

INFORMATION VISUALIZATION

IN PROGRAMMING ENVIRONMENTS

MIKKEL RØNNE JAKOBSEN

PHD THESIS

DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF COPENHAGEN

AUGUST 2009

The Graduate School of Science, Faculty of Science, University of Copenhagen, Denmark

ABSTRACT
Programming is challenging work. Programmers must navigate and understand large and
complex source code, and the careful coordination of many peoples’ efforts is often required.
Information visualization promises to help programmers cope with these challenges. On this
basis, the use of visualization in programming is investigated in empirical studies.
 Three studies show evidence of the usefulness of fisheye interfaces for navigating and
understanding source code. Overall, participants in two experiments prefer using fisheye
interfaces. Also, participants in a long-term field study adopt and use a fisheye interface in
their own work. However, the fisheye interfaces that were studied do not seem useful in all
tasks and problems detract from the usability of the interfaces. Issues that seem fundamental
to the design and use of fisheye views are highlighted for further research. Analysis of
participants’ interaction with the fisheye interfaces shows that participants perform some
tasks with less physical effort. It seems useful to show readable information in the fisheye
interfaces and participants find semantically related information the most useful.
 The results suggest that a particular fisheye interface may not support all tasks in
programming equally well. We argue that transient use of visualization may support specific
infrequent tasks without permanently changing the interface. Two comparative evaluations of
transient and permanent interfaces show no significant differences in task performance.
Participants prefer a transient interface in one study and a permanent interface in the other.
Results suggest benefits of a transient interface but also suggest problematic issues in
designing transient visualizations for complex work.
 A visualization to support coordination in programmer teams is investigated. Results
suggest two uses of such visualization: for use during meetings and for occasional use to
maintain awareness of the team’s work. Issues with the visualization’s design distinct to these
two uses are found in a field study of the visualization deployed with two teams.
 Multiple research methods are used to investigate fisheye interfaces in programming.
Limitations of individual methods are thus offset and richer data are collected for analyzing
and understanding how fisheye interfaces are used in programming. Regardless of the method
used, however, participants seem to lack proficiency in using the fisheye interfaces. Finally,
the field study triangulates multiple methods: experience sampling, logging, thinking aloud,
and interviews. Benefits of combining multiple methods are identified and opportunities for
improving the triangulation approach are suggested for further research.

2

DANSK RESUMÉ
Programmering er udfordrende arbejde. Programmører skal navigere og forstå omfattende og
kompliceret kildetekst, og nøje koordinering af mange personers indsats er ofte nødvendig.
Informationsvisualisering kan potentielt hjælpe programmører til at overkomme disse
udfordringer. På denne baggrund undersøges anvendelsen af visualisering i programmering i
empiriske studier.
 Tre undersøgelser viser tegn på fiskeøjegrænsefladers brugbarhed til at navigere og forstå
kildetekst. Samlet foretrækkes fiskeøjegrænseflader af forsøgspersonerne i to eksperimenter.
Endvidere tager forsøgspersonerne i et langtidsfeltstudie en fiskeøjegrænseflade i brug og
anvender den i deres eget arbejde. Fiskeøjegrænsefladerne som undersøges synes dog ikke
nyttige i alle opgaver og der er problemer som forringer deres brugsvenlighed. Spørgsmål
som synes grundlæggende for fiskeøjevisningers design og brug fremhæves til videre
forskning. Analyse af forsøgsdeltagernes interaktion med fiskeøjegrænsefladerne viser at
nogle opgaver udføres med mindre fysisk anstrengelse. Det synes fordelagtigt at vise læsbar
information i fiskeøjegrænsefladen og forsøgsdeltagerne finder størst nytte af semantisk
relateret information.
 Resultaterne antyder at visse fiskeøjegrænseflader ikke understøtter alle opgaver i
programmering lige godt. Vi argumenterer for at flygtig brug af visualisering kan understøtte
specifikke, ikke-hyppige opgaver uden at grænsefladen ændres permanent. To sammen-
lignende evalueringer af flygtige og faste grænseflader viser ingen signifikante forskelle i mål
for opgaveløsning. Samlet foretrækker forsøgspersonerne en flygtig grænseflade i den ene
undersøgelse og en fast grænseflade i den anden. Resultater antyder fordele ved en flygtig
grænseflade, men også problemer i design af flygtige visualiseringer til komplekst arbejde.
 En visualisering til støtte af koordinering i udviklingsteam undersøges. Resultater antyder
to anvendelser af en sådan visualisering: til brug i forbindelse med møder og til lejlighedsvis
at vedligeholde opmærksomhed om teamets arbejde. Problemer med visualiseringens design
vedrørende disse to anvendelser afdækkes i et feltstudie af visualiseringen med to team.
 Flere forskningsmetoder bruges i undersøgelse af fiskeøjegrænseflader i programmering.
Begrænsninger ved individuelle metoder opvejes således og omfattende data indsamles til at
analysere og forstå hvordan fiskeøjegrænseflader bliver brugt i programmering. Uanset
hvilken metode der anvendes, synes forsøgspersonernes kunnen i fiskeøjegrænsefladernes
brug dog at være begrænset. Endelig bruger feltstudiet triangulering af flere metoder:
experience sampling, logning, tænke-højt, og interview. Fordele ved at kombinere flere
metoder identificeres og muligheder for at forbedre trianguleringsmetoden foreslås til
yderligere forskning.

3

PREFACE
This thesis is submitted to obtain the PhD degree at the Department of Computer Science,
Faculty of Science, University of Copenhagen (DIKU). The work described in the thesis was
carried out between June 2006 and July 2009.

The thesis consists of two parts. First, the introduction summarizes the contributions in the
PhD. Second, five papers comprise the main part of the thesis. The papers are referred to with
the numbers 1 to 5 and are listed on page 6. The full papers are included from page 18 and on.

Thanks are due first of all to my supervisor Kasper Hornbæk. He sparked my interest in
research and it has been a pleasure to learn from his experience ever since. Kasper is always
inspiring, trusting, and helpful. I thank him for that. I also thank my other colleagues at
DIKU. In particular, I have had many rewarding discussions with Erik Frøkjær and Tobias
Uldall-Espersen. I am grateful to Erik for his guidance and generous help, and to Tobias for
being a role model PhD student, which has made life as a PhD student at DIKU a little easier
for me. I visited Microsoft Research in Redmond in the summer of 2008, and foremost I
thank the people there for a worthwhile collaboration. In particular, I thank Mary Czerwinski
for making my visit possible, and George Robertson for welcoming me and for introducing
me to the people in the VIBE and HIP groups from whom I learned much. Many employees
and visiting interns at Microsoft Research contributed to making my stay in Washington a
great experience—thanks. Also thanks to friends and former colleagues who contributed
insight into their programmer experiences, helped in ongoing evaluation of my interface
designs, or helped me gain access to busy programmers for my study. Last, I thank my wife
and family for their great support.

Mikkel Rønne Jakobsen
Copenhagen, August 2009

4

CONTENTS
Abstract ...1
Dansk resumé..2
Preface ...4
Contents...5
List of papers ..6
Introduction ..7

Background ..7
Contributions..8

Abstracts of papers ...8
Fisheye interfaces ...9
Transient visualizations..10
Visualizations to support team coordination ..11
Evaluation of visualization techniques in complex work...12

Conclusion...14
References ...15
Paper 1 – Evaluating a Fisheye View of Source Code ..18
Paper 2 – Transient Visualizations ...29
Paper 3 – Transient or Permanent Fisheye Views: A Comparative Evaluation of

Source Code Interfaces ...38
Paper 4 – Fisheyes in the Field: Using Method Triangulation to Study the Adoption

and Use of a Source Code Visualization ..47
Paper 5 – WIPDash: Work Item and People Dashboard for Software Development

Teams..58

5

LIST OF PAPERS
Paper 1: Jakobsen, M. R. and Hornbæk, K. (2006). Evaluating a fisheye view of source

code. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (Montréal, Québec, Canada, April 22 - 27, 2006). CHI ’06.
ACM, New York, NY, 377-386.

Paper 2: Jakobsen, M. R. and Hornbæk, K. (2007). Transient visualizations. In

Proceedings of the 19th Australasian Conference on Computer-Human
interaction: Entertaining User interfaces (Adelaide, Australia, November 28 -
30, 2007). OZCHI '07, vol. 251. ACM, New York, NY, 69-76.

Paper 3: Jakobsen, M. R. and Hornbæk, K. (2009). Transient or Permanent Fisheye

Views: A Comparative Evaluation of Source Code Interfaces, 8 pages, under
review.

Paper 4: Jakobsen, M. R. and Hornbæk, K. (2009). Fisheyes in the field: using method

triangulation to study the adoption and use of a source code visualization. In
Proceedings of the 27th international Conference on Human Factors in
Computing Systems (Boston, MA, USA, April 04 - 09, 2009). CHI '09. ACM,
New York, NY, 1579-1588.

Paper 5: Jakobsen, M. R., Fernandez, R., Czerwinski, M., Inkpen, K., Kulyk, O., and

Robertson, G. (2009). WIPDash: Work Item and People Dashboard for Software
Development Teams. 14 pages, to appear in Proceedings of INTERACT 2009 -
12th IFIP TC13 Conference in Human-Computer Interaction (Uppsala, Sweden,
August 24-28, 2009).

6

INTRODUCTION
This thesis is about the use of information visualization and interaction techniques to support
programming. Before summarizing the contributions made, the background for the thesis is
outlined.

