring that the native SSA was included

78

in the generated potential SSAs. Both improvements are performed before
generating strand candidates from ‘hills’. The final improvement is performed
after strand candidates are generated. If two strand candidates touch each
other, i.e., e; = s;11, then a small space is introduced by setting e; « e; — 1.

If my. strand candidates are identified then 2" possible SSAs can be
generated. The mg. of these that have a single strand are not considered
valid. As described previously, §-topologies are not generated for more than

7 strands, so a total of
min(7,msc)
mSC
sy () g

valid SSAs are generated. The first term is added because the SSA that has
no strands is considered valid as well. For mg. > 15 the number of valid SSAs
is so large that it takes too long to execute the experiments. We therefore
only consider mg. < 15. If there are more strand candidates in a protein, we
exclude those with the lowest average pE-levels. This can, at most, result in

15369 valid SSAs

Assigning scores to potential SSAs

The pE-levels are used to calculate a score for every potential SSA. First,
each strand, i € [1,m], is identified by its start and end-indices (s;,e;) and
the average pF, value for that strand is calculated as

1
B = —— E E
<p >z 67/ _ Sl + 1 a:’s.p a <3)
The score of a SSA is then
1 m
- EY. 4
208 (@)

Comparing both SSAs and j-topologies

Before evaluating the generated SSAs and -topologies, it is defined what
it means that two SSAs match, one SSA respects another, two (3-topologies
match and a (-topology respects another.

Two strands, ¢ and j, from different SSAs are said to overlap if any part of
the interval [s;, e;] overlaps [s;, e;]. Two SSAs match iff there exists a pairing
of every strand in the first to every strand in the second such that each pair
of strands overlap. An SSA is furthermore said to respect another SSA iff
there exists a pairing of every strand in the first to a subset of strands in
the second such that each pair of strands overlap. This definition will prove
useful because potential SSAs that respect the native SSA can be considered
‘almost native’. Figure 3 illustrates how SSAs are compared.

79

CEEEEECEEEEEHHHHHHHHHCCCC
CCEECEEEEEEEHHHHHHHHHCCCC
EEEEEEECEEECHHHHHHHHHCCCC

CEEEEECEEEEEHHHHHHHHHCCCC
CCCCCEEEEEEEHHHHHHHHHCCCC
EEEEEEECEEECHHHHHHHHHCEEC

MTMO QOwW>

Figure 3: Examples of comparing SSAs. A, B and C all match each other. D
and E respects F but F neither respects nor matches any of the other.

A [(-topology is given by a SSA with m strands and a valid S-topology-
matrix, [aij]mxm specifying which strands are paired. Two [-topologies
match if their SSAs match and they have identical S-topology-matrices. Note
that if the SSAs match then the S-topology-matrices will always be of the
same dimension. One [-topology, with matrix [a;;], is said to respect another,
with matrix [a},], iff:

1. Tts SSA respects that of the second

2. a;; =1 = aj; = 1 where i and k are indices of strands that overlap,

and j and [are indices of strands that overlap

Figure 4 illustrates how [-topologies are compared.

CEEEEECCCCCCHHHHHHHHHCEEC

SETE =

CCEECCCCCCCCHHHHHHHHHEEEC

B [aij]=:8 (1)} ﬁf

EEEEEEECEEECHHHHHHHHHCEEC
o 1 1
R
[0 00

Figure 4: Examples of comparing (-topologies. A and B match each other and
they both respect C. C neither respects nor matches any other.

Datasets

For evaluating how well the scoring of SSAs and [-topologies is we generate
two datasets. The first is made up of all the chains from PDBSelect25 2009
[23] that contains strands. This corresponds to 3305 out of 4423 chains
(75%). Not all the numbers for recreating the topology scoring method was
available in [22], so the dataset was split into a test-set, the PDB test-set,
of 161 randomly chosen chains containing between 2 and 7 strands, and the
remaining was used as a training-set.

We did not check if the PDB test-set contain proteins that have been
used to train either PSIPRED or the neural networks in [16]. We speculate,

80

however, that this does not affect the results significantly. To justify this
a second test-set, the CASPS test-set, is compiled from all the CASPS8 [24,
25] targets that contain strands. This test-set has no guarantee to be as
diverse as PDBSelect25, but it is certain that none of these proteins are
part of the training-sets for PSIPRED or the neural networks in the pair
scoring method. The use of a CASPS test-set also gives an indication of the
practical applicability of our method. At CASP8 there were 112 targets, but
14 contained no strands, so the CASPS test-set consists of 108 protein chains
(89%) that all have sheets. 53 of the these have between 2 and 7 strands and
the majority of the rest contain between 8 and 12 strands.

The position of strands were identified according to the SHEET-records,
columns 23-26 and 34-37, in the PDB-files. The SHEET-records, addition-
ally, contain information about (-pairs, but they often have errors. We
therefore decided if two strands were paired based on the pair-wise distances
between amino acids in the two strands. If the largest of the three minimal
pairwise distances was less than 6A then the strands was said to be paired.
A direction vector for each strand was used to determine parallelity. If the
dot-product of two strands direction vectors was larger than 0 then they were
defined to be parallel, otherwise antiparallel. The direction vector of a strand
is the vector from the position of the first C, atom to the last within the
strand (going from the N-terminal to the C-terminal).

3 Results and discussion

The primary tool for analyzing the scoring methods for potential SSAs and
(-topologies is a rank-plot. The rank-plot for potential SSAs of some protein
shows the rank of each SSA (x-axis) and their score (y-axis). The SSAs are
sorted by non-increasing score. The rank-plot is therefore a monotonically
non-increasing curve representing scores of all potential SSAs (see Figure 5).
The first potential SSA that match the native SSA (the native-matching
SSA) is highlighted using a circle and SSAs that respect the native (native-
respecting SSAs) are highlighted using crosses.

A rank-plot for potential (-topologies shows the rank and score for all
the topologies, given a specific SSA (see Figure 6). Only a single §-topology
can match the native and only topologies with 2 sheets or more (more than
3 strands) can respect (and not match) the native S-topology. These topolo-
gies are referred to as native-matching B-topologies and native-respecting (3-
topologies respectively.

The average and median rank of native-matching and native-respecting
SSAs and (-topologies will be the primary tool for reporting results.

Ranking (-topologies using native SSA

81

SSA rank-plot with 10 strand candidates

07 -_—
2 Matches native ()
4 Respects native
0.6. -
05 - 306 R
) pe %
S o4l K K N
3 > 4
L
% oaf & J
(]
0z} X
01 -
o L L L 1 L 1 L L

0 100 200 300 400 500 60O 700 800 900
SSArank

2 I I
4
306 I 1 .

naive |'H N N

Figure 5: The SSA rank-plot for the six-stranded protein 1I8N. The native SSA
has rank 306. However, potential SSAs with ranks as low as 2 and 4 respects the
native, and will both be used to generate G-topologies that respects the native.

Beta-topology rank-plot with 6 strands
0.8 T T

"Matches native QO
Respects native X |

Beta-topology score
o
=
»
/=
<
|

01 o N —

! I ! I
0 5000 10000 15000 20000 25000
Beta-topology rank

° @J o ﬁE
« (00 - SUALIEM
« 1R4080

Figure 6: The S-topology rank-plot for the six-stranded protein 1I8N. The native
SSA has been used, and the scores are calculated using the pair scoring method.
The native 8-topology has rank 61 (native rank), but the S-topology with rank 5
respects the native (respecting rank), and thus provides a constraint that is nearly
as good as the native. All topologies that either match or respect the native are
highlighted and shown below the plot.

The native SSA of every protein in the PDB test-set is extracted from the
PDB file and then used to generate potential (-topologies and the corre-
sponding rank-plot. For 4 out of the 161 proteins, a native-matching (-
topology was not among the generated potential topologies because one of
their strands paired up with more than two other strands.

