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ABSTRACT 
Programming is challenging work. Programmers must navigate and understand large and 
complex source code, and the careful coordination of many peoples’ efforts is often required. 
Information visualization promises to help programmers cope with these challenges. On this 
basis, the use of visualization in programming is investigated in empirical studies.  
 Three studies show evidence of the usefulness of fisheye interfaces for navigating and 
understanding source code. Overall, participants in two experiments prefer using fisheye 
interfaces. Also, participants in a long-term field study adopt and use a fisheye interface in 
their own work. However, the fisheye interfaces that were studied do not seem useful in all 
tasks and problems detract from the usability of the interfaces. Issues that seem fundamental 
to the design and use of fisheye views are highlighted for further research. Analysis of 
participants’ interaction with the fisheye interfaces shows that participants perform some 
tasks with less physical effort. It seems useful to show readable information in the fisheye 
interfaces and participants find semantically related information the most useful.  
 The results suggest that a particular fisheye interface may not support all tasks in 
programming equally well. We argue that transient use of visualization may support specific 
infrequent tasks without permanently changing the interface. Two comparative evaluations of 
transient and permanent interfaces show no significant differences in task performance. 
Participants prefer a transient interface in one study and a permanent interface in the other. 
Results suggest benefits of a transient interface but also suggest problematic issues in 
designing transient visualizations for complex work.  
 A visualization to support coordination in programmer teams is investigated. Results 
suggest two uses of such visualization: for use during meetings and for occasional use to 
maintain awareness of the team’s work. Issues with the visualization’s design distinct to these 
two uses are found in a field study of the visualization deployed with two teams. 
 Multiple research methods are used to investigate fisheye interfaces in programming. 
Limitations of individual methods are thus offset and richer data are collected for analyzing 
and understanding how fisheye interfaces are used in programming. Regardless of the method 
used, however, participants seem to lack proficiency in using the fisheye interfaces. Finally, 
the field study triangulates multiple methods: experience sampling, logging, thinking aloud, 
and interviews. Benefits of combining multiple methods are identified and opportunities for 
improving the triangulation approach are suggested for further research. 
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DANSK RESUMÉ 
Programmering er udfordrende arbejde. Programmører skal navigere og forstå omfattende og 
kompliceret kildetekst, og nøje koordinering af mange personers indsats er ofte nødvendig. 
Informationsvisualisering kan potentielt hjælpe programmører til at overkomme disse 
udfordringer. På denne baggrund undersøges anvendelsen af visualisering i programmering i 
empiriske studier. 
 Tre undersøgelser viser tegn på fiskeøjegrænsefladers brugbarhed til at navigere og forstå 
kildetekst. Samlet foretrækkes fiskeøjegrænseflader af forsøgspersonerne i to eksperimenter. 
Endvidere tager forsøgspersonerne i et langtidsfeltstudie en fiskeøjegrænseflade i brug og 
anvender den i deres eget arbejde. Fiskeøjegrænsefladerne som undersøges synes dog ikke 
nyttige i alle opgaver og der er problemer som forringer deres brugsvenlighed. Spørgsmål 
som synes grundlæggende for fiskeøjevisningers design og brug fremhæves til videre 
forskning. Analyse af forsøgsdeltagernes interaktion med fiskeøjegrænsefladerne viser at 
nogle opgaver udføres med mindre fysisk anstrengelse. Det synes fordelagtigt at vise læsbar 
information i fiskeøjegrænsefladen og forsøgsdeltagerne finder størst nytte af semantisk 
relateret information. 
 Resultaterne antyder at visse fiskeøjegrænseflader ikke understøtter alle opgaver i 
programmering lige godt. Vi argumenterer for at flygtig brug af visualisering kan understøtte 
specifikke, ikke-hyppige opgaver uden at grænsefladen ændres permanent. To sammen-
lignende evalueringer af flygtige og faste grænseflader viser ingen signifikante forskelle i mål 
for opgaveløsning. Samlet foretrækker forsøgspersonerne en flygtig grænseflade i den ene 
undersøgelse og en fast grænseflade i den anden. Resultater antyder fordele ved en flygtig 
grænseflade, men også problemer i design af flygtige visualiseringer til komplekst arbejde. 
 En visualisering til støtte af koordinering i udviklingsteam undersøges. Resultater antyder 
to anvendelser af en sådan visualisering: til brug i forbindelse med møder og til lejlighedsvis 
at vedligeholde opmærksomhed om teamets arbejde. Problemer med visualiseringens design 
vedrørende disse to anvendelser afdækkes i et feltstudie af visualiseringen med to team. 
 Flere forskningsmetoder bruges i undersøgelse af fiskeøjegrænseflader i programmering. 
Begrænsninger ved individuelle metoder opvejes således og omfattende data indsamles til at 
analysere og forstå hvordan fiskeøjegrænseflader bliver brugt i programmering. Uanset 
hvilken metode der anvendes, synes forsøgspersonernes kunnen i fiskeøjegrænsefladernes 
brug dog at være begrænset. Endelig bruger feltstudiet triangulering af flere metoder: 
experience sampling, logning, tænke-højt, og interview. Fordele ved at kombinere flere 
metoder identificeres og muligheder for at forbedre trianguleringsmetoden foreslås til 
yderligere forskning. 
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INTRODUCTION 
This thesis is about the use of information visualization and interaction techniques to support 
programming. Before summarizing the contributions made, the background for the thesis is 
outlined. 

BACKGROUND 

Developing a computer-based system is a challenging undertaking in which programmers 
play a key role. Programmers are faced with increasingly complex systems and demands for 
high quality and reliability. Large and complex systems are difficult to understand and they 
necessitate the coordination of many programmers’ efforts. Thus programming has long been 
considered challenging both as an individual activity and as a team activity (Weinberg, 1971). 
 Programming is challenging as an individual activity because it is mentally demanding. 
For instance, the programmer often must understand a program by looking at its source code 
(Latoza et al., 2006; Ko et al., 2007). For many programs, the source code is large and 
complex, and has often been developed over several years, by many people. For instance, the 
Debian 4.0 system contains program packages of a mean size of 28,544 lines of code, 288 
million lines in all, developed over more than ten years, by more than 1,000 programmers 
(Gonzales-Barahona et al., 2009; Debian.org, 2009). Consequently, navigating the source 
code to understand a program can be mentally very demanding.  
 Programming is challenging as a team activity because it typically requires the 
coordinated efforts of many people. The programmers in a team must share a common view 
of how the system should work, and they must coordinate their work so that it fits together 
without redundancy and on time (Kraut and Streeter, 1995). Coordination in teams therefore 
adds to the difficulties of programming.  
 Programming environments, languages, methods, and tools are continuously being 
developed to lessen the difficulties of programming, but many difficulties persist. As an 
example, object-oriented programming in widespread use today may ease the design of 
complex systems. However, object-oriented programming is likely to cause delocalization, 
which makes it hard to understand source code because conceptually related pieces of code 
are located in non-contiguous parts of a program (Soloway et al., 1988; Dunsmore et al., 
2000). Faced with such difficulties, a hope is for innovations in programming environments 
that amplify programmers’ abilities. 
 One way to amplify the abilities of programmers is through information visualization—
use of interactive visual representations of abstract data to amplify human cognition (Card et 
al., 1999). An early example of information visualization in programming is the SeeSoft 
system (Eick et al., 1992). SeeSoft uses color to represent statistics associated with the lines 
of text, and fits 50.000 lines in a 1280 x 1024 pixel display. When SeeSoft is used on source 
code, the programmer can see for example which parts of the program that have been 
frequently modified. If adopted in programming environments, information visualization thus 
promises to amplify the cognitive abilities of programmers. 
 Many innovative visualization techniques have been developed, but few have been 
adopted and used in real-life work. For wider adoption of visualization techniques, their 
usefulness must be convincingly demonstrated, key factors in their design must be 
understood, and guidelines must be provided to ease their design. Fortunately, evaluations are 
helping us understand how different techniques influence users’ abilities and behavior in 
particular tasks (e.g., Cockburn and McKenzie, 2003; Hornbæk and Frøkjær, 2003), or 
demonstrate the usefulness of specific visualization systems to professionals in specific fields 
(e.g., Saraiya et al., 2005; Seo and Shneiderman, 2006). Although information visualizations 
are increasingly being evaluated, the potential uses and limitations of many visualization 
techniques are not clearly understood. 
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CONTRIBUTIONS 

This thesis provides empirically founded insight into the use of information visualization to 
support programmers. Two uses of visualization have been investigated; the first aimed at 
supporting navigation and understanding of source code, the second at supporting 
coordination in collocated programmer teams. Contributions fall in four areas: (1) fisheye 
interfaces that aim to support navigation and understanding of source code, (2) transient use 
of visualization to support specific tasks in complex work, (3) use of visualization to support 
coordination in programmer teams, and (4) evaluation of visualization techniques in complex 
work. 

ABSTRACTS OF PAPERS 

To give an overview of the five papers comprising this thesis, the abstracts of the papers are 
included below. 
 
Paper 1: Evaluating a Fisheye View of Source Code 
Navigating and understanding the source code of a program are highly challenging activities. 
This paper introduces a fisheye view of source code to a Java programming environment. The 
fisheye view aims to support a programmer's navigation and understanding by displaying 
those parts of the source code that have the highest degree of interest given the current focus. 
An experiment was conducted which compared the usability of the fisheye view with a 
common, linear presentation of source code. Sixteen participants performed tasks 
significantly faster with the fisheye view, although results varied dependent on the task type. 
The participants generally preferred the interface with the fisheye view. We analyse 
participants' interaction with the fisheye view and suggest how to improve its performance. In 
the calculation of the degree of interest, we suggest to emphasize those parts of the source 
code that are semantically related to the programmer's current focus. 
 
Paper 2: Transient Visualizations 
Information visualizations often make permanent changes to the user interface with the aim of 
supporting specific tasks. However, a permanent visualization cannot support the variety of 
tasks found in realistic work settings equally well. We explore interaction techniques that 
transiently visualize information near the user's focus of attention. Transient visualizations 
support specific contexts of use without permanently changing the user interface, and aim to 
seamlessly integrate with existing tools and to decrease distraction. Examples of transient 
visualizations for document search, map zoom-outs, fisheye views of source code, and 
thesaurus access are presented. We provide an initial validation of transient visualizations by 
comparing a transient overview for maps to a permanent visualization. Among 20 users of 
these visualizations, all but four preferred the transient visualization. However, differences in 
time and error rates were insignificant. On this background, we discuss the potential of 
transient visualizations and future directions. 
 
Paper 3: Transient or Permanent Fisheye Views: A Comparative Evaluation of Source Code 
Interfaces 
Transient use of information visualization may support specific tasks without permanently 
changing the user interface. Transient visualizations provide immediate and transient use of 
information visualization close to and in the context of the user’s focus of attention. Little is 
known, however, about the benefits and limitations of transient visualizations. We describe an 
experiment that compares the usability of a fisheye view that participants could call up 
temporarily, a permanent fisheye view, and a linear view: all interfaces gave access to source 
code in the editor of a widespread programming environment. Fourteen participants 
performed tasks of both high and low complexity so as to investigate varied programming 
activity. All participants used each of the three interfaces for between four and six hours in 
all. Time and accuracy measures were inconclusive, but subjective data showed a preference 
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for the permanent fisheye view. We analyze interaction data to compare how participants 
used the interfaces and to understand why the transient interface was not preferred. We 
conclude by discussing seamless integration of fisheye views in existing user interfaces and 
future work on transient visualizations.  
 
Paper 4: Fisheyes in the Field: Using Method Triangulation to Study the Adoption and Use of 
a Source Code Visualization 
Information visualizations have been shown useful in numerous laboratory studies, but their 
adoption and use in real-life tasks are curiously under-researched. We present a field study of 
ten programmers who work with an editor extended with a fisheye view of source code. The 
study triangulates multiple methods (experience sampling, logging, thinking aloud, and 
interviews) to describe how the visualization is adopted and used. At the concrete level, our 
results suggest that the visualization was used as frequently as other tools in the programming 
environment. We also propose extensions to the interface and discuss features that were not 
used in practice. At the methodological level, the study identifies contributions distinct to 
individual methods and to their combination, and discusses the relative benefits of laboratory 
studies and field studies for the evaluation of information visualizations. 
 
Paper 5: WIPDash: Work Item and People Dashboard for Software Development Teams 
We present WIPDash, a visualization for software development teams designed to increase 
group awareness of work items and code base activity. WIPDash was iteratively designed by 
working with two development teams, using interviews, observations, and focus groups, as 
well as sketches of the prototype. Based on those observations and feedback, we prototyped 
WIPDash and deployed it with two software teams for a one week field study. We summarize 
the lessons learned, and include suggestions for a future version. 

FISHEYE INTERFACES 

A fisheye interface combines local detail and global context in a single view of an 
information space (Furnas, 1981). One type of fisheye interface in programming aims to help 
navigating and understanding source code by displaying those parts of the code that have the 
highest degree of interest given the programmer’s current focus. We implemented such a 
fisheye view in the source code editor of a widespread programming environment. Based on 
that implementation, we compared fisheye views to linear views of source code (papers 1 and 
3), and we studied the long-term use of a fisheye interface in programming (paper 4).  
 Overall, we find evidence in support of fisheye interfaces’ usefulness to programmers. 
Participants in two controlled experiments (paper 1 and 3) preferred a fisheye interface to a 
linear source code interface. Participants in a field study (paper 4) adopted and used the 
fisheye interface regularly and across different activities in their own work for several weeks. 
The fisheye interface does not seem useful in all tasks and activities, however. Participants in 
one experiment (paper 1) completed tasks significantly faster using the fisheye interface, a 
difference of 18% in average completion time, but differences were only found for some task 
types. Although the results indicate usability issues, they also suggest that some tasks were 
less well supported by the fisheye interface. In addition, data from the field study (paper 4) 
showed periods where programmers did not use the fisheye interface, and debugging and 
writing new code were mentioned as activities for which the fisheye interface was not useful.  
 Specifically, the fisheye view enables programmers to perform some tasks with less 
physical effort compared with a normal linear view of source code. This was found in 
controlled experiments (paper 1 and 3) by analyzing in detail how participants’ performed 
tasks with a fisheye view compared with a linear view. Using a fisheye view, participants 
directly used information in the context area or navigated with sparse interaction; they read 
program lines in the context area or clicked in the context area to jump to a particular line. 
We saw this behavior also in observations of programmers using a fisheye interface in real-
life work (paper 4).  
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 Consistently across our studies (paper 1, 3, and 4), we found that lines semantically 
related to the user’s focus were the most important—such lines were the most frequently used 
and were the most often mentioned by participants as a benefit of the fisheye interface. An 
interesting proposition is to expand on the use of semantically related lines in the fisheye 
interface with program slicing. Tools for program slicing have been found useful for 
debugging in that they help programmers to localize code that contain program faults (Weiser 
and Lyle, 1986; Francel and Rugaber, 2001). Integration of slicing in the fisheye interface 
could thus potentially increase the utility of the fisheye interface in programming. 
 Our results support earlier findings that visualization techniques combine with 
highlighting of occurrences to different effect (Baudisch et al., 2004). In one experiment 
(paper 1), the fisheye interface resulted in faster overall task performance compared with a 
baseline interface using a linear view of source code, whereas no differences in task 
performance were found in a later experiment (paper 3). All three interfaces used in the latter 
experiment featured semantic highlighting of code and an overview ruler that showed 
highlighted occurrences. Results from analysis of participants’ interaction suggest that the 
highlighting helped participants navigate to occurrences in all interfaces. However, a notable 
benefit of the fisheye interface is that some tasks can be performed with less navigation 
compared with an overview, because code containing the highlighted occurrences and their 
surrounding context can be directly read in the fisheye interface.  
 The fisheye interfaces studied here automatically change the view to include context 
information related to the user’s focus. Earlier research has studied another type of fisheye 
interface, called elision interface in the following, that requires users to manually expand or 
collapse parts of the document (Cockburn and Smith, 2003; Hornbæk and Frøkjær, 2003). 
The two types of interface share the difficulty of determining which document parts are 
important a priori so that the resulting view is useful across tasks (paper 1; Hornbæk and 
Frøkjær, 2003). An advantage of fisheye interfaces that automatically change the view is that 
users can see document parts that are related to their focus, even if the parts are located far 
apart in the document. In practice, the effort required in collapsing and expanding document 
parts in elision interfaces may outweigh the benefits of faster navigation in the document 
(Cockburn and Smith, 2003). Finally, automatically changing the view based on changes in 
the user’s focus may confuse or disorient users (paper 1 and 4) whereas a text representation 
that users can manually change is predictable and thus less disorienting. 
 In summary, our studies contribute empirical evidence in support of fisheye interfaces’ 
usefulness in programming. Rich data were obtained by using multiple research methods. The 
data show how programmers use fisheye interfaces effectively to navigate and understand 
source code, and how a fisheye interface could be used across different activities in 
programmers’ own work. However, the results are limited by methodological issues and also 
by investigating only particular designs of fisheye interfaces. Although alternative designs 
were initially explored—informed by my own experiences as a programmer and by informal 
evaluations with others—only one line of iterative refinement of fisheye interface was 
investigated, which arguably limits the potential outcome (Greenberg and Buxton, 2008). 
Furthermore, the fisheye interfaces studied here provide context to the user’s focus only 
within a single source code file. Fisheye interfaces may provide context across the entire code 
base (Storey et al., 2000; Kersten and Murphy, 2006) and use diverse task information to 
establish the user’s focus, such as previous navigation activity (DeLine et al., 2005) or task 
descriptions (Lawrance et al., 2008).  

TRANSIENT VISUALIZATIONS 

The fisheye interface investigated in paper 1 makes permanent changes to the source code 
view with the aim of supporting navigation and understanding of source code. However, 
programmers work on a diversity of tasks that may not all be equally well supported by the 
fisheye interface: for instance, programmers did not find it useful for debugging or writing 
new code (paper 4). This issue is a general one: visualizations often make permanent changes 
to the user interface with the aim of supporting specific tasks. However, many applications 
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are designed to support a variety of tasks in complex work settings, and changes made to an 
interface to improve its use in some tasks may have adverse effects on its use in other tasks.  
 We argue that transient use of visualizations may support specific infrequent tasks 
without permanently changing the interface. Earlier research has lead to similar ideas 
(Baudisch et al. 2004), and several lightweight interaction techniques that use transiency have 
been researched (e.g., Fekete and Plaisant, 1999; Zellweger et al., 2000; Baudisch et al., 2003; 
Bezerianos and Balakrishnan, 2005). To provide a basis for generalizing about transient use 
of information visualization, we compared transient and permanent use of visualization in two 
experiments (paper 2 and 3). Three notable findings were made that relate to the 
characteristics of transient visualizations described in paper 2.  
 First, we found that for particular navigation tasks, users’ immediate and close access to a 
transient map overview can reduce sensory-motor efforts, as indicated by less mouse 
movement and perceived user effort, and lead to higher satisfaction and preference compared 
with a permanent overview (paper 2). Importance of closeness is also demonstrated by for 
instance Drag-and-pop (Baudisch et al., 2003) and Vacuum (Bezerianos and Balakrishnan, 
2005): both techniques have been shown to enable quick access to remote objects in the 
display by bringing them closer. Minimal physical movement was one design principle 
underlying the design of Vacuum (Bezerianos and Balakrishnan, 2005).  
 Second, it seems a transient visualization may support a specific task more effectively by 
allowing users to call up a tailored representation of only the types of information useful in 
that specific task. That is, the relatedness of the information to the user’s current focus of 
attention may affect the direct usefulness of the visualization for the specific task. In paper 3 
we compared a transient fisheye view and a permanent fisheye view that were based on the 
same degree-of-interest function. Instead, it might be more effective if the user can call up 
different transient fisheye views that each provides only the information pertinent to the 
user’s specific focus of attention in a particular task.  
 Third, the transiency or briefness of a particular transient visualization must match the 
briefness of the user’s interaction with information needed for the supported tasks. Some 
participants found that the transient fisheye interface disappeared too easily—seemingly, it 
disappeared before participants were finished using the information provided in the fisheye 
interface (paper 3). In programming, users might benefit from being able to alternate between 
a fisheye view and a plain view as appropriate for the task at hand. In contrast, a transient 
representation can be appropriate for tasks that require only brief use of the information (e.g., 
paper 2; Fekete and Plaisant, 1999). 
 The two empirical studies in paper 2 and 3 provide a basis for elaborating on the 
characteristics of transient visualizations. However, the comparative evaluation of only two 
specific applications of transient visualization with counterpart permanent visualizations is 
not enough to reliably conclude about benefits of transient visualizations in general. More 
research is clearly needed. One question to consider in future research is how a transient 
visualization tailored for use in a specific task can be meaningfully compared with a 
permanent visualization that must support varied work activity.  

VISUALIZATIONS TO SUPPORT TEAM COORDINATION 

Developing a large system is too much work for one programmer. Fortunately, work can 
often be partitioned among the programmers in a team. Doing so, however, requires time 
consuming communication between team members, for instance to coordinate work (Brooks, 
1975; Ko et al., 2007). One reason that coordination requires communication is that visibility 
of the work of individual team members, which is useful for maintaining awareness of what is 
going on, is lacking.  
 In paper 5, we aimed to support awareness of a team’s work through visualization of 
work items. Work items are descriptions of work tasks partitioned so that individual team 
members can carry them out (Knudsen et. al, 1976). However, the systems used to manage 
work items are not designed to provide an overview of the work items or the ongoing changes 
made to work items. A visualization called WIPDash was designed to address these needs. 
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WIPDash was deployed with two collocated teams, running on a large display in each team’s 
room and on individual team members’ workstations. The teams were observed during one 
week. No effect was found of the visualization in measures of situational awareness and 
group satisfaction, but observations, logged activity data, and discussions with the teams gave 
insight into the teams’ use of the visualization. 
 Based on comments from participants (paper 5) and from earlier research, it seems that 
programmer teams appreciate a combined view of the entire shared workspace and changes in 
it (Biehl et al., 2007). Our results suggest two types of use of such visualizations in a 
programmer team environment. First, teams can use the visualization during meetings. In our 
study, one team used WIPDash on the large display during daily standup meetings, and they 
would like a view that is tailored to those meetings (paper 5). Whereas visualizations aimed at 
individual users have long been researched (e.g., Eick et al., 1992; Froehlich and Dourish, 
2004; Ellis et al., 2007), little is known about how visualization can support collaboration in 
teams, for instance during meetings as seen in our study. Interest is gaining, however, in the 
collaborative use of visualization (e.g., the CoVIS’09 workshop). 
 Second, team members may use the visualization to maintain awareness of the team’s 
work by glancing at the display at natural breakpoints in their task (Biehl et al., 2007) or 
when entering or leaving the room (paper 5). One problem that detracted from WIPDash’s 
usefulness for such occasional glancing seems related to the automatically cycling between 
different views in the visualization. An aim of the cycling was to limit the amount of 
information in the display, but in practice it was found that nothing of interest was shown in 
parts of the cycle. Participants suggested cycling only between views that contain recent 
changes, but alternative approaches may be needed to make the display convey an appropriate 
amount of information while being consistent. Design and evaluation of this type of display, 
often called peripheral display in the literature, is complicated by inconsistent use of 
terminology, and frameworks and guidelines have only recently started to emerge (e.g., 
Mankoff et al., 2003; Pousman and Stasko, 2006; Matthews et al., 2007).  
 In general, improving awareness has been the aim of much research (Schmidt, 2002). In 
programming, tools for helping programmers maintain awareness of team members’ activity 
in the source code have been found useful for identifying and resolving conflicts (e.g., Biehl 
et al., 2007; Sarma et al., 2008). In contrast, WIPDash shows a higher-level view of a team’s 
work based on the team’s repository of work items. Grinter (1995) found such higher-level 
views in demand but lacking in code-centric tools. An interesting perspective for future 
research is to combine information about work items with information about code activity in 
one visualization. Finally, WIPDash was aimed at coordination in collocated teams, but 
visualization of work items may also be useful to help maintain awareness of work in 
distributed teams (Gutwin et al., 2004) and work of other teams (Begel et al., 2009). 