BACKGROUND

Developing a computer-based system is a challenging undertaking in which programmers
play a key role. Programmers are faced with increasingly complex systems and demands for
high quality and reliability. Large and complex systems are difficult to understand and they
necessitate the coordination of many programmers’ efforts. Thus programming has long been
considered challenging both as an individual activity and as a team activity (Weinberg, 1971).
 Programming is challenging as an individual activity because it is mentally demanding.
For instance, the programmer often must understand a program by looking at its source code
(Latoza et al., 2006; Ko et al., 2007). For many programs, the source code is large and
complex, and has often been developed over several years, by many people. For instance, the
Debian 4.0 system contains program packages of a mean size of 28,544 lines of code, 288
million lines in all, developed over more than ten years, by more than 1,000 programmers
(Gonzales-Barahona et al., 2009; Debian.org, 2009). Consequently, navigating the source
code to understand a program can be mentally very demanding.
 Programming is challenging as a team activity because it typically requires the
coordinated efforts of many people. The programmers in a team must share a common view
of how the system should work, and they must coordinate their work so that it fits together
without redundancy and on time (Kraut and Streeter, 1995). Coordination in teams therefore
adds to the difficulties of programming.
 Programming environments, languages, methods, and tools are continuously being
developed to lessen the difficulties of programming, but many difficulties persist. As an
example, object-oriented programming in widespread use today may ease the design of
complex systems. However, object-oriented programming is likely to cause delocalization,
which makes it hard to understand source code because conceptually related pieces of code
are located in non-contiguous parts of a program (Soloway et al., 1988; Dunsmore et al.,
2000). Faced with such difficulties, a hope is for innovations in programming environments
that amplify programmers’ abilities.
 One way to amplify the abilities of programmers is through information visualization—
use of interactive visual representations of abstract data to amplify human cognition (Card et
al., 1999). An early example of information visualization in programming is the SeeSoft
system (Eick et al., 1992). SeeSoft uses color to represent statistics associated with the lines
of text, and fits 50.000 lines in a 1280 x 1024 pixel display. When SeeSoft is used on source
code, the programmer can see for example which parts of the program that have been
frequently modified. If adopted in programming environments, information visualization thus
promises to amplify the cognitive abilities of programmers.
 Many innovative visualization techniques have been developed, but few have been
adopted and used in real-life work. For wider adoption of visualization techniques, their
usefulness must be convincingly demonstrated, key factors in their design must be
understood, and guidelines must be provided to ease their design. Fortunately, evaluations are
helping us understand how different techniques influence users’ abilities and behavior in
particular tasks (e.g., Cockburn and McKenzie, 2003; Hornbæk and Frøkjær, 2003), or
demonstrate the usefulness of specific visualization systems to professionals in specific fields
(e.g., Saraiya et al., 2005; Seo and Shneiderman, 2006). Although information visualizations
are increasingly being evaluated, the potential uses and limitations of many visualization
techniques are not clearly understood.

7

CONTRIBUTIONS

This thesis provides empirically founded insight into the use of information visualization to
support programmers. Two uses of visualization have been investigated; the first aimed at
supporting navigation and understanding of source code, the second at supporting
coordination in collocated programmer teams. Contributions fall in four areas: (1) fisheye
interfaces that aim to support navigation and understanding of source code, (2) transient use
of visualization to support specific tasks in complex work, (3) use of visualization to support
coordination in programmer teams, and (4) evaluation of visualization techniques in complex
work.

ABSTRACTS OF PAPERS

To give an overview of the five papers comprising this thesis, the abstracts of the papers are
included below.

Paper 1: Evaluating a Fisheye View of Source Code
Navigating and understanding the source code of a program are highly challenging activities.
This paper introduces a fisheye view of source code to a Java programming environment. The
fisheye view aims to support a programmer's navigation and understanding by displaying
those parts of the source code that have the highest degree of interest given the current focus.
An experiment was conducted which compared the usability of the fisheye view with a
common, linear presentation of source code. Sixteen participants performed tasks
significantly faster with the fisheye view, although results varied dependent on the task type.
The participants generally preferred the interface with the fisheye view. We analyse
participants' interaction with the fisheye view and suggest how to improve its performance. In
the calculation of the degree of interest, we suggest to emphasize those parts of the source
code that are semantically related to the programmer's current focus.

Paper 2: Transient Visualizations
Information visualizations often make permanent changes to the user interface with the aim of
supporting specific tasks. However, a permanent visualization cannot support the variety of
tasks found in realistic work settings equally well. We explore interaction techniques that
transiently visualize information near the user's focus of attention. Transient visualizations
support specific contexts of use without permanently changing the user interface, and aim to
seamlessly integrate with existing tools and to decrease distraction. Examples of transient
visualizations for document search, map zoom-outs, fisheye views of source code, and
thesaurus access are presented. We provide an initial validation of transient visualizations by
comparing a transient overview for maps to a permanent visualization. Among 20 users of
these visualizations, all but four preferred the transient visualization. However, differences in
time and error rates were insignificant. On this background, we discuss the potential of
transient visualizations and future directions.

Paper 3: Transient or Permanent Fisheye Views: A Comparative Evaluation of Source Code
Interfaces
Transient use of information visualization may support specific tasks without permanently
changing the user interface. Transient visualizations provide immediate and transient use of
information visualization close to and in the context of the user’s focus of attention. Little is
known, however, about the benefits and limitations of transient visualizations. We describe an
experiment that compares the usability of a fisheye view that participants could call up
temporarily, a permanent fisheye view, and a linear view: all interfaces gave access to source
code in the editor of a widespread programming environment. Fourteen participants
performed tasks of both high and low complexity so as to investigate varied programming
activity. All participants used each of the three interfaces for between four and six hours in
all. Time and accuracy measures were inconclusive, but subjective data showed a preference

8

for the permanent fisheye view. We analyze interaction data to compare how participants
used the interfaces and to understand why the transient interface was not preferred. We
conclude by discussing seamless integration of fisheye views in existing user interfaces and
future work on transient visualizations.

Paper 4: Fisheyes in the Field: Using Method Triangulation to Study the Adoption and Use of
a Source Code Visualization
Information visualizations have been shown useful in numerous laboratory studies, but their
adoption and use in real-life tasks are curiously under-researched. We present a field study of
ten programmers who work with an editor extended with a fisheye view of source code. The
study triangulates multiple methods (experience sampling, logging, thinking aloud, and
interviews) to describe how the visualization is adopted and used. At the concrete level, our
results suggest that the visualization was used as frequently as other tools in the programming
environment. We also propose extensions to the interface and discuss features that were not
used in practice. At the methodological level, the study identifies contributions distinct to
individual methods and to their combination, and discusses the relative benefits of laboratory
studies and field studies for the evaluation of information visualizations.

Paper 5: WIPDash: Work Item and People Dashboard for Software Development Teams
We present WIPDash, a visualization for software development teams designed to increase
group awareness of work items and code base activity. WIPDash was iteratively designed by
working with two development teams, using interviews, observations, and focus groups, as
well as sketches of the prototype. Based on those observations and feedback, we prototyped
WIPDash and deployed it with two software teams for a one week field study. We summarize
the lessons learned, and include suggestions for a future version.

FISHEYE INTERFACES

A fisheye interface combines local detail and global context in a single view of an
information space (Furnas, 1981). One type of fisheye interface in programming aims to help
navigating and understanding source code by displaying those parts of the code that have the
highest degree of interest given the programmer’s current focus. We implemented such a
fisheye view in the source code editor of a widespread programming environment. Based on
that implementation, we compared fisheye views to linear views of source code (papers 1 and
3), and we studied the long-term use of a fisheye interface in programming (paper 4).
 Overall, we find evidence in support of fisheye interfaces’ usefulness to programmers.
Participants in two controlled experiments (paper 1 and 3) preferred a fisheye interface to a
linear source code interface. Participants in a field study (paper 4) adopted and used the
fisheye interface regularly and across different activities in their own work for several weeks.
The fisheye interface does not seem useful in all tasks and activities, however. Participants in
one experiment (paper 1) completed tasks significantly faster using the fisheye interface, a
difference of 18% in average completion time, but differences were only found for some task
types. Although the results indicate usability issues, they also suggest that some tasks were
less well supported by the fisheye interface. In addition, data from the field study (paper 4)
showed periods where programmers did not use the fisheye interface, and debugging and
writing new code were mentioned as activities for which the fisheye interface was not useful.
 Specifically, the fisheye view enables programmers to perform some tasks with less
physical effort compared with a normal linear view of source code. This was found in
controlled experiments (paper 1 and 3) by analyzing in detail how participants’ performed
tasks with a fisheye view compared with a linear view. Using a fisheye view, participants
directly used information in the context area or navigated with sparse interaction; they read
program lines in the context area or clicked in the context area to jump to a particular line.
We saw this behavior also in observations of programmers using a fisheye interface in real-
life work (paper 4).