An important question when considering the applicability of enumerating

82

(-topologies is: How many of the top-ranked [-topologies does one have to
enumerate before the native-matching is found? Figure 7 shows how many
proteins (percentage) that have the native-matching (-topology among the
top-ranked. The figure illustrates this for both scoring methods — the topol-

Topology scoring method Pair scoring method

1 T T T T 1
T e |
strands
strands
0,8 strands 4 0.8
strands
3 strands 3

-84

Nowawn
coggaas

:Lud

100 10600 10000 1600000 1 18 1688 1888 1668088 ‘1686808
Top-ranked Top-ranked

-
B
=

Figure 7: Percentage of native-matching S-topologies among the top-ranked po-
tential topologies using the pair scoring method and the topology scoring method.
The x-axis shows the number of top-ranked topologies on a logarithmic scale.

ogy scoring method (top) and the pair scoring method (bottom). Individual
curves are generated for proteins containing the same amount of strands. If
it is assumed that the native SSA is known (or predicted correctly) then for
80% of all 6 stranded proteins it is sufficient to go through roughly 2230 of
the top-ranked [-topologies when using the topology scoring method and
232 when using the pair scoring method. This implies that for a large frac-
tion of proteins going through just a relatively small number (hundreds) of
(-topologies gives a constraint for the PSP problem that corresponds com-
pletely to the native-matching. We implemented a third method for scoring
B-topologies that was based on hydrophobic packing [26]. This method, how-
ever did not perform better than either the topology scoring method or the
pair scoring method, so the results were not included. The topology scoring
method performs good, and at times better, compared to the pair scoring
method for proteins with 4 strands or fewer. For proteins with more strands,
however the pair scoring method significantly outperforms the topology scor-
ing method. Therefore, all of the remaining experiments are performed using
the pair scoring method.
Table 2 shows statistics for the rank of the native-matching (-topology.

Strands 2 3 4 5 6 7
Proteins 26 33 26 28 27 20
Avg. rank 1.08 2,55 4.77 104 213 8850
Median rank 1 2 3 49 69 905

Table 2: Average and median ranks of native-matching B-topologies in PDB
test-set.

There were 122 targets at CASP8 and 53 of these had between 2 and 7
strands. This means that, assuming the native SSA can be correctly pre-

83

dicted, the native (-topology can be generated for 43% of the protein at
CASPS. Only 10 proteins have between 2 and 4 strands, so statistics gener-
ated for m = 2,3 and 4 are not significant. Table 3 shows statistics for the
rank of the native-matching (-topology. Comparing these numbers to those

Strands 5 6 7
Proteins 13 11 16
Avg. rank 67.5 872 4240
Median rank 16 149 768

Table 3: Average and median ranks of native-matching S-topologies in CASP8
test-set.

for the PDB test-set in Table 2, it is observed that the average and median
native rank is higher for the proteins with 6 strands, but notably lower for
those with 5 and 7 strands. This implies that even if some of the proteins
in the PDB test-set are in the training-set for the neural networks in [16], it
does not affect these results. By comparing the median ranks to the total
number of valid B-topologies shown in Table 1 it is observed that, for a vast
majority of the proteins, the native [-topology is among the 10% highest
ranked potential S-topologies.

Ranking potential SSAs

PSIPRED was downloaded from http://bioinfadmin.cs.ucl.ac.uk/downloads/
psipred/, and used to generate pH, pE and pL levels for all proteins in the
PDB test-set. From the pE-levels, strand candidates are identified and po-
tential SSAs generated. For every potential SSA, a score is calculated using
the pE-levels, and a rank-plot is generated for every protein. The number of
potential SSAs that one has to enumerate before the native-matching SSA is
encountered is shown in Figure 8. The red curve converges on ~ 81% after
3000 potential SSAs (out of the ~15000), which indicates that for only 19%
of the proteins in the PDB test-set, a potential SSA that matches the native
is not generated. The typical reason for this is that PSIPRED fails to identify
one or more strands. For a majority of the proteins, however, it is enough to
enumerate less than 1000 potential SSAs. Since there are generated a total
of up to 15369 potential SSAs it is observed that, for a majority of the pro-
teins the native SSA can be found among the top 7% of the generated SSAs.
Using only the top-200 ranked potential SSAs a native-respecting SSA can
be found for more than 95% of the proteins. This is shown in the purple
curve in Figure 8a.

The same experiment is repeated for the proteins in the CASPS test-set
that have between 2 and 7 strands. The results are shown in the bottom
of Figure 8b. These curves follow roughly the same trend as for the PDB
test-set. This indicates that, even if some proteins in the PDB test-set are
in the training-set of PSIPRED, it does not affect our results.

84

Potential SSAs in PDBSelect25

Rative ranks include
Respecting ranks include:
0.8

0.6

&&|
aal

ive included

8,2

®

1888 2800 38008 4088 56800

o

0.6

included

8.2

1008 2000 3008 4008 Sege
Top-ranked

(b)

Figure 8: Percentage of proteins for which a the native-matching SSA is included
in the top-ranked SSAs (red curve). The purple curve shows the percentage of
proteins for which the native-respecting SSA is included among the top-ranked.
In (a), only the proteins from the PDB test-set with 2 to 7 strands are included.
In (b), only the proteins from the CASPS8 test-set with 2 to 7 strands are included.

PSIPRED typically uses BLAST [27] to locate sequence profiles that can
help improve the secondary structure prediction. There is an option that
disables this feature, but it decreases the accuracy of PSIPRED. We found,
however, that when disabling BLAST the pE-levels more often resulted in
good strand candidates that ensured the native SSA was among the potential
SSAs. We therefore choose to disable BLAST. This observation indicates that
creating a secondary structure predictor specifically for identifying strand
candidates could further improve our result and increase the ratio of proteins
for which the native-matching SSA could be identified.

Combining potential SSAs and potential S-topologies

This subsection seeks to determine the applicability of enumerating both
potential SSAs and potential F-strands. Since the CASPS test-set contains
proteins that state-of-the-art PSP methods are benchmarked on we will use
this test-set for the following experiments. The combinatorial explosion of
(-topologies is dealt with by primarily analyzing the native-respecting [-
topology. This ensures that the experiment can be run on proteins with
more than 7 strands.

85

m 2 3 4 5 6 7
B(m) 2 11 30 700 1900 70000

Table 4: B(m) for different values of m. Can also be read from Figure 7.

Min. m p(SSA) 1 (SSA) p(B-sum) H1 (B-sum)
2 102 7 80,634 44
3 271 41 255,956 9,725
4 337 48 361,101 23,586
5 503 198 691,917 242,925

Table 5: Combining potential SSAs and (-topologies for the 108 CASPS proteins
with at least 2 strands. p(SSA) and p 1 (SSA) denotes the average and median rank
of the first native-respecting SSA from which a native-respecting [-topology can
be generated. p(f-sum) and p 1 (-sum) denote the average and median number
of B-topologies that have to be examined before a native-respecting (-topology is
located.

The experiment seeks to determine how many S-topologies it is necessary
to enumerate to find the native-respecting (3-topology without assuming that
the native SSA is known in advance. It can be seen in Figure 7 that, to be
sure that a native-matching S-topology is among the top-ranked for an SSA
with m strands, it is necessary to include the B(m) top-ranked [-topologies
where B(m) is defined in table 4. For each of the 108 proteins in the CASP8
test-set, the following experiment is performed: The set of potential SSAs is
generated, scored and ranked. Starting from the top-ranked potential SSA,
with m, strands, all its S-topologies are generated, scored and ranked. The
B(my) top-ranked (-topologies are examined. This process is repeated for
the lower-ranked SSAs until the first native-respecting $-topology is encoun-
tered. The number of examined (-topologies is then reported. The average
and median of this number is shown in the second row of Table 5. There
is a huge difference between the average number of 3-topologies that has
to be examined (~ 80000) and the median (44). This indicates that only
a limited number of outliers needs to have many topologies examined. For
a majority of the proteins, less than 50 (-topologies need to be examined
before a native-respecting [-topology is found. In many cases, however, this
first native-respecting [-topology will only have 2 strands. This does not
provide a very strong constraint on the PSP problem. We therefore repeat
the experiment above, but for potential SSAs with at least 3, 4 and 5 strands.
As a result &~ 10000, ~ 22000 and =~ 240000 (-topologies respectively have
to be enumerated for a majority of the proteins before a native-respecting
topology is found. Although these numbers are high, it is still realistic to gen-
erate that many decoys in a PSP method. The total number of S-topologies
is approximated by multiplying the total number of potential SSAs with
the average number of examined (-topologies for each SSA. For most pro-
teins 15 strand candidates are identified, which gives 15369 potential SSAs.

86

Multiplied by the average of B(m) this indicates that the total number of
generated (3-topologies roughly 1.8 - 108.

The focus of this section has, so far, been solely on native-respecting (-
topologies because these can be found for proteins containing any number
of strands. This was ensured that useful results could be generated even
for proteins with more than 7 strands. The above experiment was repeated
for proteins with 7 strands or fewer and the number of examined topologies
were reported only when the native-matching 3-topology was examined. The
average and median number of topologies that had to be examined were
around 13,900,000 and 4, 800,000 and this could only be done for 33 of the
53 proteins (62%). While these numbers are rather large, a PSP method
that efficiently takes advantage of (3-topologies, such as [14], will be able to
go through this many topologies in a limited amount of time. Furthermore,
for a few proteins (3DFD, 3DED, 3DEX, 2KDM and 3DOS8), the native
(B-topology was found after only examining a few thousand topologies.