EVALUATION OF VISUALIZATION TECHNIQUES IN COMPLEX WORK 

Demonstrating the utility of an information visualization system or technique has been argued 
to be crucial to the adoption of the system or technique (Plaisant, 1995). To that end, 
laboratory experiments are weakened by their lack of realism, which long-term case studies in 
contrast are rich in. Yet, understanding the effects of particular design factors of a 
visualization technique may further development of the technique and eventually lead to its 
adoption and use in practice. To that end, laboratory experiments are arguably strong where 
case studies fail in producing precise results about the effects of individual factors in the 
design of a visualization (Lam and Munzner, 2008).  
 All research methods have weaknesses or limitations, but the limitations of different 
methods can be offset by using multiple methods (McGrath, 1995). We researched fisheye 
interfaces in programming using (1) two different strategies, laboratory experiment and field 
study, and (2) multiple data collection methods, or types of measures, in combination. The 
research allowed us to assess the methods’ use, individually and in combination, for 
evaluating fisheye interfaces in programming.  
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 First, the laboratory experiments provided basis for understanding participants’ 
interaction with the fisheye interfaces and how the interfaces affect participants’ performance 
in representative tasks (paper 1 and 3). Data from the field study did not facilitate such 
analysis, but allowed us to learn whether participants adopted the fisheye interface in real 
work, how the interface was used across a variety of tasks, and which types of information in 
the fisheye interface that were used (paper 4). The field study offset at least two limitations of 
the laboratory experiments: the tools available in the programming environment were 
controlled in the experiments, whereas participants in the field study could use any tool 
available in their programming environment; and only particular types of tasks were used in 
the experiments, whereas the field study investigates participants doing their own work tasks.  
 Second, the multiple data collection methods combined in the field study provided 
stronger evidence of adoption and use of the fisheye interface (paper 4). For instance, 
thinking aloud provided concrete situations of use that showed diverse uses of the fisheye 
interface, but it is hard to generalize about how participants used the fisheye interface in their 
work from the 55 observed incidents of use. In contrast, the 370 hours of activity logging 
showed overall patterns in how the fisheye interface was used throughout participants work, 
but it is hard to establish participants’ intent from the activity data.  
 Altogether, the multiple methods provided us with richer data for understanding how 
fisheye interfaces are used in working with source code, for uncovering usability issues with 
the interfaces, and for further developing the theoretical foundations of fisheye views. 
However, some issues limit the conclusions that can be drawn from the results.  
 Learning is important to consider when interpreting our results. Participants in the 
experiments might not have had sufficient time to gain proficiency in use of the interfaces 
(paper 1 and 3). Consequently, the effects of the fisheye interfaces on participants’ behavior 
and performance measured in experiments may not reflect effects that would be found in 
practice after longer time of use. Participants in the field study used the fisheye interface for 
weeks, but still did not consider themselves proficient (paper 4). Beyond initial learning of the 
interface, participants may need long time to gain experience with using the interface across 
work tasks. Moreover, it seems natural that people are focused on getting work done, not on 
learning how to work more effectively (Carroll and Rosson, 1987). Researchers and designers 
are thus challenged to improve the learnability of new interfaces. In the present research, it 
stresses the need for stimulating participants to use of the interface in their work in new and 
varied ways, some of which may develop into habits. Perhaps such learning can be impelled 
by the researcher’s active involvement in participants’ work in longer-term studies, as 
proposed by Shneiderman and Plaisant (2006). In any case, the field study approach does not 
allow us to precisely determine what effects the interface has on participants’ productivity, 
however proficient participants become.  
 Further, limitations in our approach to method triangulation in the field study present 
opportunities for future research. First, to better understand how participants’ intent relates to 
their actions, data from probes could be coupled more strongly to activity logging, for 
instance by probing participants conditionally based on their activity. We used conditional 
probes in a simple way, but the potential of this approach calls for further exploration. 
Second, to allow stronger extrapolation of the observed situations of use, thinking aloud 
recordings may be better coupled to quantitative activity data. Alternatively, a broader and 
more representative sample of participants’ work may be collected either by using long-term 
screen recordings (Tang et al., 2006) or recordings that are triggered by activities (Akers et 
al., 2009). 
 Although participants adopted the fisheye interface and made comments that suggested 
that they would continue to use it after the field study, we did not investigate whether they did 
continue to use it. The field study reduces the reactivity of measures compared with the 
laboratory experiments, but does not eliminate it entirely (McGrath, 1995). Investigating 
whether participants use the fisheye interface after longer time using unobtrusive measures 
could help demonstrate the utility of fisheye interfaces more convincingly.  

 Finally, integrating a fisheye interface a code editor so that it is suitable and stable 
enough for real-life programming required extensive work and still participants experienced 
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problems. Earlier research has pointed out that visualization systems and tools must be stable 
and integrate with existing work practices (Gonzales and Kobsa, 2003; Shneiderman and 
Plaisant, 2006). But compared with standalone visualization systems, the difficulties of 
properly integrating a visualization technique in an existing tool present a potential barrier to 
conducting long-term studies. However, another approach challenges researchers to persuade 
participants to use a new tool that implements the visualization technique in question, instead 
of a tool they may already be proficient in using.  
 In all, our research demonstrates benefits and limitations of using multiple methods to 
evaluate fisheye interfaces in programming. Combined, the laboratory experiments and the 
field study provided more convincing evidence that fisheye interfaces are useful to 
programmers. Perhaps more important, however, the multiple methods provided richer data 
for better understanding how programmers use fisheye interfaces for navigating and 
understanding source code—understanding which characteristics of a visualization technique 
that contribute to improving users’ work may be crucial to the further development of the 
technique and to its eventual adoption and use in practice. Our results indicate challenges for 
future work in evaluating visualization techniques in complex work. For instance, a key 
barrier to assessing a novel technique’s potential is that participants may not learn and adopt 
the technique across tasks in their work. Opportunities for combining data from multiple 
methods have been suggested that may inspire future research in evaluation of visualization 
techniques in complex work. 

CONCLUSION 
The research in this thesis suggests that information visualization can improve programmers’ 
tools and environments. Looking ahead, I think several problems and opportunities warrant 
further investigation. We need to better understand the characteristics of fisheye interfaces 
that contribute to enhancing programmers’ abilities and how those characteristics can be more 
widely utilized in programming. Also, there are problems specific to the integration of fisheye 
interfaces in source code editors: tools that have many diverse uses may not be easily 
replaced and we need to better understand how visualizations may extend such tools without 
adverse effects. Further, questions fundamental to the design of fisheye interfaces still need 
answering: How can we determine degree of interest? How can we distort the view to fit all 
interesting information while also supporting effective interactions that feel natural to users? 
Lack of design guidelines is a barrier to wider adoption of fisheye interfaces. Finally, there is 
arguably a need for novel methods for evaluating visualization techniques. My hope is that 
the use of methods triangulation presented in this thesis will be replicated and extended in 
further research.  
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ABSTRACT
Navigating and understanding the source code of a program
are highly challenging activities. This paper introduces a
fisheye view of source code to a Java programming envi-
ronment. The fisheye view aims to support a programmer’s
navigation and understanding by displaying those parts of
the source code that have the highest degree of interest given
the current focus. An experiment was conducted which com-
pared the usability of the fisheye view with a common, linear
presentation of source code. Sixteen participants performed
tasks significantly faster with the fisheye view, although re-
sults varied dependent on the task type. The participants
generally preferred the interface with the fisheye view. We
analyse participants’ interaction with the fisheye view and
suggest how to improve its performance. In the calculation
of the degree of interest, we suggest to emphasize those parts
of the source code that are semantically related to the pro-
grammer’s current focus.

Author Keywords
Fisheye view, information visualization, programming, Eclip-
se, user study

ACM Classification Keywords
H.5.2 [Information Interfaces and Presentation (e.g., HCI)]:
User Interfaces

INTRODUCTION
Programming is a complex human activity. The programmer
is typically required to develop correct source code from a
general description of how a program should work. As the
source code grows in size and complexity, the navigation
between and within the files comprising the source code be-
comes mentally demanding. In addition, the programmer
must continually switch between writing new code and un-
derstanding existing code, possibly constructed by other per-
sons. Extensive research has aimed to find ways of support-
ing the programmer in these activities [11, 12, 17].
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One approach to supporting navigation and understanding of
source code is information visualization [10, 14]. The first
instance of such an approach was probably Furnas’s fisheye
views [5]. In fisheye views, all source code lines are as-
signed a degree of interest calculated from their a priori im-
portance and their relation to the line of source code in focus.
Lines with a degree of interest below some threshold can
thus be removed or rendered at smaller sizes for a view that
contains both details and context. Fisheye views promise
to integrate pertinent information in just one view; informa-
tion that in state-of-the-art programming environments like
Eclipse, NetBeans and Visual Studio are presented in sepa-
rate windows or require explicit action on part of the user.

The benefits of applying fisheye views to programming have
not been examined empirically. Empirical studies of fish-
eye views in other domains have shown positive results, for
example [15], but have also shown high task completion
times [6], interference with users’ ability to remember the
location of objects [16], and low incidental learning [8].

This paper presents an extension of a widely used open-
source development environment with a fisheye view of
source code. The design of the fisheye view is described, as
are the underlying decisions. We present an empirical eval-
uation of the fisheye view that emphasizes both measures of
usability and analysis of interaction patterns. Based on the
evaluation, we suggest potential improvements to the algo-
rithms and user interface design underlying the fisheye view.
We discuss in particular the algorithm used to calculate the
degree of interest; this is relevant not only for fisheye views
of source code, but also for the general notion of fisheye
views and for fisheye interfaces in other domains.

RELATED WORK
Fisheye views have been used to visualize source code and
programs at different levels of detail. The SHriMP system,
for example, uses fisheye views on graph representations of
the program structure [18]. Turetken et al. [19] described
how to use fisheye views of models used in systems analy-
sis and design. Below, however, we discuss only the use of
fisheye views, and distortion techniques more generally, on
a single file of source code. In addition we discuss empir-
ical evaluations of applying fisheye views to other types of
mainly textual data, such as electronic documents and web
pages.

Furnas [5] defined a general case fisheye view and suggested
that it could be applied to source code, so as to display con-
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text information in addition to the lines of source code that
the programmer focuses on. To create such a view, lines
of source code are assigned a degree of interest based on
(1) their level of detail, or a priori importance, and (2) their
distance from the user’s focus (e.g., the currently selected
line of source code). The level of detail is determined from
the hierarchical structure of the program, as given by the in-
dentation of source code lines. Thus, enclosing conditional-
or loop-statements are considered of greater general interest
than highly indented lines. Likewise, local details are con-
sidered more interesting than remote details: lines indented
on the same level and in the same block as the line in fo-
cus are considered of high interest to the user, while lines in
other blocks are considered less interesting. Furnas’s fish-
eye view hides program lines with a degree of interest below
a certain threshold. The display space gained from hiding
parts of the source code provides for contextual information
(i.e., lines of source code with a high degree of interest not
visible in a traditional view). Furnas argued that the fisheye
view, in virtue of its combination of program lines close to
the focus and higher-level information, would show the lines
of greatest interest to the programmer, thereby facilitating
programming.

Furnas’s paper left unanswered several questions about the
implementation of fisheye views for source code. Below we
discuss these questions to outline related work; the remain-
der of the paper may be seen as an attempt to answer them.
One question concerns the use of display space in the fish-
eye view, in particular how to handle a large amount of lines
with the same high degree of interest. Koike [9] proposed
to keep the total amount of information displayed (i.e., the
number of source code lines) constant, and presented an al-
gorithm that usually, but not always, fills the available space.
No general answer to this question is therefore available.

Another question concerns how to establish the user’s focus
in the source code, needed to calculate the distance compo-
nent of the degree of interest function. In Furnas’s paper the
focus is given by the currently selected line. It is not obvious,
however, that the focus need be only one line, nor clear how
to determine the focus in situations where the user interacts
with the source view using a mouse. An alternative to the
fisheye view, source code elision, requires the user to manu-
ally fold and unfold blocks of program lines, thus avoiding
the issue of defining the focal point. In Jaba [3], for example,
methods in Java classes were elided, diminishing the bodies
of methods while displaying the method signature lines in
normal size. An empirical study by Cockburn and Smith [3]
showed that such elision may improve navigation tasks in
programming. However, the cost of the user’s direct manip-
ulation of the view may in practice prove to outweigh the
benefits of elision. The experimental tasks used in Cockburn
and Smith’s study were simple and required little use of the
folding mechanism, leaving this question unanswered.

A third question concerns whether we can utilize richer in-
formation about the program structure than Furnas did, that
is, enhancing the degree of interest function beyond using
just indentation level. One technique to distort the source

code that does this is program slicing. Program slicing was
first described as a method used by programmers for reduc-
ing the amount of code to look at when debugging or try-
ing to understand programs [20]. Program slicing limits the
view of the source code to those program lines which affect
the value of a specific variable. Tools for performing slic-
ing automatically have been found useful in debugging [21].
However, program slicing most often uses only variables to
slice the source code, not the structure of the source code, as
Furnas did. The choice of which variables to slice is usually
left to the user. In contrast to the intention of fisheye views,
this requires explicit and deliberate action on part of the user.

Yet another question concerns how to embed a fisheye view
in a source code editor, using the tools available in mod-
ern integrated development environments. As pointed out
by Koike [9], the focus may change continually when a user
edits source code. The effect of such changes on a straight-
forward implementation of fisheye views would probably be
visually very complex. This begs the question how the user’s
interaction with the editor affects the view, and how often the
view should be updated when the user’s focus changes. In
addition, the effects of editing (e.g., pasting or typing) source
code on the visual presentation is not treated in discussions
of fisheye views familiar to us.

We are aware of no evaluations of how fisheye views affect
programming at the level of interacting with individual files
of source code. However, the use of fisheye views on elec-
tronic documents and web pages has been investigated em-
pirically. Paez et al. [13] conducted an empirical study of
electronic documents where the font size was bigger for the
title, headings, and key sentences compared to other parts
of the document. Initially, the entire document was fitted
on the screen, and the user could zoom in on interesting
sections. The empirical study did not find this interface to
perform better than hypertext on measures of time, but did
find some positive user reactions towards the zooming inter-
face. Hornbæk and Frøkjær [8] compared a fisheye interface
for electronic documents to overview+detail and linear inter-
faces. In a task that required participants to read documents
as a basis for writing essays, the fisheye enabled subjects
to quickly get an overview of and read the documents. Af-
terwards, however, participants were able to answer fewer
questions about the content. Fishnet [1] extended a web
browser with a fisheye view by using a bifocal display in
which the context area was compressed, while search terms
were kept readable and highlighted. In an empirical study,
Fishnet was found to improve certain web search tasks, de-
pending on the organization of the web page. However, only
3 out of 13 participants preferred the fisheye interface.

In summary, Furnas’s original paper and related work have
only partly addressed the questions regarding how to imple-
ment fisheye views for source code. Additionally, we find
no studies that have investigated empirically how fisheye in-
terfaces for source code work; studies of fisheye views for
electronic documents and web pages show mixed results.
The remainder of the paper therefore explores answers to
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Figure 1. Screenshots of (a) the Linear and (b) the Fisheye interface showing the same source file of 161 lines.

the questions raised, and provides an empirical evaluation of
our implementation of a fisheye view.

A FISHEYE VIEW OF SOURCE CODE
To investigate the questions above, we explored a number of
alternative designs for fisheye views of source code. Figure 1
(b) shows our preferred design, which we refer to as the Fish-
eye interface. Below we explain the design, and compare it
with a baseline linear interface shown in Figure 1 (a).

Both interfaces include an editor, implemented as a plugin in
Eclipse, an extensible development environment1. The plu-
gin extends the Java editor included in Eclipse’s Java Devel-
opment Tools. All features except line numbers and syntax
highlighting of the source code are disabled in the editor.
Both interfaces use an overview+detail approach in which
an overview of the entire document is shown to the right of
the detail view window; previous research [8] suggests such
an interface superior to using just a detail view. The detail
view shows a part of the document that the user has selected.
The overview shows the source code reduced in size to fit
the entire document within the space of the overview area;
the standard source code highlighting is preserved. The text
is unreadable, but it is possible to discern structural features
such as method boundaries and blocks of javadoc comments.
The part of the document shown in the detail view is visu-
ally connected with its position in the overview by lines. The
overview supports the mouse interaction normally expected
from a scrollbar; the thumb can be dragged to scroll the de-
tail view and clicking above or below the thumb scrolls the
detail view one page up or down.

The above features are common to the interfaces; the next
four sections describe the design of the Fisheye interface.
The plugin can be downloaded from the authors’ web sites.
1http://www.eclipse.org

Focus and Context Area
In the Fisheye interface, the detail view of the source code is
divided into two areas: the focus area and the context area.
The total available space is evenly divided between the two
areas. The editable part of the view, the focus area, is re-
duced in size to accommodate a context area. The context
area uses a fixed amount of space above and below the fo-
cus area. It contains a distorted view in which certain parts
of the source code, being of less relevance given the focus
point, are diminished or elided. The focus point is defined
as all lines visible in the focus area. Thus, the context area
is updated when the user scrolls the view, and remains un-
changed when the user moves the caret within the bounds
of the focus area. Our design hereby circumvents the issues
raised earlier concerning how often the focus changes and
the potential problems of frequently updating the view.

Degree of Interest Function
A degree of interest (DOI) function determines if and how
much the lines are diminished in the context area. The de-
gree of interest for a program line x given the focus point p
is calculated as:

DOI (x|p) = API (x)−Dsyntactic(p, x)−Dsemantic(p, x)

First, the DOI function is based on an a priori interest (API)
component defined by (a) the type of program line for which
the degree of interest is currently being calculated and (b)
that line’s indentation level. The type of a program line is de-
termined by deducing the most general abstract syntax tree
(AST) node from the line. A priori interest for a node n in
the AST of the source file with root node r is defined as:

API (n) = BI (n)−
√

wLODd(r, n)

A priori interest is the base interest of the node, BI (n), di-
minished with the factor wLOD by the node’s distance to the
root, d(r, n). Program lines containing one of the keywords
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Base interest for an indenting program statement 30
Base interest for a package declaration 20
Base interest for a type declaration 20
Base interest for a method declaration 20
Base interest for a field declaration 10
Base interest for a variable declaration 10
Base interest for block closing ”}” 2
Level of detail weight wLOD of node in API(n) 2

Table 1. DOI function constants in the Fisheye interface.

package, class, interface, or method, are assigned a higher a
priori interest than other lines. Enclosing statements—that
is, those lines containing one of the Java keywords catch, if,
finally, for, switch, try, or while—are also assigned a higher
a priori interest. This is similar to Furnas’s proposal. Ta-
ble 1 lists the values of BI (n) for different types of lines
that are used to balance how lines are diminished in the con-
text area. The constants were found through iterations of
the design and evaluation with programmers. For efficiency,
we process consecutive program lines as a block whenever
possible. AST nodes that span multiple lines, and lines of
other types than those mentioned above, for example com-
ment lines, are processed as blocks.

A second component of the DOI function is based on the
line’s distance from the focus point. The distance is calcu-
lated as the sum of the syntactic distance and the semantic
distance. The syntactic distance is calculated similar to Fur-
nas’s proposal; lines in the same indented block as the focus
point are closer to the focus point than lines on other inden-
tation levels and in different blocks, thus contributing to a
higher degree of interest. In addition to syntactic distance,
the Fisheye interface also calculates semantic distance from
the focus point. Lines containing declarations of classes,
methods and variables that are referenced in the focus point
are deemed more relevant than other lines, including syntac-
tically close lines, and are therefore assigned an even higher
degree of interest. This type of line is highlighted with an
alternate background color to express their semantic relation
to the visible lines in the focus point. Thus, our design move
beyond the ideas of Furnas by using semantic information in
the second component of the DOI function.

Magnification Function
A magnification function prioritizes each program line ac-
cording to its degree of interest in order to reduce the size of
the least interesting lines. A line’s magnification is thus de-
termined by its relevance relative to the amount of lines yet
to be allocated space in the context area. Lines with similar
degrees of interest are prioritized according to their distance
in lines from the focus area, so that lines closest to the fo-
cus area are allocated space first. Figure 2 lists a simplified
version of the algorithm used in the Fisheye interface.

We chose this strategy in the design of the Fisheye interface
to solve the problem of deciding how to use the available
display space, an issue that we discussed in the section on re-
lated work. An alternative implementation of Furnas’s fish-
eye view is to use a magnification function that does not take

linesLeft = countLines(blocks);
foreach (block in prioritized blocks) {

ratio = availableSpace / linesLeft;
zoom = block.getDOI() * SQRT(ratio);
block.setZoomLevel(ZOOM_FACTOR * zoom);
linesLeft -= block.getLines();
availableSpace -= block.getHeight();

}

Figure 2. Pseudo-code for calculating the magnification
of lines in the context area.

(a) (b)
Figure 3. Fisheye view of 161 lines of source code; (a) the
Fisheye interface and (b) with alternative magnification
function that clips the source code to fit the view.

the amount of available space into consideration, and simply
clips the view to the available display space. Figure 3 illus-
trates the difference between the two strategies. The fixed
degree of magnification for the source lines in Figure 3(b)
causes lines with a high degree of interest, that are far from
the focus area, to be suppressed or clipped from the view.
Similar approaches were used by Cockburn and Smith [3]
and Hornbæk and Frøkjær [8]. In contrast, our prioritization
strategy in Figure 3(a) first allocates space to the lines with
high DOI to assure that they are included in the view.

User Interaction
The focus area offers the same facilities for interaction as a
normal editor. The caret can be moved within the bounds of
the focus area, scrolling the view contents when moving the
caret against the upper or lower bound. The context area au-
tomatically reduces in size to fit the content; near the top of
the document, for example, when the user scrolls by hold-
ing an arrow key to move the caret past the upper edge of
the focus area, the upper part of the context area retracts.
By moving, or brushing, the mouse over lines in the context
area, those lines are highlighted in the overview. Clicking on
a line in the context area centers the focus area around that
line and places the caret in the line.

EXPERIMENT
To gain a better understanding of the usability of fisheye
views of source code, a controlled experiment was con-
ducted in which the Fisheye interface was compared to the
Linear interface. One goal of the experiment was to mea-
sure the usability of the interfaces for programming tasks,
especially to seek evidence regarding the expectations about
fisheye views raised by Furnas. Another goal was to describe
how users interact with the two interfaces, so as to gain an
understanding of how the design presented in the previous
section affect user’s navigation and understanding.
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Participants
The 16 participants (2 female) were students at the authors’
department (7) or professional programmers (9). Partici-
pants were screened to have at least one year of program-
ming experience in an object-oriented language. Half of
them had over five years of general programming experi-
ence. The participants were between 24 and 34 years old.

Tasks
Tasks addressed both navigation and program understand-
ing. Navigation tasks from a study of source code elision [3]
were used to evaluate the hypothesis that the fisheye view en-
ables the programmer to navigate faster in the source code.
We expected that it would be easier to find the information
required to solve the task with the Fisheye interface, because
there would be no need for scrolling the view. In cases
where the information was not directly accessible without
scrolling, we expected the user to navigate more quickly to
the required information once it had been located.

To study whether the fisheye view affects program under-
standing, we also used composite task types that require
more complex user interaction than the navigation tasks.
These composite task types were based on issues in object-
oriented programming, including delocalization, which have
been discussed in the empirically based literature on pro-
gramming (e.g., [4]). Finally, we used a type of task con-
cerning the understanding of control structures in the source
code, similar to tasks used in a study of control structure di-
agrams [7]. Below we describe the instances of these task
types, which make up the 18 tasks used in the experiment.

One-step-navigation tasks
The first of two types of navigation task was of a form sim-
ilar to: ”In the method ’update’, find the program line with
the first call to the method ’Math.min’.” The tasks of this
type varied only with respect to the names of the methods
and used source files from [3]. The tasks were repeated with
source files of 186–187 lines and 368–376 lines.

Two-step-navigation tasks
The following is an example of the second type of navigation
task used in the experiment: ”In the method ’hasGreen’, find
the return type of the method that is called last.” Only the
method name in the task text were varied between tasks of
this type. Like the one-step-navigation tasks, this type of
task used source files from an earlier study [3], repeated with
source files of 162–176 lines and 365–366 lines.

Determine-field-encapsulation tasks
One of the composite tasks involved determining whether
or not two fields are encapsulated, that is, whether the vari-
ables are protected from external reference and correspond-
ing get- and set-methods exist. The tasks were of the fol-
lowing form, varying only by the names of the fields: ”How
many of the fields ’fText’ and fFont’ are encapsulated cor-
rectly?” The source used in these tasks contained 340–361
lines and 34–38 methods—too many methods to be visible
simultaneously in the Fisheye interface.

Task type Linear Fisheye
One-step-navigation 2 2
Two-step-navigation 2 2
Determine-field-encapsulation 1 1
Determine-delocalization 2 2
Determine-control-structure 2 2
Total 9 9

Table 2. Number of tasks performed by each participant.

Determine-delocalization tasks
Another challenging type of task involved determining delo-
calization in the source code, for example: ”The method ’up-
date’ (line 207–214) contains a total of 6 method calls. How
many of the methods called are declared in this file?” These
tasks used source code files from the JHotDraw 5.2 program
(http://www.jhotdraw.org/) with a number of method calls
between five and nine, of which several were calls to meth-
ods declared in other files (delocalized code).

Determine-control-structure tasks
The last type of task concerned the control structure within a
single method. An example of a task concerned with count-
ing enclosing statements read: ”In the method ’mergeTer-
mInfos’ (line 201–238), how many for, while and if/else
statements enclose line 233?” An example of a task con-
cerned with finding the closing brace of a block read: ”In
the method ’renameFile’ (line 225–281), find the line con-
taining the ’}’ that ends the if-block which starts on line
241.” These tasks used source code files from two Apache
Jakarta projects selected to contain methods with a body of
more program lines than visible simultaneously in the Fish-
eye interface.

Materials
Participants used a laptop computer for the experiment with
the screen set to a 1024 x 768 resolution with 16-bit color.
The Eclipse window used all available screen space. For
input, participants used the laptop’s keyboard and an opti-
cal, wireless mouse. Tasks were presented in a task view in
Eclipse next to the editor view. Participants typed their an-
swer to the tasks in the task view and clicked a button to con-
tinue, enabling us to accurately register completion times.

Design
A within-subjects experimental design was used, the inde-
pendent variables being interface type (Fisheye, Linear) and
task type (One-step-navigation, Two-step-navigation, Deter-
mine-field-encapsulation, Determine-delocalization, Deter-
mine-control-structure). Participants performed a set of nine
tasks with each interface, see Table 2. The order of tasks and
interfaces were systematically varied and counter-balanced
across participants.

Procedure
Prior to solving the 18 experimental tasks, participants were
given an introduction lasting about 30 minutes. In the intro-
duction, participants were explained how to operate the two
interfaces, and were given a few minutes to try them. As part
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of the introduction, participants also performed a set of nine
warm-up tasks; five tasks using the Linear interface and four
tasks using the Fisheye interface. Participants were allowed
to ask questions during the warm-up tasks. Details of the
tasks were explained and, if participants were hesitant, they
were reminded how to operate the interfaces.

After the introduction, a set of nine experimental tasks were
performed with each of the two interfaces. The participants
were urged to give correct answers as quickly as possible,
without asking questions during the experiment. A question-
naire about the interface just used was administered to the
participants following each set of tasks. This questionnaire
contained five questions from QUIS [2], and eight additional
questions specific to the experiment (see Table 4). A third
and final questionnaire was administered after all tasks had
been completed, asking the participants for their age, gen-
der and programming experience. The questionnaire also
asked participants to compare the Fisheye interface with the
Linear interface on a comparative scale. Additionally, par-
ticipants were asked to write advantages and disadvantages
of the Fisheye interface compared to the Linear interface.
Finally, they were given the opportunity to verbally express
their experiences with the two interfaces. The entire experi-
ment lasted between 60 and 90 minutes for each participant.

RESULTS
The data collected comprised task completion times, accu-
racy, preference, and participants’ satisfaction with the in-
terfaces. Data were analyzed with repeated measures analy-
sis of variance. Because the distribution of task completion
times was positively skewed, the completion times were sub-
jected to logarithmic transformation prior to analysis.

Accuracy
We find no significant difference between interface type in
the accuracy of participants’ answers to the tasks, F (1, 14) =
.147, p = .707. In total, 288 tasks were completed by the
participants, of which 129 tasks were completed correctly
with the Linear interface (89%) and 131 tasks completed
correctly with the Fisheye interface (91%).