9

 Consistently across our studies (paper 1, 3, and 4), we found that lines semantically
related to the user’s focus were the most important—such lines were the most frequently used
and were the most often mentioned by participants as a benefit of the fisheye interface. An
interesting proposition is to expand on the use of semantically related lines in the fisheye
interface with program slicing. Tools for program slicing have been found useful for
debugging in that they help programmers to localize code that contain program faults (Weiser
and Lyle, 1986; Francel and Rugaber, 2001). Integration of slicing in the fisheye interface
could thus potentially increase the utility of the fisheye interface in programming.
 Our results support earlier findings that visualization techniques combine with
highlighting of occurrences to different effect (Baudisch et al., 2004). In one experiment
(paper 1), the fisheye interface resulted in faster overall task performance compared with a
baseline interface using a linear view of source code, whereas no differences in task
performance were found in a later experiment (paper 3). All three interfaces used in the latter
experiment featured semantic highlighting of code and an overview ruler that showed
highlighted occurrences. Results from analysis of participants’ interaction suggest that the
highlighting helped participants navigate to occurrences in all interfaces. However, a notable
benefit of the fisheye interface is that some tasks can be performed with less navigation
compared with an overview, because code containing the highlighted occurrences and their
surrounding context can be directly read in the fisheye interface.
 The fisheye interfaces studied here automatically change the view to include context
information related to the user’s focus. Earlier research has studied another type of fisheye
interface, called elision interface in the following, that requires users to manually expand or
collapse parts of the document (Cockburn and Smith, 2003; Hornbæk and Frøkjær, 2003).
The two types of interface share the difficulty of determining which document parts are
important a priori so that the resulting view is useful across tasks (paper 1; Hornbæk and
Frøkjær, 2003). An advantage of fisheye interfaces that automatically change the view is that
users can see document parts that are related to their focus, even if the parts are located far
apart in the document. In practice, the effort required in collapsing and expanding document
parts in elision interfaces may outweigh the benefits of faster navigation in the document
(Cockburn and Smith, 2003). Finally, automatically changing the view based on changes in
the user’s focus may confuse or disorient users (paper 1 and 4) whereas a text representation
that users can manually change is predictable and thus less disorienting.
 In summary, our studies contribute empirical evidence in support of fisheye interfaces’
usefulness in programming. Rich data were obtained by using multiple research methods. The
data show how programmers use fisheye interfaces effectively to navigate and understand
source code, and how a fisheye interface could be used across different activities in
programmers’ own work. However, the results are limited by methodological issues and also
by investigating only particular designs of fisheye interfaces. Although alternative designs
were initially explored—informed by my own experiences as a programmer and by informal
evaluations with others—only one line of iterative refinement of fisheye interface was
investigated, which arguably limits the potential outcome (Greenberg and Buxton, 2008).
Furthermore, the fisheye interfaces studied here provide context to the user’s focus only
within a single source code file. Fisheye interfaces may provide context across the entire code
base (Storey et al., 2000; Kersten and Murphy, 2006) and use diverse task information to
establish the user’s focus, such as previous navigation activity (DeLine et al., 2005) or task
descriptions (Lawrance et al., 2008).

TRANSIENT VISUALIZATIONS

The fisheye interface investigated in paper 1 makes permanent changes to the source code
view with the aim of supporting navigation and understanding of source code. However,
programmers work on a diversity of tasks that may not all be equally well supported by the
fisheye interface: for instance, programmers did not find it useful for debugging or writing
new code (paper 4). This issue is a general one: visualizations often make permanent changes
to the user interface with the aim of supporting specific tasks. However, many applications

10

are designed to support a variety of tasks in complex work settings, and changes made to an
interface to improve its use in some tasks may have adverse effects on its use in other tasks.
 We argue that transient use of visualizations may support specific infrequent tasks
without permanently changing the interface. Earlier research has lead to similar ideas
(Baudisch et al. 2004), and several lightweight interaction techniques that use transiency have
been researched (e.g., Fekete and Plaisant, 1999; Zellweger et al., 2000; Baudisch et al., 2003;
Bezerianos and Balakrishnan, 2005). To provide a basis for generalizing about transient use
of information visualization, we compared transient and permanent use of visualization in two
experiments (paper 2 and 3). Three notable findings were made that relate to the
characteristics of transient visualizations described in paper 2.
 First, we found that for particular navigation tasks, users’ immediate and close access to a
transient map overview can reduce sensory-motor efforts, as indicated by less mouse
movement and perceived user effort, and lead to higher satisfaction and preference compared
with a permanent overview (paper 2). Importance of closeness is also demonstrated by for
instance Drag-and-pop (Baudisch et al., 2003) and Vacuum (Bezerianos and Balakrishnan,
2005): both techniques have been shown to enable quick access to remote objects in the
display by bringing them closer. Minimal physical movement was one design principle
underlying the design of Vacuum (Bezerianos and Balakrishnan, 2005).
 Second, it seems a transient visualization may support a specific task more effectively by
allowing users to call up a tailored representation of only the types of information useful in
that specific task. That is, the relatedness of the information to the user’s current focus of
attention may affect the direct usefulness of the visualization for the specific task. In paper 3
we compared a transient fisheye view and a permanent fisheye view that were based on the
same degree-of-interest function. Instead, it might be more effective if the user can call up
different transient fisheye views that each provides only the information pertinent to the
user’s specific focus of attention in a particular task.
 Third, the transiency or briefness of a particular transient visualization must match the
briefness of the user’s interaction with information needed for the supported tasks. Some
participants found that the transient fisheye interface disappeared too easily—seemingly, it
disappeared before participants were finished using the information provided in the fisheye
interface (paper 3). In programming, users might benefit from being able to alternate between
a fisheye view and a plain view as appropriate for the task at hand. In contrast, a transient
representation can be appropriate for tasks that require only brief use of the information (e.g.,
paper 2; Fekete and Plaisant, 1999).
 The two empirical studies in paper 2 and 3 provide a basis for elaborating on the
characteristics of transient visualizations. However, the comparative evaluation of only two
specific applications of transient visualization with counterpart permanent visualizations is
not enough to reliably conclude about benefits of transient visualizations in general. More
research is clearly needed. One question to consider in future research is how a transient
visualization tailored for use in a specific task can be meaningfully compared with a
permanent visualization that must support varied work activity.

VISUALIZATIONS TO SUPPORT TEAM COORDINATION

Developing a large system is too much work for one programmer. Fortunately, work can
often be partitioned among the programmers in a team. Doing so, however, requires time
consuming communication between team members, for instance to coordinate work (Brooks,
1975; Ko et al., 2007). One reason that coordination requires communication is that visibility
of the work of individual team members, which is useful for maintaining awareness of what is
going on, is lacking.
 In paper 5, we aimed to support awareness of a team’s work through visualization of
work items. Work items are descriptions of work tasks partitioned so that individual team
members can carry them out (Knudsen et. al, 1976). However, the systems used to manage
work items are not designed to provide an overview of the work items or the ongoing changes
made to work items. A visualization called WIPDash was designed to address these needs.

11

WIPDash was deployed with two collocated teams, running on a large display in each team’s
room and on individual team members’ workstations. The teams were observed during one
week. No effect was found of the visualization in measures of situational awareness and
group satisfaction, but observations, logged activity data, and discussions with the teams gave
insight into the teams’ use of the visualization.
 Based on comments from participants (paper 5) and from earlier research, it seems that
programmer teams appreciate a combined view of the entire shared workspace and changes in
it (Biehl et al., 2007). Our results suggest two types of use of such visualizations in a
programmer team environment. First, teams can use the visualization during meetings. In our
study, one team used WIPDash on the large display during daily standup meetings, and they
would like a view that is tailored to those meetings (paper 5). Whereas visualizations aimed at
individual users have long been researched (e.g., Eick et al., 1992; Froehlich and Dourish,
2004; Ellis et al., 2007), little is known about how visualization can support collaboration in
teams, for instance during meetings as seen in our study. Interest is gaining, however, in the
collaborative use of visualization (e.g., the CoVIS’09 workshop).
 Second, team members may use the visualization to maintain awareness of the team’s
work by glancing at the display at natural breakpoints in their task (Biehl et al., 2007) or
when entering or leaving the room (paper 5). One problem that detracted from WIPDash’s
usefulness for such occasional glancing seems related to the automatically cycling between
different views in the visualization. An aim of the cycling was to limit the amount of
information in the display, but in practice it was found that nothing of interest was shown in
parts of the cycle. Participants suggested cycling only between views that contain recent
changes, but alternative approaches may be needed to make the display convey an appropriate
amount of information while being consistent. Design and evaluation of this type of display,
often called peripheral display in the literature, is complicated by inconsistent use of
terminology, and frameworks and guidelines have only recently started to emerge (e.g.,
Mankoff et al., 2003; Pousman and Stasko, 2006; Matthews et al., 2007).
 In general, improving awareness has been the aim of much research (Schmidt, 2002). In
programming, tools for helping programmers maintain awareness of team members’ activity
in the source code have been found useful for identifying and resolving conflicts (e.g., Biehl
et al., 2007; Sarma et al., 2008). In contrast, WIPDash shows a higher-level view of a team’s
work based on the team’s repository of work items. Grinter (1995) found such higher-level
views in demand but lacking in code-centric tools. An interesting perspective for future
research is to combine information about work items with information about code activity in
one visualization. Finally, WIPDash was aimed at coordination in collocated teams, but
visualization of work items may also be useful to help maintain awareness of work in
distributed teams (Gutwin et al., 2004) and work of other teams (Begel et al., 2009).

EVALUATION OF VISUALIZATION TECHNIQUES IN COMPLEX WORK

Demonstrating the utility of an information visualization system or technique has been argued
to be crucial to the adoption of the system or technique (Plaisant, 1995). To that end,
laboratory experiments are weakened by their lack of realism, which long-term case studies in
contrast are rich in. Yet, understanding the effects of particular design factors of a
visualization technique may further development of the technique and eventually lead to its
adoption and use in practice. To that end, laboratory experiments are arguably strong where
case studies fail in producing precise results about the effects of individual factors in the
design of a visualization (Lam and Munzner, 2008).
 All research methods have weaknesses or limitations, but the limitations of different
methods can be offset by using multiple methods (McGrath, 1995). We researched fisheye
interfaces in programming using (1) two different strategies, laboratory experiment and field
study, and (2) multiple data collection methods, or types of measures, in combination. The
research allowed us to assess the methods’ use, individually and in combination, for
evaluating fisheye interfaces in programming.