4 Conclusions and future work

We have presented a method to enumerate and rank potential $-topologies
for proteins with up to 7 strands using two different scoring methods; the pair
scoring method and the topology scoring method. The pair scoring method
was shown to outperform the topology scoring method.

If we do not know the correct secondary structure assignment (SSA) in
advance, we first use output from PSIPRED to generate potential SSAs with
up to 7 strands and then rank these assignments. The results show that the
native SSA is among the top 7% highest ranked SSAs for the majority of
proteins.

SSAs are then used to generate potential S-topologies. Given the cor-
rect SSA we found that the native (-topology is among the top 10% high-
est ranked (-topologies, with native-respecting topologies frequently found
among the very highest ranked. Using predicted SSAs, we found that non-
trivial (i.e. more than two strands) native-respecting [-topologies can be
found within the top 10000 highest ranked topologies.

There is a number of ways to improve and extend this work. First of all,
a better method for scoring [-topologies could be developed by combining
the topology scoring method [19] and the pair scoring method [16]. Features
and concepts from other sources such as [28, 20, 17, 15] could be used as well.
Furthermore, disulphide bindings could be incorporated into the model. This
could significantly limit the number of 3-topologies for cysteine-containing
proteins.

The results indicate that a relatively large number of SSAs has to be
examined before the native SSA is located. The method used for scoring
potential SSAs is very simple. We therefore believe that a huge improvement

87

of our results could be achieved by refining the scoring of potential SSAs
using, for instance, machine learning methods like neural networks or support
vector machines. As mentioned previously, a secondary structure predictor
that overpredicts strands could also help to ensure that the native SSA was
among the potential SSAs for more than 81% of the proteins.

Finally, the natural extension of this work is to design a PSP method that
can use the top-ranked [-topologies to constrain the conformational search
and generate high quality protein structure decoys.

References

[1] D. T. Jones. Protein secondary structure prediction based on position-
specific scoring matrices. J. Mol. Biol., 292:195-202, 1999.

[2] M. Ouali and R. D. King. Cascaded multiple classifiers for secondary
structure prediction. Prot. Sci., 9:1162-1176, 2000.

[3] J. Cheng, A. Z. Randall, M. J. Sweredoski, and P. Baldi. Scratch: a
protein structure and structural feature prediction server. Nucl. Acids
Res., 33:-WT72-W76, 2005.

[4] C. Cole, J. D. Barber, and G. J. Barton. The Jpred 3 secondary structure
prediction server. Nucl. Acids Res., 36:W197-W201, 2008.

[5] R. M. MacCallum. Striped sheets and protein contact prediction. Bioin-
formatics, 20 Suppl 1, 2004.

6] A.N. Tegge, Z. Wang, J. Eickholt, and J. Cheng. NNcon: Improved pro-
tein contact map prediction using 2D-recursive neural networks. Nucl.
Acids Res., 37(37):W315-W318, 2009.

[7] C. Etchebest, C. Benros, S. Hazout, and A. G. de Brevern. A structural
alphabet for local protein structures: improved prediction methods. Pro-
teins, 59:810-827, 2005.

[8] M. Tyagi, A. Bornot, B. Offmann, and A. G. de Brevern. Protein short
loop prediction in terms of a structural alphabet. Comput. Biol. Chem.,
33:329-333, 2009.

9] O. Zimmermann and U. H. E. Hansmann. Support vector machines
for prediction of dihedral angle regions. Bioinformatics, 22:3009-3015,
2006.

[10] G. Helles and R. Fonseca. Predicting dihedral angle probability dis-
tributions for protein coil residues from primary sequence using neural
networks. BMC' Bioinformatics, 10:3384, 2009.

88

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

22]

Y. Cui, R. S. Chen, and W. H. Wong. Protein folding simulation with
genetic algorithm and supersecondary structure constraints. Proteins,
31:247-257, 1998.

J. L. Klepeis and C. A. Floudas. ASTRO-FOLD: a combinatorial
and global optimization framework for Ab initio prediction of three-

dimensional structures of proteins from the amino acid sequence. Bio-
phys. J., 85:2119-2146, 2003.

G. Porwal, S. Jain, S. D. Babu, D. Singh, H. Nanavati, and S. Noronha.
Protein structure prediction aided by geometrical and probabilistic con-
straints. J. Comput. Chem., 28:1943-1952, 2007.

N. Max, C. Hu, O. Kreylos, and S. Crivelli. BuildBeta-A system for
automatically constructing beta sheets. Proteins, 78:559-574, 2009.

R. Rajgaria, Y. Wei, and C. A. Floudas. Contact prediction for beta
and alpha-beta proteins using integer linear optimization and its impact
on the first principles 3D structure prediction method ASTRO-FOLD.
Proteins, Early View, 2010.

J. Cheng and P. Baldi. Three-stage prediction of protein beta-sheets by
neural networks, alignments and graph algorithms. Bioinformatics, 21
Suppl 1:175-84, 2005.

J. Jeong, P. Berman, and T. M. Przytycka. Improving strand pairing
prediction through exploring folding cooperativity. IEEE/ACM Trans.
Comput. Biol. Bioinform., 5:484-91, 2008.

M. Lippi and P. Frasconi. Prediction of protein beta-residue contacts by
Markov logic networks with grounding-specific weights. Bioinformatics,
25:2326-33, 20009.

I. Ruczinski, C. Kooperberg, R. Bonneau, and D. Baker. Distributions of
beta sheets in proteins with application to structure prediction. Proteins,
48:85-97, 2002.

A. S. Fokas, I. M. Gelfand, and A. E. Kister. Prediction of the structural
motifs of sandwich proteins. Proc. Nat. Acad. Sci. USA, 101:16780—
16783, 2004.

Nicholas Hamilton and Thomas Huber. An introduction to protein con-
tact prediction. pages 87-104. 2008.

[. Ruczinski. Logic regression and statistical issues related to the protein
folding problem. PhD thesis, Univ. of Washington, 2002.

89

23]

[24]

[25]

[26]

[27]

[28]

S. Griep and U. Hobohm. PDBselect 1992-2009 and PDBfilter-select.
Nucl. Acids Res., 38:D318-319, 2010.

ShuoYong Shi, Jimin Pei, Ruslan I. Sadreyev, Lisa N. Kinch, Indraneel
Majumdar, Jing Tong, Hua Cheng, Bong-Hyun Kim, and Nick V. Gr-
ishin. Analysis of casp8 targets, predictions and assessment methods.
Database, 2009(0):bap003+, April 2009.

Michael L. Tress, lakes Ezkurdia, and Jane S. Richardson. Target do-
main definition and classification in casp8. Proteins, 77 Suppl 9(S9):10—
17, 2009.

J. L. Klepeis and C. A. Floudas. Prediction of beta-sheet topology and
disulfide bridges in polypeptides. J. Comput. Chem., 24:191-208, 2003.

SF Altschul, TL Madden, AA Schaffer, J Zhang, Z Zhang, W Miller,
and DJ Lipman. Gapped BLAST and PSI-BLAST: a new generation of
protein database search programs. Nucl. Acids Res., 25(17):3389-3402,
1997.

Jennifer A Siepen, Sheena E Radford, and David R Westhead. Beta
edge strands in protein structure prediction and aggregation. Protein
Sei, 12(10):2348-59, Oct 2003.

90

Chapter 5

Other work

5.1 Background

Genetic algorithms aims at mimicking evolution in order to find (near-)optimal solutions,
but how well do they actually do this? Interestingly, genetic algorithms are primarily used
in optimization and have in fact never really been used as a simulation tool for population
geneticists. In lack of any literature supporting this notion, I set out to determine if this
was simply a coincidence or because genetic algorithms are simply too coarse grained to be
of practical use in population genetics.

5.2 Paper: Simulating Evolution of Drosophila
melanogaster Ebony Mutants Using a
Genetic Algorithm

This paper was presented at evoBIO 2009 and published in “LNCS: Evolutionary Compu-
tation, Machine Learning and Data Mining in Bioinformatics” [7].

91

1

Darwin’s book “On the Origin of the Species” was published in 1859 and even
though evolution was already generally a recognized phenomenon amongst
scientists at the time, Darwin offered a new way to explain evolution that

Simulating Evolution of Drosophila
melanogaster Ebony Mutants Using a
Genetic Algorithm

Glennie Helles

Abstract

Genetic algorithms are generally quite easy to understand and
work with, and they are a popular choice in many cases. One area in
which genetic algorithms are widely and successfully used is artificial
life where they are used to simulate evolution of artificial creatures.
However, despite their suggestive name, simplicity and popularity in
artificial life, they do not seem to have gained a footing within the
field of population genetics to simulate evolution of real organisms
— possibly because genetic algorithms are based on a rather crude
simplification of the evolutionary mechanisms known today. How-
ever, in this paper we report how a standard genetic algorithm is
used to successfully simulate evolution of ebony mutants in a popula-
tion of Drosophila melanogaster (D.melanogaster). The results show
a remarkable resemblance to the evolution observed in real biological
experiments with ebony mutants, indicating that despite the simplifi-
cations, even a simple standard genetic algorithm does indeed capture
the governing principles in evolution, and could be used beneficially
in population genetics studies.