Task Completion Times
The task completion times are summarized in Table 3. The
average task completion time is lower with the Fisheye inter-
face compared to the Linear interface, F (1, 14) = 4.76, p =
.047. However, tasks and interfaces interact, F (8, 7) =
9.57, p = .004, and we thus analyzed data per task to de-
scribe those task related differences.

Completion times show no significant difference between
the interfaces in one-step-navigation tasks, F (1, 14) =
0.57, p = .463. In two-step-navigation tasks, participants
used significantly less time with the Fisheye interface com-
pared with the Linear interface, F (1, 14) = 9.49, p = .008,
a difference of 18% in average completion time. We ex-
pected the fisheye view to generally improve navigation.
However, the results suggest improvements only when nav-
igating to methods that are visible and highlighted because

Task type Linear Fisheye
M SD M SD

One-step-navigation a 32.3 16.2 30.5 13.5
Two-step-navigation a 39.9 13.9 33.8 13.9
Determine-field-encapsulation b 80.7 24.7 96.8 37.6
Determine-delocalization a 92.1 46.9 61.1 34.1
Determine-control-structure a 43.9 17.1 50.5 20.7
Average 55.2 35.8 49.8 31.5

Table 3. Task completion times in seconds. Significantly
lower times are shown in bold. (a) N=32, (b) N=16.

they are being referenced in the focus area, which occurred
in the second step of the two-step-navigation tasks.

Participants tended to complete determine-field-encapsula-
tion tasks slower using the Fisheye interface compared with
the Linear interface, but the difference in average comple-
tion time was not significant, F (1, 14) = 2.24, p = .157.
Though not significant, we did not expect to find inferior
performance of Fisheye compared to the Linear interface.

In determine-delocalization tasks, participants counted how
many of the methods or fields used in the body of a given
method that were declared in the source file. On average,
participants completed those tasks significantly faster (about
51%) using the Fisheye interface compared with the Linear
interface, F (1, 14) = 13.9, p = .002.

The determining-control-structure tasks involved counting
the conditional and loop statements that enclosed a given
program line, or finding the closing brace of a given loop
control structure. Overall, we found no difference in com-
pletion time for these task types, F (1, 14) = 3.85, p = .070.
However, participants used more time to find the closing
brace of a given loop control structure with the Fisheye inter-
face compared to the Linear interface, F (1, 14) = 7.73, p =
.015. When implementing the Fisheye interface, we as-
signed a relatively low base interest to closing braces, Ta-
ble 1. As a result, the closing braces to be found in these
tasks were not visible in the context area. This may explain
why participants used more time with the Fisheye interface,
because they had to scroll the view to find the closing brace.

Satisfaction
Overall, participants preferred the Fisheye interface com-
pared with the Linear interface (t = −5.229, df = 14, p <
.001). Only one participant slightly preferred the Linear in-
terface and one participant did not answer the question.

Average satisfaction scores for the two interfaces are sum-
marized in Table 4 for the 14 questions that the participants
answered. All questions were answered on a scale from one
to seven. Across all questions, the participants rated the
Fisheye interface better than the Linear interface, multivari-
ate analysis of variance F (1, 15) = 10.0, p = .005. Below
we analyse each of the questions; all tests are made with in-
dividual analyses of variance tested against F (1, 15).

In general, participants liked the Fisheye interface better
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than the Linear interface (p < .006). The Fisheye interface
also scored better on the scale from terrible to wonderful
(p < .004). There was no significant difference in how the
participants found the two interfaces on the scale from hard
to easy (p > .9). However, three participants mentioned
as a disadvantage of the Fisheye interface that it required
more training to use effectively. Participants found the Fish-
eye interface both more pleasant (p < .03) and more fun
(p < .001) to use than the Linear interface.

On the scale from confusing to clear, the participants found
the Fisheye interface to be significantly less clear than the
Linear interface (p < .04); the only question where the Fish-
eye interface scores lower than the Linear interface. Five
participants commented as a disadvantage of the Fisheye in-
terface that it could be confusing to use, in particular with
scrolling. Also, some participants did not clearly understand
that program lines were shown and highlighted because they
were related to one or more lines in the focus area. We found
no significant difference between the two interfaces in the
participants’ answers of whether they often lost their orienta-
tion in the source code (p > .05), nor was there a difference
in the answer to whether it was clear to them where in the
source code they were looking (p > .25). These results sug-
gest that the Fisheye interface was not confusing in general,

Satisfaction question Linear Fisheye

1. How did you find the interface in general?
Very poor - Very good 4.13 (.34) 5.44 (.20)

2.-6. How was the interface to use?
Terrible - Wonderful 4.00 (.29) 5.13 (.15)

Hard - Easy 5.19 (.37) 5.13 (.31)
Frustrating - Pleasant 3.81 (.41) 5.00 (.29)

Boring - Fun 3.56 (.29) 5.25 (.35)
Confusing - Clear 5.81 (.31) 4.50 (.37)

7. It was clear most of the time where I was in the source code.
I disagree - I agree 5.88 (.31) 5.25 (.36)

8. I often lost my orientation in the source code.
I disagree - I agree 2.88 (.43) 2.56 (.26)

9. How do you perceive the tasks?
Very challenging - Very easy 5.31 (.27) 5.56 (.24)

10. How were your answers to the tasks?
Very poor - Very good 5.56 (.26) 5.75 (.27)

11.-12. Was the source code...
Hard to understand - Easy to understand 4.81 (.31) 5.19 (.23)
Hard to overview - Easy to overview 4.44 (.38) 4.94 (.28)

13. Were methods you were trying to locate in the source code...
Hard to locate - Easy to locate 3.50 (.39) 5.31 (.35)

14. Were other information in the source code...
Hard to locate - Easy to locate 3.50 (.35) 5.60 (.22)

Table 4. Average satisfaction scores (and standard error
of the mean) for the 14 satisfaction questions for the two
interfaces. The anchor points on a semantic differential
scale is shown below each question. Significantly better
scores are shown in bold.

but rather that it was confusing when searching by scrolling
in the source code.

Participants found it easier to find methods (p < .004) and
other information (p < .001) in the source code with the
Fisheye interface than with the Linear interface. Also, most
participants commented in the questionnaire that they felt
the Fisheye interface gave a better overview of the source
code and helped to locate methods and variables. About
half of the participants commented as an advantage that they
could see enclosing statements in the Fisheye interface.

The fisheye view’s poor performance in determine-field-en-
capsulation tasks may be explained by comments made by
some participants. They found it difficult to search for vari-
ables and methods in the context area while scrolling, be-
cause the context area was displaying lines which are se-
mantically related to the lines in the focus area. As lines
scroll in and out of focus, different semantic relationships in
the source code take effect, resulting in irregular changes to
the context area.

The focus area in the Fisheye interface was too small accord-
ing to comments made by 12 out of the 16 participants. A
few participants added that they would find this a problem
when writing or editing the code.

Interaction with the Interfaces
Data describing the participants’ interaction with the inter-
faces were automatically collected during the experiment.
We visualized this interaction with progression maps, which
have previously been used to analyze reading of electronic
documents [8]. Analysis of the progression maps revealed
patterns in the participants’ interaction which, in many of
the tasks, are clearly distinguishable between the two in-
terfaces. The patterns evident in the progression maps sup-
port the conclusions based on the task completion times, but
also indicate some problems with the Fisheye interface. We
show representative patterns and provide counts of partici-
pants who interact in a similar way.

The progression maps are used to show which part of the
source file was visible in the focus area at a given time during
the task (see Figure 4 to Figure 8). Dashed horizontal lines
ending in a circled number to the right of the map indicate
program lines that hold the answer to the task. In progression
maps for tasks where more than one program line is used to
answer the task, the numbers indicate the order in which the
lines are to be used. Certain forms of interaction are anno-
tated with symbols in the progression maps: a hand symbol
when user scrolled the view by dragging the scrollbar thumb
and an arrow-in-document symbol when user clicked in the
context area. Other interaction forms are directly discern-
able from the map, such as scrolling by arrow keys and page
up/down keys respectively.

Typical patterns found in progression maps for two of the
two-step-navigation tasks, see Figure 4, show that with the
Linear interface, participants had to search through the file
for both methods. With the Fisheye interface, 11 out of
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(a) Linear interface (b) Fisheye interface
Figure 4. Progression maps, two-step-navigation tasks.

16 participants were able to find the return type in the sec-
ond method directly in the context area. Similar differences
are evident in progression maps for the one-step-navigation
tasks.

Progression maps representative for determine-field-encap-
sulation tasks are shown in Figure 5. The patterns indicate
that while participants found places of interest and jumped
by clicking in the context area in the Fisheye interface, they
also needed to scroll to search the 34–38 methods. Analysis
of the progression maps does not yield any explanation why
participants solved this type of task slower with the Fisheye
interface, as the task completion time results suggest. One
possible cause is that participants searched more slowly by
scrolling in the Fisheye interface than in the Linear interface.

Typical interaction patterns can be seen in the representa-
tive progression maps for determine-delocalization tasks in
Figure 6 (involving variables) and Figure 7 (involving meth-
ods). The progression maps confirm that participants made
several searches and jumps in the source code with the Lin-
ear interface. Being asked to determine how many of the
called methods were defined in the source file, they had to
search for the definition of each method, returning each time
to find the name of the method called next, start searching
again, and so forth. The progression maps for the Fisheye
interface show that once participants had navigated to the
method, they were able to use the fisheye view’s context area
to find the information necessary to complete the tasks. In
the Fisheye interface, 12 out of the 16 participants completed
the tasks with minimal interaction.

Figure 8 shows the progression maps for the two determine-
control-structure tasks that involved counting program state-

(a) Linear interface (b) Fisheye interface
Figure 5. Progression maps, determine-field-encapsula-
tion tasks.

(a) Linear (b) Fisheye
Figure 6. Progression maps for determine-delocalization
tasks involving variables.

ments enclosing a given line. In the first task, all participants
using the Linear interface scrolled down to the specified line,
and were then able to answer the task without scrolling fur-
ther, Figure 8(a). Six out of eight participants using the Fish-
eye interface continued to scroll the focus area to determine
the control structure and answer the task, Figure 8(b). The
Fisheye interface thus makes the task of finding the enclos-
ing statements harder for participants. The second task, Fig-
ure 8(c) and 8(d), shows a different result. All participants
using the Linear interface, once they had found the specified
line, had to scroll back at least once to determine the con-
trol structure. Seven of eight participants using the Fisheye
interface, however, could determining the control structure
using the context area without scrolling any further. These
interaction patterns confirm our hypothesis that the Fisheye
interface helps to determine large control structures faster.

For determine-control-structure tasks where participants had
to find the closing brace of a loop-structure, the progression
maps did not show any apparent differences in how partici-
pants interacted with the Fisheye interface compared to the
Linear interface. The inferior performance with the Fish-
eye interface in these tasks, with respect to task completion
times, could be caused by the smaller focus area.

DISCUSSION
The results from our experiment show an overall improve-
ment in task completion times with the fisheye interface for
representative program navigation and understanding tasks.
Yet, strong differences in task completion times were found
among tasks. Participants were equally accurate in answer-
ing the tasks. They much preferred the Fisheye interface and
scored it significantly higher on 6 of 14 satisfaction ques-
tions, for example concerning whether the interface was eas-
ier or more pleasant to use. By analyzing progression maps,
we identified great variation in how the participants inter-
acted with the Fisheye interface. In spite of the short time
the participants used the interface, several of them displayed
very effective use of the fisheye view. The context area was
frequently used for searching and navigating in the source
code. Many tasks were completed with sparse interaction
resulting in reduced physical effort compared to the interac-
tion with the Linear interface.

To discuss our design and empirical results, we return to the
questions raised in the section on related work. The first
question concerned how to use the display space in a fisheye
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(a) Linear (b) Fisheye
Figure 7. Progression maps, determine-delocalization tasks involving methods.

(a) Linear, task 1 (b) Fisheye, task 1 (c) Linear, task 2 (d) Fisheye, task 2
Figure 8. Progression maps for determine-control-structure tasks concerned with counting enclosing statements. The
line numbered 1 indicates the program line given in the task, line 2 the farthest line needed to answer the task.

view. Many fisheye views of text [1, 3, 8] show mostly di-
minished text in the context area. We propose to have mainly
readable text displayed in the context area. This allows direct
use of the information in the context view, which is evident
in the tasks where users directly read source lines displayed
in the context area or when they click in the context area to
jump to a certain line. Further experimental work is needed
to understand the difference between these two approaches
to displaying content in the context views. Alternative ap-
proaches should be considered; for example, dispensing with
a static context area and displaying context information in
proximity to the focus point would make it clear to the user
why that context information is displayed.

A second question concerned how to establish the user’s fo-
cus point in the source code. Our solution to use a focus
area spanning many lines as the focus point gives the inter-
face stability, because the context view rarely needs updat-
ing. Some participants, however, were confused about what
semantic relation that caused program lines to be shown and
highlighted in the context area. How to make transparent to
users why lines are shown in the context view is not easy.
One solution could be to allow the user to control the fo-
cus point more accurately, for example by the position of the
caret. This would allow for an easily understandable relation
between focus point and context information, but would also
make the interface visually busy.

We succeeded in using richer information in establishing
the degree-of-interest, a challenge also raised in the section
on related work. Our data show that the Fisheye interface
helped participants to find and navigate to a method, if the
method is semantically related to the focus area. Partici-
pants also spent less time using the Fisheye interface to de-

termine which methods are called in the focus area. The
significant effect of showing lines in the context area that
are related to the focus area may have been influenced by
those lines being highlighted. Nevertheless, we argue that
fisheye views in source code editors should include program
lines which are referenced by the lines in the programmer’s
focus. In contrast, the results of our experiment leads us to
believe that the Fisheye interface is less useful for display-
ing lines containing declarations of methods and variables,
which are not directly related to the programmer’s point of
focus. In common programming environments, such lines
are typically displayed in outlines of the edited source file.
Considering the tradeoff between showing those lines in the
context area compared to having a larger focus area for edit-
ing source code, we think that the base interest assigned to
such lines as method headers in the Fisheye interface seems
too high (see Table 1). Future work could examine the rel-
ative utility of the various kinds of information that could
be shown in the context area, but also alternative ways of
creating the degree of interest function; automatically, for
example, by using eye tracking or logging of participants’
navigation.

The fourth question raised in the section on related work
concerned how to integrate fisheye views in a modern de-
velopment environment. Our plug-in works with Eclipse,
but some issues remain. In particular, our implementation
of how the fisheye view changes when scrolling is still un-
satisfactory: the information needed when scanning during
scrolling seems much different from that needed while read-
ing and editing source code.

At least three problems and limitations of the experiment
should be considered when interpreting the results. First,
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participants were given relatively short time to practice with
the interfaces before the experiment. Informal observations
made during the experiment suggest that participants some-
times hesitated or expressed doubts, leading us to suspect
that they were given insufficient time to become confident
in using the Fisheye interface. Second, the realism of the
programming environment was reduced because we limited
the tools available to the participants during the experiment.
Modern source code editors often offer advanced features,
such as hyperlinking and advanced highlighting. Also, many
tools are usually available in addition to the editor, such as
the outline view mentioned earlier, which may affect how
programmers use the editor. Our results do therefore not
necessarily reflect the effect of the Fisheye interface in prac-
tice. Third, simple programming activity was investigated
in this paper. In particular, we investigated only navigation
and program understanding of static programs, not of pro-
grams that are created or modified by the user. We still face
the challenge of uncovering what long term effects fisheye
views in source code editors may have on programming.

CONCLUSION
We have presented a design and empirical evaluation of a
fisheye view applied to source code. The aim has been
to support programmers in navigating and understanding
source code by displaying those parts of the source code that
have the highest degree of interest given the programmer’s
current focus. In designing the interface, we have priori-
tized to retain a static division between the focus and the
context areas of the fisheye view, and to saturate the context
area with readable information. Further, we have introduced
semantic relations between parts of the source code in the
calculation of the degree of interest. The interface is fully
integrated with the Eclipse development environment.

In an experiment, we compared the usability of an interface
using the fisheye view with an interface using a linear view
of the source code. Sixteen participants performed nine tasks
with each of the two interfaces. Overall, the participants per-
formed the tasks significantly faster with the fisheye view,
although an effect of task type was present. The participants
generally preferred the interface with the fisheye view. The
experiment illustrates how participants interacted with the
fisheye view, thereby identifying information in the context
area that was useful to participants. Semantically related in-
formation seems important, while source code displayed be-
cause of a high a priori degree of interest was less useful.

In summary, fisheye views seem promising for displaying
source code. Our study suggests, however, that further work
should attempt to improve performance across all tasks, and
that the degree of interest function may be further refined.
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ABSTRACT 

Information visualizations often make permanent changes to the 

user interface with the aim of supporting specific tasks. However, 

a permanent visualization cannot support the variety of tasks 

found in realistic work settings equally well. We explore 

interaction techniques that transiently visualize information near 

the user’s focus of attention. Transient visualizations support 

specific contexts of use without permanently changing the user 

interface, and aim to seamlessly integrate with existing tools and 

to decrease distraction. Examples of transient visualizations for 

document search, map zoom-outs, fisheye views of source code, 

and thesaurus access are presented. We provide an initial 

validation of transient visualizations by comparing a transient 

overview for maps to a permanent visualization. Among 20 users 

of these visualizations, all but four preferred the transient 

visualization. However, differences in time and error rates were 

insignificant. On this background, we discuss the potential of 

transient visualizations and future directions. 

Categories and Subject Descriptors 

H.5.2 [Information Interfaces and Presentation (e.g., HCI)]: 

User Interfaces, I.3.6 [Methodology and Techniques]: 
Interaction Techniques 

General Terms 

Design, Human Factors 

Keywords 

Interaction techniques, visualization, transient, lightweight, fluid, 
overview+detail, fisheye 

1. INTRODUCTION 
Many information visualizations make permanent changes to the 

way the visual structure of information appears in the user 

interface. Different mechanisms are used toward this change, such 

as transforming the visual structure, adding features to the visual 

structure, and using multiple views. For example, Fishnet [1] 

permanently applies a bifocal display transformation and adds 

search-term popouts to the visual structure of a web page, and 

Popout Prism [15] permanently adds a zoomed-out overview to 

the detail view of a web page. 

Designing permanent visualizations that are suitable for realistic 

work environments is complicated by the diversity of tasks that 
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need to be supported. For example, consider a fisheye view of 

source code that presents context information relevant to the 

current focus. Such as view may support navigation and 

understanding, but the same fisheye view is inappropriate for 

writing and editing code because programmers want a large view 

of source code for those tasks [11]. Based on the observation that 

a particular design of a permanent visualization may be suitable 

only in some scenarios, Baudisch et al. [1] recommended that 

users should be allowed to bring up visualizations on demand, for 
example by using a keyboard shortcut. 

We discuss transient visualizations, interaction techniques for 

transient use of information visualizations close to the user’s 

focus of attention. Many user interfaces successfully employ 

techniques that provide users with transient information in the 

context of their focus of attention, including tool tips and context 

menus. Also, the HCI literature presents numerous techniques that 

involve transiency, lightweight interaction, and visualization [e.g., 

4,9,10]. However, we are unaware of any attempts at generalizing 

about using information visuali-zations transiently. Therefore, the 

general benefits of transient visualizations and the factors that 

advance and restrict their use are unclear. In this paper, we present 

examples to probe potential benefits of transient visualizations, 

and report an initial validation of one instance of a transient 
visualization.  

Contributions of our work are (a) to direct researchers’ awareness 

toward transient uses of information visualizations that may help 

avoid problems inherent in the design of permanent visualization 

interfaces, (b) to provide a basis for practitioners to consider how 

transient visualizations may be utilized in the work practices they 

seek to support, and (c) to present encouraging initial data about 
the usability of transient visualizations. 

2. CHARACTERISTICS OF TRANSIENT 

VISUALIZATIONS 
Transient visualizations have four characteristics: 

• Immediacy; to bring the user into direct and instant 

involvement with the information representation. 

• Transiency; information is only displayed tempo-rarily, 

and is easily dismissed, which means that no display 

space is used permanently. 

• Closeness; the information is shown close to the region 

of focus in the display (e.g., cursor or caret), resulting in 

fast access to the information because of minimized 

sensory-motor efforts of the user. 

• Contextuality; the information is related to the user’s 

current focus of attention, for example by adding context 

for interpreting the information in focus. 
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We contrast transient visualizations with permanent information 

visualization interfaces, such as overview+detail interfaces where 

permanent display space is allocated to an overview window [15]. 

First, designers are challenged with deciding what information is 

needed in various contexts of use and fitting the information into 

the limited display space of a permanent visualization. In contrast, 

using transient visualizations to facilitate infrequent and 

unpredictable contexts of use, the original permanent view can be 
dedicated to information used in frequent contexts of use.  

Second, adopting permanent visualizations to improve an existing 

tool may break established uses of the tool. However, the means 

of invoking and interacting with transient visualizations can be 

tailored to particular contexts of use, thus supplementing 
established interaction habits.  

Finally, rich and dynamic views in permanent visualizations may 

visually disorient and annoy the user. In contrast, using transient 

visualizations that appear only temporarily and under the user’s 
control helps prevent visually complex and disorienting interfaces. 

3. EXAMPLE APPLICATIONS 
To provide concrete arguments for the potential of the idea of 

transient visualizations, we present sketches of transient 

visualizations that support tasks in three different domains, and 

describe a prototype of a transient visualization in a programming 
environment. 

3.1 Searching in Documents 
In conventional web browsers, ‘Find’ automatically jumps to the 

first instance of words as they are typed. However, scrolling 

between found instances may disorient the user [15]. Recent 

studies have shown overview+detail visualizations [15] and 

bifocal displays [1] to be efficient and preferred by users for 

searching in documents. Among the advantages experienced by 

participants using an overview+detail interface, Suh et al. [15] 

report that the interface gives “a sense of context, density, and the 

ability to see all occurrences of a keyword at once” and provides 
orientation support for navigating in the document. 

In the design mock-up in Figure 1, we show a transient 

visualization to support in-document search; our approach extends 

a conventional browser window by calling up a thumbnail 

overview when the user invokes the ‘Find’-bar. As the user begins 

to type keywords, instances of the words are highlighted in the 

overview. The user can move between highlighted words using 

the keyboard, or drag the field-of-view window using the mouse. 

Behind the overview, the original view scrolls the document 

accordingly, visually coupling the overview to the original view. 

Finally, the overview can be dismissed to scroll back to the 

original location in the document by suspending the ‘Find’ action 
(e.g., with the Escape-key).  

We believe that our suggested design provides the same support 

for in-document search as a permanent overview by giving an 

overall sense of the location, density and co-occurrences of 

keywords. Additionally, in contrast to a permanent overview, (1) 

the overview does not compete for permanent display space, and 

(2) fluid keyboard interaction allows the user to complete their 

task without having to switch to mouse. In reading tasks, 

Hornbæk and Frøkjær [8] found overviews to support navigation 

and help to get a structural overview of the document, yet the 

overview may also distract the user. A study by Nekrasovski et al. 

[13] showed no performance effects of overviews used for 

navigating large hierarchical trees, but participants perceived them 

as beneficial. These results indicate that a transient overview may 

support particular uses such as searching or providing structural 

overview for navigation with less risk of distracting the user 
compared with a permanent overview. 

3.2 Planning and Navigating Routes in Maps 
Viewing and interacting with maps has received much attention in 

HCI research, and have been addressed by different visualization 

approaches including panning and zooming, overviews, and 

distortion techniques such as fisheye views [7]. A common use of 

maps is for planning and navigating a route to a destination. When 

navigating toward a remote destination, travelers commonly use a 

detailed map to orient themselves at their current location. 

However, an overview of the route to the destination may 

occasionally be needed to support a sense of direction and 

awareness in travels ahead. Getting an overview using 

conventional map applications may require considerable zooming 

in and out and panning the map to find road names and landmarks 

on the route ahead. 

The mock-up presented in Figure 2 shows a way to extend a 

conventional map view with a transient visualization to address 

this problem. The user invokes the visualization by clicking on the 

route, calling up a map of a higher scale, thus showing the route 

farther toward the destination. In Figure 2, the user has further 

clicked three times on the route, to call up maps of continually 

higher scales, until the complete route is revealed. Finally, the 

visualization can be dismissed by clicking on the original map. 

The route provides fixing points for “stitching together” the maps 

of different scales, and the selected route can also be used to 

deduce contextual information, such as road names along the 

route that should be highlighted.  

 

Figure 1: Sketch of transient overview of document with 

popout instances of words entered in the ‘Find’ bar. 
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This example shows how to extend the design space of 

information visualizations to transient use in a particular context, 

where permanent visualization techniques do not seem useful. 

Fisheye interfaces that geometrically distort maps are useful only 

to a limited degree of magnification and the distortion may inhibit 

users from recognizing shapes of roads and locations of 

landmarks [18]. Overview+detail interfaces may give an overview 

of the route, but to discern landmarks and road names along the 

route the user has to move the detail view. Zooming interfaces 

require the user to pan or continually zoom out to get an overview 

of the route, and then zoom in to see details of the route. In 

summary, while these different techniques may be useful for 

frequent contexts of use, it may be worthwhile to pursue transient 

visualizations for particular tasks such as the focus of this 

example.  

3.3 Programming 
Programming is a complex human activity that information 

visualizations potentially can support [11]. However, as 

mentioned earlier, applying a permanent visualization to source 

code can be complicated. Figure 3 shows a transient fisheye view 

of source code implemented as a plug-in for the Eclipse Java IDE. 

The visualization is invoked using a keyboard shortcut; popup 

views then appear above and below the editor window. The views 

contain lines with references to the variable that the user has 

currently selected with the caret. Arrow keys are used to select a 

line and pressing ‘Enter’ centers the view on the selected line. The 
visualization can be dismissed with the ‘Escape’ key.  

Our design aims to support source code navigation and program 

understanding by providing lightweight access to contextual 

information relevant to the current focus in the source code. 

Compared with a permanent fisheye view, our design allows a 

large view of source code that programmers seem to prefer for 

writing and editing code. Furthermore, we aim to support fluid 

interaction with the transient fisheye view in programming by 

extending existing uses of the keyboard. A recent user study of 

programmers has shown extensive use of keyboard shortcuts for 

navigating in source code [13], and transient views showing 

outlines and type hierarchies are familiar in common 

programming environments such as Eclipse. We thus believe 

programmers may easily adopt transient visualizations that are 

invoked using keyboard shortcuts. 