12

 First, the laboratory experiments provided basis for understanding participants’
interaction with the fisheye interfaces and how the interfaces affect participants’ performance
in representative tasks (paper 1 and 3). Data from the field study did not facilitate such
analysis, but allowed us to learn whether participants adopted the fisheye interface in real
work, how the interface was used across a variety of tasks, and which types of information in
the fisheye interface that were used (paper 4). The field study offset at least two limitations of
the laboratory experiments: the tools available in the programming environment were
controlled in the experiments, whereas participants in the field study could use any tool
available in their programming environment; and only particular types of tasks were used in
the experiments, whereas the field study investigates participants doing their own work tasks.
 Second, the multiple data collection methods combined in the field study provided
stronger evidence of adoption and use of the fisheye interface (paper 4). For instance,
thinking aloud provided concrete situations of use that showed diverse uses of the fisheye
interface, but it is hard to generalize about how participants used the fisheye interface in their
work from the 55 observed incidents of use. In contrast, the 370 hours of activity logging
showed overall patterns in how the fisheye interface was used throughout participants work,
but it is hard to establish participants’ intent from the activity data.
 Altogether, the multiple methods provided us with richer data for understanding how
fisheye interfaces are used in working with source code, for uncovering usability issues with
the interfaces, and for further developing the theoretical foundations of fisheye views.
However, some issues limit the conclusions that can be drawn from the results.
 Learning is important to consider when interpreting our results. Participants in the
experiments might not have had sufficient time to gain proficiency in use of the interfaces
(paper 1 and 3). Consequently, the effects of the fisheye interfaces on participants’ behavior
and performance measured in experiments may not reflect effects that would be found in
practice after longer time of use. Participants in the field study used the fisheye interface for
weeks, but still did not consider themselves proficient (paper 4). Beyond initial learning of the
interface, participants may need long time to gain experience with using the interface across
work tasks. Moreover, it seems natural that people are focused on getting work done, not on
learning how to work more effectively (Carroll and Rosson, 1987). Researchers and designers
are thus challenged to improve the learnability of new interfaces. In the present research, it
stresses the need for stimulating participants to use of the interface in their work in new and
varied ways, some of which may develop into habits. Perhaps such learning can be impelled
by the researcher’s active involvement in participants’ work in longer-term studies, as
proposed by Shneiderman and Plaisant (2006). In any case, the field study approach does not
allow us to precisely determine what effects the interface has on participants’ productivity,
however proficient participants become.
 Further, limitations in our approach to method triangulation in the field study present
opportunities for future research. First, to better understand how participants’ intent relates to
their actions, data from probes could be coupled more strongly to activity logging, for
instance by probing participants conditionally based on their activity. We used conditional
probes in a simple way, but the potential of this approach calls for further exploration.
Second, to allow stronger extrapolation of the observed situations of use, thinking aloud
recordings may be better coupled to quantitative activity data. Alternatively, a broader and
more representative sample of participants’ work may be collected either by using long-term
screen recordings (Tang et al., 2006) or recordings that are triggered by activities (Akers et
al., 2009).
 Although participants adopted the fisheye interface and made comments that suggested
that they would continue to use it after the field study, we did not investigate whether they did
continue to use it. The field study reduces the reactivity of measures compared with the
laboratory experiments, but does not eliminate it entirely (McGrath, 1995). Investigating
whether participants use the fisheye interface after longer time using unobtrusive measures
could help demonstrate the utility of fisheye interfaces more convincingly.

 Finally, integrating a fisheye interface a code editor so that it is suitable and stable
enough for real-life programming required extensive work and still participants experienced

13

problems. Earlier research has pointed out that visualization systems and tools must be stable
and integrate with existing work practices (Gonzales and Kobsa, 2003; Shneiderman and
Plaisant, 2006). But compared with standalone visualization systems, the difficulties of
properly integrating a visualization technique in an existing tool present a potential barrier to
conducting long-term studies. However, another approach challenges researchers to persuade
participants to use a new tool that implements the visualization technique in question, instead
of a tool they may already be proficient in using.
 In all, our research demonstrates benefits and limitations of using multiple methods to
evaluate fisheye interfaces in programming. Combined, the laboratory experiments and the
field study provided more convincing evidence that fisheye interfaces are useful to
programmers. Perhaps more important, however, the multiple methods provided richer data
for better understanding how programmers use fisheye interfaces for navigating and
understanding source code—understanding which characteristics of a visualization technique
that contribute to improving users’ work may be crucial to the further development of the
technique and to its eventual adoption and use in practice. Our results indicate challenges for
future work in evaluating visualization techniques in complex work. For instance, a key
barrier to assessing a novel technique’s potential is that participants may not learn and adopt
the technique across tasks in their work. Opportunities for combining data from multiple
methods have been suggested that may inspire future research in evaluation of visualization
techniques in complex work.

CONCLUSION
The research in this thesis suggests that information visualization can improve programmers’
tools and environments. Looking ahead, I think several problems and opportunities warrant
further investigation. We need to better understand the characteristics of fisheye interfaces
that contribute to enhancing programmers’ abilities and how those characteristics can be more
widely utilized in programming. Also, there are problems specific to the integration of fisheye
interfaces in source code editors: tools that have many diverse uses may not be easily
replaced and we need to better understand how visualizations may extend such tools without
adverse effects. Further, questions fundamental to the design of fisheye interfaces still need
answering: How can we determine degree of interest? How can we distort the view to fit all
interesting information while also supporting effective interactions that feel natural to users?
Lack of design guidelines is a barrier to wider adoption of fisheye interfaces. Finally, there is
arguably a need for novel methods for evaluating visualization techniques. My hope is that
the use of methods triangulation presented in this thesis will be replicated and extended in
further research.

14

REFERENCES
Akers, D., Simpson, M., Jeffries, R., and Winograd, T. (2009). Undo and erase events as

indicators of usability problems. In CHI '09: Proceedings of the 27th international
conference on Human factors in computing systems, ACM, 659–668.

Baudisch, P., Cutrell, E., Robbins, D., Czerwinski, M., Tandler, P., Bederson, B., and
Zierlinger, A. (2003). Drag-and-Pop and Drag-and-Pick: Techniques for Accessing
Remote Screen Content on Touch and Pen-operated Systems. In Proc Interact’03, 57–64.

Baudisch, P., Lee, B., and Hanna, L. (2004). Fishnet, a fisheye web browser with search term
popouts: a comparative evaluation with overview and linear view. In AVI '04:
Proceedings of the working conference on Advanced visual interfaces, ACM Press, 133–
140.

Begel, A., Nagappan, C. P. N. and Layman, L. (2009). Coordination in Large-Scale Software
Teams. In Proceedings of the 2009 ICSE Workshop on Cooperative and Human Aspects
on Software Engineering, IEEE Computer Society, Washington, DC.

Bezerianos, A. and Balakrishnan, R. (2005). The vacuum: facilitating the manipulation of
distant objects. In CHI '05: Proceedings of the SIGCHI conference on Human factors in
computing systems, ACM Press, 361–370.

Biehl, J. T., Czerwinski, M., Smith, G., and Robertson, G. G. (2007). FASTDash: a visual
dashboard for fostering awareness in software teams. In CHI '07: Proceedings of the
SIGCHI conference on Human factors in computing systems, ACM, 1313–1322.

Brooks, Jr., F. P. (1975). The Mythical Man-Month: Essays on Software Engineering.
Reading, MA: Addison Wesley.

Card, S. K., Mackinlay, J. D., and Shneiderman, B. (1999). Readings In Information
Visualization: Using Vision To Think. Academic Press.

Carroll, J. M., & Rosson, M. B. (1987). The paradox of the active user. In J.M. Carroll (Ed.),
Interfacing Thought: Cognitive Aspects of Human-Computer Interaction. Cambridge,
Mass: MIT Press, 80-111.

Cockburn, A. and McKenzie, B. (2002). Evaluating the effectiveness of spatial memory in 2D
and 3D physical and virtual environments. In CHI '02: Proceedings of the SIGCHI
conference on Human factors in computing systems, ACM, 203–210.

Cockburn, A. and Smith, M. (2003). Hidden messages: evaluating the efficiency of code
elision in program navigation. Interacting with Computers, 15, 3, 387-407.

CoVIS’09 (2009). Workshop on Collaborative Visualization on Interactive Surfaces, In
conjunction with VisWeek 2009 (Vis, InfoVis, VAST), October 11, Atlantic City, New
Jersey, http://www.medien.ifi.lmu.de/covis09

Debian.org (2009). A Brief History of Debian: Debian Releases. Retrieved on 2009-07-21.
http://www.debian.org/doc/manuals/project-history/ch-releases.en.html

DeLine, R., Czerwinski, M., and Robertson, G. (2005). Easing Program Comprehension by
Sharing Navigation Data. In VLHCC '05: Proceedings of the 2005 IEEE Symposium on
Visual Languages and Human-Centric Computing, IEEE Computer Society, 241–248.

Dunsmore, A., Roper, M., and Wood, M. (2000). Object-oriented inspection in the face of
delocalisation. In ICSE '00: Proceedings of the 22nd international conference on
Software engineering, ACM Press, 467–476.

Eick, S. G., Steffen, J. L., and Sumner, E. E. (1992). SeeSoft - A Tool for Visualizing Line
Oriented Statistics Software. IEEE Transactions on Software Engineering, 18, 957-968.

15

Ellis, J. B., Wahid, S., Danis, C., and Kellogg, W. A. (2007). Task and social visualization in
software development: evaluation of a prototype. In CHI '07: Proceedings of the SIGCHI
conference on Human factors in computing systems, ACM, 577–586.

Fekete, J. and Plaisant, C. (1999). Excentric labeling: dynamic neighborhood labeling for data
visualization. In CHI '99: Proceedings of the SIGCHI conference on Human factors in
computing systems, ACM Press, 512–519.