Introduction

has since been broadly accepted by the scientific community.

Genetic algorithms can generally be thought of as a formalization of Dar-
win’s evolutionary theory. Originally formulated by John Holland in the
1960’s, genetic algorithms are a set of heuristics that are perhaps mostly
known for their ability to find optimal or near-optimal solutions in large
(possibly infinitely large) search spaces [4, 7] and their use in artificial life

92

[5]. They come in many different shapes and forms, but the underlying frame-
work involving an encoding-, selection- and breeding-strategy is the same for
all of them.

In this experiment we use a genetic algorithm to simulate a population
of Drosophila melanogaster (D.melanogaster), also known as the common
fruit fly. The fly is with its approximately 13.600 genes a relatively complex
animal with a fairly short life cycle of roughly 30-40 days [3], although flies
kept in laboratories usually have a slightly shorter life span[3]. This makes
the fruit fly ideal for studies of population genetics and it is indeed widely
used for just that [10].

One of the genes that has been throughly studied is the ebony gene [10],
which aside from being associated with the color of the fly, influences both
vision and movement and has a direct influence on the breeding success of
the fly. Furthermore, only approximately 80% of ebony mutants ever hatch
giving the mutants a natural disadvantage [10].

Each fly has two instances of each chromosome, which gives rise to three
distinct ebony genotypes: the mutant genotype (e/e) has a mutation in the
ebony gene on both chromosomes, the heterozygous genotype (+/e) has a
mutation in the ebony gene on only one of the chromosomes while the wild
type genotype (+/4) has no mutation in the ebony gene. The ebony gene
is a recessive gene, which generally means that only flies with the mutant
genotype will show the mutant characteristics. In practice, however, many
of the heterozygous flies can easily be distinguished upon visual inspection
and mating studies also shows that the flies are definitely able to distin-
guish between all three genotypes[8]. From a population geneticist’s point of
view, the ebony gene is interesting because hatching along with the ability
to successfully move around and breed are generally considered extremely
important for a fly, if the genes are to be preserved in future generations.
Aside from their lower hatching success, the ability of the ebony mutant to
move around is also impaired compared to both the wild type fly and espe-
cially the heterozygous fly, just as the mutants eyesight is quite limited [10].
A male fly’s ability to move around quickly is thought to be an attractive
characteristic among female flies, and good vision will naturally allow the
flies to spot the most attractive mating partner from a longer distance.

However, the male mutant fly has a larger mating capacity (it can insem-
inate more females in a 24 hour period) than the wild type counter part [8, 9]
and the female mutant flies tend to be less selective when being courted by
a male fly — possibly because of their impaired vision. Heterozygous male
flies have the largest mating capacity of all the genotypes, which would seem
to give this genotype an advantage, but the heterozygous female flies on the
other hand accepts the fewest mating invitations, thereby apparently cancel-
ing out the advantage. Biological experiments, wherein the initial population
contains 25%, 50% and 75% mutants respectively, have shown that the fre-

93

quency of mutants always drop rapidly during the first 5-10 generations, but
then stabilizes (see [8, 9] and Figure 1 A).

A number of systems for simulating and predicting allele frequencies of
genes exists. Very simple systems based on Wright-Fisher populations as-
sume neutral development and are thus too imprecise for studying real sys-
tems. Other non-neutral systems that use Markov chains have been applied
[2] but to our knowledge genetic algorithms have for some reason, despite
their otherwise suggestive name, not previously been used in population ge-
netics simulations. The appeal of using a genetic algorithm for a population
geneticist is that the terminology is highly familiar and thus very intuitive.
We realize that genetic algorithms have been developed and extended much
over the years as our understanding of evolution has increased [1], but this
type of experiment relates to the very fundamentals of evolution and we thus
believe that, aside from being very simple, the original genetic algorithm is
quite adequate.

2 Methods

The genetic algorithm used for the simulation is constructed such that each
individual (fly), referred to as a D.simulation, has two chromosome pairs
explicitly modeled. The chromosome 3 pair, which includes the ebony gene,
and the sex chromosome pair (X/Y), which determines the sex of the fly.
All flies possess the following basic characteristics: they can fly, walk, see
and breed. Furthermore, we have introduced a “resting period” for the male
D.simulation, which is triggered by the mating procedure, to ensure that the
simulated fly has the same mating capacity as the real fly. Female flies do
not have a resting period, but they do have the ability to lay eggs. How far
they can fly, walk or see depends on the genotype of the fly (see Table 1) just
as it is the case for the real fly and likewise for the required resting period of
the male flies and the selectivity of the female flies. During the resting period
the male fly is unable to mate, but it may still move around. How many cells
the simulated flies can move and see is based on our interpretation of how
the different genotype compared to each other.

D.melanogaster goes through several stages before it becomes a real fly
[3]. However, the egg stage, larval stage and pupa stage are for the most
part uninteresting when looking at population genetics and D.simulation
thus only has one stage (the egg stage) before it becomes a fly. Development
from egg to fly for D.melanogaster take roughly 14 days and the length of the
egg stage for D.simulation is thus chosen randomly between 12 and 16 days.
The egg never moves. Like the D.melanogaster ebony mutant, a D.simulation
ebony mutant egg has only a 80% chance of ever hatching. Eggs that do
not hatch are removed from the world. After hatching the D.simulation
flies are sexually active after 12 hours and the female flies start laying eggs

94

after 2 days. These values are equal to those observed in real experiments
[3]. Real female flies may lay several hundreds of eggs — whether they are
fertilized or not — over a period of approximately 10 days, but in order to
control population size a female D.simulation lays only between 1 and 6 eggs.
All unfertilized eggs are removed immediately from the environment. The
complete life cycle of D.simulation including the egg stage is chosen randomly
between 28 and 32 days. The initial population contains 100 flies and 20 eggs
(50% of each sex). If the population grows to include more than 250 flies, a
1% chance of “sudden death” is introduced.

The simulation uses a 3-dimensional world containing 50 x 50 x 50 cells.
Each cell can only hold one fly or egg. Each time step is equivalent to one
hour and the flies can perform one movement per time step. How far a fly
moves in each time step is chosen randomly, although it never exceeds the
distance stated in Table 1. If a cell is already occupied by another fly a new
movement and distance is chosen. Mating occurs at the end of each time
step. Female flies are selected with a frequency that match their “courtship
acceptance” and for each selected female fly a male fly is chosen by using
a fitness-proportionate selection strategy known as a “roulette wheel” on
the non-resting male flies that occupy cells within eyesight distance of the
female. The Roulette Wheel ensures that male flies with higher fitness values
are chosen more frequently than male flies with lower fitness values.

The breeding strategy uses only mutation (not crossover), as the simula-
tion is only focused on the ebony gene. Spontaneous mutation of the ebony
gene occurs with a frequency of 8x107*. The mutation frequency is set 40
times higher than what is typically observed in real life to compensate for the
inclusion of only one type of ebony mutants, as opposed to the 40 different
mutations to the ebony gene that has been identified in the real fly.

+/+ +/e e/e
Walk (cells) 5 5 4
Fly (cells) 12 12 8
Sight (cells) 5 5 3
Mating capacity (24 hours) | 3 6 4
Courtship acceptance (%) | 60 50 65

Table 1: For each genotype (4+/+ = wild type, +/e = heterozygous and e/e
= mutant) is indicated the maximum flying and walking distance, how far
they can see, the mating capacity of the males and the courtship acceptance
frequency of the females.

95

Population development Simulated population development

aaaaa

% mutants
% mutants

sk 4 3k d
021 4 02 H d
ot \ p o B

= - = =

0 L L 0 L L L L L L

0 10 20 50 60 70

w0) 0 5 w0
Generation Generation

A B

Figure 1: The results taken from the real experiments compared to the results
from the simulation. The simulated result shown for each start population
of 25%, 50% and 75% mutants is the average of the 10 runs.

3 Results

The fitness values upon which these results are based are listed in Table 2.
They are the result of simply adding the values from Table 1, except “courtship
acceptance”, which is purely a female trait that does not influence the male
fitness value. The simulation is run 10 times of 50000 time steps (= 5.7 years)
for each start population of 25%, 50% and 75% mutants respectively. Due to
the stochastic aspect of genetic algorithms, different results may be obtained
for each run and running the algorithm multiple times was thus done.