3.4 Writing 
A very common task in writing is to find the right word at some 

point in a sentence. A thesaurus can be particularly effective for 

this task when writing in a language different from your mother 

tongue. In many word processors, finding the right word involves 

selecting a word, looking it up in the dictionary or thesaurus, 
browsing the definition and navigating links to synonyms.  

Figure 4 shows a mock-up of a transient thesaurus visualization 

overlapping a text that the user is editing. The visualization is 

called up with a keyboard command to show words that are 

related to the word at the caret position. The user can interact with 

the visualization to explore more synonyms of a particular 

meaning; the highlight box can be moved with the cursor keys or 

mouse to one of the connected words, and selecting a word 

animates the visualization to center around that word, thus 

revealing more synonyms of that word. Also, the user can call up 

a window with the definition of a selected word. Finally, the 

visualization can be dismissed either to replace the original word 

in the sentence with the selected word (e.g., by hitting Enter) or 
without making changes to the text (by hitting Escape). 

Our design utilizes the hierarchical organization of words in a 

thesaurus. In contrast to a linear textual representation, users can 

visually perceive from the visualization how synonyms of a word 

are grouped by similar meanings. Also, synonyms are presented 

close to the word and its surrounding text so that users can 

imagine how other words fit into the text. Finally, by making the 

visualization easy to invoke and dismiss, we aim for the use of the 
transient thesaurus to become an effortless part of writing. 

4. RELATED WORK 
We have aimed to demonstrate alternative uses of information 

visualizations by extracting and refining ideas from previous 

 

Figure 2: Route visualization where transient zoom-outs at 

progressively higher scales of a map have been called up by 

clicking repeatedly on the route to show the way to the 

destination. 

 

 

Figure 3: Prototype of transient fisheye view of source code 

that shows context information in popup windows above and 

below the editor window. 
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work. This section overviews such related work in HCI research 

that use transient representations of information and light-weight 
interaction. 

Excentric labeling provides labels for a neighborhood of objects 

located around the cursor [5]. By showing labels temporarily 

when the cursor stays over an area for more than a second, the 

technique avoids information clutter and the need for extensive 

navigation. Side Views uses transient views to provide dynamic 

previews of multiple commands by visualizing the outcome of 

commands on the current selection, for instance using bold, italic 

or underline on selected text [16]. Zellweger et al. [19] studied the 

impact of lightweight, animated glosses for link anchors on 

hypertext browsing. Altogether, these transient preview 

techniques help users to probe relevant information without 

navigation and display switching, and to assess possible actions 
without resorting to “trial-and-undo”. 

Context menus that pop up near the mouse cursor or text caret 

present commands related to the current focus (e.g., for changing 

the font of selected text). Hotbox extends context menus with 

multiple menu bars centered around the cursor and with access to 

additional menus via mouse gestures [12]. See-through tools are 

another technique that provides close and contextual access to 
commands without requiring permanent display space [4].  

Many information visualizations use brushing to highlight (or 

affect) instances in other views of an object that the user brushes 

over [2]. Highlighting techniques have been adopted, for example, 

in the Eclipse Java source code editor, where the caret can be 

placed in a variable to highlight all references in the code to that 

variable. Similar ideas have been demonstrated in spreadsheets 

[9]. These techniques provide immediate and non-intrusive 
visualizations through lightweight interaction. 

Large and small displays accentuate problems in human-computer 

interaction, which have prompted HCI research to generate novel 

interaction techniques to temporarily bring objects that are 

otherwise hard to interact with closer to the user. The interaction 

technique called Vacuum helps reach remote objects through 

proxies that are transiently placed close to the cursor for easy 

manipulation, reducing the physical demands of the user [3]. 

Similar challenges in small displays have brought about 

techniques to visualize and navigate to off-screen targets with 
halos and proxies [10].  

5. EXPERIMENT 
To provide initial data about the usability of transient 

visualizations, we conducted a study comparing two interfaces for 

viewing maps, shown in Figure 5. Both interfaces include a view 

that can be panned to show different parts of a map; the user 

clicks and drags the mouse opposite the panning direction (i.e., 

the map follows the mouse). The interfaces also contain a 

semitransparent overview of the entire map. The overview partly 

covers the detail view so that it is possible but hard to discern map 

details in the detail view under the overview. However, it is not 

possible to “click through” the overview to interact with map 

details. Interaction with the overview differs between the 

interfaces. In the Permanent interface (PI), the overview is 

permanently shown in the upper right corner of the detail view. 

The user can click and hold the left mouse button to drag a field-

of-view box in the overview in order to pan the detail view. In 

contrast, the Transient interface (TI) does not permanently show 

an overview, but a transient overview can be invoked at the 

location of the mouse cursor by pressing and holding down the 

right mouse button; the overview appears so that the mouse 

cursor’s location in the field-of-view box corresponds to the 

cursor’s location in the detail view. Moving the mouse pans the 

detail view, and the overview disappears when the mouse button 

is released. Our primary goal is to compare the Permanent 

interface and the Transient interface. Therefore, we do not aim for 

our study to be realistic, but try to tease out differences in how 
users interact with the two interfaces.  

5.1 Participants 
20 students (4 female) at the authors’ department participated in 

the experiment. The participants were between 21 and 50 years 
old (M = 29.3, SD = 7.9). 

5.2 Tasks 
Two types of task were used in the experiment. Both tasks involve 

maps of randomly placed circles with random names and 

randomly connecting lines. Maps are generated to resemble social 

networks. Colored circles are randomly scattered in the map, 
requiring participants to move the detail view to see them.  

The first task type involves selection of 10 red circles in the map 

by finding and clicking on them. The selection task is designed to 

make participants alternate between navigating and interacting 

with objects in the map. Our hypothesis is that participants are 

slower with the Permanent interface, because they must move the 

mouse cursor between the overview for navigation and the detail 

view for clicking on circles, whereas in the Transient interface, 

the overview can be invoked and used immediately without first 
moving the mouse cursor. 

The second task type involves comparison of 5 blue circles in the 

map and clicking on the smallest of them. The comparison task 

makes participants navigate and compare the size of blue circles at 

different locations in the map. We do not expect the Transient 

interface to have an advantage over the Permanent interface in this 

type of task. First, participants do not alternately navigate and 

interact with objects in the map; participants can navigate 

continually to the blue circles to compare them. Therefore the 

closeness of the transient overview is not important. Second, the 

overview may cover blue circles in the detail view that 

 
 

Figure 4: Transient thesaurus called up to show synonyms for 

the word “fresh” in a word processing application. 
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participants must see to compare their size. Although the 

overview covers part of the detail view in both interfaces, the 

fixed corner position of the permanent overview may help 

participants learn to consistently move blue circles into the visible 

part of the detail view. In contrast, invoking the transient 

overview at different positions can make it harder for participants 

to consistently move blue circles into view. However, participants 

can simply dismiss the transient overview to get a clear view of a 
blue circle when it has been located.  

Since the overview used in this experiment shows the entire map, 

large maps result in a higher zoom factor than small maps. We 

varied the size of the maps used in the tasks to investigate the 

effect of varying zoom factors and varying distances between 

colored circles used in tasks. First, selection tasks with large maps 

require more precision in mouse movement when interacting with 

the overview. For example, the field-of-view box is smaller at 

higher zoom factors, which makes it is harder to move the mouse 

cursor from the detail view and target precisely in the permanent 

overview. Thus, we expect participants to perform worse with the 

Permanent interface compared with the Transient interface in 

tasks with large maps. Second, multiple red circles may be visible 

simultaneously in the detail view if the map is small, whereas 

large maps require participants to move the detail view to show 

each of the red circles in turn. As a result, the cost of targeting the 

mouse pointer in the permanent overview increases. 

Consequently, we expect participants to complete tasks faster with 

the transient overview in selection tasks with large maps 
compared with small maps. 

5.3 Materials 
Participants used a MacBook Pro laptop computer with an optical 

wireless mouse for the experiment. The screen was set to a 1440 x 

960 resolution, and the size of the window containing the map 

interface was 700 x 700 pixels. Participants were guided through 
the experiment by a task view to the left of the interface window.  

Two sizes of maps were used in the experimental tasks: small 

maps of 2000 x 2000 pixels (containing 200 circles) and large 

maps of 5000 x 5000 pixels (containing 600 circles). In small 

maps, two or three red circles may be visible simultaneously in 

the detail view, whereas only one red circle may be visible in 

large maps. 

5.4 Design 
We used a repeated measures design where four factors are varied 

within-subjects: interface type (PI, TI), size of the overview 

(Osmall, Olarge), task type (selection, comparison), and map size 

(small, large). Participants performed a set of 16 tasks with each 

interface. The order of interface and overview size was 

systematically varied across participants. The order of task type 

and map size for the eight tasks performed with each interface and 

overview size was also systematically varied. Thus 32 tasks with 

randomly generated maps were used; eight tasks for each 
combination of task type and map size.  

We used two sizes of overviews because the size of the overview 

may affect the usability of the two interfaces. We expect 

participants to prefer a small overview in the Permanent interface 

because it covers a smaller part of the detail view compared to 

large overview. In contrast, a large transient overview does not 

permanently cover part of the detail view, so we expect 

participants to prefer a larger overview to a small overview in the 

Transient interface. The small overview used is 25% the width of 

the detail view and the large overview is 40% of the width of the 
detail view.  

5.5 Procedure 
Initially, participants were given an introduction lasting about ten 

minutes. In the introduction, participants were explained how to 

use the two interfaces and given a few minutes to try them. Next 

in the introduction, participants performed 16 warm-up tasks; four 

selection-tasks with PI, four selection-tasks with TI, four 
comparison-tasks with PI, and four comparison-tasks with TI. 

 
Permanent interface (PI) 

 
Transient interface (TI) 

Figure 5. The interfaces used in the experiment contain (left) a permanent overview in the upper-right corner and (right) a 

transient overview that is only visible when the right mouse button is pressed. 
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Participants performed two sets of tasks, one with each of the two 

interfaces. The participants were told to complete tasks correctly 

as quickly as possible. Following each set of tasks, a questionnaire 

about the interface just used was administered to the participants. 

The questionnaire contained six questions from QUIS [5] and five 

questions specific to the concerns of the experiment. A third 

questionnaire was administered after all tasks had been 

completed, asking the participants for their age and gender. The 

questionnaire also included three questions asking participants to 

compare the Transient interface with the Permanent interface on a 

comparative scale: first participants were asked which interface 

they preferred in general, then participants were asked which 

interface they found most appropriate for each type of task. 

Finally, participants were asked to write benefits and drawbacks 

of each interface and other comments. The entire experiment 
lasted between 30 and 45 minutes for each participant. 

6. RESULTS 
The results of the experiment consist of task completion times, 

accuracy and participant satisfaction. Of the 640 tasks that were 

completed across conditions, 13 tasks were discarded. First, due to 

an error in the experimental setup, two participants performed 

duplicate tasks and we discarded eight repeated tasks (two with 

TI, six with PI) because of possible learning effects. Second, we 

discarded three tasks (all with PI) where participants mistook a 

compare task for a selection task and clicked on the first blue 

circle that was visible. Third, two outlier tasks (both with TI), 

which either took more than 60 seconds for selection tasks or 30 
seconds for compare tasks, were discarded. 

6.1 Task Completion Times 
Average completion times for the tasks are summarized in Table 

1. We expected that participants would complete selection tasks 

faster using the Transient interface compared with the Permanent 

interface. In contrast, we did not expect comparison tasks to be 

performed faster with the Permanent interface. However, there 

was no significant difference in task completion times with the 
two interfaces for either type of task, F(1, 19) = .293, ns. 

6.2 Accuracy 
All of the selection tasks were completed correctly. In contrast, 

273 of 310 comparison tasks were answered correctly. Accuracy 

is summarized in Table 2. Participants answer more tasks 

correctly with a large overview than a small overview, F(1, 19) = 

6.32, p < .05. However, we find no influence of interface type on 
accuracy, F(1, 19) = .812, ns. 

6.3 Satisfaction 
Overall, participants preferred the Transient interface compared 

with the Permanent interface (t = 3.387, df = 19, p < .005), with 

16 participants preferring the Transient interface and only four 

participants preferring the Permanent interface. There was no 

significant difference in what interface participants perceived to 

be most appropriate for selection tasks (t = 2.070, df = 19, p > .05) 

or comparison tasks (t = 1.761, df = 19, p > .05), although 

participants tended to prefer the Transient interface for both task 
types.  

Average satisfaction scores for the two interfaces are summarized 

in Figure 6 for the eleven questions that the participants answered. 

Overall, participants scored the Transient interface higher as 

assessed by multivariate analysis of variance, Wilk’s lambda = 

.421, F(1, 19) = 3.00, p < .05. The results confirm our 

expectations that a transient overview reduces mental and physical 

efforts required of the user compared with a permanent overview. 

We had hypothesized that participants would prefer a large 

overview in the Transient interface and a small overview in the 

Permanent interface, but there was no significant difference 

between the interfaces in the size of overview that participants 
preferred. 

6.4 Interaction Patterns 
We analyzed the interaction data logged during the experiment to 

uncover differences in the use of the two interfaces. In selection 

tasks, interaction alternated between using the overview to bring 

circles into view and clicking on circles in the detail view. We 

expected the Transient interface to help participants complete 

these tasks with less mouse movement compared with the 

Permanent interface. To investigate this, we summed the distances 

that the mouse pointer traveled between mouse button events. 

Distance was calculated as the diagonal between screen 

coordinates of the mouse pointer. There was a substantial 

difference in the average distance per task for the two interfaces; a 

decrease of 60% from the Permanent interface to the Transient 

interface. Thus, the Transient interface appears to have reduced 

the sensory-motor efforts of the participants. 

In comparison tasks, participants navigated between blue circles 

in the map to compare their sizes. The overview covered part of 

the detail view, especially in the large overview condition. Thus 

participants had to move the detail view, or dismiss the overview 

in the Transient interface, to get a clear view of the circles. 

Table 1. Task completion times in seconds for different interfaces, overview sizes and task types. 

  Permanent interface Transient interface 

  Osmall Olarge Average Osmall Olarge Average 

M 30.2 28.6 29.4 29.5 29.2 29.3 
Selection tasks 

SD 6.0 5.0 5.6 6.4 6.8 6.6 

M 13.3 12.9 13.1 12.6 12.7 12.7 
Comparison tasks 

SD 5.3 3.5 4.5 4.2 4.5 4.3 

M 21.8 21.0 21.4 21.0 21.2 21.1 
Average 

SD 10.2 9.0 9.6 10.0 10.0 10.0 

 

 

Table 2. Accuracy in comparison tasks for different interfaces, 
overview sizes and map sizes. 

 Permanent interface Transient interface 

 Osmall Olarge Avg. Osmall Olarge Avg. 

Small map 82.5% 97.4% 89.7% 90.0% 91.9% 90.9% 

Large map 84.6% 97.2% 90.7% 80.0% 86.8% 83.3% 

Average 83.5% 97.3% 90.2% 85.0% 89.3% 87.1% 
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Interestingly, participants mostly completed the tasks using the 

transient overview by continuously holding down the mouse 

button while navigating between the blue circles to compare them 

(in only 20 of 160 tasks, participants invoked the transient 

overview more than once). However, informal observations 

showed that participants using the Transient interface sometimes 

had trouble moving the blue circles clear of the overview—they 

did not dismiss the transient overview to get a clear view of the 
circle.  

In the Permanent interface, most participants mainly clicked in the 

overview to move the detail view, a mode of interaction not 

supported in the Transient interface. Only three out of 20 

participants dragged the field of view box as the main way of 

moving the detail view, which was the interaction mode also 
supported by the Transient interface.  

7. DISCUSSION 
The study reported in this paper provides initial insight into the 

general benefits of transient visualizations. We used tasks that 

focus on navigation to tease out differences between the 

interaction with the transient and with the permanent overview. In 

all, the results of our study suggest that having immediate and 

close access to the overview reduces sensory-motor efforts of the 

user. Surprisingly, we did not find this to reduce task completion 
times and error rates. 

Even though participants preferred the Transient interface and 

completed the tasks with less mouse movement by accessing the 

overview immediately at the location of the cursor, they did not 

complete selection tasks faster. It seems that whereas the 

Transient interface helps moving red circles into the detail view, it 

does not help in acquiring the circles with the mouse. It is hard to 

move the map precisely using the overview in either interface: 

participants must make fine adjustments to position a target close 

to the overview if not move the mouse farther to acquire the 

target. However, compared with the Permanent interface where 

the overview is placed in a corner of the detail view, it is possible 

that positioning part of the map into the detail view demands more 

effort when the transient overview appears at different screen 
locations. 

Some limitations must be considered when interpreting the 

results. Maps used were limited to sizes that allowed the entire 

map to fit in the overview. Larger maps require overviews with 

multiple levels of magnification. Furthermore, we focused on 

simple navigation tasks and participants used the interfaces for 

only a short period of time. Thus, our findings may not reflect 

varied, long-term use of the overviews. Additionally, three 

problems detracted from the usability of the Transient interface. 

First, we saw participants struggle with the overview when 

invoking the overview near the border of the detail view, making 

the overview only partly visible. Four participants commented on 

this problem in the questionnaire. Second, an implementation 

problem caused the transient overview to “stick” to the mouse 

cursor when dragging the field-of-view box out of the window, 

requiring participants to click in the detail view to make the 

overview disappear. Third, the data describing the interaction with 

the Permanent interface suggests that participants preferred to 

click in the overview to navigate in the map. However, the 

Transient interface only allowed users to drag the field-of-view 

box, because the overview was only visible while holding down 

the mouse button. Support for both interaction modes might 

improve the usability of the Transient interface. Toggling the 

 

Part I: Overall reactions 

 

Terrible – Wonderful** 

Frustrating – Satisfying 

Dull – Stimulating** 

Difficult – Easy* 

Inadequate power – Adequate power* 

Rigid – Flexible* 

1 2 3 4 5 6 7 8 9

Permanent

Transient

 
Part II: More detailed questions 

Smoothness: 

Mental effort required: 

Physical effort required: 

Accurate pointing: 

Very rough – Very smooth** 

Inappropriate – Appropriate* 

Inappropriate – Appropriate** 

Easy – Difficult 

1 2 3 4 5

 

Part III: Overview size 

 

Which size of overview did you prefer? 

 

 
Small – Large 

1 2 3 4 5 6 7

 

Figure 6: Average satisfaction scores (and standard error of the mean) for the eleven questions for the two interfaces. The anchor 

points on a semantic differential scale are shown for each question. Asterisks denote questions where the Transient interface 

scored significantly better (* = p < .05, ** = p < .01). 
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transient overview when the right mouse button is pushed is one 
possible solution. 

More work is needed to further understand the general benefits 

and limitations of transient visualizations. Specifically, in the 

examples of transient visualizations presented in this paper, we 

have suggested the usefulness of transiently presenting contextual 

information related to the user’s focus. Empirical evidence is 

needed to support this claim. 

In complex work activity, transient visualizations may be useful to 

support sporadic tasks for which permanently changing the visual 

structure of information in the interface can impede frequent 

tasks. Studies are needed to understand what types of task that 

transient visualizations are suitable for. Evaluation of our transient 

fisheye view of source code may provide insights into the use of 
transient visualizations in expert tools. 

Finally, conditions that limit the use of transient visualizations 

need to be examined. For example, transient visualizations that 

give no hint about their use are not accessible to novice users. 

Also, design and evaluation of transient visualizations must take 

into account that users may need longer practice time to make 

effective use of them compared to permanent visualizations that 

more readily afford their use.  

8. CONCLUSION 
We have characterized transient visualizations as interaction 

techniques that make immediate and transient use of information 

visualization close to, and in the context of, the user’s focus of 

attention. In summary, transient visualizations offer a way of 

utilizing information visualizations to support specific contexts of 

use without making a permanent change to the user interface. We 

have presented examples of transient visualizations to support 
tasks in different domains. 

To uncover how immediacy, transiency and closeness translate to 

actual and perceived improvements in the user experience, we 

conducted an experiment with map interfaces containing 

overviews. The results did not show significant improvements in 

time and accuracy with a transient overview compared to a 

permanent overview. However, our data suggest that tasks were 

performed with less sensory-motor efforts of the user, and 16 of 
the 20 participants preferred the transient overview. 

Further studies are required to examine the general benefits and 

limitations of transient visualizations, to understand what types of 

task that transient visualizations are suitable for, and to provide 

design guidelines. Our initial data, however, suggest that transient 

visualizations may be useful, and that they are preferred by users 
to give immediate and close access to overviews. 

REFERENCES 
[1] P. Baudisch, B. Lee, and L. Hanna. Fishnet, a fisheye web 

browser with search term popouts: a comparative evaluation 

with overview and linear view. Proc. AVI ’04, 133–140, 
2004. ACM Press. 

[2] R. A. Becker and W. S. Cleveland. Brushing Scatterplots. 

Technometrics, volume 29, 127–142, 1987. 

[3] A. Bezerianos and R. Balakrishnan. The vacuum: facilitating 

the manipulation of distant objects. Proc. CHI ‘05, pages 
361–370, 2005. ACM Press. 

[4] E. A. Bier, M. C. Stone, K. Pier, W. Buxton, and T. D. 

DeRose. Toolglass and magic lenses: the see-through 
interface. Proc. SIGGRAPH ’93, 73–80, 1993. ACM Press. 

[5] J. P. Chin, A. Virginia, and K. L. Norman. Development of 

an instrument measuring user satisfaction of the human-

computer interface. In Proc. CHI ’88, 213–218, 1988. ACM 
Press. 

[6] J.-D. Fekete and C. Plaisant. Excentric labeling: dynamic 

neighborhood labeling for data visualization. Proc. CHI ’99, 
512–519, 1999. ACM Press. 

[7] K. Hornbæk, B. B. Bederson, and C. Plaisant. Navigation 

patterns and usability of zoomable user interfaces with and 

without an overview. ACM Trans. Comput.-Hum. Interact., 

9(4):362–389, 2002. 

[8] K. Hornbæk and E. Frøkjær. Reading of electronic 

documents: the usability of linear, fisheye, and 

overview+detail interfaces. Proc. CHI ’01, 293–300, 2001. 
ACM Press. 

[9] T. Igarashi, J. D. Mackinlay, B.-W. Chang, and P. T. 

Zellweger. Fluid Visualization of Spreadsheet Structures. 
Proc. VL ’98, 118-125, 1998. IEEE Computer Society. 

[10] P. Irani, C. Gutwin, and X. D. Yang. Improving selection of 

off-screen targets with hopping. Proc. CHI ’06, 299–308, 
2006. ACM Press. 

[11] M. R. Jakobsen and K. Hornbæk. Evaluating a fisheye view 
of source code. Proc. CHI ’06, 377–386, 2006. ACM Press. 

[12] G. Kurtenbach, G. W. Fitzmaurice, R. N. Owen, and 

T. Baudel. The Hotbox: efficient access to a large number of 
menu-items. Proc. CHI ’99, 231–237, 1999. ACM Press. 

[13] G. C. Murphy, M. Kersten, and L. Findlater. How Are Java 

Software Developers Using the Eclipse IDE?  IEEE 
Software, 23(4):76–83, 2006. 

[14] D. Nekrasovski, A. Bodnar, J. McGrenere, F. Guimbretière, 

and T. Munzner. An evaluation of pan & zoom and rubber 

sheet navigation with and without an overview. Proc. CHI 
’06, 11–20, 2006. ACM Press. 

[15] B. Suh, A. Woodruff, R. Rosenholtz, and A. Glass. Popout 

prism: adding perceptual principles to overview+detail 

document interfaces. Proc. CHI ’02, 251–258, 2002. ACM 
Press. 

[16] M. Terry and E. D. Mynatt. Side views: persistent, on-

demand previews for open-ended tasks. Proc. UIST ’02, 71–
80, 2002. ACM Press. 

[17] A. Woodruff, A. Faulring, R. Rosenholtz, J. Morrison, and 

P. Pirolli. Using thumbnails to search the web. Proc. CHI 
’01, 198–205, 2001. ACM Press. 

[18] A. Zanella, M. S. T. Carpendale, and M. Rounding. On the 

effects of viewing cues in comprehending distortions. Proc. 
NordiCHI ’02, 119–128, 2002. ACM Press. 

[19] P. T. Zellweger, S. H. Regli, J. D. Mackinlay, and B.-W. 

Chang. The impact of fluid documents on reading and 

browsing: an observational study. Proc. CHI ’00, 249–256, 
2000. ACM Press. 

 

37



PAPER 3 – TRANSIENT OR PERMANENT FISHEYE VIEWS: 
A COMPARATIVE EVALUATION OF SOURCE CODE 
INTERFACES 
Jakobsen, M. R. and Hornbæk, K. (2009). Transient or Permanent Fisheye Views: A 
Comparative Evaluation of Source Code Interfaces. 
 
This paper has been submitted for publication. Copyright may be transferred without further 
notice and the accepted version may then be made available by the publisher. 
 

38



 

Transient or Permanent Fisheye Views:  

A Comparative Evaluation of Source Code Interfaces 

Mikkel R Jakobsen and Kasper Hornbæk 

Abstract—Transient use of information visualization may support specific tasks without permanently changing the user interface. 
Transient visualizations provide immediate and transient use of information visualization close to and in the context of the user’s 
focus of attention. Little is known, however, about the benefits and limitations of transient visualizations. We describe an 
experiment that compares the usability of a fisheye view that participants could call up temporarily, a permanent fisheye view, and 
a linear view: all interfaces gave access to source code in the editor of a widespread programming environment. Fourteen 
participants performed tasks of both high and low complexity so as to investigate varied programming activity. All participants 
used each of the three interfaces for between four and six hours in all. Time and accuracy measures were inconclusive, but 
subjective data showed a preference for the permanent fisheye view. We analyze interaction data to compare how participants 
used the interfaces and to understand why the transient interface was not preferred. We conclude by discussing seamless 
integration of fisheye views in existing user interfaces and future work on transient visualizations. 

Index Terms—Information visualization, fisheye view, transient visualizations, user study, programming.