Francel, M. A. and Rugaber, S. (1999). The Relationship of Slicing and Debugging to
Program Understanding. In IWPC '99: Proceedings of the 7th International Workshop on
Program Comprehension, IEEE Computer Society, 106-113.

Froehlich, J. and Dourish, P. (2004). Unifying Artifacts and Activities in a Visual Tool for
Distributed Software Development Teams. In ICSE '04: Proceedings of the 26th
International Conference on Software Engineering, IEEE Computer Society, 387–396.

Furnas, G. W. (1981). The fisheye view: A new look at structured files. Bell Laboratories
Technical Memorandum #81-11221-9, October 12.

Gonzáles, V. and Kobsa, A. (2003). A Workplace Study of the Adoption of Information
Visualization Systems. In Proceedings of I-KNOW'03: 3rd International Conference on
Knowledge Management, 92-102.

Gonzalez-Barahona, J. M., Robles, G., Michlmayr, M., Amor, J. J., and German, D. M.
(2009). Macro-level software evolution: a case study of a large software compilation.
Empirical Software Engineering, 14, 3, 262-285.

Greenberg, S. and Buxton, B. (2008). Usability evaluation considered harmful (some of the
time). In CHI '08: Proceedings of the twenty-sixth annual SIGCHI conference on Human
factors in computing systems, ACM, 111–120.

Grinter, R. E. (1995). Using a configuration management tool to coordinate software
development. In COCS '95: Proceedings of conference on Organizational computing
systems, ACM, 168–177.

Gutwin, C., Penner, R., and Schneider, K. (2004). Group awareness in distributed software
development. In CSCW '04: Proceedings of the 2004 ACM conference on Computer
supported cooperative work, ACM, 72–81.

Hornbæk, K. and Frøkjær, E. (2003). Reading patterns and usability in visualizations of
electronic documents. ACM Transactions on Computer-Human Interaction, 10, 2, 119–
149.

Kersten, M. and Murphy, G. C. (2006). Using task context to improve programmer
productivity. In SIGSOFT '06/FSE-14: Proceedings of the 14th ACM SIGSOFT
international symposium on Foundations of software engineering, ACM, 1–11.

Knudsen, D. B., Barofsky, A., and Satz, L. R. (1976). A Modification Request Control
System. In ICSE '76: Proceedings of the 2nd international conference on Software
engineering, IEEE Computer Society Press, 187–192.

Ko, A. J., DeLine, R., and Venolia, G. (2007). Information Needs in Collocated Software
Development Teams. In ICSE '07: Proceedings of the 29th international conference on
Software Engineering, IEEE Computer Society, 344–353.

Kraut, R. E. and Streeter, L. A. (1995). Coordination in software development. Commun.
ACM, 38, 3, 69–81.

Lam, H. and Munzner, T. (2008). Increasing the utility of quantitative empirical studies for
meta-analysis. In BELIV '08: Proceedings of the 2008 conference on BEyond time and
errors, ACM.

16

LaToza, T. D., Venolia, G., and DeLine, R. (2006). Maintaining mental models: a study of
developer work habits. In ICSE '06: Proceeding of the 28th international conference on
Software engineering, ACM Press, 492–501.

Lawrance, J., Bellamy, R., Burnett, M., and Rector, K. (2008). Using information scent to
model the dynamic foraging behavior of programmers in maintenance tasks. In CHI '08:
Proceedings of the twenty-sixth annual SIGCHI conference on Human factors in
computing systems, ACM, 1323–1332.

McGrath, J. E. (1995). Methodology matters: doing research in the behavioral and social
sciences. In Human-computer interaction: toward the year 2000, Morgan Kaufmann
Publishers Inc., 152–169.

Plaisant, C. (2004). The challenge of information visualization evaluation. In AVI '04:
Proceedings of the working conference on Advanced visual interfaces, ACM Press, 109–
116.

Saraiya, P., North, C., and Duca, K. (2005). An Insight-Based Methodology for Evaluating
Bioinformatics Visualizations. IEEE Transactions on Visualization and Computer
Graphics, 11, 4, 443-456.

Seo, J. and Shneiderman, B. (2006). Knowledge Discovery in High-Dimensional Data: Case
Studies and a User Survey for the Rank-by-Feature Framework. IEEE Transactions on
Visualization and Computer Graphics, 12, 3, 311-322.

Shneiderman, B. and Plaisant, C. (2006). Strategies for evaluating information visualization
tools: multi-dimensional in-depth long-term case studies. In BELIV '06: Proceedings of
the 2006 conference on BEyond time and errors, ACM Press.

Soloway, E., Lampert, R., Letovsky, S., Littman, D., and Pinto, J. (1988). Designing
documentation to compensate for delocalized plans. Communications of the ACM, 31, 11,
1259–1267.

Storey, M. A. D., Wong, K., and Müller, H. A. (2000). How do program understanding tools
affect how programmers understand programs? Sci. Comput. Program., 36, 2-3, 183–
207.

Tang, J. C., Liu, S. B., Muller, M., Lin, J., and Drews, C. (2006). Unobtrusive but invasive:
using screen recording to collect field data on computer-mediated interaction. In CSCW
'06: Proceedings of the 2006 20th anniversary conference on Computer supported
cooperative work, ACM, 479–482.

Weinberg, G. M. (1971). The psychology of computer programming. New York, NY, USA:
Van Nostrand Reinhold Co.

Weiser, M. and Lyle, J. (1986). Experiments on slicing-based debugging aids. In Papers
presented at the first workshop on empirical studies of programmers on Empirical
studies of programmers, Ablex Publishing Corp., 187–197.

Zellweger, P. T., Regli, S. H., Mackinlay, J. D., and Chang, B. (2000) The impact of fluid
documents on reading and browsing: an observational study. In CHI '00: Proceedings of
the SIGCHI conference on Human factors in computing systems, ACM Press, 249–256.

17

PAPER 1 – EVALUATING A FISHEYE VIEW OF SOURCE
CODE
Jakobsen, M. R. and Hornbæk, K. (2006). Evaluating a fisheye view of source code. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Montréal,
Québec, Canada, April 22 - 27, 2006). CHI ’06. ACM, New York, NY, 377-386.

Permission to make digital or hard copies of all or part of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

CHI 2006, April 22-27, 2006, Montréal, Québec, Canada.
Copyright 2006 ACM 1-59593-178-3/06/0004. . . $5.00.

18

Evaluating a Fisheye View of Source Code

Mikkel Rønne Jakobsen & Kasper Hornbæk
Department of Computing
University of Copenhagen
Copenhagen East, Denmark

mikkelj@acm.org, kash@diku.dk

ABSTRACT
Navigating and understanding the source code of a program
are highly challenging activities. This paper introduces a
fisheye view of source code to a Java programming envi-
ronment. The fisheye view aims to support a programmer’s
navigation and understanding by displaying those parts of
the source code that have the highest degree of interest given
the current focus. An experiment was conducted which com-
pared the usability of the fisheye view with a common, linear
presentation of source code. Sixteen participants performed
tasks significantly faster with the fisheye view, although re-
sults varied dependent on the task type. The participants
generally preferred the interface with the fisheye view. We
analyse participants’ interaction with the fisheye view and
suggest how to improve its performance. In the calculation
of the degree of interest, we suggest to emphasize those parts
of the source code that are semantically related to the pro-
grammer’s current focus.

Author Keywords
Fisheye view, information visualization, programming, Eclip-
se, user study

ACM Classification Keywords
H.5.2 [Information Interfaces and Presentation (e.g., HCI)]:
User Interfaces

INTRODUCTION
Programming is a complex human activity. The programmer
is typically required to develop correct source code from a
general description of how a program should work. As the
source code grows in size and complexity, the navigation
between and within the files comprising the source code be-
comes mentally demanding. In addition, the programmer
must continually switch between writing new code and un-
derstanding existing code, possibly constructed by other per-
sons. Extensive research has aimed to find ways of support-
ing the programmer in these activities [11, 12, 17].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CHI 2006, April 22-27, 2006, Montréal, Québec, Canada.
Copyright 2006 ACM 1-59593-178-3/06/0004. . . $5.00.

One approach to supporting navigation and understanding of
source code is information visualization [10, 14]. The first
instance of such an approach was probably Furnas’s fisheye
views [5]. In fisheye views, all source code lines are as-
signed a degree of interest calculated from their a priori im-
portance and their relation to the line of source code in focus.
Lines with a degree of interest below some threshold can
thus be removed or rendered at smaller sizes for a view that
contains both details and context. Fisheye views promise
to integrate pertinent information in just one view; informa-
tion that in state-of-the-art programming environments like
Eclipse, NetBeans and Visual Studio are presented in sepa-
rate windows or require explicit action on part of the user.

The benefits of applying fisheye views to programming have
not been examined empirically. Empirical studies of fish-
eye views in other domains have shown positive results, for
example [15], but have also shown high task completion
times [6], interference with users’ ability to remember the
location of objects [16], and low incidental learning [8].

This paper presents an extension of a widely used open-
source development environment with a fisheye view of
source code. The design of the fisheye view is described, as
are the underlying decisions. We present an empirical eval-
uation of the fisheye view that emphasizes both measures of
usability and analysis of interaction patterns. Based on the
evaluation, we suggest potential improvements to the algo-
rithms and user interface design underlying the fisheye view.
We discuss in particular the algorithm used to calculate the
degree of interest; this is relevant not only for fisheye views
of source code, but also for the general notion of fisheye
views and for fisheye interfaces in other domains.