Both the results from real experiments with D.melanogaster and the re-
sults from the simulation are presented in Figure 1. The results from the real
experiment are taken directly from [10]. The figure shows that the frequency
of mutants in both the D.melanogaster and D.simulation population drop
very rapidly initially and then stabilizes after roughly 10-15 generations. As
can be seen, development of the gene in the simulated population matches
the real experiment close to perfectly.

It should of course be emphasized that selection of flies are based on the
very simple rules that are defined in section 2 and they remain the same
throughout the simulation. The composition of genotypes in the population

Fitness
+/+ 25
+/e 28
efe 19

Table 2: Each of the fly’s characteristics contributes to the overall fitness
value, but varies for every genotype (+/+ = wild type, +/e = heterozygous
and e/e = mutant).

96

at a given time is not considered and does not in any way affect which flies
are selected for breeding. In other words, we do not have any special rules
that are applied if mutants appear to either take over the population or die
out.

4 Discussion

The main focus of this experiment is to determine if a standard genetic
algorithm is able to successfully capture the fundamental aspects of evolution
as can be observed in population genetics experiments. By inspecting the
mutant frequency from experimental results with D.melanogaster (Figure 1
A), two things stand out: the initial drastic drop in mutant frequency and
the following stabilization. Both traits are clearly observed in the simulated
population (Figure 1 B). One could fear that the mutants would either
completely take over the population or alternatively simply die out, as indeed
seems very likely when observing the initial drastic drop, but the pattern
resembles the pattern observed in nature. With the settings given in Table 1
and 2 the genetic algorithm does thus appear to very successfully capture
the governing aspect of evolution and would in fact seem to be an obvious
choice for simulating population genetics.

Another interesting observation is that, in Sgndergaard [9] they describe
how females tend to pick differently depending on the male compositions
in the population, but we do not actually have to explicitly consider that
in the simulation. The females follow that same rules at all times during
the simulation regardless of the male composition in the population, and the
behavior thus seem to emerge naturally simply from each individual following
a few simple rules. This phenomenon is also known in swarm intelligence
where simulation have clearly demonstrated that the seemingly intelligent
movement of flocking animals in fact emerges from the simple set of rules
that each animal follow [6].

When genetic algorithms are as accurate, as seen here, they can be used
not only to simulate evolution but also to investigate underlying biological
aspects. It is for example quite interesting to note that although the ebony
gene is recessive, and one would thus expect that the heterozygous fly and
the wild type fly should be viewed as equal, it proved to be imperative for
the accuracy of the simulation to distinguish between the two genotypes. If
such a distinction was not made the drop in mutant frequency was generally
more linear, and most often the mutants died out before 50000 time steps.

We wish to emphasize that we do not suggest that simulation with a stan-
dard genetic algorithm can be used to simulate evolution of, say, the effect of
a new mutation - the genetic algorithm relies heavily on prior knowledge that
is relevant for calculating fitness of the fly. However, the effect of changing
for instance the start compositions of flies (such as more mutants or fewer

97

males) or even introducing impairments (such as restrictions on walking dis-
tance) could easily be studied using a simulation as this. Also, an analysis
of exactly how much the fitness values can be varied while maintaining the
characteristic development pattern could be done to help us understand how
robust nature really is and indicate how big an advantage or disadvantage
each genotype can have without altering the population development pat-
tern. Running the computer simulation for 50.000 time steps (corresponding
to a25.7 years or 70 generations) with our parameter settings takes just under
5 minutes on a 2.2GHz Intel processor.

As a final note, it should be mentioned, that this simulation is rather
simple, as it involves only mutation as a biological operator. The other
major biological operator, crossover, is not really used in this experiment,
and we are thus not able to draw any conclusions about how well genetic
algorithms would for instance simulate evolution of couple genes, but given
the good results we have achieved here with relatively little effort, we are
quite optimistic, and it would be interesting to attempt a more complicated
simulation.

5 Conclusion

The results from experiments with D.melanogaster and the results from the
simulated fly, D.simulation, bear a remarkable resemblance. Despite being
based on a simplification of evolution as we know it, genetic algorithms do
appear to be quite able to capture the fundamental aspects of evolution.
The prospect of using genetic algorithms in population genetics where some
knowledge about fitness have already been established thus look very good
and further investigation into more complicated simulations of, for instance,
coupled genes in the D.melanogaster, would be interesting to carry out.

References

[1] W. Banzhaf, G. Beslon, S. Christensen, J. A. Foster, F. Kps, V. Lefort,
J. F. Miller, M. Radman, and J. J. Ramsden. From artificial evolution to
computational evolution: a research agenda. Nat. Rev., Gen, 7:729-735,
2006.

2] P. Fearnhead. Perfect Simulation From Nonneutral Population Genetic
Models: Variable Population Size and Population Subdivision. Genetics,
174:1397-1406, 2006.

3] A. J. F. Griffiths, J. H. Miller, D. T. Suzuki, R. C. Lewontin, and W. M.
Gelbart. An Introduction to Genetic Analysis. Freeman, 1996.

[4] M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, 1999.
98

[5]

6]

[7]

[10]

M. Mitchell and S. Forrest. Genetic algorithms and artificial life. Arti-
ficial Life, 1:267-289, 1994.

Craig W. Reynolds. Flocks, herds, and schools: A distributed behavioral
model. Comp. Graph., 21:25-34, 1987.

S. Russel and P. Norvig. Artificial Intelligence - a modern approach.
Prentice Hall, 1995.

L. Sgndergaard. @ Mating competition on artificial populations of
Drosophila melanogaster polymorphic for ebony —. Heraditas, 103:47—
55, 1985.

L. Segndergaard. @ Mating competition on artificial populations of
Drosophila melanogaster polymorphic for ebony II. Heraditas, 103:47—
55, 1985.

L. Sgndergaard and K. Sick. Long-term frequencies of ebony in arti-
ficial Drosophila melanogaster populations kept in light and darkness.
Heraditas, 103:57-61, 1985.

99

Chapter 6

Conclusions

The main focus of this thesis has been to devise and experiment with methods and algorithms
that can improve ab initio protein structure prediction. Four of the five papers thus pertain to
this problem. The fifth paper included in this thesis touches on a different problem within
of the bioinformatics area, namely simulation of population genetics. Four of the papers
included have been presented at international conferences and/or published in international
journals. The fifth is currently in review.

In the thesis we have:

e presented an in-depth survey and comparison of existing methods for ab initio PSP.
Due to the lack of standard protein test sets, performance comparison of existing
algorithms found in the literature is far from simple, yet important if we want to
find ways of improving the prediction methods. In the survey, we thus identify all
parameters that may influence performance and compare the setting of these across
recently published ab initio PSP methods.

e investigated parallel meta-heuristics for protein structure prediction and propose an
iterative variant of the niche genetic algorithm (inGA). We show through experiments
how the combination of parallelism, iterations and a highly elitist GA is clearly ben-
eficial as it outperforms both the traditional niche GA and the parallel version of
simulated annealing, known as parallel tempering, by finding lower energy structures
much faster.

e showed how a neural network can be used to predict a probability distribution for coil
residues that could be used to guide search algorithms to the most probable dihedral
angle area for coil residues.

e devised a way to enumerate and rank potential G-topologies such that we are likely to
encounter native or native-respecting topologies among the top ranked topologies.

e illustrated how a genetic algorithm can simulate evolution of ebony mutants in a pop-
ulation of Drosophila melanogasters (fruit flies) with very high accuracy.

100

We believe that all of our findings are of high value to the research community. For PSP,
we have several ideas for extensions. Particularly our last work on predicting [-topologies
has brought on a number of new ideas. Generating constraints is highly attractive, because it
limits the solution space significantly, but it also poses a huge challenge for meta-heuristics.
Currently, meta-heuristics simply cannot utilize the constraints properly to make the search
faster. This is because the way meta-heuristics generate new solutions (by mutations or
recombinations) will frequently take us to “illegal” areas of the solution space, i.e., areas
where the constraints are not upheld. We thus need some mechanism to ensure that the
meta-heuristics only visit the solution space where the constraints are indeed upheld. One
of my main focus points for further research is contriving a method — possible a variant of a
meta-heuristic — that can somehow make proper use of the constraints. I believe this would
improve both the execution time and the solution quality of predicted structures.

101

Bibliography

1]

2]

[10]

[11]

[12]

C. B. Anfinsen. Principles that governs the folding of protein chains. Science, 181:223—
230, 1973.

B. Berger and T. Leighton. Protein folding in the hydrophobic-hydrophilic (hp) model
is np-complete. Proc. Sec. Int. Conf. Comp. Mol. Biol., pages 30-39, 1998.