 

1 INTRODUCTION 

 
A fundamental challenge in information visualization is to map data 
to visual structures and to transform those visual structures into 
views suitable for users’ tasks [5]. Seesoft, for example, maps source 
code into a 1-dimensional representation aimed at helping users 
understand changes to the code [8]. Document Lens uses a 
focus+context transformation to allow users to inspect a particular 
part of a document while being able to see the entire document to 
stay in context [18]. 

The user’s control of the visual structures and view 
transformations used is central to visualization [5]. However, often 
visualizations are designed to support a specific task and make fixed 
mappings and transformations that are effective in that task. In 
contrast, real life applications often support a variety of tasks in 
complex work settings. Integrating a visualization aimed at 
supporting a specific task in existing applications results in 
permanent changes to the user interface. Thus, it seems there is a gap 
in our understanding of how users can control a visualization to 
switch between visual structures or view transformations, which 
make it difficult to integrate visualizations in established user 
interfaces. 

One alternative would be to use information visualization without 
permanently changing the user interface. Transient visualizations 
aim to do that by providing immediate and transient use of 
information visualization close to, and in the context of, the user’s 
focus of attention [15]. By using transient visualizations to support 
infrequent and unpredictable contexts of use, the permanent view can 
be dedicated to information used in frequent contexts of use. 
However, empirical data on the relative benefits of transient and 
permanent interfaces are lacking.  

This paper studies fisheye views of source code – a visualization 
that has been shown to help programmers in navigating and 
understanding source code [14]. The fisheye view as originally 
proposed by Furnas balances in a single view “the need for local 
detail against the need for global context” [10]. A fisheye view of 
source code does so by displaying only those parts of the code with 
the highest degree of interest given the user’s current focus. 
However, information shown because it has a high degree of interest 
may not be equally important in all tasks. In some tasks, like for 
instance reading or editing source code, a fisheye view may even be 
unfavorable compared to a large “local detail” view of source code. 
One solution is to allow users to call up a fisheye view on demand. A 
transient fisheye view of source code that can be temporarily called 

up may support navigation and understanding while still providing a 
large view of code for reading and editing.  

We describe an experiment designed to gain insight into the 
benefits and limitations of permanent and transient versions of a 
fisheye view. Compared to an earlier paper on transient visualization 
[15], we present richer experimental data from a much more complex 
domain. We use the study to discuss both how to advance research in 
information visualization and to make concrete suggestions for using 
fisheye interfaces and other information visualizations to support 
complex domains. 

2 RELATED WORK 

The idea of transient visualizations was introduced in [15]. The idea 
is motivated by the observation that information visualizations often 
make permanent changes to a user interface with the aim of 
supporting specific tasks. However, a permanent visualization cannot 
support the variety of tasks found in realistic work settings equally 
well. Thus, it may be more useful to display visualizations 
transiently. According to [15], transient visualizations are immediate 
(bring the user into direct and instant involvement with the 
information representation), transient (information is only displayed 
temporarily, and is easily dismissed), close to the users’ focus (the 
information is shown close to the region of focus in the display), and 
contextual (the information is related to the user’s current focus of 
attention). Other researchers have supported this idea. For instance, 
based on the observation that a particular design of a permanent 
visualization may be suitable only in some scenarios, Baudisch et al. 
[1] recommended that users should be allowed to bring up different 
visualizations on demand depending on their particular needs.  

Earlier work has applied related ideas of transient representations 
of information and lightweight interaction. For instance, Excentric 
labeling provides labels for a neighborhood of objects located around 
the cursor [8]. By showing labels temporarily when the cursor stays 
over an area for more than a second, the technique avoids 
information clutter and the need for extensive navigation. Side 
Views uses transient views to provide dynamic previews of multiple 
commands by visualizing the outcome of commands on the current 
selection, for instance using bold, italic or underline on selected text 
[20]. Zellweger et al. [23] studied the impact of lightweight, 
animated glosses for link anchors on hypertext browsing. Altogether, 
these transient preview techniques help users to probe relevant 
information without navigation and display switching, and to assess 
possible actions without resorting to “trial-and-undo”. 
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Context menus that pop up near the mouse cursor or text caret 
present commands related to the current focus (e.g., for changing the 
font of selected text). Hotbox extends context menus with multiple 
menu bars close to the cursor and with access to additional menus 
via mouse gestures [16]. See-through tools are another technique that 
provides close and contextual access to commands without requiring 
permanent use of display space [4].  

Many information visualizations use brushing to highlight (or 
affect) instances in other views of an object that the user brushes 
over [2]. Highlighting techniques have been adopted, for example, in 
the Eclipse Java source code editor, where the caret can be placed in 
a variable to highlight all references in the code to that variable. 
Similar ideas have been demonstrated in spreadsheets [12]. These 
techniques provide immediate and non-intrusive visualizations 
through lightweight interaction. 

Novel interaction techniques have been generated to temporarily 
bring objects that are otherwise hard to interact with closer to the 
user. The interaction technique for large displays called Vacuum 
helps reach remote objects through proxies that are transiently placed 
close to the cursor for easy manipulation, reducing the physical 
demands of the user [3]. Similar challenges in small displays have 
brought about techniques to visualize and navigate to off-screen 
targets with halos and proxies [13]. 

Despite the above motivations for transient visualizations, the use 
of transient visualizations has to our knowledge only been 
empirically investigated in an experimental study of overview+detail 
map interfaces [15]. That study showed how participants preferred a 
transient overview, which appeared temporarily close to the mouse 
cursor, compared to a fixed overview, which was shown permanently 
in the corner of the display. Thus we proceed to experimentally 
compare interfaces in the much more complex domain of 

programming and in a much longer-term experiment than that 
reported in [15]. 

3 COMPARING TRANSIENT AND PERMANENT FISHEYE VIEWS 

To investigate how transient visualizations can be used to support 
complex work settings such as programming, we implemented a 
transient fisheye view of source code in Eclipse, a widespread 
development environment (see Fig. 1). The fisheye view divides the 
window of the Java editor into a focus area and a context view. The 
focus area, the editable part of the window, is reduced to make room 
for the context view. The context view uses a fixed amount of space 
above and below the focus area. It contains a distorted view of 
source code in which parts of the source code that are of less 
relevance given the user’s focus in the code are elided. The transient 
fisheye view is compared to a permanent fisheye view (using the 
same method for producing the fisheye view as in the transient view) 
and to a baseline linear view.  

3.1 Fisheye View of Source Code 
Before we present the experiment, we describe the fisheye views of 
source code used in the experiment.  

3.1.1 Degree of Interest 
A degree of interest (DOI) is determined for each line in the source 
code file. Lines in the context view are then elided if their DOI is 
below a threshold k. The DOI of a program line x given the focus 
point p (defined as the lines in the focus area) is calculated as: 

DOI(x | p) = enclosing(x, p) + occurrences(x) – dline(x, p) 

 

Fig. 1. Transient fisheye view called up in Eclipse to divide the Java editor window into a focus area and a context view. Lines containing 
occurrences of a selected variable are shown in the context view and in the overview ruler to the right of the scrollbar (as white rectangles). 

Context view

Focus area

Overview ruler
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First, lines are interesting if they contain declarations or statements 
that structurally enclose the code that is visible in the focus area. 
Such lines contain a package, class, interface or method declaration, 
or one of the keywords for, if, while, switch, etc. If line x is such a 
line and it defines a block that encloses the code in the focus area p 
then enclosing(x, p) = k.  

Second, lines that are semantically related to the code in focus 
may be interesting to the user. The Java editor in Eclipse allows 
programmers to highlight occurrences of a variable, method, or type 
to better see where it is referenced. For instance, a variable can be 
selected by placing the caret in the variable name whereby all 
references to that variable are highlighted in the source code. Lines 
containing such highlighted occurrences of a selected element are 
interesting. Further, lines that contain declarations of methods that 
enclose these occurrences are also of interest since they provide 
context for the occurrences. Thus, occurrences(x) = k adds to the 
DOI of line x that contains an annotation or declares a method that 
enclose an annotation.  

Third, a distance dline(x, p) ∈ [0; k] proportional to the number of 
program lines from line x to focus area p detracts from that line’s 
DOI.  

3.1.2 Source Code Elision in the Context View 
Lines are included in the context view if they have a degree of 
interest above the threshold k. If there are not enough lines with DOI 
> k to use all the space available in the context view, lines with DOI 
<= k  are added to the context view in descending order of DOI. This 
includes lines that are directly adjacent to the focus area. 

Placing the caret in a variable may cause many lines to have DOI 
> k because they contain highlighted occurrences of the selected 
variable. Similarly, in code that is heavily indented, many lines may 
have a high DOI because they contain declarations or statements that 
structurally enclose the code in the focus area. However, all lines 
cannot be shown simultaneously in the fixed amount of space of the 
context view. Clipping or magnifying lines in the context view may 
result in some lines becoming unreadable, yet all lines may be 
important to the user. Thus, to guarantee users that the context view 
contains all lines that are important, the windows containing the 
upper and lower context view can be scrolled. The context view 
automatically scrolls to show lines closest to the focus area when its 
contents change.  

3.2 Interfaces 
Three interfaces to a Java editor were used in the experiment (see 
Fig. 2). The three interfaces all contain syntax highlighting, line 
numbers, and the highlighting of occurrences, which was described 
above. The interfaces also include an overview ruler next to the 
editor’s scrollbar, in which highlighted occurrences are shown as 
white rectangles. Clicking on a white rectangle jumps to the line 
containing the occurrence and places the caret at that line. All 
features except those described above are disabled in the Java editor. 
Below we describe each of the three interfaces in turn. 

The Permanent interface contains a fisheye view of source code. 
The editor window is permanently divided into a focus area and a 
context view—permanently transforming the view of the visual 
structure of information is the typical implementation of fisheye and 
focus+context interfaces. The user can interact with the focus area 
like a normal editor. The caret can be moved within the bounds of 
the focus area, scrolling the view contents when moving the caret 
against the upper or lower bound. The context area uses one third of 
the display space in the editor window. However, the context view 
automatically reduces in size near the top and bottom of the 
document. When near the top of the document, for example, when 
the user scrolls by holding an arrow key to move the caret past the 
upper edge of the focus area, the upper part of the context view 
retracts. Clicking on a line in the context view jumps to that line and 
places the caret at the line. 

The Transient interface contains a linear view of source code, 
but allows the user to call up a transient fisheye view. The user calls 
up the context view with a keyboard shortcut. The context view 
remains visible until the user either hits Esc, clicks outside the 
context view, or clicks on a line in the context view. Clicking on a 
line in the context view jumps to that line and places the caret at the 
line. Alternatively, the user can use the arrow keys to select a line in 
the context view and jump to that line by hitting return. 

One general characteristic of transient visualizations is that they 
involve no permanent use of display space, because information is 
only shown temporarily and is easily dismissed [15]. When the user 
calls up the context view in the Transient interface, we hypothesize 
that information in the focus area is less important because the user 
shifts their attention to the context view. We therefore think that it is 

 

Fig. 2. The three Java editor interfaces used in the experiment: (a) Permanent interface in which permanently context view is permanently 
shown, (b) Transient interface in which the context view has been temporarily called up – otherwise it looks like the Baseline interface – and 
(c) Baseline interface that shows a linear representation of code. Dashed rectangles are added to emphasize the difference between the 
context view used in the interfaces. 

(a) (b) (c)
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useful to show a larger context view in the Transient interface that 
uses more display space than in the Permanent interface, so as to 
allow more lines to be visible simultaneously in the context view of 
the Transient interface than in the Permanent interface. The ratio of 
focus area size to context view size is therefore 2 to 3 in the 
Transient interface, whereas the ratio is 3 to 2 in the Permanent 
interface (compare Fig. 2 (a) and (b)). While this confounds context 
view size with transience, we think it is the best implementation of 
the Transient interface. 

The Baseline interface contains a linear view of source code 
similar to the normal Java editor in Eclipse.  

3.3 Participants 
The 14 participants (one female) were computer science students 
enrolled at the authors’ department. They were between 24 and 44 
years of age (M = 30.1). All had at least one year of experience 
programming in an object-oriented language and all but two 
participants had experience with Java. Half of the participants had 
used Eclipse before, but only one had used Eclipse within the last 
month. 

3.4 Tasks 
Two sets of tasks were used in the experiment. High-complexity 
tasks involved investigating the source code of a program. Low-
complexity tasks involved five types of understanding and navigation 
task. Tasks of high complexity vary in the degree of structure, 
concreteness of the answer, number of paths to the answer, and the 
amount of information needed to answer the task. Tasks of low 
complexity are well structured, have a single path to a single precise 
answer, and limited information is needed to answer the task.  

High-complexity tasks were included to see how participants 
used the interfaces during varied program investigation activity that 
includes reading code and switching between different files. Because 
these tasks are ambiguous, containing several paths to an answer, 
they give rise to individual approaches of participants to seek the 
information they need to answer the tasks. In contrast, low-
complexity tasks focus specifically on navigation and understanding, 
that is, programming activity for which fisheye interfaces may be 
particularly useful. Because these tasks focus on specific aspects of 
source code navigation and understanding in obtaining a single 
answer, they allowed us to compare in detail how participants 
interacted with the interfaces to provide the answer. 

Participants performed high-complexity tasks before low-
complexity tasks in the experiment. Participants thus had time to 
learn to use the interfaces before performing low-complexity tasks, 
which may increase the reliability of the results in those tasks. Below 
we describe each set of tasks in detail. 

3.4.1 High-complexity tasks 

The high-complexity tasks required participants to investigate the 
source code of an open source graphics program. Participants could 
browse all files comprising the source code of the program, but since 
we focus on the interaction with the editor, we provided names of 
particular source files in the tasks as a starting point.  

These tasks used source code from three open source programs: 
11 tasks used TinyUML (tinyuml-0.13_02-src.zip downloaded from 
http://sourceforge.net/projects/tinyuml/ contained 18 thousand lines 
of code), 11 tasks used JDraw (jdraw_v1.1.5.src.zip downloaded 
from http://jdraw.sourceforge.net/ contained 23K-LOC) and 10 tasks 
used Magelan (magelan-1-3.zip downloaded from 
http://sourceforge.net/projects/magelan/ contained 39K-LOC). Some 
tasks involved more than one file, for example: “Classes 
‘AbstractNode’ and ‘AbstractConnection’ (in org.tinyuml.draw) are 
diagram elements. What is the field ‘parent’ used for in the two 
classes?”  

The difficulty of high-complexity tasks was aimed at making 
participants spend about an hour to complete as many tasks as 
possible; we did not intend for all participants to complete all the 

tasks. We expected that participants would complete more of the 
tasks, coming up with equally good or better answers using either of 
the fisheye interfaces than using the baseline interface. 

3.4.2 Low-complexity tasks 

Five types of low-complexity task were used. These tasks involved 
navigating and understanding source code. The order in which these 
types of task were used in the experiment was systematically varied. 
Tasks were taken from previous studies of programming activity 
[7][14]. The five types of task were: 

• Navigate-method tasks, for instance: ”In the method 
’hasGreen’, find the return type of the method that is called 
last.” Only the method name in the task text was varied between 
tasks of this type. 

• Determine-control-structure tasks that required finding a 
control structure within a single method, for instance: ”In the 
method ’mergeTermInfos’ (line 201–238), how many for, while 
and if/else statements enclose line 233?”  

• Determine-dependencies tasks, for instance determining calls 
to a particular method: “How many methods in this file contain 
calls to 'computeProposals' declared on line 470?”  

• Determine-field-encapsulation tasks involved determining 
whether or not two variables in a class have corresponding get- 
and set-methods defined, for instance: ”How many of the fields 
’fText’ and fFont’ have both a get-method and a set-method 
implemented?” 

• Determine-delocalization tasks involved determining 
delocalization in the source code, for example: ”The method 
’update’ (line 207–214) contains 6 method calls. How many of 
the methods called are declared in this file (that is, excluding 
inherited methods)?”  

Overall, we expected participants to complete low-complexity tasks 
faster using the Permanent interface or the Transient interface than 
using the Baseline interface.  

3.5 Materials 
The experiment was conducted in a laboratory with six identical 
computers with 19” CRT monitors at a resolution of 1280 x 1024. 
On each computer, Eclipse was set up with its window using all 
available screen space. Tasks were presented in a task view to the 
left of the editor in Eclipse (see Fig. 1). Participants typed their 
answer to the tasks in the task view and clicked a button to continue. 
In the set of high-complexity tasks, the Eclipse window was 
configured to contain a Package Explorer view above the task view 
to the left of the editor. In the set of low-complexity tasks, the 
Eclipse-window was configured to contain only the editor window 
and the task view. In all interfaces, the editor window contained 50 
lines of text and was 100 characters wide. 

3.6 Design 
Two factors were varied in a within-subjects design: interface 
(Permanent, Transient, Baseline) and task complexity (High-
complexity, Low-complexity). We wanted each participant to use all 
three interfaces for at least one hour each. To avoid tiring out 
participants, the experiment was divided into three blocks to take 
place on separate days (see Fig. 3). In each block, participants used 
one of the three interfaces. The order of interface was systematically 
varied across participants.  

3.7 Procedure 
In each block of the experiment, participants were first given an 
introduction to the interface they were about to use. The introduction 
included a written explanation of the interface and exercises to try 
the interface. Then, participants performed a set of high-complexity 
tasks. If participants had not finished in 55 minutes, a message dialog 
informed participants they had five minutes to complete the current 
task. After the first set of tasks, participants were allowed a break 
and then continued to perform low-complexity tasks. For these tasks, 
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participants were instructed to give correct answers as quickly as 
possible. Participants completed eight training tasks and eight test 
tasks, and were then administered a questionnaire about the interface 
just used. The questionnaire included six questions from QUIS [5] 
and two questions asking about strengths and drawbacks of the 
interface. After completing the third block of the experiment, 
participants received a questionnaire asking them to compare the 
three interfaces and rank them in the order of their preference. The 
questionnaire also asked the participants for their age, gender and 
programming experience.  

Participants met in the laboratory on three days for each of the 
three blocks of the experiment, except one participant completed two 
blocks in one day. The experiment lasted between four and six hours 
per participant. The experiment was conducted over a period of one 
week. Hence up to six participants were present in the laboratory at a 
time. The experimenter was present in the laboratory to answer 
questions during the introduction, but otherwise participants 
completed the experiment unsupervised.  

Participants’ interactions with the interfaces and answers to tasks 
were logged. Time used to complete the tasks is derived from the 
logged data; answers to the tasks were also logged and from the logs 
accuracy could thus be inferred. 

4 RESULTS 

Results from the experiment include the objective measures of task 
completion times and accuracy; the subjective measures of 
preference, satisfaction scores, and comments from participants. We 
also describe data on participants’ interaction with the interfaces.  

4.1 High-Complexity Tasks 
In the first task set comprising high-complexity tasks, participants 
provided 384 answers. Every answer was assigned a score based on 
an assessment of how correct and complete the answer was.  Judged 

by the first author, 100 answers were accurate in that participants 
provided a correct answer that covered all aspects of the task, 151 
answers were correct, but missed at least one aspect of the task, and 
35 answers were incorrect in at least one aspect but were otherwise 
correct. Scores 3, 2, and 1 were given to these answers. All other 
tasks were given a score of 0, including 39 tasks answered 
incorrectly, 59 tasks that participants abstained from answering (e.g., 
they did not understand the task), and 64 tasks that participants did 
not have time to complete within the 55 minutes. Table 2 
summarizes the answers given by participants using the three 
interfaces. In average, participants spent 49 minutes solving high-
complexity tasks with each interface. Because of the 55-minute limit 
for solving the high-complexity tasks in a block, participants only 
completed all tasks in 23 blocks (55%). 

There was no difference in the total score of participants’ answers 
with the interfaces, F1,13 = .243, ns. If anything, participants 
appeared to complete fewer tasks using the Transient interface than 
Permanent or Baseline.  

Table 1 shows average completion times for high-complexity 
tasks where participants completed all tasks within the time limit. 
For tasks where participants completed all tasks within the time 
limit, completion times with the interfaces differed significantly, 
F2,243 = 4.34, p < .05. Although participants appeared to complete 
fewer tasks using the Transient interface, participants who completed 
all tasks spent less time with Transient compared with Permanent (p 
< .05 in Bonferroni adjusted post-hoc tests). Completion times did 
not differ significantly between Transient and Baseline. 

4.2 Low-Complexity Tasks 
Data from 25 low-complexity tasks (out of 336) were discarded from 
our analysis because participants did not appear to understand the 
question (7), wrote ambiguous answers (5), or wrote verbose answers 
(12). Finally, an outlier that was more than three times above the 
inter-quartile range was discarded. 

 

Fig. 3. The experimental design in which interface was varied between the three blocks. 

< 11 tasks 8 + 8 tasks Satisfaction
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Table 2. Summary of Answers Given to High-Complexity Tasks Using the Three Interfaces  

 Score  Permanent Transient Baseline Total 
Accurate 3  32 34 34 100 
Correct, but incomplete 2  55 43 53 151 
Partly incorrect 1  11 11 13 35 
Incorrect 0  12 16 11 39 
Abstained 0  22 16 21 59 
Tasks not completed (no time) 0  17 29 18 64 

Participants completing all tasks (number of tasks) 10 (106) 6 (64) 7 (74) 23 (244) 

Table 1. Average Task Completion Times in Seconds for Different Interfaces and Task Complexity 

 Permanent  Transient  Baseline 
 N 

M 
SD  N M SD  N M SD 

High-complexity tasks 
(participants completing all tasks) 

106 267 132  64 210 111  74 248 118 

Low-complexity tasks 112 47.1 20.1  112 49.4 24.3  112 49.1 24.9 
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Overall, 85% of the low-complexity tasks were an
correctly. There was no difference in accuracy with the three 
interfaces, F1,13 = .089, ns. Nor were task completion times 
between interfaces, F1,13 = .310, ns. Average task completion times 
are summarized in Table 1. While interface was found to interact 
with task type, F1,13 = 2.19, p < .05, there were no significant 
differences in completion times with the interfaces for any type of 
task.  

4.3 Satisfaction 
After having used all three interfaces, participants completed a 
questionnaire to rank the interfaces. Participants’ ranking of the 
interfaces differed significantly, F1,13 = .035, p
participants’ preferences. All but two participants preferred 
Permanent or Transient which is a strong indication that they found 
the fisheye view useful. Also, two thirds of the participants ranked 
the Permanent interface first. 

Participants rated their satisfaction with the interfaces on six 
questions. Overall, participants’ ratings varied for the three 
interfaces, though not significantly at the .05 level as found by a 
multivariate analysis of variance, Wilk’s Lambda = .027, 
1.78, p = .069. The main reason for this trend was that participants 
rated the interfaces differently only on a scale from boring to fun 
(F1,13 = 4.63, p < .05), finding both Permanent and Transient more 
fun to use than Baseline (p < .05 in Bonferroni adjusted post
tests). 

Five participants commented that they liked the Transient 
interface because the fisheye view could be called up temporarily
contrast, three participants said about Permanent that it was good that 
the fisheye view was there all the time. However, 
commented that the fisheye view in Transient “disappears too easily 
– has to call it up several times to get all the needed information” and 
that it was “confusing when it disappears.” One p
ranked Baseline as first choice noted in his preference questionnaire 
that “if the fisheye view [in Transient] wouldn't disappear all the 
time, then [Transient] would be ranked 1
comments suggest that users may find it useful to be able to switch 
the fisheye view on and off on demand, so they can use it for longer 
periods of time than is possible with the short-
the Transient interface. 

4.4 Interaction with the Interfaces 
We analyzed the data logged during the experiment to understand 
how participants used the interfaces. We summarized interaction 
data from high-complexity tasks to measure how participa
adopted and used the context view in the fisheye interfaces. 
visualized the interaction data from low-complexity tasks 
progression maps (similar to [11][14]) and analyzed these maps to 
understand how participants used each interface
The progression maps show which part of the file was visible in the 
focus area at a given time during the task (see
horizontal lines indicate program lines that hold part of the answer 
to the task, and symbols in the progression maps annotate certain 
types of interaction (e.g., a hand symbol when the user dragged the 
scrollbar thumb; a text caret when the user placed the caret in the 
focus area, for instance to highlight a method). Other interaction 
forms are directly discernable from the map, such as scrolling by 

Fig. 4. Number of participants ranking each interface as 1st, 2nd 
choice (from left to right). For example, nine participants ranked 
Permanent as their first choice. 
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page up/down keys. Interpreting the progression maps is not always 
straightforward. For instance, the task shown in 
finding calls to a particular method.
after 12 seconds and then two more times, presumably in the method, 
before scrolling to see the highlighted o
this task, however, why the user places the caret three times. 
high-complexity tasks varied in structure, and in some cases 
involved multiple files, we did not use progression maps to analyze 
those tasks. 
4.4.1 High-Complexity Tasks
In average, participants interacted with the context view in 64% of 
the high-complexity tasks they completed using the Permanent 
interface and 70% of the tasks using the Transient interface. In all, 
participants used the context view an average o
navigate in the code, equally often with the Permanent interface and 
the Transient interface. While the context view was always shown in 
the Permanent interface, participants had to explicitly call up the 
context view to use it in the Tra
times in average in all tasks. 

Using the Permanent interface, ten participants interacted with 
the context view in more than half the tasks. Participants may also 
have looked at information in the context view without inte
with it, but we were unable to determine such use from the data 
logged in high-complexity tasks. Using the Transient interface, two 
participants did not once use the context view, whereas the other 12 
participants used the context view in more than

4.4.2 Low-Complexity Tasks
Analysis of progression maps for low
patterns in the participants’ interaction with the interfaces. 
complexity tasks except for Determine
participants most often selected a method or variable
highlighted occurrences to either navigate more quickly or to 
navigating. Fig. 6 shows progression maps th
this type of interaction using each of 
Permanent interface or the Transient interface, participants could 
often find the lines in the context view that contained the 
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Fig. 5. Progression map for a Determine
Permanent interface. 
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Fig. 6. Progression maps representative of participants’ navigation 
when using the three interfaces in (a
task involving method calls and (d-

up/down keys. Interpreting the progression maps is not always 
. For instance, the task shown in Fig. 5 involves 

finding calls to a particular method. The user places the text caret 
after 12 seconds and then two more times, presumably in the method, 
before scrolling to see the highlighted occurrences. It is not clear in 
this task, however, why the user places the caret three times. Because 

complexity tasks varied in structure, and in some cases 
involved multiple files, we did not use progression maps to analyze 

ity Tasks 
In average, participants interacted with the context view in 64% of 

complexity tasks they completed using the Permanent 
interface and 70% of the tasks using the Transient interface. In all, 
participants used the context view an average of eleven times to 
navigate in the code, equally often with the Permanent interface and 
the Transient interface. While the context view was always shown in 
the Permanent interface, participants had to explicitly call up the 
context view to use it in the Transient interface – they did so 27 

Using the Permanent interface, ten participants interacted with 
the context view in more than half the tasks. Participants may also 
have looked at information in the context view without interacting 
with it, but we were unable to determine such use from the data 

complexity tasks. Using the Transient interface, two 
participants did not once use the context view, whereas the other 12 
participants used the context view in more than half of the tasks.  