RELATED WORK
Fisheye views have been used to visualize source code and
programs at different levels of detail. The SHriMP system,
for example, uses fisheye views on graph representations of
the program structure [18]. Turetken et al. [19] described
how to use fisheye views of models used in systems analy-
sis and design. Below, however, we discuss only the use of
fisheye views, and distortion techniques more generally, on
a single file of source code. In addition we discuss empir-
ical evaluations of applying fisheye views to other types of
mainly textual data, such as electronic documents and web
pages.

Furnas [5] defined a general case fisheye view and suggested
that it could be applied to source code, so as to display con-

19

text information in addition to the lines of source code that
the programmer focuses on. To create such a view, lines
of source code are assigned a degree of interest based on
(1) their level of detail, or a priori importance, and (2) their
distance from the user’s focus (e.g., the currently selected
line of source code). The level of detail is determined from
the hierarchical structure of the program, as given by the in-
dentation of source code lines. Thus, enclosing conditional-
or loop-statements are considered of greater general interest
than highly indented lines. Likewise, local details are con-
sidered more interesting than remote details: lines indented
on the same level and in the same block as the line in fo-
cus are considered of high interest to the user, while lines in
other blocks are considered less interesting. Furnas’s fish-
eye view hides program lines with a degree of interest below
a certain threshold. The display space gained from hiding
parts of the source code provides for contextual information
(i.e., lines of source code with a high degree of interest not
visible in a traditional view). Furnas argued that the fisheye
view, in virtue of its combination of program lines close to
the focus and higher-level information, would show the lines
of greatest interest to the programmer, thereby facilitating
programming.

Furnas’s paper left unanswered several questions about the
implementation of fisheye views for source code. Below we
discuss these questions to outline related work; the remain-
der of the paper may be seen as an attempt to answer them.
One question concerns the use of display space in the fish-
eye view, in particular how to handle a large amount of lines
with the same high degree of interest. Koike [9] proposed
to keep the total amount of information displayed (i.e., the
number of source code lines) constant, and presented an al-
gorithm that usually, but not always, fills the available space.
No general answer to this question is therefore available.

Another question concerns how to establish the user’s focus
in the source code, needed to calculate the distance compo-
nent of the degree of interest function. In Furnas’s paper the
focus is given by the currently selected line. It is not obvious,
however, that the focus need be only one line, nor clear how
to determine the focus in situations where the user interacts
with the source view using a mouse. An alternative to the
fisheye view, source code elision, requires the user to manu-
ally fold and unfold blocks of program lines, thus avoiding
the issue of defining the focal point. In Jaba [3], for example,
methods in Java classes were elided, diminishing the bodies
of methods while displaying the method signature lines in
normal size. An empirical study by Cockburn and Smith [3]
showed that such elision may improve navigation tasks in
programming. However, the cost of the user’s direct manip-
ulation of the view may in practice prove to outweigh the
benefits of elision. The experimental tasks used in Cockburn
and Smith’s study were simple and required little use of the
folding mechanism, leaving this question unanswered.

A third question concerns whether we can utilize richer in-
formation about the program structure than Furnas did, that
is, enhancing the degree of interest function beyond using
just indentation level. One technique to distort the source

code that does this is program slicing. Program slicing was
first described as a method used by programmers for reduc-
ing the amount of code to look at when debugging or try-
ing to understand programs [20]. Program slicing limits the
view of the source code to those program lines which affect
the value of a specific variable. Tools for performing slic-
ing automatically have been found useful in debugging [21].
However, program slicing most often uses only variables to
slice the source code, not the structure of the source code, as
Furnas did. The choice of which variables to slice is usually
left to the user. In contrast to the intention of fisheye views,
this requires explicit and deliberate action on part of the user.

Yet another question concerns how to embed a fisheye view
in a source code editor, using the tools available in mod-
ern integrated development environments. As pointed out
by Koike [9], the focus may change continually when a user
edits source code. The effect of such changes on a straight-
forward implementation of fisheye views would probably be
visually very complex. This begs the question how the user’s
interaction with the editor affects the view, and how often the
view should be updated when the user’s focus changes. In
addition, the effects of editing (e.g., pasting or typing) source
code on the visual presentation is not treated in discussions
of fisheye views familiar to us.

We are aware of no evaluations of how fisheye views affect
programming at the level of interacting with individual files
of source code. However, the use of fisheye views on elec-
tronic documents and web pages has been investigated em-
pirically. Paez et al. [13] conducted an empirical study of
electronic documents where the font size was bigger for the
title, headings, and key sentences compared to other parts
of the document. Initially, the entire document was fitted
on the screen, and the user could zoom in on interesting
sections. The empirical study did not find this interface to
perform better than hypertext on measures of time, but did
find some positive user reactions towards the zooming inter-
face. Hornbæk and Frøkjær [8] compared a fisheye interface
for electronic documents to overview+detail and linear inter-
faces. In a task that required participants to read documents
as a basis for writing essays, the fisheye enabled subjects
to quickly get an overview of and read the documents. Af-
terwards, however, participants were able to answer fewer
questions about the content. Fishnet [1] extended a web
browser with a fisheye view by using a bifocal display in
which the context area was compressed, while search terms
were kept readable and highlighted. In an empirical study,
Fishnet was found to improve certain web search tasks, de-
pending on the organization of the web page. However, only
3 out of 13 participants preferred the fisheye interface.

In summary, Furnas’s original paper and related work have
only partly addressed the questions regarding how to imple-
ment fisheye views for source code. Additionally, we find
no studies that have investigated empirically how fisheye in-
terfaces for source code work; studies of fisheye views for
electronic documents and web pages show mixed results.
The remainder of the paper therefore explores answers to

20

Figure 1. Screenshots of (a) the Linear and (b) the Fisheye interface showing the same source file of 161 lines.

the questions raised, and provides an empirical evaluation of
our implementation of a fisheye view.

A FISHEYE VIEW OF SOURCE CODE
To investigate the questions above, we explored a number of
alternative designs for fisheye views of source code. Figure 1
(b) shows our preferred design, which we refer to as the Fish-
eye interface. Below we explain the design, and compare it
with a baseline linear interface shown in Figure 1 (a).

Both interfaces include an editor, implemented as a plugin in
Eclipse, an extensible development environment1. The plu-
gin extends the Java editor included in Eclipse’s Java Devel-
opment Tools. All features except line numbers and syntax
highlighting of the source code are disabled in the editor.
Both interfaces use an overview+detail approach in which
an overview of the entire document is shown to the right of
the detail view window; previous research [8] suggests such
an interface superior to using just a detail view. The detail
view shows a part of the document that the user has selected.
The overview shows the source code reduced in size to fit
the entire document within the space of the overview area;
the standard source code highlighting is preserved. The text
is unreadable, but it is possible to discern structural features
such as method boundaries and blocks of javadoc comments.
The part of the document shown in the detail view is visu-
ally connected with its position in the overview by lines. The
overview supports the mouse interaction normally expected
from a scrollbar; the thumb can be dragged to scroll the de-
tail view and clicking above or below the thumb scrolls the
detail view one page up or down.

The above features are common to the interfaces; the next
four sections describe the design of the Fisheye interface.
The plugin can be downloaded from the authors’ web sites.
1http://www.eclipse.org

Focus and Context Area
In the Fisheye interface, the detail view of the source code is
divided into two areas: the focus area and the context area.
The total available space is evenly divided between the two
areas. The editable part of the view, the focus area, is re-
duced in size to accommodate a context area. The context
area uses a fixed amount of space above and below the fo-
cus area. It contains a distorted view in which certain parts
of the source code, being of less relevance given the focus
point, are diminished or elided. The focus point is defined
as all lines visible in the focus area. Thus, the context area
is updated when the user scrolls the view, and remains un-
changed when the user moves the caret within the bounds
of the focus area. Our design hereby circumvents the issues
raised earlier concerning how often the focus changes and
the potential problems of frequently updating the view.

Degree of Interest Function
A degree of interest (DOI) function determines if and how
much the lines are diminished in the context area. The de-
gree of interest for a program line x given the focus point p
is calculated as:

DOI (x|p) = API (x)−Dsyntactic(p, x)−Dsemantic(p, x)

First, the DOI function is based on an a priori interest (API)
component defined by (a) the type of program line for which
the degree of interest is currently being calculated and (b)
that line’s indentation level. The type of a program line is de-
termined by deducing the most general abstract syntax tree
(AST) node from the line. A priori interest for a node n in
the AST of the source file with root node r is defined as:

API (n) = BI (n)−
√

wLODd(r, n)

A priori interest is the base interest of the node, BI (n), di-
minished with the factor wLOD by the node’s distance to the
root, d(r, n). Program lines containing one of the keywords

21

Base interest for an indenting program statement 30
Base interest for a package declaration 20
Base interest for a type declaration 20
Base interest for a method declaration 20
Base interest for a field declaration 10
Base interest for a variable declaration 10
Base interest for block closing ”}” 2
Level of detail weight wLOD of node in API(n) 2

Table 1. DOI function constants in the Fisheye interface.

package, class, interface, or method, are assigned a higher a
priori interest than other lines. Enclosing statements—that
is, those lines containing one of the Java keywords catch, if,
finally, for, switch, try, or while—are also assigned a higher
a priori interest. This is similar to Furnas’s proposal. Ta-
ble 1 lists the values of BI (n) for different types of lines
that are used to balance how lines are diminished in the con-
text area. The constants were found through iterations of
the design and evaluation with programmers. For efficiency,
we process consecutive program lines as a block whenever
possible. AST nodes that span multiple lines, and lines of
other types than those mentioned above, for example com-
ment lines, are processed as blocks.