Y. Choi and C.M. Deane. Fread revisited: Accurate loop structure prediction using a
database search algorithm. Proteins, 78:1431-1440, 2009.

R. Fonseca and G. Helles. Predicting dihedral angle probability distributions for protein
coil residues from primary sequence using neural networks. BMC' Bioinf., 2009.

F. Gratzon. The Lazy Way to Success. Soma Press, 2003.

G. Helles. A comparative study of the reported performance of Ab Initio protein struc-
ture prediction algorithms. J. R. Soc. Interface, 5:387396, 2008.

G. Helles. Simulating evolution of Drosophila melanogaster Ebony mutants using a
genetic algorithm. LNCS, 5483:37-43, 2009.

D. Katagiri, H. Fuji, S. Neya, and T. Hoshino. Ab initio protein structure prediction
with force field parameters derived from water-phase quantum chemical calculation. J
Comp. Chem., 29:1930-1944, 2008.

E. Kim, S. Jang, and Y. Pak. All-atom ab initio native structure prediction of a mixed
fold (1fme): A comparison of structural and folding characteristics of various 3/«
miniproteins. J. Chem. Phys, 131:195102, 20009.

C. Levinthal. Are there pathways for protein folding. Fxt. Jour. Chim. Phys., 65:44-45,
1968.

G. Nicosia and G. Stracquadanio. Generalized pattern search algorithm for peptide
structure prediction. Biophys. Jour., 95:4988-4999, 2008.

M. Tyagi, A. Bornot, B. Offmann, and A.G. de Brevern. Protein short loop prediction
in terms of a structural alphabet. Comp. Biol. Chem., 33:329-33, 2009.

102

Appendices

103

Appendix A

Improving search for low energy
protein structures with an iterative
niche genetic algorithm

104

Improving search for low energy protein
structures with an iterative niche genetic
algorithm

Glennie Helles

Abstract

In attempts to predict the tertiary structure of proteins we use almost
exclusively metaheuristics. However, despite known differences in perfor-
mance of metaheuristics for different problems, the effect of the choice of
metaheuristic has received precious little attention in this field. Particularly
parallel implementations have been demonstrated to generally outperform
their sequential counterparts, but they are nevertheless used to a much lesser
extent for protein structure prediction. In this work we focus strictly on
parallel algorithms for protein structure prediction and propose a parallel
algorithm, which adds an iterative layer to the traditional niche genetic al-
gorithm. We implement both the traditional niche genetic algorithm and the
parallel tempering algorithm in a fashion that allows us to compare the algo-
rithms and look at how they differ in performance. The results show that the
iterative niche algorithm converges much faster at lower energy structures
than both the traditional niche genetic algorithm and the parallel tempering
algorithm.

1 INTRODUCTION

Metaheuristics are known to perform well on high-complexity problems where
the search space becomes too big for exhaustive search to be feasible. Prediction
of the three-dimensional structure of proteins from their primary sequence alone,
known as ab initio or textitde novo folding!, is such a problem and metaheuristics
are almost exclusively used to solve this problem [6, 9].

Proteins are made up by amino acids that are strung together like pearls on a
string such that each amino acid is connected to its neighboring amino acid(s) via

'The term ab initio traditionally refers to prediction methods that start without any knowledge
of any globally similar folds thereby setting them aside from homology modeling techniques.
However, many so called ab initio methods do in fact use secondary structure prediction algo-
rithms that are trained from knowledge of already known structures, or they use fragment assem-
bly compiled from known structures. Some choose to refer to this as de novo prediction rather
than ab initio prediction. The term ab initio will be used in this publication

105

a peptide bond, . However, despite the rigid nature of the peptide bond, atoms
can in theory rotate almost freely around the two other backbone bonds — the N—
Cy bond, ¢, and the Co—C’ bond, y — which means that just like a pearl necklace,
a protein can be folded up in infinitely many ways, which is the reason that protein
structure prediction poses such a big problem. Fortunately, steric clashes between
atoms in neighboring amino acids do impose a significant restraint on the flexi-
bility of the ¢ and y angles actually observed for amino acids [10], but searching
exhaustively for the structure with the lowest energy remains elusive.

Judging from the literature, the Monte Carlo variant known as Simulated An-
nealing appear to be the preferred meta-heuristic for ab initio structure prediction
followed by Genetic Algorithms [6]. Both metaheuristics can be parallelized,
and the parallel versions are generally believed to perform better in rugged en-
ergy landscapes like those associated with protein structure prediction [3]. Oddly
enough, the parallel versions are nevertheless used to a much lesser extent than
their sequential counterparts in the field of protein structure prediction. We spec-
ulate that that is mostly because the effect of the choice of metaheuristics has
been paid little attention in this field that is notoriously haunted by many other
fundamental problems. The most significant obstacle probably being finding an
appropriate energy function that can be used to score a protein, which has by far
received the most attention over the years.

To our knowledge there exists only one parallel version of the Simulated an-
nealing algorithm known as the Parallel Tempering or Monte Carlo Replica Ex-
change algorithm [12, 3]. In Parallel tempering (PT) many simulations, or repli-
cas, are started and run in parallel. The solutions are sampled in the same fashion
as in the regular simulated annealing approach by making small alterations to the
solution and accepting the change with a certain probability. However, instead of
lowering the temperature like in the simulated annealing approach the simulations
are run at different but steady temperatures throughout the search. Two replicas
may be swapped with a probability that depends on both differences in energy and
temperatures, such that a replica running at a lower temperature can be exchanged
with a replica running at a higher temperature, thereby giving replicas a greater
chance of overcoming local minima barriers.

For genetic algorithms there exists several parallel variants that generally offer
significant improvements by converging faster at often better solutions than the
non-parallel version. There are two major approaches to parallelizing genetic
algorithms. One is often referred to as the master-slave model, where a single
process (the master) controls the genetic algorithm, but uses a number of other
processes (the slaves) to evaluate and possible breed the individuals. The slave
processes are run in parallel.

The other parallelization paradigm frequently used is the niche model (also
known as the island hopping or deme model). A niche genetic algorithm (nGA)
is an implementation where several instances of a genetic algorithm are run in
parallel, evolving sub-populations independently from each other (the different

106

niches). At certain points during evolution individuals migrate to other niches
and become part of the population of that niche. The major advantage of nGAs
is that they not only allow evolvement of multiple solutions at the same time,
they exploit the fact that different runs of the same genetic algorithm is likely to
produce different suboptimal solutions, that combined are likely to yield better
results. Like PT the advantage of nGA is expected to be more profound when the
fitness landscape is very rugged.

PT and nGA, with N replicas and niches respectively, essentially requires N
times more computational time than a single run of their sequential counterparts.
However, with multi-core computers and CPU clusters being readily available to
most researchers, they can be executed in parallel and the extra computational time
required does thus not impose a problem. On top of that, PT and nGA generally
search more efficiently and usually arrive at much better results, which makes the
parallelization of these meta-heuristics an attractive feature indeed.

In this paper we propose an iterative variant of a nGA, called inGA (iterative
niche genetic algorithm) for protein structure prediction. The algorithm is de-
signed to increase search efficiency by locating and converging on the low energy
structures faster than both nGA and PT. Essentially, the strategy corresponds to
letting all niches converge before migrating individuals between them and restart-
ing as described by Cantu-Paz and Goldberg [2]. However, while running each
niche to convergence worked well for the problem instances chosen by Cantu-Paz
and Goldberg, work by Heiler [5] suggest that for protein structure prediction the
quality of predicted structures decrease when the individuals are locally optimized
before the genetic operators are applied. Rather than running to convergence we
thus suggest a kind of early stopping, which generate low energy structures with-
out spending too much time on refining suboptimal structures.

2 METHODS

In the traditional niche genetic algorithm (nGA), evolvement of several popula-
tions are run in parallel and completely independent from each other. At certain
points individuals from one or more niches (islands or demes) are chosen accord-
ing to some selection strategy and migrated to other niches, where they replace
individuals also chosen according to some selection strategy. Usually the selec-
tion strategies are based on the fitness values of the individuals such that the best
individuals from one niche are migrated to another niche where they replace the
worst individuals, as this migration strategy yields the fastest convergence [1].
We propose an iterative niche genetic algorithm (inGA) that performs a type
of elitist refinement. Like the traditional niche genetic algorithm multiple popula-
tions are initially created and evolved in parallel, but unlike the traditional niche
algorithms, individuals do not migrate to other niches. Rather we stop evolvement
of all populations after a predefined number of generations, g, and choose the best
solution from each of the n niches. The individuals not selected are destroyed

107

while the selected individual are put together in a new population, pop. pop is
then cloned » times and the cloned populations are placed on the n niches where
evolvement of new (and initially identical) populations is then carried out for g
generations. The procedure of stopping, selecting, cloning and restarting is re-
peated until the algorithm converges. The pseudo code for the algorithm is given
in Algorithm 1

Algorithm 1 Pseudo code for inGA
niches «— CREATE _THREADS(n)
pop — NULL
while |DONE() do
for each n in niches do
if pop equals NULL then
population — CREATE _POPULATION()
else
population — CLONE (pop)
end if
niches[n| < start(GA(population,g))
end for
WAIT _FOR_COMPLETION (niches)
pop «— NULL
for each n in niches do
pop «— GET _BEST INDIVIDUAL(niches[n|)
end for
end while

This strategy requires the number of individuals in each niche to be the same
as the number of niches, although a different strategy could, of course, also be
utilized. In this work we ran 20 parallel niches with 20 individuals in each niche.