Complexity Tasks 
Analysis of progression maps for low-complexity tasks revealed 
patterns in the participants’ interaction with the interfaces. In all low-
complexity tasks except for Determine-control-structure tasks, 

a method or variable and used its 
to either navigate more quickly or to avoid 

rogression maps that are representative of 
this type of interaction using each of the interfaces. Using the 
Permanent interface or the Transient interface, participants could 

lines in the context view that contained the answer to 
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. Progression maps representative of participants’ navigation 
when using the three interfaces in (a-c) a Determine-dependencies 

-f) a Determine-delocalization task. 
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the task without navigating further. Using the Baseline interface, 
participants often seemed to navigate to lines 
occurrences, which might contain the answer to the task
describe the different interactions used to solve the tasks
frequently they were used by participants. 

Using the Permanent interface, participants were able to find the 
answer to 54 of 84 tasks directly in the context view with minimal 
navigation (see Fig. 6 (a) and (d)). Participants navigated to 
occurrences in the context view to find the answer in six tasks. In 
contrast, in 24 tasks participants navigated to occurrences by 
scrolling or by clicking in the overview, or they manually searched 
the file. Using the Transient interface, participants called up the 
context view in 55 of 84 tasks and found the answer there with 
minimal navigation (see Fig. 6 (b) and (e)). In 28 tasks participants 
navigated to occurrences by scrolling or by clicking in the overview, 
or they scrolled to manually search through the file. Using the 
Baseline interface, participants completed 68 of 84 tasks by finding 
occurrences in the overview ruler instead of manually searching 
through the file. Often participants then navigated to occurrences 
either by scrolling like in Fig. 6 (c) (39 tasks
overview ruler like in Fig. 6 (f) (27 tasks). 
Determine-delocalization tasks without scrolling or navigating to 
occurrences, but seemingly by examining the white rectangles 
showing occurrences in the overview ruler. 

In all interfaces, participants made effective use of highlighted 
occurrences for navigating. However, in Determine
tasks where participants should determine which met
value assignments to a particular variable (shown in 
participants using the Baseline interface ended up scrolling to search 
manually through the entire file. Similarly, 
Permanent and four using Transient scrolled through the entire file to 
solve the task. This was surprising because all participants navigated 
effectively using occurrences to solve Determine
where they should determine which methods contained calls to a 
particular method (see Fig. 6 (a-c)). 

Determine-control-structure tasks asked participants to find the 
‘}’-brace that closes a given block, or asked participants 
for-, if- and while-statements that enclose a given line
Baseline, participants had to scroll to find the closing brace or 
enclosing statements. Using Permanent, six participants found the 
line number of the closing brace in the context view whereas two 
navigated to the closing brace; seven participants read enclosing 
statements in the context view. Using Transient, five participa
called up the context view, and three of these read the line number 
whereas two navigated to the closing brace;
up the context view and read the enclosing statements.

Two participants did not once call up the fisheye view 
Transient interface, and using the Permanent interface, they seemed 
to use the fisheye view only in high-complexity tasks
participants were the only ones with no Java experience. 
participants who preferred the Transient interface used the fisheye 
view in all low-complexity tasks. In high-complexity
these participants used it frequently, whereas 
occasionally. 

Permanent Transient 
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Fig. 7. Example progression maps where participants scrolled 
through the entire file to solve a Determine-dependencies task 
involving variable assignments. 
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where participants should determine which methods contained 
value assignments to a particular variable (shown in Fig. 7), all 
participants using the Baseline interface ended up scrolling to search 
manually through the entire file. Similarly, six participants using 
Permanent and four using Transient scrolled through the entire file to 
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participants were the only ones with no Java experience. The three 

ransient interface used the fisheye 
complexity tasks, two of 
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5 DISCUSSION 

We now relate the findings from 
focus+context interfaces of source code.
the transient use of fisheye interfaces in programming
results. 

5.1 Focus+Context Interfaces for Source Code
Results from the study confirm earl
of fisheye views of source code 
two participants preferred either the Permanent or Transient 
interface, which contained a fisheye view of code, compared with 
the Baseline interface, which contained a linear view. In contrast to
[14], however, time and accuracy measures were inconclusive. 
logged during the experiment 
semantic highlighting of related code.
Transient interface, participants could often find the answer directly 
in the context view with minimal navigation
Baseline interface, participants had to navigate to find the answer in 
many of the tasks. Highlighting might have helped 
navigate faster also in the Baseline interface, especially by use of the 
overview ruler. In interpreting our results, it is 
note that highlighting was not included in previous studies of 
focus+context views of source cod
common feature in code editors and therefore perhaps well known to 
participants. In contrast, the fisheye view
Participants in our study may not have had time in the study to learn 
to use it effectively. Even longer
fisheye views are used when fully learned and adopted by users.

5.2 Transient Use of a Fisheye 
We compared the usability of a 
participants could call up temporarily
The transient fisheye view 
understanding while still providing a large view of source code for 
other tasks such as reading and editing. 
interaction with the interfaces showed 
view in both the Permanent interface and the Transient interface
Also, some participants’ comments
view that can be called up temporarily
participants preferred the Transient 
feedback, we learned about issues 
usability of the transient fisheye interface. 
issues and other factors that might have influenced participants’ use 
of the transient fisheye view. 

First, results from the present study 
empirical findings of [15]. That study 
transient overview, which appeared temporarily close to the mouse 
cursor, compared to a fixed overview, which was shown permanently 
in the display. In contrast to the tasks used in 
narrowly on navigation, participants in the present study performed 
more varied tasks in a more complex domain
participants used the fisheye view for navigating, but also for 
understanding relationships in the co

Some participants mentioned that the 
Transient interface disappeared too easily. 
been a problem in tasks that involved determining enclosing 
statements. These types of task involved aligning indentation of 
in the context view to lines in the focus area. In contrast, we think it 
is appropriate that the context view disappears after having c
up the context view to navigate in the code
alternative, which was hinted at by som
to allow users to switch the fisheye view on and off on demand.

We hypothesized that the Transient interface would benefit from 
a large context view that allowed more important lines to be visible
simultaneously. We had expecte
context view to use the information contained therein, and 
not pay much attention to the focus area. 
participants commented that the context view used too much space in 

Baseline 

  
(c) 

. Example progression maps where participants scrolled 
dependencies task 

from our study to previous research in 
focus+context interfaces of source code. We then discuss issues with 

use of fisheye interfaces in programming based on our 

Focus+Context Interfaces for Source Code 
Results from the study confirm earlier empirical findings in support 
of fisheye views of source code [14] and code elision [7]. All but 
two participants preferred either the Permanent or Transient 
interface, which contained a fisheye view of code, compared with 
the Baseline interface, which contained a linear view. In contrast to 

, however, time and accuracy measures were inconclusive. Data 
logged during the experiment show that participants often used 
semantic highlighting of related code. Using either Permanent or 

ient interface, participants could often find the answer directly 
in the context view with minimal navigation, whereas using the 

participants had to navigate to find the answer in 
ighlighting might have helped participants 

also in the Baseline interface, especially by use of the 
In interpreting our results, it is therefore important to 

that highlighting was not included in previous studies of 
focus+context views of source code. However, highlighting is a 

in code editors and therefore perhaps well known to 
In contrast, the fisheye view is not well known. 

may not have had time in the study to learn 
n longer-term studies may uncover how 

fisheye views are used when fully learned and adopted by users. 

Fisheye View 
We compared the usability of a transient fisheye view, which 
participants could call up temporarily, to a permanent fisheye view. 

he transient fisheye view aimed to support navigation and 
understanding while still providing a large view of source code for 

reading and editing. Analysis of participants’ 
interaction with the interfaces showed effective use of the fisheye 

interface and the Transient interface. 
participants’ comments confirm the idea of a fisheye 

called up temporarily. However, only two 
Transient interface. From participants’ 

feedback, we learned about issues that might have detracted from the 
transient fisheye interface. Below we discuss these 

issues and other factors that might have influenced participants’ use 

from the present study may be contrasted to the 
That study showed preference for a 

ich appeared temporarily close to the mouse 
compared to a fixed overview, which was shown permanently 

In contrast to the tasks used in [15], which focused 
participants in the present study performed 

more varied tasks in a more complex domain. For instance, 
used the fisheye view for navigating, but also for 

ding relationships in the code.  
articipants mentioned that the context view in the 

disappeared too easily. We suspect this may have 
been a problem in tasks that involved determining enclosing 
statements. These types of task involved aligning indentation of lines 
in the context view to lines in the focus area. In contrast, we think it 
is appropriate that the context view disappears after having calling 

to navigate in the code. However, an interesting 
, which was hinted at by some participants’ comments, is 

to allow users to switch the fisheye view on and off on demand. 
that the Transient interface would benefit from 
that allowed more important lines to be visible 

expected that users would call up the 
context view to use the information contained therein, and therefore 

attention to the focus area. However, several 
participants commented that the context view used too much space in 
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the transient fisheye view. In the experiment, participants may have 
needed to relate information in the context view to information 
located in a part of the editor window that became hidden by the 
context view. One way to minimize the risk of covering code in the 
editor with the context view is to place the context view outside the 
bounds of the editor window as far there is display space above and 
below the editor window. 

We suggest that a transient visualization may support a specific 
task more effectively by allowing users to call up a representation of 
only the types of information useful to that task. The fisheye view in 
the Transient interface was based on the same degree-of-interest 
function as in the Permanent interface and thus the fisheye views in 
the two interfaces included the same types of information. In 
practice, a transient fisheye view of source code could prove more 
effective if aimed at helping programmers to understand only certain 
relationships in the code, and include only lines that show those 
relationships in the context view. However, more work is needed to 
determine how users can more directly control the focus used in the 
degree-of-interest function underlying the fisheye view.  

Although we included varied programming tasks, the tasks 
involved only reading and navigating in source code, and are thus 
not representative of real life programming activity. Participants did 
not write code or have all the tools available in modern programming 
environments at their disposal. Consequently, our study may have 
emphasized tasks for which the fisheye view is particularly useful 
and therefore favoured the Permanent interface.  

6 CONCLUSION 

Transient visualizations promise to support specific contexts of use 
without making permanent changes to the user interface. To further 
understand how transient visualization can be used to support 
complex work, we have designed and evaluated an interface with a 
transient fisheye view of source code that users can call up 
temporarily. In a user study we compared the transient fisheye 
interface with a permanent fisheye interface and a baseline interface. 
Fourteen participants performed tasks of both high and low 
complexity.  

Results from the user study showed that all but two participants 
preferred either of the interfaces containing a fisheye view compared 
to the baseline interface. This supports results from earlier studies of 
source code views [14][7]. The transient fisheye view aimed at 
supporting navigation and understanding tasks while still providing a 
large view of source code for reading and editing. However, 
participants preferred a permanent fisheye view over the transient 
fisheye view. No clear differences in task completion times and 
accuracy were found, and analysis of participants’ interaction 
showed that the fisheye view was used equally often in permanent 
and transient conditions. Participants’ comments indicate subtle 
issues with the transient fisheye interface that might have detracted 
from its usability. 

We have concluded by proposing ideas to improve transient use 
of fisheye views in existing user interfaces. For instance, when 
temporarily called up, the context view may be extended to use 
display space adjacent to the existing view so as to avoid hiding 
information in the user’s focus of attention. Also, we propose using a 
degree-of-interest function that focuses narrowly on information 
important in a specific task; a transient fisheye view tailored for a 
specific task may increase its effectiveness.  
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ABSTRACT  
Information visualizations have been shown useful in 
numerous laboratory studies, but their adoption and use in 
real-life tasks are curiously under-researched. We present a 
field study of ten programmers who work with an editor 
extended with a fisheye view of source code. The study 
triangulates multiple methods (experience sampling, 
logging, thinking aloud, and interviews) to describe how the 
visualization is adopted and used. At the concrete level, our 
results suggest that the visualization was used as frequently 
as other tools in the programming environment. We also 
propose extensions to the interface and discuss features that 
were not used in practice. At the methodological level, the 
study identifies contributions distinct to individual methods 
and to their combination, and discusses the relative benefits 
of laboratory studies and field studies for the evaluation of 
information visualizations.  
Author Keywords 
Information visualization, evaluation methodology, field 
study, programming, fisheye view, experience sampling, 
logging, thinking aloud, interviews. 

ACM Classification Keywords 
H5.2. Information interfaces and presentation (e.g., HCI): 
User Interfaces (Evaluation/Methodology).  

INTRODUCTION 
An abundance of techniques and tools have emerged in the 
field of information visualization. In the past ten years, it 
has become increasingly common to see proposals for new 
techniques or tools accompanied by empirical evaluations 
of the usability and usefulness of the technique or tool. Not 
only do these evaluations provide useful information, they 
also testify to the maturation of the field. 

The evaluation of information visualizations are mostly 
done as laboratory experiments [21]. Typically, participants 
spend an hour or two completing predefined tasks with a 

limited set of tools and data. Laboratory experiments  allow 
precise measurement of the usability of a technique or tool, 
and extensive control of the extraneous factors that may 
influence use of the visualization.  

However, laboratory experiments have general limitations 
[e.g., 3,26] and issues specific to information visualization 
also restrict their usefulness [e.g., 22,23,31,36]. Let us give 
just three examples; many others may be found in recent 
work on evaluation of information visualizations [e.g., 
2,4,29]. First, the tasks used in a laboratory experiment 
greatly influence the results, but are often simpler than real 
life tasks [8,31]. Second, in real-life use visualizations have 
to be integrated with other tools and may not fit all 
activities or work habits equally well [11,17]; laboratory 
experiments rarely focus on integration with other tools. 
Third, laboratory studies often do not go beyond initial use 
of an interface [31]. An often-suggested answer to these 
issues is long-term studies that employ multiple methods 
[4,33,36]. While such studies exist, they are rare and advice 
about their design and benefits lacking. 

The present paper studies a fisheye visualization of source 
code by deploying it among professional programmers for 
several weeks. While deployed, we collected data using 
experience sampling and logging; after participants gained 
proficiency, we interviewed them and analyzed videos of 
their use of the visualization. These data are used for 
method triangulation [7,25] so as to understand adoption 
and use, and are also contrasted to an earlier laboratory 
evaluation of the visualization [16]. The aim is twofold: (a) 
to advance our understanding of fisheye interfaces by 
studying their adoption and use in a real-life setting; to our 
knowledge this is the first long-term field study of a fisheye 
interface and (b) to discuss the methodology of evaluating 
information visualizations based on our use of method 
triangulation. The results will inform practical work on 
fisheye and other distortion interfaces, while advancing the 
discussion of how to evaluate information visualizations. 
RELATED WORK 
This paper aims to combine and make contributions within 
two themes: the methodology of information visualization 
evaluation and fisheye views for supporting programmers. 
Next we summarize the relevant literature for each theme. 
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Evaluating Information Visualization 
During the past ten years, evaluation of proposals for tools 
and techniques in information visualization has become 
commonplace [5]. For example, out of 16 papers at CHI 
2008 with the keyword visualization or information 
visualization, 14 contained empirical evaluations (9 of 
which were laboratory studies). At the same time, however, 
methodology papers [4,36] and workshops [2] argue that 
solid evaluation of information visualizations is difficult. 

The difficulties of evaluation of information visualizations 
may be illustrated with reference to laboratory experiments. 
Laboratory experiments are the most widely applied 
evaluation method [6,8,21] and perhaps therefore also the 
method with which the most difficulties have been 
identified. Difficulties include the use of experimental tasks 
that are markedly simpler than real life tasks. Also, 
durations of laboratory studies are often short. Perer and 
Shneiderman [30] reviewed a collection of information 
visualization papers and mentioned how only 39 out of 132 
papers reported evaluations, and that all evaluations 
included less than 2 hours of tool use. Because participants 
need time to adopt novel interaction techniques [1], 
laboratory studies often do not address gaining proficiency 
beyond initial use of an interface [31]. In real-life, 
visualization techniques have to be integrated with other 
tools and may not fit all activities or work habits equally 
well [11,17]; such concerns are ignored in laboratory tasks. 
Other aspects of the setting in a laboratory and in realistic 
use contexts may impact performance and adoption. Reilly 
and Inkpen [32], for instance, studied the effectiveness of 
map morphing. They found differences in for instance 
recall when running a study in the lab and in a noisy public 
space. A final difficulty with laboratory experiments is that 
while the choice of participants are crucial to a laboratory 
experiment [8], non-professionals are often participants in 
such experiments. Taken together these difficulties limit the 
validity and generality of findings from laboratory studies. 

One answer to the difficulty of laboratory experiments is 
new approaches to the evaluation of information 
visualizations. For instance, long-term studies of the use of 
information visualizations have been suggested 
[4,33,35,36]. Shneiderman and Plaisant [36] described 
multi-dimensional, in-depth long-term case studies, 
shortened to MILCs. Their proposal was used by Perer and 
Shneiderman [30], who developed a visualization for 
analyzing social networks. Perer and Shneiderman had 
domain experts use the visualization on their own problems, 
and followed a methodology that included training and 
changing the software in response to experts’ needs. Other 
researchers have used variants of the MILCs approach 
[27,39]. While long-term studies may give unique insights, 
they are resource demanding and are, as an evaluation 
method, often more formative than summative. 

Another answer has been methodologies based on self-
reporting, such as diary studies and experience sampling 
[24]. One prominent example of this is insight-based 

evaluation [29,33], which aims to quantify the number and 
types of insights that analysts get using a visualization. 
Saraiya et al. [33] asked two biologists to use five visual 
tools to conduct exploratory analysis of microarray data 
sets, an actual work task for the biologists. For three 
months, the biologists were asked to keep a diary of their 
work process, the insights they gained from the data, and 
how the tools led to those insights. Saraiya et al. concluded 
that their study “indicates the viability and importance of a 
longitudinal, motivated, domain embedded, self-reporting 
approach to evaluating visualizations.” A general problem 
with this methodology, however, is that it is hard to couple 
insights and the actual use of information visualizations.  

Still another approach has been to systematically apply 
qualitative research methods, including systematic 
observation [15] and grounded theory [37]. For instance, 
Faisal et al. [9] used grounded theory to study a tool for 
visualizing academic literature. They argued that grounded 
theory helped them characterize users’ experience of using 
visualizations.  
Fisheye Interfaces as a Case 
The specific focus of this paper is on fisheye interfaces 
[10]. We focus on this technique for two reasons. First, 
Lam and Munzner [23] remarked that “even though 
focus+context visualizations have been around for over 20 
years, we do not know when, how, or even if they are 
useful”; the inconclusiveness of research on focus+context 
techniques includes fisheye interfaces. Second, while many 
evaluations have been conducted on fisheye interfaces [e.g., 
1,13,14,34], we are unaware of any long-term studies. Also, 
most studies of fisheye interfaces use laboratory studies 
only [e.g., 1,16]. Thus, the benefits of the methodologies 
reviewed above have yet to bear on fisheye research. 

We focus on fisheye use in programming. Programming is a 
challenging activity to support with a fisheye interface, but 
also to evaluate. It is cognitively complex and any insights 
from visualizations are likely to be secondary in relation to 
higher-level programming objectives. Two earlier studies 
presented relevant empirical insights. Jakobsen and 
Hornbæk [16] compared a fisheye view with a linear view 
of source code in a controlled experiment where 16 
participants performed tasks involving navigation and 
understanding of source code. Results from the study 
suggest that a fisheye view can help programmers to 
navigate and understand source code. Kersten and Murphy 
[18] used diaries to investigate the utility of Mylar, an 
extension for the programming environment Eclipse, that 
allows the assignment of a degree of interest to interface 
elements. The diaries identified a range of changes to 
Mylar. Kersten and Murphy [19] later used logging to 
investigate if Mylar improved programmers’ productivity.  

In conclusion, a variety of methods are available to assist 
evaluation of fisheye interfaces. In particular, it seems that 
combinations of the evaluation methods proposed have not 
been tried in relation to fisheye interfaces. 
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FISHEYE JAVA EDITOR 
Navigating and understanding the source code
are highly challenging activities. The aim of our work is to 
support programmers in those activities using information 
visualization, specifically, fisheye interfaces 
work has used laboratory experiments to sh
interfaces may help navigation tasks [16]. 
the related work section, such experiments 
satisfactory. Before we describe our evaluation approach, 
this section introduces the fisheye editor that we evaluate.

Based on three years of development and experimentation, 
our current prototype looks like Figure 1
useful for real programming tasks, we have 
Java editor provided in Eclipse, a widespread development 
environment, with a fisheye view. In the Fisheye Java 
editor1, the editor window is divided into a focus area and a 
context view (see Figure 1). The focus area, the editable 
part of the window, is reduced to make room for the context 
view. The context view uses a fixed amount of spac
and below the focus area. It contains a distorted view of 
source code in which parts of the source code that are of 
less relevance given the user’s focus in the code, are elided.

The Fisheye Java editor contains all the features of the 
normal Java editor in Eclipse. For instance, the editor 
highlights annotations of different types, such as search 
results and compilation errors in the source 
of annotation called occurrences allows programmers to see 
where a variable, method, or type is referenced. For 
instance, a variable can be selected by placing the caret in 
                                                           
1 A Fisheye Java editor plug-in for Eclipse is available at 
http://mikkelrj.dk/projects/fisheye2009 
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source code in which parts of the source code that are of 
less relevance given the user’s focus in the code, are elided. 

The Fisheye Java editor contains all the features of the 
For instance, the editor 

highlights annotations of different types, such as search 
source code. One type 

allows programmers to see 
s referenced. For 

instance, a variable can be selected by placing the caret in 

in for Eclipse is available at 

the variable name whereby all references to that variable 
are highlighted in the source code. In an overview ruler 
shown to the right of the editor
indicate lines in the file that contain 
Fisheye Java editor takes these annotations 
when selecting which lines to show in the context view.

Degree of Interest 
In the Fisheye Java editor, a degree of interest (DOI) is 
determined for each program line in the file. Lines in the 
context view are then elided if their DOI is below a 
threshold k.  

The DOI of a program line x given the focus point 
(defined as the lines in the focus area

DOI(x | p)  =     enclosing(x, p)  
+ annotated(x)  
+ cursor(x) 
+ siblingAST(x, p) 
– dline(x, p) 

First, lines are interesting if they
statements that enclose the code visible in the focus area. 
Such lines contain a package, class, interface or method 
declarations, or one of the keywords for, if, while, switch, 
etc. If line x is such a line and 
encloses the code in the focus area 
k. Second, lines containing annotations, such as errors, 
search results, or occurrences of a selected element
interesting. To provide context for annotations, lines that 
contain declarations of methods that enclose annotations are 
also of interest. Thus, annotated(x) = k
line x that contains an annotation or declares a 
enclose an annotation. Third, cursor

Figure 1: The Fisheye Java editor in Eclipse. 
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of line x containing the editor caret, which may for instance 
be important for returning to the position of the caret. 
Fourth, lines that contain declarations of methods, fields or 
types that are close to the focus area may support 
orientation in the code. Thus, if line x declares a member of 
a class or interface that can be reached by moving upwards 
in the abstract syntax tree from a line in the focus area p 
then siblingAST(x, p) = k/2. Fifth, a distance dline(x, p) ∈ [0; 
k/2] proportional to the number of program lines from line x 
to focus area p detracts from that line’s DOI.  

Source code elision in the context view 
Lines are always included in the context view if they have a 
degree of interest above the threshold k. If there are not 
enough lines with DOI > k to use all the space available in 
the context view, lines with DOI <= k are added to the 
context view in descending order of DOI. This includes first 
declarations of methods or fields immediately above or 
below the code that is currently visible in the focus area, 
and then other lines directly adjacent to the focus area. 

Placing the caret in a variable may cause many lines to have 
DOI > k because they contain highlighted occurrences of 
the selected variable. All lines cannot be shown 
simultaneously in the fixed amount of space of the context 
view. Clipping or magnifying lines in the context view may 
result in some lines becoming unreadable, yet all lines may 
be important to the user. Thus, to guarantee users that the 
context view contains all highlighted occurrences, the 
windows containing the upper and lower context view can 
be scrolled. The context view automatically scrolls to show 
lines closest to the focus area when its contents change.  
Interacting with the Fisheye Java editor 
The user can interact with the focus area like a normal 
editor. The caret can be moved within the bounds of the 
focus area, scrolling the view contents when moving the 
caret against the upper or lower bound. The context view 
automatically reduces in size to fit the content; near the top 
of the document, for example, when the user scrolls by 
holding an arrow key to move the caret past the upper edge 
of the focus area, the upper part of the context view retracts. 
The context view can be switched on and off. When 
switched off, the context view can be call up temporarily 
with a keyboard shortcut, and it can be dismissed by hitting 
Esc or by clicking outside the context view. Clicking on a 
line in the context view jumps to that line and places the 
caret at the clicked position. Also, the context view can be 
resized, either by clicking on a button in the toolbar or by 
using a keyboard shortcut.  
Filtering and customizing the context view 
The user can change whether annotations or enclosing 
statements are included in the context view. Also, the user 
can select which annotations to show among all the 
annotation types available in Eclipse including bookmarks, 
errors, occurrences, search results, and tasks. In the 
example shown in Figure 1, errors and tasks are enabled, 
causing one line with an error and one line with a TODO 
task annotation to be shown in the context view. More 

customization options are available in a preference dialog 
page, for instance, whether to include the cursor line when 
it is scrolled out of view or whether to include all lines that 
contain method or variable declarations. 
FIELD STUDY WITH PROFESSIONAL PROGRAMMERS 
We conducted a field study of the Fisheye Java editor with 
professional Java programmers. Our aim was in part to 
understand how programmers will adopt a fisheye view of 
source code over two weeks and use it in their own work, in 
part to investigate the use of multiple methods in 
combination in a way not previously tried in evaluations of 
fisheye interfaces. 
Participants 
Ten professional Java programmers from three software 
companies participated in the study. Participants had 
between 1 and 20 (M = 9) years of programming 
experience. Eight participants had IT-related education 
whereas two participants had a business-oriented 
background. Participants used Mac OS X (2 participants) or 
Windows (7 participants) or both (1 participant), and they 
all used Eclipse 3.2 or later. All ten participants were male. 
Method 
We studied the programming activities of participants at 
their work place. Our aim was to study each participant 
using Eclipse for at least ten workdays; the actual period of 
study varied from two to five weeks. To provide a rich basis 
for analyzing the use of the Fisheye Java editor in the daily 
programming activities of participants, multiple data 
collection methods were used (see Figure 2). We were 
particularly inspired by Denzin’s [7] definition of 
triangulation as "the combination of methodologies in the 
study of the same phenomenon" (p. 291) and by the lack of 
work that integrates the new evaluation approaches 
mentioned in the section on related work.  