A second component of the DOI function is based on the
line’s distance from the focus point. The distance is calcu-
lated as the sum of the syntactic distance and the semantic
distance. The syntactic distance is calculated similar to Fur-
nas’s proposal; lines in the same indented block as the focus
point are closer to the focus point than lines on other inden-
tation levels and in different blocks, thus contributing to a
higher degree of interest. In addition to syntactic distance,
the Fisheye interface also calculates semantic distance from
the focus point. Lines containing declarations of classes,
methods and variables that are referenced in the focus point
are deemed more relevant than other lines, including syntac-
tically close lines, and are therefore assigned an even higher
degree of interest. This type of line is highlighted with an
alternate background color to express their semantic relation
to the visible lines in the focus point. Thus, our design move
beyond the ideas of Furnas by using semantic information in
the second component of the DOI function.

Magnification Function
A magnification function prioritizes each program line ac-
cording to its degree of interest in order to reduce the size of
the least interesting lines. A line’s magnification is thus de-
termined by its relevance relative to the amount of lines yet
to be allocated space in the context area. Lines with similar
degrees of interest are prioritized according to their distance
in lines from the focus area, so that lines closest to the fo-
cus area are allocated space first. Figure 2 lists a simplified
version of the algorithm used in the Fisheye interface.

We chose this strategy in the design of the Fisheye interface
to solve the problem of deciding how to use the available
display space, an issue that we discussed in the section on re-
lated work. An alternative implementation of Furnas’s fish-
eye view is to use a magnification function that does not take

linesLeft = countLines(blocks);
foreach (block in prioritized blocks) {

ratio = availableSpace / linesLeft;
zoom = block.getDOI() * SQRT(ratio);
block.setZoomLevel(ZOOM_FACTOR * zoom);
linesLeft -= block.getLines();
availableSpace -= block.getHeight();

}

Figure 2. Pseudo-code for calculating the magnification
of lines in the context area.

(a) (b)
Figure 3. Fisheye view of 161 lines of source code; (a) the
Fisheye interface and (b) with alternative magnification
function that clips the source code to fit the view.

the amount of available space into consideration, and simply
clips the view to the available display space. Figure 3 illus-
trates the difference between the two strategies. The fixed
degree of magnification for the source lines in Figure 3(b)
causes lines with a high degree of interest, that are far from
the focus area, to be suppressed or clipped from the view.
Similar approaches were used by Cockburn and Smith [3]
and Hornbæk and Frøkjær [8]. In contrast, our prioritization
strategy in Figure 3(a) first allocates space to the lines with
high DOI to assure that they are included in the view.

User Interaction
The focus area offers the same facilities for interaction as a
normal editor. The caret can be moved within the bounds of
the focus area, scrolling the view contents when moving the
caret against the upper or lower bound. The context area au-
tomatically reduces in size to fit the content; near the top of
the document, for example, when the user scrolls by hold-
ing an arrow key to move the caret past the upper edge of
the focus area, the upper part of the context area retracts.
By moving, or brushing, the mouse over lines in the context
area, those lines are highlighted in the overview. Clicking on
a line in the context area centers the focus area around that
line and places the caret in the line.

EXPERIMENT
To gain a better understanding of the usability of fisheye
views of source code, a controlled experiment was con-
ducted in which the Fisheye interface was compared to the
Linear interface. One goal of the experiment was to mea-
sure the usability of the interfaces for programming tasks,
especially to seek evidence regarding the expectations about
fisheye views raised by Furnas. Another goal was to describe
how users interact with the two interfaces, so as to gain an
understanding of how the design presented in the previous
section affect user’s navigation and understanding.

22

Participants
The 16 participants (2 female) were students at the authors’
department (7) or professional programmers (9). Partici-
pants were screened to have at least one year of program-
ming experience in an object-oriented language. Half of
them had over five years of general programming experi-
ence. The participants were between 24 and 34 years old.

Tasks
Tasks addressed both navigation and program understand-
ing. Navigation tasks from a study of source code elision [3]
were used to evaluate the hypothesis that the fisheye view en-
ables the programmer to navigate faster in the source code.
We expected that it would be easier to find the information
required to solve the task with the Fisheye interface, because
there would be no need for scrolling the view. In cases
where the information was not directly accessible without
scrolling, we expected the user to navigate more quickly to
the required information once it had been located.

To study whether the fisheye view affects program under-
standing, we also used composite task types that require
more complex user interaction than the navigation tasks.
These composite task types were based on issues in object-
oriented programming, including delocalization, which have
been discussed in the empirically based literature on pro-
gramming (e.g., [4]). Finally, we used a type of task con-
cerning the understanding of control structures in the source
code, similar to tasks used in a study of control structure di-
agrams [7]. Below we describe the instances of these task
types, which make up the 18 tasks used in the experiment.

One-step-navigation tasks
The first of two types of navigation task was of a form sim-
ilar to: ”In the method ’update’, find the program line with
the first call to the method ’Math.min’.” The tasks of this
type varied only with respect to the names of the methods
and used source files from [3]. The tasks were repeated with
source files of 186–187 lines and 368–376 lines.

Two-step-navigation tasks
The following is an example of the second type of navigation
task used in the experiment: ”In the method ’hasGreen’, find
the return type of the method that is called last.” Only the
method name in the task text were varied between tasks of
this type. Like the one-step-navigation tasks, this type of
task used source files from an earlier study [3], repeated with
source files of 162–176 lines and 365–366 lines.

Determine-field-encapsulation tasks
One of the composite tasks involved determining whether
or not two fields are encapsulated, that is, whether the vari-
ables are protected from external reference and correspond-
ing get- and set-methods exist. The tasks were of the fol-
lowing form, varying only by the names of the fields: ”How
many of the fields ’fText’ and fFont’ are encapsulated cor-
rectly?” The source used in these tasks contained 340–361
lines and 34–38 methods—too many methods to be visible
simultaneously in the Fisheye interface.

Task type Linear Fisheye
One-step-navigation 2 2
Two-step-navigation 2 2
Determine-field-encapsulation 1 1
Determine-delocalization 2 2
Determine-control-structure 2 2
Total 9 9

Table 2. Number of tasks performed by each participant.

Determine-delocalization tasks
Another challenging type of task involved determining delo-
calization in the source code, for example: ”The method ’up-
date’ (line 207–214) contains a total of 6 method calls. How
many of the methods called are declared in this file?” These
tasks used source code files from the JHotDraw 5.2 program
(http://www.jhotdraw.org/) with a number of method calls
between five and nine, of which several were calls to meth-
ods declared in other files (delocalized code).

Determine-control-structure tasks
The last type of task concerned the control structure within a
single method. An example of a task concerned with count-
ing enclosing statements read: ”In the method ’mergeTer-
mInfos’ (line 201–238), how many for, while and if/else
statements enclose line 233?” An example of a task con-
cerned with finding the closing brace of a block read: ”In
the method ’renameFile’ (line 225–281), find the line con-
taining the ’}’ that ends the if-block which starts on line
241.” These tasks used source code files from two Apache
Jakarta projects selected to contain methods with a body of
more program lines than visible simultaneously in the Fish-
eye interface.

Materials
Participants used a laptop computer for the experiment with
the screen set to a 1024 x 768 resolution with 16-bit color.
The Eclipse window used all available screen space. For
input, participants used the laptop’s keyboard and an opti-
cal, wireless mouse. Tasks were presented in a task view in
Eclipse next to the editor view. Participants typed their an-
swer to the tasks in the task view and clicked a button to con-
tinue, enabling us to accurately register completion times.

Design
A within-subjects experimental design was used, the inde-
pendent variables being interface type (Fisheye, Linear) and
task type (One-step-navigation, Two-step-navigation, Deter-
mine-field-encapsulation, Determine-delocalization, Deter-
mine-control-structure). Participants performed a set of nine
tasks with each interface, see Table 2. The order of tasks and
interfaces were systematically varied and counter-balanced
across participants.

Procedure
Prior to solving the 18 experimental tasks, participants were
given an introduction lasting about 30 minutes. In the intro-
duction, participants were explained how to operate the two
interfaces, and were given a few minutes to try them. As part

23

of the introduction, participants also performed a set of nine
warm-up tasks; five tasks using the Linear interface and four
tasks using the Fisheye interface. Participants were allowed
to ask questions during the warm-up tasks. Details of the
tasks were explained and, if participants were hesitant, they
were reminded how to operate the interfaces.

After the introduction, a set of nine experimental tasks were
performed with each of the two interfaces. The participants
were urged to give correct answers as quickly as possible,
without asking questions during the experiment. A question-
naire about the interface just used was administered to the
participants following each set of tasks. This questionnaire
contained five questions from QUIS [2], and eight additional
questions specific to the experiment (see Table 4). A third
and final questionnaire was administered after all tasks had
been completed, asking the participants for their age, gen-
der and programming experience. The questionnaire also
asked participants to compare the Fisheye interface with the
Linear interface on a comparative scale. Additionally, par-
ticipants were asked to write advantages and disadvantages
of the Fisheye interface compared to the Linear interface.
Finally, they were given the opportunity to verbally express
their experiences with the two interfaces. The entire experi-
ment lasted between 60 and 90 minutes for each participant.

RESULTS
The data collected comprised task completion times, accu-
racy, preference, and participants’ satisfaction with the in-
terfaces. Data were analyzed with repeated measures analy-
sis of variance. Because the distribution of task completion
times was positively skewed, the completion times were sub-
jected to logarithmic transformation prior to analysis.

Accuracy
We find no significant difference between interface type in
the accuracy of participants’ answers to the tasks, F (1, 14) =
.147, p = .707. In total, 288 tasks were completed by the
participants, of which 129 tasks were completed correctly
with the Linear interface (89%) and 131 tasks completed
correctly with the Fisheye interface (91%).