We did preliminary experiments to determine how many generations to run
the niches in each iteration. We wanted the GA to run just long enough to reach
a good solution that captured the best traits of that niche and by analyzing the
development of the energy we found that by far the largest improvements happen
during the first 100 generations. We thus settled at running 100 generations per
iteration. We did try to run the GA for 200 generations, but found that while the
initial niche solutions were improved, the final result was not, which is much in
keeping with the findings presented in [5].

The selection strategy employed both an elitism strategy and the fitness pro-
portionate selection strategy known as a roulette wheel. The elitism strategy
clones and transfers the 10% top scoring individuals unaltered to the next gen-
eration thereby ensuring that the best individuals are always kept. However, the
10% best individuals are also allowed to compete in the roulette wheel selection,
where each individual is chosen with a probability corresponding to its fitness
value. This strategy is chosen over rank selection to ensure a better chance for

108

low scoring individuals to be selected.

Individuals selected by the roulette wheel are subjected to crossover and mu-
tation. A multi-point crossover strategy is used where the number of crossover
sites, ¢, are chosen according to a Gaussian distribution. The ¢ actual crossover
sites are chosen at random. The advantage of multi-point crossover over single
point crossover is that it eliminates the bias of the end segments that is commonly
raised as an issue with the vector representation employed by most genetic algo-
rithms. Also multi-point crossover typically results in bigger alterations of the
solutions causing the genetic algorithm to explore very different regions of the
search space.

As is often the choice, the mutation rate is set fairly low to a value of 0.001.
Mutation is thus not the driving force in the folding process, but is used mainly as
a way to introduce new genes into the existing gene pool.

It should be noted that setting the hyper-parameters of genetic algorithms
(such as selection and recombination strategies) is an optimization problem in
itself. We have looked to the literature for inspiration and carried out numer-
ous experiments with different combinations before settling on the ones described
here.

2.1 Encoding

In this work we use a physics based energy potentials, called POISE [8], which re-
quires a full atom model. However, rather than searching the Cartesian space, only
dihedral angles, bond angles and bond lengths (referred to as the set of structural
variables) are explicitly represented as atom positions can be calculated directly
from these using standard matrix operations. A protein is thus encoded as a vector
(chromosome) of Sgycrvar, Where each Sy uervar represents the structural variable
of one amino acid.

One of the problems often encountered during encoding of proteins is the oc-
currence of clashing atoms. When two atoms come within very close proximity,
the laws of physic dictate that the energy will rapidly grow towards infinity and
the atoms will be forced apart. When using a full atom model one of two strategies
can be utilized; either one can explicitly check and make sure that atoms do not
clash or clash are tolerated, but heavily penalized by the energy function, such that
solutions with clashing atoms stand little chance of being accepted/selected. The
latter works best in conjunction with statistics based energy function where the
‘energy’ term is usually an artificial pseudo energy made up from many parame-
ters that are non-numerical in nature. With a pure physics based energy potential,
the infinitely large increase in energy caused by two clashing atoms will cause
overflow on a computer. As we utilize a pure physics based potential, a check for
clashing atoms is thus carried out, before a solution is evaluated and only clash-
free structures are accepted.

The protein is encoded sequentially and for every new residue added we check
whether the Sg,,crvqr chosen causes any atoms of the new amino acid to clash with

109

atoms in the residues that have already been added. If a clash occur a new Sgrucrvar
for the amino acid is chosen. If the problem with atom clash has not been resolved
after 20 different Sy, ,cvqr have been tried for the amino acid, we backtrack and
choose a new Sy crvqr fOr the previous residue. Although the theoretical running
time for this strategy is O(2") the running time was not found to be an issue in
practice.

2.2 Move set

The move set is defined as the set of possible combinations of bond lengths, an-
gles and dihedral angles for each amino acid. Theoretically, the move set is un-
restricted, but in practice we know that bond lengths and angles vary very little
and dihedral angles are heavily biased towards certain areas of the dihedral angle
space. Here, we thus choose bond angles and bond lengths for amino acids ran-
domly from within a small interval (up to £0.1) of the optimal angles and lengths
as defined in the AMBER 99 parameters.

The dihedral angles space is likewise restricted. In Fonseca and Helles [4]
a probability distribution is predicted for each amino acid in a sequence by con-
sidering the neighboring amino acids. This probability distribution is used here
such that the dihedral angles are chosen from this sequence-dependent distribu-
tion thereby maximizing the probability of sampling a realistic area of the dihedral
angle space.

2.3 Energy function

Generally speaking, energy functions can be divided into two categories: physics
based energy function and statistics based energy functions. The energy function
used here, called POISE, is a purely physics based potential, described in more
details in [8]. It combines the AMBER force field [12]:

bonds angles

Eprolein = Z Kb(bi - bo)2 + Z Ke(e[— 90)2
i i

dihedrals

+) kll+cos(np—y)+

12 6
Gij Gij
&)) D v

1
N N .
EE (s,

i<y \ i

with a Generalized Born component:

_ /11 qiq;
Vow = 2<€p €)Zzﬁ(j}g(m) @

w/ i<y

-

—r. i
GB 2 ij\2)
fi (rij) :{rij+R1R.iexP(4RiRj)}

110

Category Residues
1C75 o 71
INKD o 59
1YK4 B 52
209S B 67
1EJG of 46
11QZ of 81

Table 1: Test proteins

and a hydrophobic mean force potential:

Ne Ne
Vavre = Y, tanh(SA;) Y, tanh(SA))
i€SA; >A, JESA>Ac,j#i

3 Vij —Crk 2
h —| L= 3
) kexp([= }) 3

We refer to [8] for an explanation of the parameters.

The potential considers interatomic energies between all pairs of atoms and
the time complexity of calculating the potential is thus quadratic (O(n?)). Fortu-
nately, the vast majority of atoms in a protein are simply too far apart to exert any
power on each other and by simply omitting calculations of these interactions, the
function is implemented such that the potential is calculated in linear time.

It should be noted, that in this current work we are primarily concerned with
testing the performance of different parallel meta-heuristics. We have chosen the
POISE energy function because it gives a realistic impression of the very rugged
fitness landscape that the algorithms have to navigate around

2.4 Test proteins

A standardized, diverse set of proteins that is guaranteed to provide an adequate
representation of protein structures does unfortunately not exist. The test set used
here is constructed such that 2 proteins from each of the categories o, B and of§
have been picked from the PDB Select 25% 2. Only small to medium sized pro-
teins have been included. The smallest protein includes 46 amino acids and the
largest protein includes 81 amino acids (Table 1).

2.5 Benchmarking algorithms

In order to evaluate the performance of inGA we implemented both the traditional
nGA and the parallel version of SA, called parallel tempering (also known as the

Zhttp://bioinfo.tg.fh-giessen.de/pdbselect/recent.pdb_select25
111

Replica Exchange Monte Carlo algorithm). Parallel algorithms have numerous
times been reported to outperform the sequential algorithms, and here we thus
focus only on parallel algorithms .

The nGA use the same GA to evolve populations as in inGA, and like for
inGA we also used 20 parallel niches in nGA. The convergence rate of a nGA is
strongly affected by the migration scheme [1]. Migrating and replacing only a few
randomly chosen individuals leads to very slow convergence whereas migrating
the best and replacing the worst leads to the fastest convergence. To make the
comparison with inGA, which is highly elitist, fair, we employed a rather strong
selection scheme such that every 100 generation we chose the 50% best individu-
als from each population, cloned them and migrated them to another niche where
it replaced the 50% worst individuals.