Two meetings were arranged to interview participants and 
observe them while thinking aloud during their daily work. 
In the period between the two meetings, data were 
automatically logged to describe participants’ interaction 
with Eclipse. We probed participants during work using an 
adaptation of the experience sampling method [24]. 
Interviews, thinking aloud, logging, and probes 
complement each other to collect quantitative and 
qualitative, subjective and objective data; in the Discussion 
we return to how this worked in practice. Next, we describe 
in turn how each method was used. 

Figure 2: Use of methods to gather data about participants’ 
programming activity and their experience using the Fisheye 

Java editor. 









 
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Thinking Aloud 
We observed participants at their work place while they 
were thinking aloud, working with programming tasks that 
involved use of a Java editor. Because programming is a 
cognitively complex task – and because participants were 
working on real tasks – we only reminded participants to 
think aloud infrequently. To support a detailed analysis of 
how participants interacted with the Fisheye Java editor, we 
used screen recordings to capture participants’ interactions 
with their computers, combined with a web camera that 
recorded participants’ utterances. Screen recordings may be 
less obtrusive than using physical video equipment in 
participants’ work environment and have been previously 
been used to record participants without an observer present 
[38], thus allowing a broad sample of the daily work of 
participants. In our case, however, we wanted participants 
to think aloud, so as to provide insights in their intent and 
experience of use. Thus, we wanted an author to be present 
and only recorded a couple of hours for each participant. 

We analyzed the video recordings of participants thinking 
using grounded theory [37]. The first author found 
segments of recordings where participants either interacted 
with the context view using keyboard or mouse, or made 
utterances or gestures that indicated they were looking at 
information in the context view. We coded each segment 
where participants were (1) looking at the lines in the 
context view (and possibly scrolling the context view) or 
(2) clicking on a line in the context view to navigate to that 
line. In all, we recorded 10:41 hours of participants thinking 
aloud using Eclipse with the Fisheye Java editor installed. 
Technical problems with the recording software caused one 
thinking aloud session to yield no usable data. 

Activity Logging 
In the period of ten work days between the two thinking 
aloud sessions, data were automatically collected about (a) 
how participants used menus, toolbars, keyboard shortcuts 
and views in Eclipse, as in [28], and (b) how participants 
interacted with the Fisheye Java editor. We used these data 
to characterize participants’ use of the programming 
environment, and in particular to describe how they 
interacted with the context view and how often they did so.  

Probes 
We collected data obtained using an adaptation of the 
experience sampling method [24], in which we randomly 
probed participants with a survey delivered in a dialog 
window from within the programming environment. 
Participants were probed during periods where user activity 
was registered in Eclipse and a Java editor was active. 
Interruptions were more than 90 minutes apart. Because we 
were interested in situations where participants used the 
context view, we delayed probes for up to 15 minutes to be 
delivered to participants the moment after they had 
interacted with the context view. The probe dialog window 
contained five pages asking participants (1) what they were 
doing when interrupted (using categories from [20]), (2) if 
they used the context view and if so, what they used it for, 

(3) how well they knew the source code they were working 
with, (4) what type of task they were working on (e.g., 
correcting a bug or restructuring the source code), and (5) 
how long they had been working on the task (ranging from 
“less than 10 minutes” to “more than a month”).  

Interviews 
We interviewed participants before the first thinking aloud 
session to gather information about their background and 
programming experience, the project they are working on, 
and the types of task that they spend time on during their 
workday. After the second thinking aloud session, another 
interview was conducted to investigate the participants’ 
experience of using the Fisheye Java editor. Also, the 
interview allowed for discussion of benefits and drawbacks 
of the editor and possible improvements. Recordings of the 
second interviews were transcribed and analyzed, using 
open coding and comparison of the coded interview 
segments to find common themes in participants’ 
experiences of using the Fisheye Java editor.  
Procedure 
The experimenter met with participants at their workplace. 
First, participants were interviewed for about ten minutes. 
Next, the participant’s computer was set up to capture the 
screen of the monitor showing the Eclipse window and a 
web camera was set up to record the participant while 
thinking aloud. Participants were then instructed to think 
aloud while they were working. Having observed the 
participant for approximately one hour of programming, the 
participant was allowed a break. A plug-in with the Fisheye 
Java editor was installed in Eclipse together with a plug-in 
for logging participants’ interaction with Eclipse. The 
participant was instructed in the use of the Fisheye Java 
editor, and then supervised while trying the editor to allow 
for questions and clarifications. During the first five days of 
the study period, a window with instructions on how to use 
the Fisheye Java editor opened twice a day to remind 
participants about how to use the editor. Also, the first 
author visited or contacted participants to answer any 
questions participants might have about the Fisheye Java 
editor. Participants were not paid as an incentive for using 
the editor and they could at any time switch it off. 

At the second visit about ten workdays after the first visit, 
participants were observed for an hour using Eclipse with 
the Fisheye Java editor installed. Participants were 
instructed to think aloud, and the session was recorded 
similarly to the first meeting. Finally, participants were 
interviewed about the work they had been doing after the 
first visit and about their experience with the editor. 
RESULTS 
Our results consist of recordings of participants’ thinking 
aloud, logged data describing participants’ activity in 
Eclipse, answers to probes, and interview transcriptions. 

Thinking Aloud 
Our analysis of participants’ thinking aloud identified 55 
incidents where the context view was used. We 
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characterized what was going on in each incident using 
open coding, and we compared incidents to develop 
categories for different uses of the context view and the 
situations where these uses occurred. Table 1 shows the 
most common situations of use with the number of 
incidents of each situation.  
Most incidents involved the use of highlighted occurrences 
of a variable, method, or class. Often participants selected a 
method or variable to highlight its occurrences that would 
show up in the context view. Typically, participants found 
an occurrence and navigated there quickly or looked in the 
context view to investigate its dependencies, possibly 
clicking on an occurrence to investigate further. For 
instance, one participant had to move a set of buttons from 
one part of an application window to another. This task 
required navigating between at least four files, moving 
variables from one file to another. The participants used the 
context view, making sure all the dependencies either were 
moved along or dealt with in a more appropriate manner.  
The second most common use of the context view involved 
looking for or navigating to the declaration of a method. In 
one situation, participants searched for the right method to 
use or investigate further. In another situation, participants 
navigated to a method they had recently investigated. Also, 
we found three incidents that resembled the situation of 
navigating to errors as part of manually refactoring code: 
after using the “quick-fix” tool in Eclipse to automatically 
add a required method to a class, participants looked in the 
context view to find the added method and navigate there. 
The third most frequent use of the context view we saw 
involved navigating to compilation errors. In five incidents, 
participants made a change that caused errors in related 
code elsewhere and then immediately navigated to the error 
to correct it. A participant later explained that it was 
sometimes faster for him to add a parameter to a method 
and navigate to errors in calls to the method and fix them, 
than it was to use the refactoring tool in Eclipse. Also, in 
three incidents participants inspected an error that they had 
caused earlier without noticing. 

We did not see participants use package declaration or 
enclosing statements in the context view, which surprised 
us because such higher-level information has been 
conjectured to provide important context [10]. A possible 
explanation is that participants were simply not working in 
long and complex blocks of code with heavy indentations, 
but mainly smaller methods or methods with many lines but 
no deep indentation.  

In conclusion, we saw eight participants use the context 
view during thinking aloud. One participant had disabled 
the Java Fisheye editor because he experienced problems 
with it. Use of the context view varied greatly between 
participants; one participant mainly used the context view 
to inspect highlighted occurrences of variables, whereas 
another participant mainly used the context view for 
navigating to errors. This is not surprising, since the use 
situations we saw for each participant very likely were 
influenced by the tasks and the code that participants were 
working on in the small sample of each participant’s work. 
Activity Logging 
The data that were logged in Eclipse comprise 114 days of 
Eclipse use. Each participant used Eclipse for at least ten 
days. However, no usable log file was produced for one of 
the participants due to technical problems. 

From the logged interaction events, we determined periods 
where participants used Eclipse. A period was determined 
as at least two interaction events with less than five minutes 
in between, adding half a minute to the beginning and end 
of each period. In all, participants used Eclipse for around 
370 hours. Using the method of determining periods of use, 
we determined and summarized the length of periods where 
participants made changes to the source code. Participants 
were editing Java source code for around 207 hours (56%), 
and each participant was editing code between 26% and 
72% of the time they were working in Eclipse.  

We visualized the participants’ interaction with Eclipse by 
creating for each participant a series of timelines (one per 
day), indicating when the user was interacting with Eclipse 

    







  


   




   



  





  


 


  





  


Table 1: Common situations involving use of the context view in the Fisheye Java editor identified in recordings of participants 
thinking aloud. N refers to the number of incidents of each situation and C refers to the number of those incidents where 

participants clicked on a line in the context view to navigate to that line. 
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and with the context view. Figure 3 shows an example of 
seven days of interaction for one user. The timeline 
visualizations gave three insights into the adoption and use 
of the context view. First, the use of the context view is 
evenly distributed over days. Only in 10% of the days, do 
participants not interact with the context view and then 
typically little interaction with Eclipse occurs in the day. 
Also, interaction with the context view typically happens 
several times during the day (in about 90% of the days). 
Second, we do not see a decline of use over time. Across 
participants, a comparable number of uses of the context 
view are found on the first and last day of logging. Third, 
some participants have long durations of activity where 
they do not use the context view (in Figure 3 this happens at 
the middle part of day 7 and the beginning of day 8). This 
typically happens when the participant is not editing. 
Overall, the time lines show that participants have very 
different work patterns. For instance, one participant who 
was filling in for the project leader during the study had 
many short periods of interacting with Eclipse during his 
workday and only few long periods of programming.  

As a measure of how frequently participants used the 
context view, we grouped the times where participants 
scrolled or clicked in the context view into periods so that 
repeated interaction with the context view within a five-
minute window counted as a single period of use. In 
average, participants interacted with the context view 1.7 
times per hour. For comparison, we determined how often 
common tools in Eclipse for searching and navigating in the 
current file were used. In average, participants used ‘Find’ 
0.7 times per hour, an outline of the file 2.3 times per hour, 
and a search for references 1.4 times per hour.  
Probes 
In all, participants were probed 332 times (out of which 193 
were postponed and not analyzed further). We discarded six 
probes that participants completed more than five minutes 
after the interruption, because we did not think those 
answers reliably reflected a participant’s experience at the 
time of interruption. Of the resulting 133 probes, 36 were 
conditional probes (that were made because participants 
had just interacted with the context view) and 14 were 
unconditional probes where participants reported that they 

had used the context view. Thus, 50 probes were answered 
after participants had used the context view.  

Table 2 shows the activities that participants reported they 
were doing when probed. The most frequent activities 
participants mentioned doing when probed were editing 
(54%), reading code (20%), or testing (17%). Other 
activities that participants reported doing when probed 
mainly included forward porting (8%), just starting or 
resuming work in Eclipse (6%), or synchronizing (4%). 
Participants report more often that they navigated 
dependencies in the code when they had used the context 
view, than when they had not used the context view, and 
participants reported navigating when they had used the 
context view only in conditional probes. This suggests that 
participants used the context view to navigate, but also that 
navigating dependencies is a brief activity that only few 
unconditional probes interrupted.  

The tasks that participant most frequently reported working 
on when probed were extending the program with new 
functionality (27%), modifying the program’s existing 
functionality (23%), or fixing a bug (23%). When using the 
context view, participants reported slightly more often that 
they were fixing bugs (28% vs. 20%) or extending the 
program (54% vs. 40%) compared to when they were not 
using the context view. In contrast, they reported less often 
optimization (0% vs. 10%) or restructuring (4% vs. 16%) 
when using the context view. 

When probed after using the context view, participants had 
used it to find highlighted occurrences (18), navigated to a 
particular line (9), see the declaration of the current class 
and method (8), and see enclosing statements (6). 
Interviews 
Table 3 summarizes the main findings from analysis of our 
interviews with participants after they had used Eclipse 
with the Fisheye Java editor installed. Concerning adoption 
of the fisheye view, eight participants said they would 
continue to use the Fisheye Java editor. One participant 
explicitly said that it was “a better editor with the fisheye 
view than it is without”. We think this is a strong indication 
that participants found the benefits of the fisheye view to 
outweigh the drawbacks. Furthermore, six participants felt 
  

   
   
   
   
   
   
   
   
   

Table 2: Frequency of activities participants answered they 
were doing when probed (1) conditionally when context view 

was used, (2) unconditionally when context view was used, and 
(3) unconditionally when context view was not used. Multiple 
activities could be specified, so columns do not sum to 100%. 

Figure 3: Example of timeline visualization of seven days (y-
axis) of interaction with Eclipse and the Fisheye Java editor. 

Periods of editing are yellow; periods of interaction with 
Eclipse are gray; gray circles indicate use of the context view. 
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they had not fully learned and adopted the fisheye view 
after the few weeks of having it installed. Altogether, we 
took this to mean that some participants would at least keep 
the fisheye view installed so as to try to learn using it.  

Concerning the overall experience of using the fisheye 
view, six participants found it was confusing at times, 
because it was hard to know what was shown in the context 
view. Three reasons were mentioned: (1) adjacent lines that 
filled unused space in the context view made it difficult to 
determine where blocks of code were left out, (2) not all 
methods declared in the file were shown, and (3) different 
types of lines were shown at different times. Five 
participants said they disabled or did not care about the 
fisheye view when working in tasks where it was not 
useful. Also, four participants said they had reduced the 
size of the context area. Some comments suggest that it is 
not so much the context area that is too large as it is the 
focus area that is too small to get an overview of the code in 
focus. Some participants mentioned that they would have 
liked a taller display, and one participant had in fact pivoted 
his widescreen display to use the Fisheye Java editor in a 
tall window. Three participants made comments suggesting 
that they sometimes would forget that the context view was 
there but the visually distinct appearance of an error or an 
occurrence could draw their attention to it. 

Seven participants said they liked that errors and 
occurrences were shown in the context view. One reason 
mentioned was: “you learn 400 different shortcuts for 
example to navigate between different compiler errors, so I 
think it’s a good thing that you actually have something 
visual”. In particular, comments of two participants seem to 
hint that being able to see in the context view the errors – 
noting that some errors follow from others – helps them 
determine what code to actually fix to correct the errors. 
Participants did not agree about the usefulness of 
class/method declarations or of enclosing statements. While 
some participants found enclosing statements useful to form 
a context for the code in focus, others said that they made 
no use of them. One participant, who liked the enclosing 

statements, admitted that he once experienced losing 
overview of a large method anyway. Finally, three 
participants said they used the context view to see methods 
that were near the code in focus.  
DISCUSSION 
Findings on Fisheye Interface in Programming 
The main finding is that the fisheye interface was adopted 
by participants and integrated in their work. The activity 
logging showed that most participants used the context 
view regularly throughout the study and that the frequency 
of use was comparable to core tools in Eclipse. Most 
participants said they would continue to use the Fisheye 
Java editor after the study had finished. Compared to some 
other studies of workplace adoption of information 
visualization [e.g., 11], this is a strong and encouraging 
result; in relation to fisheye research [e.g., 1,13,14,34], the 
adoption suggest that some ideas in fisheye interfaces may 
be useful in real-life tools for tasks as complex as 
programming.  

While adoption is thus confirmed by several types of data, 
some programming tasks were not supported by the Fisheye 
Java editor. In interviews, participants said that the fisheye 
interface did not support tasks like debugging or composing 
new code. The activity logging also shows long episodes of 
non-use of the context view. While our notion of focus 
point was tied to one editor window, participants’ focus 
could easily change between windows or other parts of the 
editor. We contend that extending the notion of focus in 
fisheye interfaces to encompass different parts of the 
interface (similarly to Mylar [18]) could be interesting for 
real-life fisheye interfaces. On the other hand, the thinking 
aloud sessions showed use of the fisheye interface across a 
range of tasks, including some surprising ad-hoc uses.  

The usefulness of the Fisheye Java editor was linked to the 
highlighted occurrences of variables and methods. Most 
incidents of use of the context view in thinking aloud 
sessions involved highlighted occurrences; a third of the 
probes following use of the context view also mention 

   




  


  




  

  

  


  






  


  


  

Table 3: Main findings from analysis of interviews. N refers to the number of interviews in which a finding was made. 
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highlighted occurrences. While the DOI function 
underlying the fisheye editor integrates different kinds of 
interest, it appears that the direct and transparent 
relatedness of highlighted occurrences in the editor and in 
the context view matters the most to users. 
the a priori determined components of the DOI function 
may matter relatively less in real-life use. This speculation 
brings into doubt a defining characteristic o
interfaces, and is an important focus for future work.

The last finding we want to emphasize is a 
and predictability in the fisheye interface. 
mentioned in interviews that they were confused about 
when methods and lines were shown and when they were 
not (e.g., “it should be more predictable so that you can 
guess what you get or understand better what inform
you get from the fisheye”). These remarks warrant further 
investigation, because they conflict with anot
characteristic of fisheye interfaces [10], namely that the 
view changes based on changes in the focus point.
considering how to make it clearer which lines are shown in 
the fisheye interface and which lines are elided
improvement is to allow users to control directly in the 
fisheye interface how different types of information 
context view are shown or elided, perhaps using 
unfold mechanisms (e.g.,  and ) used in widespread 
code editors. 
Strengths of Methods in Combination 
We found individual methods contributing insights into 
adoption, use of specific functions, and participants’ 
to varying degrees. In combination, the methods provide 
stronger evidence of participants’ adoption and use of the 
Fisheye Java editor than any method alone, making up for 
limitations of individual methods. We give three 

First, interviews provide subjective data where participants 
explain their full experience and intent, but explanations are 
retrospective and hard to connect to concrete situations in 
their work and specific functions in the Fisheye 
In contrast, thinking aloud provides rich
participants’ programming activity based on 
situations.  
Second, participants’ assessments in interviews of their 
adoption of the fisheye interface are retrospective and thus 
ambiguous. Also, observing each participant a few hours 
provides only a small sample of their work and it is difficult 
to tell if participants have adopted and use
Java editor in all their work activities based on thinking 
aloud data. To compensate for these limitations, activity 
logging provides quantitative, fine-grained data about 
hundreds of hours of work that show that participants used 
the fisheye interface regularly. Also, p
subjective data about many hours of participants’ work that 
show how participants used the fisheye interface in 
different types of activity. These data allow us to 
extrapolate on our observations of participants’ 
fisheye interface in their work across tasks. 

 

he DOI function 
the fisheye editor integrates different kinds of 

interest, it appears that the direct and transparent 
occurrences in the editor and in 

the context view matters the most to users. More generally, 
the a priori determined components of the DOI function 

This speculation 
brings into doubt a defining characteristic of fisheye 

for future work. 

is a lack of clarity 
. Six participants 

mentioned in interviews that they were confused about 
lines were shown and when they were 

“it should be more predictable so that you can 
guess what you get or understand better what information 

These remarks warrant further 
another defining 

, namely that the 
view changes based on changes in the focus point. We are 

how to make it clearer which lines are shown in 
the fisheye interface and which lines are elided. A possible 

control directly in the 
different types of information in the 

perhaps using fold and 
used in widespread 

We found individual methods contributing insights into 
, and participants’ intent 

In combination, the methods provide 
stronger evidence of participants’ adoption and use of the 
Fisheye Java editor than any method alone, making up for 

We give three examples. 

nterviews provide subjective data where participants 
, but explanations are 

d hard to connect to concrete situations in 
and specific functions in the Fisheye Java editor. 

In contrast, thinking aloud provides rich insight into 
based on concrete use 

essments in interviews of their 
retrospective and thus 

ambiguous. Also, observing each participant a few hours 
provides only a small sample of their work and it is difficult 
to tell if participants have adopted and used the Fisheye 
Java editor in all their work activities based on thinking 
aloud data. To compensate for these limitations, activity 

grained data about 
hundreds of hours of work that show that participants used 

interface regularly. Also, probes provide 
subjective data about many hours of participants’ work that 
show how participants used the fisheye interface in 
different types of activity. These data allow us to 
extrapolate on our observations of participants’ use of the 

 

Third, determining participants’ intent during uses of the 
fisheye interface solely from activity logging and probes is 
difficult, if not impossible: activity logging 
the context of participants’ work, nor their intent with the 
logged activity; interruptions by probes 
and only limited data can be gathered. 
complements logging and probes by situating 
fisheye interface in observations of pa

Laboratory Experiment vs. Field Study
We find four comparisons between 
experiment [16] and the present field study of interest
our focus on adoption is not possible in a laboratory 
experiment [12]. The data provided by activity logging is 
much more convincing than our earlier collected 
preferences. Second, while realism of tasks is often 
a hallmark of field studies, we were mostly surprised by the 
variability and ad hoc use of the fisheye view
in the thinking aloud sessions. Because tasks were fixed 
relatively simple in the laboratory study, 
such behavior. Third, as mentioned earlier, a common 
criticism of laboratory studies is that they do not allow 
participants to gain proficiency [31]
is not a panacea in that respect. Participants
pressure and being busy as barriers to using the fisheye 
editor. Perhaps proficiency with tools need other forms of 
collaboration between researchers and participants,
instance, the long-term collaborations 
Fourth, the field study required full integration of 
in participants’ programming environment, causing a 
number of practical problems.  

CONCLUSION 
Fisheye interfaces for source code 
programmers in navigating and understanding code. 
interfaces, however, have only been evaluated in 
experiments, leaving it uncertain if they would be adopted 
and used in real-life programming. 
a general lack of multi-method longitudinal studies 
information visualizations. We have conducted a field study 
of ten professional programmers solving their normal work 
tasks using a fisheye editor. Data 
experience sampling, activity logging, thinking aloud, and 
interviews. 

The results suggest that participants 
fisheye interface as extensively as other common tools in 
their programming environment
predictability was an integral part of using the interface, 
certain activities were not supported 
assumptions in the design of fisheye interface (which had 
not been challenged in a previous laboratory study) did not 
hold in the field. Methodologically,
triangulation of data helps reach closure about benefits and 
limitations of the visualization. Future work could couple 
more tightly the data collection methods so as to 
both on adoption, specific episodes of use, and on users’ 
intent.  

Third, determining participants’ intent during uses of the 
fisheye interface solely from activity logging and probes is 

ctivity logging does not give 
, nor their intent with the 

by probes annoy participants 
and only limited data can be gathered. Thinking aloud thus 
complements logging and probes by situating use of the 

in observations of participants.  

Study 
between the previous laboratory 

and the present field study of interest. First, 
our focus on adoption is not possible in a laboratory 

The data provided by activity logging is 
much more convincing than our earlier collected 

, while realism of tasks is often claimed 
of field studies, we were mostly surprised by the 

variability and ad hoc use of the fisheye view, as captured 
Because tasks were fixed and 

in the laboratory study, we did not see 
ntioned earlier, a common 

criticism of laboratory studies is that they do not allow 
1]. The present field study 
articipants mention time-

pressure and being busy as barriers to using the fisheye 
Perhaps proficiency with tools need other forms of 

collaboration between researchers and participants, for 
term collaborations in MILCs [36]. 

the field study required full integration of the editor 
environment, causing a 

Fisheye interfaces for source code promise to support 
programmers in navigating and understanding code. Such 

only been evaluated in laboratory 
if they would be adopted 
 This uncertainty reflects 

method longitudinal studies of 
have conducted a field study 

solving their normal work 
Data were collected using 

logging, thinking aloud, and 

nts adopted and used the 
as extensively as other common tools in 

their programming environment. However, lack of 
was an integral part of using the interface, 

certain activities were not supported well, and core 
tions in the design of fisheye interface (which had 

not been challenged in a previous laboratory study) did not 
ly, we have shown how 

reach closure about benefits and 
Future work could couple 

more tightly the data collection methods so as to obtain data 
both on adoption, specific episodes of use, and on users’ 
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Abstract. We present WIPDash, a visualization for software development 
teams designed to increase group awareness of work items and code base 
activity. WIPDash was iteratively designed by working with two development 
teams, using interviews, observations, and focus groups, as well as sketches of 
the prototype. Based on those observations and feedback, we prototyped 
WIPDash and deployed it with two software teams for a one week field study.  
We summarize the lessons learned, and include suggestions for a future version.  

Keywords: Information visualization, software development, large display, 
cooperative work, CSCW, situational awareness, field study. 

1   Introduction 

Team collaboration and coordination in software development is difficult [14]. First, 
it may require frequent coordination to plan and review progress of a team. Second, 
completing a task often involves team collaboration because knowledge is divided 
between team members who have different roles or own different parts of the system. 
Team members may work on multiple task items at a time, or belong to more than one 
team, adding to the challenge of coordination. Thus, team members need to be aware 
of what others on the team are doing [10,14].  

In this paper, we present WIPDash (Work Item and People Dashboard), a 
visualization of work items in a team’s software repository. Our goal is to help 
software teams be aware of the overall status of a project, and understand ongoing 
activities related to the team. Initially, we conducted interviews and field observations 
within a software development organization in order to understand the needs of 
collocated software teams. We then discussed these results in a series of focus group 
to iteratively design WIPDash. Finally, we deployed WIPDash with two software 
teams in an attempt to observe which features and functions the team actually used, 
and how they used those features. Our findings led us to a number of design lessons, 
and yet another design iteration, which we introduce at the end of the paper. 
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The main contributions of this work include (1) detailed findings about how 
developers maintain team awareness using existing techniques and tools, (2) a novel 
awareness visualization based on developers’ needs, and (3) lessons learned from a 
deployment with two teams along with a conceptual overview of new design ideas 
based on that deployment. 