The PT algorithm is implemented such that it utilizes the same encoding strat-
egy, energy function and move set as described above in order to ensure compara-
bility. The lowest and highest temperatures were determined in the way proposed
in [11], such that

Chighest = _SEmax/ln(PA(SEmax)) “4)

and

Clowest = _SEmin/ln(PA(SEmin)) 5)

Initial experiments measuring differences in the energy, E, between neighbor-
ing structures were run to determine the values of Ej,,, and Eyi,. PA(8Euqy) and
PA(SE ;) were set to 0.95 and 0.05 respectively. This resulted in Chighest = 3800
and cjoyesr = 10 with temperatures of the different replicas spaced according to:

temp_replicajy1 = 10xi*2+temp_replica; (6)

The observed average probability of accepting a swapping move between neigh-
boring replicas was roughly 20% in accordance with [7], but with swapping of
course occurring much more frequently between replicas running at high temper-
atures and much less frequently between replicas running at low temperatures.

In each time step every replica goes through N moves for a N-residue long
protein. A move consists of randomly selecting an amino acid and picking a new
Sstructvar fOr that amino acid. As is typical for the simulated annealing approach a
move from structure s to some neighbor s’ is accepted with the following proba-
bilities:

p B exp~ (Ey—E)/KpT Ey > E;, .
(accept) = { ; P (7)

where E is the energy of the structure and T is the temperature.

3 Although the results are not reported here, experiments with both the standard non-parallel
genetic algorithm and simulated annealing was carried out as well, and they did indeed perform
worse than the parallel versions

112

nGA inGA PT
1C75 | 319 287 513
INKD | 113 -14 200
1YK4 | 216 142 275
209S | 385 223 875
1EJG 4 -7 30
11QZ | 414 348 665

Table 2: Early results of the three algorithms. Energies are calculated with the POISE
potential. Lower energies are better

We ran 20 parallel simulations. The probability of accepting a swap between
to replicas, i and j, was given by:

P(i — j) = min{1,expl~(Bi=B)E~E)]y (8)

where B is the inverse temperature 3 = 1/kgT and B; > ;. Defining the probabil-
ity of swapping replicas such that it decreases exponentially as the gap between
temperature increase is usually employed in PT [3] and also the reason why it was
chosen here.

3 RESULTS AND DISCUSSION

Early results from experimentation with the three different parallelization schemes
on the test proteins, shown in Table 2, look very promising with inGA quickly and
consistently locating structures of lower energy than both nGA and PT. Please
note that we have not calculated RMSD of the final structures, because as such
the search algorithms are all oblivious to the concept of a native structures. They
seek merely to minimize energy as specified by the POISE potential and in this
experiment we are only interested in determining how efficient the different algo-
rithms are in finding low energy structures in the highly rugged energy landscape
associated with protein structure prediction energy functions. A different energy
function would most likely lead to different (either better or worse) quality of the
final structures in terms of RMSD to the native structure, but the differences in
how well the algorithms perform with respect to each other would (expectedly)
remain the same.

Given unlimited time, all meta-heuristics would probably find the same low
energy structures. Unfortunately, time is usually not unlimited in practice and
designing search algorithms that increases search efficiency such that we can ob-
tain better results faster becomes important. Parallelization has in itself increased
search efficiency, but from the results presented here it is evident that how the al-
gorithms are parallelized can also have a profound impact on how efficiently the
algorithms travel the energy surface in their search for the global minima.

113

The solution space for a given protein sequence is infinitely big and the key
to success for a meta-heuristics is usually a good balance between exploration
and exploitation. Minima should be explored thoroughly while still allowing the
algorithm to move relatively freely across energy barriers. PT, nGA and inGA all
differ from each other in this exploration-exploitation balance.

In PT the balance between exploration and exploitation is kept by running par-
allel simulations at different temperatures. The advantage of PT is that it can be
run for exactly as long as time permits, because while it may settle at a minima,
it does not really converge but rather keep exploring for a preset number of itera-
tions or until it is interrupted. As such the PT algorithm enjoys the same theoreti-
cal guarantee of finding the global minima as the simulated annealing algorithm.
However, while parallel tempering reaches low energy structures faster than se-
quential Monte Carlo simulations [3], the number of replicas used depend not so
much on available processors, but on what makes sense in order to maintain proper
communication between the different replicas. In other words, there appears to be
an upper limit on what we can expect to gain in performance that depend on the
problem and not on CPU power. For proteins of the length used here, 20 replicas
ensure appropriate communication across temperatures, and more replicas would
thus only increase the level of communication thereby setting off the exploration-
exploitation balance, which would not be desirable. Of course, for larger proteins
where the energy span between different structures is likely to be greater than
for the proteins used here, more replicas would most likely be required to ensure
proper communication.

One of the reasons why PT does not reach the low energy structures as fast as
the genetic algorithms is that although many replicas are run at the same time they
do not exchange information between replicas. If a good solution is encountered
at one temperature it may be exploited by swapping it to a lower temperature,
but it does not share its favorable characteristics with any of the other replicas.
Parallel tempering would most likely reach the same results as achieved by inGA,
but we postulate that because of the lack of information sharing it can generally
be assumed to take much longer.

The genetic algorithms on the other hand have a high degree of information
sharing via their crossover operator, which explains why the genetic algorithms
reach the lower energy structures much quicker. The migration scheme we have
used here for nGA is fairly aggressive to ensure faster convergence that would be
comparable with inGA. From the results it is evident that while nGA finds lower
energy structures than PT it does not reach structures with energies as low as
inGA. It should also be noted that despite the aggressive migration strategy, nGA
does not fully converge within 20 iterations for any of the test proteins, although
signs of convergence is beginning to show. We did initially experiment with a less
aggressive migration scheme (that migrated only the best individual), but energies
were significantly worse after the 20 iterations than with the chosen migration
scheme and it did of course not come near convergence within 20 iterations.

114

An issues with inGA is that it may simply converge prematurely. The iterative
strategy of inGA is highly elitist and with 20 niches it usually converges fully
within 20 iterations for the small to medium sized proteins used here. An elitist
strategy (always picking the best) favors exploitation heavily and will normally
only work well in smooth energy landscapes. The energy landscape of proteins is
obviously anything but smooth, but interestingly a balance with exploration does
nevertheless appear to be maintained in inGA by the niche approach. Exploration
can thus be controlled by simply adding more or less niches. This is indeed a
nice feature, since better performance can then be brought to depend more on
available CPUs rather than on available time. Obviously, adding more niches
would most likely require more iterations to fully converge, but the number of
iterations required to converge would expectedly grow much slower for inGA
than for nGA thereby making the difference in performance between inGA and
nGA greater as the number of niches increase.

4 CONCLUSIONS

We presented an iterative variant of the parallel niche genetic algorithm for pro-
tein structure prediction. Early results show that the algorithm finds significantly
lower energy structures than both the traditional niche genetic algorithm and the
parallel tempering algorithm within comparable time. The algorithm converges
quickly and the exploration-exploitation balance can be controlled with the num-
ber of niches included, which means that search efficiency can be expected to
scale nicely with the number of available CPUs.

References

[1] E. Alba. Parallel Metaheuristics. Wiley, 2005.

[2] E. Cant-Paz and D. E. Goldberg. Modeling idealized bounding cases of
parallel genetic algorithms. In In, pages 353-361. Morgan Kaufmann Pub-
lishers, 1996.

[3] D.J. Earlab and M. W. Deem. Parallel tempering: Theory, applications, and
new perspectives. Phys. Chem, 7:3910, 2005.

[4] R. Fonseca and G. Helles. Predicting dihedral angle probability distributions
for protein coil residues from primary sequence using neural networks. BMC
Bioinf., 2009.

[S] M. Heiler. Massively parallel gas for protein structure, 1998.

[6] G. Helles. A comparative study of the reported performance of Ab Initio
protein structure prediction algorithms. J. R. Soc. Interface, 5:387396, 2008.

115

[7] A. Kone and D. A. Kofke. Selection of temperature intervals for parallel-
tempering simulations. J. Chem. Phys., 122:206101, 2005.

[8] M. S. Lin, N. Lux Fawzi, and T. Head-Gordon. Hydrophobic potential of
mean force as a solvation function for protein structure prediction. Structure,
15:727-740, 2007.

[9] M. T. Oakley, D. Barthel, Y. Bykov, J. M. Garibaldi, E. K. Burke, N. Krasno-
gor, and J. D. Hirst. Search strategies in structural bioinformatics. Curr.
Prot.Pep. Sci., 9:260274, 2008.

[10] G. N. Ramachandran and V. Sasisekharan. Conformations of polypeptides
and proteins. Adv. Prot. Chem., 23:283-437, 1968.

[11] H. Sanvicente-Snchez and J. Frausto-Sols. A method to establish the cooling
scheme in simulated annealing like algorithms. LNCS, 3945:755-763, 2004.

[12] Robert H. Swendsen and Jian-Sheng Wang. Replica monte carlo simulation
of spin-glasses. Phys. rev. let., 57:2607-2609, 1986.

116