2  Supporting Software Team Awareness 

Many organizations adopt Agile Software Development methodologies that promote 
shorter iterations and daily stand-up meetings to improve coordination [15]. Also, 
collocation of a team in a shared team space may improve productivity [19]. Yet, 
software teams are still challenged with maintaining awareness of ongoing activity 
[10], and find collaborative tools that support their development work useful [14].  

Software teams typically store information about work items (e.g., tasks and bugs) 
in software repositories, such as Microsoft Team Foundation Server (TFS), to support 
team coordination. However, such repository systems are not designed to give an 
overview of the state of a project or to keep team members aware of the team’s 
current activities. In addition, it is not easy to see changes to work items in a software 
repository. Developers may not feel that they get a proper return on the time they 
invest on updating work items and often the status of work items is not up to date. 

One way to improve team awareness is to show data from a team’s repository on a 
large display in a shared workspace [e.g., 1,8]. FASTDash [1] showed developers’ 
current activities in a code base. A field study showed that FASTDash increased 
communication within the team by 200%, and helped participants know who had 
which files checked out, who was blocked and needed assistance, and helped resolve 
conflicts with checked out code. Improvements were suggested based on the study, 
such as using metrics other than file size to allocate screen space, and to add support 
for people to track work items that are assigned to them. Still, it was not clear which 
types of information were most useful or how visualizations could be best designed to 
get awareness information at a glance. O’Reilly et al. [12] visualized checked-in code 
changes on a multi-monitor display. The authors concluded that the visualization 
helped to inform developers about progress and overall effort of the team. However, it 
is not clear how participants used the display. De Souza, Froelich and Dourish [16] 
have shown that source code could be mined to visualize both social and technical 
relationships of projects. We were inspired by these findings and focused our 
visualization on support for work item awareness. 

Fitzpatrick et al. [6] described a long-term study of a software team using a 
tickertape tool where messages from CVS, a revision control system, were displayed. 
The authors found that the tickertape tool stimulated more focused discussion about 
source code changes, reduced the number of empty check-in messages, and helped 
coordinate and negotiate work within the team. The authors mentioned the modest 
screen real estate requirements of the tickertape tool as an important benefit. 

Hill and Holland [9] describe the concept of showing the history of a user’s 
interactions with files as part of the representation of the files. Recent research has 
empirically studied use of interaction history to help software development teams 
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[3,7]. TeamTracks [3] directs the attention of a programmer to important parts of the 
source code based on the history of programmers’ interactions with the code. Augur 
[7] combines information about code activity with a line-oriented source code 
visualization similar to SeeSoft [4]. Froehlich and Dourish [7] present case studies of 
four developers who used Augur to gain insight into their code and their development 
activities. Their findings support the idea of combining information about activity and 
code in one view that is based on spatial organization of the code. However, Augur’s 
potential usefulness as an awareness tool for a collocated team remains unknown.  

The research efforts mentioned so far involved representations of source code, 
check-ins, and the use of code files. In contrast, Ellis et al. [5] aimed at helping large 
distributed software teams to coordinate their work on change requests by visualizing 
bugs. They presented SHO, a visualization with bugs shown as circles ordered, 
colored, and sized by different importance metrics. Participants in an experiment were 
more successful at completing tasks using SHO than using Bugzilla. Another recent 
study by Sarma et al. [14] presented a desktop awareness system based on code 
activity and check-ins. Their Palantír tool addressed mainly artifact changes in order 
to prevent potential conflicts. The visualizations were useful for exploring databases 
of bugs to identify areas of concern. However, it is not clear how useful these types of 
visualizations are for maintaining awareness of work items activity and project 
progress in collocated software teams, which is the focus of this paper.  

3  User-Centered Design 

The research presented in this paper follows a user-center design approach. We began 
by gathering observations and conducting semi-structured interviews with software 
developers to gain insight into their work practices and needs in collocated team 
workspaces. Our goal was to understand how collocated teams coordinate their work 
and to get input on what visualization features and views would be most useful for 
them. We then sketched an initial design of a visualization to support team awareness, 
which we presented to a focus group for feedback.   

3.1  Interviews and Field Observations 

In situ observations were performed with two Agile teams (see Figure 1). The teams 
were observed for five hours during one week. Observations were carried out at 
different times of the day and included morning stand-up meetings and iteration 
planning meetings. One team typically had five to ten members present, while the 
other team typically had eight to fifteen members present. We also carried out semi-
structured interviews with ten individuals from these teams (eight males). Each 
interview lasted 35-40 minutes and was audio recorded with the participants’ 
permission. Interviewees received a free lunch coupon as gratuity for their 
participation. Each interviewee had two to fifteen years of experience in software 
development and ranged in age from 20 to 46. Based on questions from related 
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Fig. 1. Shared team rooms for the two software teams we observed. 

studies [10,17] and questions motivated by our in situ observations, the interviews 
focused on the following aspects:  
• experiences working in a collocated team workspace;  
• what tools and alerts are currently used to keep track of what other team 

members are working on and what is missing in existing tools;  
• how work items and tasks are currently managed;  
• types of meetings and the use of a projector in the team room; 
• how progress and project health in general is monitored;  
• wishes on what to display on the large shared screen and how to support work 

flow.  
 

3.2  Interview and Field Observation Results 

The interviews and observations showed that the teams work in iterations, which are 
blocks of time typically one to two weeks long. Daily stand-up meetings in the 
morning help the team to keep track of who works on what, and they are considered 
an important time for team bonding. Work items are created in a repository. 

The teams used many software tools to coordinate their activities including Team 
Foundation Server (TFS), email, instant messaging, Live Meeting, and SharePoint. 
The teams varied in work style, size, and physical workspace arrangement. Both 
teams adopted a seating arrangement that corresponded to individual roles on the 
team: developers, testers, writers, and support (including program managers). 

In addition to regular stand-up meetings, iteration planning, and bug triages (where 
resolved bugs are discussed and new bugs are assigned to team members), ad-hoc 
conversations frequently occurred in the team rooms. Some team members used chat 
or email, but often team members just shouted out a question or rolled their chairs 
over to talk to each other. Moreover, other people came in and out of the team spaces.  

Although shared team rooms can be noisy and distracting, and offer less privacy 
than private offices, most team members felt that the team room was more effective 
for team work. An exception to this is documentation writers (two out of ten 
interviewees) who said that they preferred to work in a private office or from home; 
they needed to concentrate and only came to the team room for meetings or when they 
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needed to speak to a team member. Since they were frequently absent from the team 
room they tended to be less aware of activities that were going on within the team.  

Both teams used shared whiteboards and sticky notes on the walls. Team members 
defined, categorized, and prioritized work items during iteration planning meetings 
and used sticky notes to represent tasks or work items. The teams also used a 
projector on the wall to display information for various tasks such as work items 
during iteration planning, when assigning new tasks, or for code reviews. 

The dynamic nature of stand-up meetings requires a quick, glanceable overview of 
recent activity. Teams currently do not have a suitable tool for displaying important 
information. TFS gives no overview of unassigned tasks, and does not allow more 
than one person to be assigned to a task. Also, team members have to make a burn 
down chart or a task list for each meeting, which is time consuming. It is possible to 
export charts and work items from TFS, but this often results in a long Excel table 
with no way of synchronizing changes back with work items in TFS. 

3.3   Focus Group Feedback 

Based on what we learned from the interviews and observations, we sketched an 
initial design for a team awareness visualization. This initial design sketch, based on 
the current iteration of one of the team’s work items repository, was presented to a 
focus group on a large projection screen in a meeting room to help participants 
imagine how the visualization would look when deployed in their own team room. 
Eight participants from two Agile development teams took part, including an 
architect, program managers, developers, lead developers and testers ranging in age 
from 30-48. The focus group session was video recorded with the teams’ permissions. 

Participants found that the awareness display presented information in a new 
perspective they had not seen before and they liked being able to see an overview of 
the whole project in one view. Team members expressed the need for different filters 
and view modes, since some work items might be irrelevant for their role. 

We derived three key requirements for our design based on this feedback. The 
awareness visualization should (1) give an overview of iteration progress, with the 
ability to summarize over the last day, week, month, or version, (2) give details on 
individual work items and the people these are assigned to, and (3) list current and 
recent activities, either of people or on work items. 

4   Work Item and People Visualization 

Based on all of these results, we developed WIPDash, a visualization suitable for a 
large shared display in a collocated software team space. The visualization was 
implemented as a Windows application that reads data about work items from TFS. 
Our intention was that team members could glance at the shared display to see the 
overall status of the project and the recent changes made (especially from the past 24 
hours). We also wanted team members to be able to use WIPDash on their individual 
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machines, where they could switch between different views and filters, and get details 
on demand. 

The WIPDash window consists of two parts (see Figure 2). The left part of the 
window contains a spatial representation of areas of the project and the work items in 
those areas. For instance, the area labeled ‘Docs’ contains items related to project 
documentation. The right part of the window consists of a list of view modes, a team 
panel, and drop-down lists of iterations, work item states and types. These lists can be 
used to filter and highlight work items in the left view. 

 
Fig. 2. WIPDash showing the iteration overview for the current iteration of a project. 

4.1   Work Item Treemap  

WIPDash uses a squarified treemap for laying out project areas as rectangles [2]. The 
treemap is a scalable approach to spatially organizing hierarchically structured data 
such as a hierarchy of project areas. Each rectangle is sized proportionally to the 
number of open work items in the area. A minimum threshold is used to ensure that 
areas that do not contain any open items are shown in the map. Rectangles are labeled 
with the name of the project area. 

We wanted to preserve the spatial layout of project areas and work items to make it 
easier for users to remember where areas are located in the visualization. However, 
treemap algorithms can cause the spatial layout to change considerably when the data 
changes. Since WIPDash would be shown on both a large display and on individual 
team members’ displays (which may have different screen dimensions), the layout 
had to vary across instances of WIPDash. In order to keep the layout consistent for 
the purpose of the field study, the treemap was fixed and then shared by all instances 

64



of WIPDash. This layout could be explicitly updated and the treemap would render 
again. Since the relative size of an area does not change dynamically to reflect the 
number of open work items, we color a rectangle darker as more open work items are 
associated with the area.  

Each rectangle in the treemap contains icons that represent the work items 
associated with that area. The icons in a rectangle are evenly spaced in a grid, placed 
in the order they were created starting from the top-left corner. Space between icons is 
reduced to fit all icons within the rectangle, and if there is enough space between 
icons, the ID number of the item is shown below the icon. The color of an icon 
indicates the state of the work item (e.g., proposed, active, resolved, or closed) and 
the shape of an icon indicates the type of the work item (e.g., feature, bug, or task). 
Icon size represents either priority level or estimated hours of the work item, with 
larger sized icons representing items of higher priority or higher estimate of work 
hours, as designated by the user or team. 

Moving the mouse cursor over a work item icon shows a tooltip with details about 
the item. Clicking on an icon shows a popup window with details about the work 
item. An ‘Add note’ section in the detail window can be expand to add a sticky note 
to the work item. A small yellow sticky note symbol is displayed on the work item to 
indicate that it has a note attached. 

4.2   Iteration Filtering and Highlighting 

Selecting an iteration in the “iteration list” shows all work items that are assigned to 
that iteration and highlights them on the treemap. Since teams are usually only 
interested in closed items for the current iteration, we removed closed items that were 
not assigned to the selected iteration in order to avoid clutter.  

4.3   Team Panel 

The team panel (see Figure 3a) contains the names and pictures of the team members. 
Clicking on a team member shows the icons for all work items assigned to or closed 

 

 

 

(a)  (b) 

Fig. 3. (a) Team panel showing names and pictures of team members, and (b) a graphical 
representation of the amount of work each member has assigned, completed and remaining. 
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by the selected team member. The team panel contains two options in addition to the 
team members: (1) “all” which is used to select all items regardless of whom they are 
assigned to, and (2) “unassigned”, which is used to select all unassigned work items. 

For each person, WIPDash shows horizontal lines that represent the total amount 
of work, the amount of completed work, and the work remaining in the iteration that 
is assigned to that person (Figure 3b). The x-axis measures work hours and a dotted 
vertical line represents the end of the iteration, corresponding to the total number of 
work hours in the iteration. The remaining work line is colored red if the estimated 
hours of remaining work exceeds the time left in the iteration. 

4.4   View Modes 

One goal of our design was to make the information on the display glanceable. Thus, 
to avoid cluttering the display by showing too much information in one view, users 
can choose between four different view modes. 

The Iteration overview mode highlights all work items in the current iteration. This 
view aims to provide an overview of the iteration status. Team members can see how 
much work has been done and how many work items remain in the iteration. Details 
are automatically displayed for work items that are currently being working on, 
including who is working on the item. More details about an item can be shown by 
clicking on ‘More’ (see Figure 2).  

The Opened in last 24 hours view is designed to keep the team aware of incoming 
tasks and issues. Work items opened within the last 24 hours are highlighted with a 
yellow border and background. The opacity of the border and background varies to 
distinguish recently opened items from items that were opened less recently. Also, 
similar to the iteration overview, details are shown for recently opened items, 
including when an item was opened and by whom.  

The Changed in last 24 hours view aims to keep the team aware of recent changes 
to work items. Similar to the Opened view mode, a yellow border and background is 
shown around icons of work items that changed within the last 24 hours. Again, 
details are automatically displayed for recently changed work items, including the 
change made and who made the change. For simplicity, the same color coding is used 
for both Opened and Changed view modes in order to draw users' attention to work 
items with any recent activity.  

The Notes view calls up the sticky notes for all work items with a note attached. 
The Notes view allows users to spot work items that need attention, for example if a 
team member makes a request to pair up on a specific task. 

In order to provide continuous awareness and to allow passive use, WIPDash 
allows cycling through view modes and through team members within each view 
mode. A person remains selected for ten seconds before the next person on the team 
panel is selected. The next view mode is selected after cycling through all team panel 
selections. We were interested to see if this cycling behavior was useful or distracting 
to the teams we studied. The visualization updates with new or changed work items 
by querying Team Foundation Server (TFS) once per minute. All of the information 
used in our visualization came from the teams’ data entries in TFS.  

66



5   In Situ Deployment 

We deployed WIPDash with two collocated Agile software teams and observed its 
use for one week. Our aim was to understand the usefulness of the WIPDash and the 
effect it had on team members’ situational awareness and on group processes. Team 
A had eight members (seven male), with an age range of 22-46. Team B had 16 
members (14 male), with an age range of 27-48. Individual roles on both teams 
included lead developer, developer, tester, test lead, program manager, writer and 
group manager. WIPDash was installed on a large display in the team rooms and on 
team members’ individual workstations. Data were automatically collected in 
WIPDash in order to describe how participants interacted with the visualization 
throughout the study. WIPDash was installed on a Thursday and an orientation 
session was given the following day. We observed the teams the following week 
(Monday through Friday). Afterwards, we met with each team for post-usage 
discussions. Each participant received a $50 gratuity coupon for their participation. In 
the Team A room, the awareness visualization ran on a projected wall display on the 
most accessible wall to the whole team. In the Team B room, the awareness display 
was installed on a 52-inch plasma touch screen toward the front and right side of the 
team room. Some members of Team B had their backs to this display.  

5.1   Supporting Daily Stand-Up Meetings 

Team A used WIPDash daily on their large display during stand-up meetings to 
coordinate meetings. Specifically, they found the Iteration overview useful, both in 
terms of status and also to jog their memories about work items from the previous 
day. During stand-up meetings, one of the team members selected each person from 
the team panel to display his information, and that person then talked about his work. 
The team considered details about the active items assigned to a person especially 
useful. Team members said they would have found it beneficial to have team 
members displayed in a random order during stand-up meetings—just to make it more 
fun. They also referred to the display to view the status of a remote team member 
when she called in for the standup meeting. This suggests that WIPDash could be 
useful for supporting collaboration with distant team members. Some team members 
commented that they liked to look at the awareness display first thing in the morning 
to see what team members in Argentina had been doing for the last ten hours. Some 
team members who were on vacation for most of the time during our study also said 
that they used the awareness visualization when they got back to get a sense of what 
the team had been doing for the past week and “Where are we now?” in the iteration. 

We observed that the available information in WIPDash was not completely 
sufficient for reviewing what had been worked on during the previous day. 
Specifically, if a developer had completed his work on a work item and then 
reassigned the item to somebody else for testing, that item no longer showed in the 
Changed view for that developer. This was discussed during a stand-up meeting, and 
the team suggested a view where all work items that a person had worked on would 
be highlighted, even if they had been reassigned. The team further elaborated on an 
idea of one, concise overview containing all the information they would need for their 

67



standup meetings, including recently resolved items that were reassigned to other 
members and items that members had worked on yesterday. Finally, the team 
expressed a wish for extending the shared wall display with an additional projector to 
show project information like spreadsheets or code next to WIPDash. 

5.2   Automatic Cycling 

The automatic cycling between views was found to be problematic. WIPDash cycled 
between all members in the team panel, including people with no items assigned or 
without any recent activity. Thus, nothing of interest is shown in parts of the cycle. 
Members of Team A suggested that cycling would make sense if done only between 
views that contain recent changes. Team B had only one work item assigned per 
person at a time and therefore cycling through each view for each team member was 
not useful. 

Team members commented that notifications needed to be more assertive when a 
change or an update happened, such as an audio herald combined with a fisheye 
notification message about the change on the awareness display. Also, team members 
wanted to configure which views were displayed on their personal displays and when 
notifications should appear. An RSS-style feed would probably be a useful option for 
the personal workstations. We are pursuing that idea in the next iteration. 

5.3  Use on Large Display and Individual Displays 

We analyzed data logged by WIPDash to see how the two teams used WIPDash on 
the large display and on their individual machines. In all, we collected log data from 
ten personal machines, five members on Team B and five members on Team A, in 
addition to the two machines running the large shared displays. When a user started 
interacting with WIPDash, the default cycling between views was suspended. The log 
data showed that Team A used the large display (showing the iteration overview) 
during their stand-up meeting every morning around 9:30 am. Apart from the stand-
up meetings, Team A physically interacted with the large display only twice during 
the study. In contrast, Team B interacted with the large display on average five times 
per day. In Team B some of the participants did not have WIPDash installed on their 
own machines. For this team WIPDash was running on a new touch screen display, 
which had a lot of appeal. One possible reason why Team A did not interact much 
with the large display was that it was projected high up on one of the walls, making 
personal display interaction more reasonable than going to the laptop in the corner of 
the room that controlled the view in order to interact with the group view.  

5.4   Types of Interaction 

In all, 596 selections were made in the right panel of WIPDash. Selections were 
primarily made in the team panel (66%). The view mode panel (17%), and iteration 
panel (15%) were also used to change the view. Iteration overview was the most 
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frequently selected view mode, selected more than 50% of the time. The Changes 
view and the Opened view were each selected between three and eight times, whereas 
the Notes view was only selected once.  

Participants from Team A clicked on items to call up details 21 times while 
participants from Team B brought up additional details 22 times. Only two sticky 
notes were created in WIPDash, both by a lead developer on Team A. Follow-up 
discussions related to sticky notes revealed that users would rather use the existing 
‘comments’ data structure in TFS to view and add notes to work items in WIPDash. 

5.5   Questionnaires 

Satisfaction with WIPDash was assessed using a questionnaire administered to team 
members at the post-usage meeting. The questionnaire contained nine questions from 
[13] and eight questions to address distraction and awareness, using five-point Likert-
scale with lower scores reflecting negative responses. We balanced the valence of our 
satisfaction questions. For negatively phrased questions (marked with an asterisk in 
Table 1), we reversed the rating so that higher was always positive. 

Ratings on usefulness and satisfaction with the system were mostly neutral to 
positive (see Table 1) and there were no significant differences between the two teams 
(paired t-test). Team members said that they had confidence that the information was 
displayed correctly and on time. From the ratings, it was clear that the notifications of 
changes were not grabbing attention well enough, and that WIPDash was seen as less 
reliable than we would have liked. However, the teams were not embarrassed to show 
their personal work item information and they leaned towards using a future version 
of WIPDash. 

Table 1. User Satisfaction 

Question Average Rating (SD) 
1. I have difficulty understanding WIPDash.* 4.10 (0.7) 
2. WIPDash is easy to use. 3.63 (0.8) 
3. WIPDash is reliable. 2.63 (1.1) 
4. I have confidence in the information provided by WIPDash. 3.90 (0.7) 
5. I need more training to understand WIPDash.* 4.05 (0.9) 
6. WIPDash is informative. 3.32 (0.9) 
7. WIPDash is comprehensible. 3.37 (0.8) 
8. Overall, I am satisfied with WIPDash. 3.00 (1.1) 
9. I would be happy to use WIPDash in the future. 3.11 (1.1) 
10. I find WIPDash distracting.* 3.95 (0.9) 
11. WIPDash grabs my attention at the right time. 2.84 (0.9) 
12. It’s worth giving up the screen space to run WIPDash on my PC. 2.74 (0.9) 
13. WIPDash helps me stay aware of information that’s critical. 2.72 (1.0) 
14. I like being notified when a work item gets reassigned. 3.22 (1.2) 
15. WIPDash’s notifications often distract me.*  3.83 (0.8) 
16. Having WIPDash displayed in front of the team is embarrassing.* 4.17 (1.0) 
17. I would rather have WIPDash displayed only privately.*  4.18 (1.1) 
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A questionnaire on situational awareness and group satisfaction was administered to 
team members before in situ deployment and at the post-usage meeting. The 
questionnaire included questions from [11,18] and used five-point Likert-scale with 
lower scores reflecting negative responses. Paired t-tests showed no significant 
differences between the Before and After conditions. The results could be affected by 
a particular iteration stage or the day of the week the questionnaire was completed. 

6   Discussion, Lessons Learned and Conceptual Redesign 

Several factors may have affected the use and adoption of WIPDash. First, size and 
location of the shared display affected how team members made use of the display by 
glancing at it or physically interacting with it. During observations of Team A, we 
saw that team members often looked at the display when entering or leaving the room. 
This was not the case in the Team B room. One reason may be that the Team A room 
had a large display, projected high up on a wall, that was visible to everyone in the 
room. In contrast, Team B’s shared display was smaller, located in a corner of the 
room, and was not directly visible to all team members.  

Second, the two teams in our study organized their work differently. Team A 
assigned work items to team members during an iteration planning meeting, and had 
daily stand-up meetings to follow up on progress of the team. Using the shared 
display during stand-up meetings may have influenced Team A’s familiarity with the 
display, and consequently increased their use of the display. In contrast, Team B did 
not have daily stand-up meetings; instead, they talked with each other about progress 
and status throughout the day. Also, Team B assigned only one work item to each 
person and viewed work in terms of releases that span several iterations, not single 
iterations. This suggests that Team B could make even better use of an overview of 
activities, but using different time spans.  

Third, Team B had many proposed items in their repository, but most items were 
not scheduled to be worked on. Also, many of the project areas, which were shown in 
WIPDash because they contained proposed work items, were simply not considered 
relevant by the team at the time of our observations. Thus, as Team B had many more 
items to track than did Team A, and since WIPDash showed all work items in 
‘proposed’ state, the display for Team B was more cluttered.  

Our study has limitations that should be considered when interpreting the results. 
Although very different work styles were observed, the two teams were from the 
same organization. Therefore, our results may not be generalizable to software teams 
everywhere. Also, we only observed the teams for one week. While we learned much 
from the initial feedback, it would be interesting to see the long term effects of 
WIPDash. Another concern is that we do not know how the collocated Agile teams 
that we have focused on compare with larger, distributed teams. It could be that a 
focus on collocated, Agile software teams may reveal some issues in team 
coordination that also apply to distributed software teams. For example, Gutwin et al. 
[8] suggest a need for awareness of areas of expertise within a distributed open source 
project team because developers work on all parts of the code. This might relate to the 
information needs we seek to provide with our visualization (e.g., what people are 
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working on and have been working on). For example, a glance at WIPDash first thing 
in the morning to see what team members in Argentina have been doing for the last 
ten hours could be very useful in terms of setting daily priorities or offering more 
timely assistance. We intend to extend our focus to distributed team awareness in our 
future work.  

Informed by the insights we have gained from our study of WIPDash, the design of 
the next version of the dashboard will include the following: 
• A more glanceable display; 
• sound cues for users to look at the dashboard when information changes; 
• on a user’s display, it will only show notifications (e.g., ‘toaster’ type alerts in 

the system tray) as information changes; 
• a wide diversity of project data field definitions and usages; 
• support for add-on visualizations developed by a dashboard community; 
• data caching to reduce the load on the repositories from dashboard clients. 

Conclusion and Future Work 

This study on WIPDash suggests benefits from providing awareness of work item 
status. Earlier work on FASTDash [1] showed benefits from providing a team 
situation awareness display based on code activity. An interesting perspective for 
future work is to combine information about work items with information about code 
activity in one visualization [14]. A potential disadvantage of such an approach is that 
the display gets too busy. However, linking code activity and the state of work items 
could give the team a solid shared context if it focused simply on what is or has just 
recently changed. That is the main goal for our next iteration. We intend to create a 
simple list of recently changed work items, and the people who are actively related to 
them. In addition, the new WIPDash will have integrated chat and RSS feeds for 
notifications to the desktop. The ethnographic study of Souza and Redmiles [17] 
confirms our observations: (a) a need for awareness of who made the changes; (b) a 
need to peripherally integrate awareness notifications into an existing work items 
repository, and to link them to code changes in order to keep work items’ status better 
up to date and thus coordinate work more proactively. 

In this paper, we have reported on a human-centered design approach to 
developing a situational awareness dashboard visualization to help software 
development teams track people and work items. From observations and interviews of 
development teams we learned about their current work practice and what might be 
provided to improve situation awareness. We then developed a dashboard for 
supporting awareness in teams, called WIPDash (Work Item and People Dashboard). 
We gathered feedback on an initial design from a focus group, which drove the 
detailed design and the implementation of WIPDash. Finally, we have studied the use 
of WIPDash in situ with two development teams, and reflected on the observations 
and data we gathered.  While questions remain to be answered, the results from our 
study provide initial insights about use of a shared display to support team awareness 
of work item data in software repositories. 
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