Task Completion Times
The task completion times are summarized in Table 3. The
average task completion time is lower with the Fisheye inter-
face compared to the Linear interface, F (1, 14) = 4.76, p =
.047. However, tasks and interfaces interact, F (8, 7) =
9.57, p = .004, and we thus analyzed data per task to de-
scribe those task related differences.

Completion times show no significant difference between
the interfaces in one-step-navigation tasks, F (1, 14) =
0.57, p = .463. In two-step-navigation tasks, participants
used significantly less time with the Fisheye interface com-
pared with the Linear interface, F (1, 14) = 9.49, p = .008,
a difference of 18% in average completion time. We ex-
pected the fisheye view to generally improve navigation.
However, the results suggest improvements only when nav-
igating to methods that are visible and highlighted because

Task type Linear Fisheye
M SD M SD

One-step-navigation a 32.3 16.2 30.5 13.5
Two-step-navigation a 39.9 13.9 33.8 13.9
Determine-field-encapsulation b 80.7 24.7 96.8 37.6
Determine-delocalization a 92.1 46.9 61.1 34.1
Determine-control-structure a 43.9 17.1 50.5 20.7
Average 55.2 35.8 49.8 31.5

Table 3. Task completion times in seconds. Significantly
lower times are shown in bold. (a) N=32, (b) N=16.

they are being referenced in the focus area, which occurred
in the second step of the two-step-navigation tasks.

Participants tended to complete determine-field-encapsula-
tion tasks slower using the Fisheye interface compared with
the Linear interface, but the difference in average comple-
tion time was not significant, F (1, 14) = 2.24, p = .157.
Though not significant, we did not expect to find inferior
performance of Fisheye compared to the Linear interface.

In determine-delocalization tasks, participants counted how
many of the methods or fields used in the body of a given
method that were declared in the source file. On average,
participants completed those tasks significantly faster (about
51%) using the Fisheye interface compared with the Linear
interface, F (1, 14) = 13.9, p = .002.

The determining-control-structure tasks involved counting
the conditional and loop statements that enclosed a given
program line, or finding the closing brace of a given loop
control structure. Overall, we found no difference in com-
pletion time for these task types, F (1, 14) = 3.85, p = .070.
However, participants used more time to find the closing
brace of a given loop control structure with the Fisheye inter-
face compared to the Linear interface, F (1, 14) = 7.73, p =
.015. When implementing the Fisheye interface, we as-
signed a relatively low base interest to closing braces, Ta-
ble 1. As a result, the closing braces to be found in these
tasks were not visible in the context area. This may explain
why participants used more time with the Fisheye interface,
because they had to scroll the view to find the closing brace.

Satisfaction
Overall, participants preferred the Fisheye interface com-
pared with the Linear interface (t = −5.229, df = 14, p <
.001). Only one participant slightly preferred the Linear in-
terface and one participant did not answer the question.

Average satisfaction scores for the two interfaces are sum-
marized in Table 4 for the 14 questions that the participants
answered. All questions were answered on a scale from one
to seven. Across all questions, the participants rated the
Fisheye interface better than the Linear interface, multivari-
ate analysis of variance F (1, 15) = 10.0, p = .005. Below
we analyse each of the questions; all tests are made with in-
dividual analyses of variance tested against F (1, 15).

In general, participants liked the Fisheye interface better

24

than the Linear interface (p < .006). The Fisheye interface
also scored better on the scale from terrible to wonderful
(p < .004). There was no significant difference in how the
participants found the two interfaces on the scale from hard
to easy (p > .9). However, three participants mentioned
as a disadvantage of the Fisheye interface that it required
more training to use effectively. Participants found the Fish-
eye interface both more pleasant (p < .03) and more fun
(p < .001) to use than the Linear interface.

On the scale from confusing to clear, the participants found
the Fisheye interface to be significantly less clear than the
Linear interface (p < .04); the only question where the Fish-
eye interface scores lower than the Linear interface. Five
participants commented as a disadvantage of the Fisheye in-
terface that it could be confusing to use, in particular with
scrolling. Also, some participants did not clearly understand
that program lines were shown and highlighted because they
were related to one or more lines in the focus area. We found
no significant difference between the two interfaces in the
participants’ answers of whether they often lost their orienta-
tion in the source code (p > .05), nor was there a difference
in the answer to whether it was clear to them where in the
source code they were looking (p > .25). These results sug-
gest that the Fisheye interface was not confusing in general,

Satisfaction question Linear Fisheye

1. How did you find the interface in general?
Very poor - Very good 4.13 (.34) 5.44 (.20)

2.-6. How was the interface to use?
Terrible - Wonderful 4.00 (.29) 5.13 (.15)

Hard - Easy 5.19 (.37) 5.13 (.31)
Frustrating - Pleasant 3.81 (.41) 5.00 (.29)

Boring - Fun 3.56 (.29) 5.25 (.35)
Confusing - Clear 5.81 (.31) 4.50 (.37)

7. It was clear most of the time where I was in the source code.
I disagree - I agree 5.88 (.31) 5.25 (.36)

8. I often lost my orientation in the source code.
I disagree - I agree 2.88 (.43) 2.56 (.26)

9. How do you perceive the tasks?
Very challenging - Very easy 5.31 (.27) 5.56 (.24)

10. How were your answers to the tasks?
Very poor - Very good 5.56 (.26) 5.75 (.27)

11.-12. Was the source code...
Hard to understand - Easy to understand 4.81 (.31) 5.19 (.23)
Hard to overview - Easy to overview 4.44 (.38) 4.94 (.28)

13. Were methods you were trying to locate in the source code...
Hard to locate - Easy to locate 3.50 (.39) 5.31 (.35)

14. Were other information in the source code...
Hard to locate - Easy to locate 3.50 (.35) 5.60 (.22)

Table 4. Average satisfaction scores (and standard error
of the mean) for the 14 satisfaction questions for the two
interfaces. The anchor points on a semantic differential
scale is shown below each question. Significantly better
scores are shown in bold.

but rather that it was confusing when searching by scrolling
in the source code.

Participants found it easier to find methods (p < .004) and
other information (p < .001) in the source code with the
Fisheye interface than with the Linear interface. Also, most
participants commented in the questionnaire that they felt
the Fisheye interface gave a better overview of the source
code and helped to locate methods and variables. About
half of the participants commented as an advantage that they
could see enclosing statements in the Fisheye interface.

The fisheye view’s poor performance in determine-field-en-
capsulation tasks may be explained by comments made by
some participants. They found it difficult to search for vari-
ables and methods in the context area while scrolling, be-
cause the context area was displaying lines which are se-
mantically related to the lines in the focus area. As lines
scroll in and out of focus, different semantic relationships in
the source code take effect, resulting in irregular changes to
the context area.

The focus area in the Fisheye interface was too small accord-
ing to comments made by 12 out of the 16 participants. A
few participants added that they would find this a problem
when writing or editing the code.

Interaction with the Interfaces
Data describing the participants’ interaction with the inter-
faces were automatically collected during the experiment.
We visualized this interaction with progression maps, which
have previously been used to analyze reading of electronic
documents [8]. Analysis of the progression maps revealed
patterns in the participants’ interaction which, in many of
the tasks, are clearly distinguishable between the two in-
terfaces. The patterns evident in the progression maps sup-
port the conclusions based on the task completion times, but
also indicate some problems with the Fisheye interface. We
show representative patterns and provide counts of partici-
pants who interact in a similar way.

The progression maps are used to show which part of the
source file was visible in the focus area at a given time during
the task (see Figure 4 to Figure 8). Dashed horizontal lines
ending in a circled number to the right of the map indicate
program lines that hold the answer to the task. In progression
maps for tasks where more than one program line is used to
answer the task, the numbers indicate the order in which the
lines are to be used. Certain forms of interaction are anno-
tated with symbols in the progression maps: a hand symbol
when user scrolled the view by dragging the scrollbar thumb
and an arrow-in-document symbol when user clicked in the
context area. Other interaction forms are directly discern-
able from the map, such as scrolling by arrow keys and page
up/down keys respectively.

Typical patterns found in progression maps for two of the
two-step-navigation tasks, see Figure 4, show that with the
Linear interface, participants had to search through the file
for both methods. With the Fisheye interface, 11 out of

25

(a) Linear interface (b) Fisheye interface
Figure 4. Progression maps, two-step-navigation tasks.

16 participants were able to find the return type in the sec-
ond method directly in the context area. Similar differences
are evident in progression maps for the one-step-navigation
tasks.

Progression maps representative for determine-field-encap-
sulation tasks are shown in Figure 5. The patterns indicate
that while participants found places of interest and jumped
by clicking in the context area in the Fisheye interface, they
also needed to scroll to search the 34–38 methods. Analysis
of the progression maps does not yield any explanation why
participants solved this type of task slower with the Fisheye
interface, as the task completion time results suggest. One
possible cause is that participants searched more slowly by
scrolling in the Fisheye interface than in the Linear interface.

Typical interaction patterns can be seen in the representa-
tive progression maps for determine-delocalization tasks in
Figure 6 (involving variables) and Figure 7 (involving meth-
ods). The progression maps confirm that participants made
several searches and jumps in the source code with the Lin-
ear interface. Being asked to determine how many of the
called methods were defined in the source file, they had to
search for the definition of each method, returning each time
to find the name of the method called next, start searching
again, and so forth. The progression maps for the Fisheye
interface show that once participants had navigated to the
method, they were able to use the fisheye view’s context area
to find the information necessary to complete the tasks. In
the Fisheye interface, 12 out of the 16 participants completed
the tasks with minimal interaction.

Figure 8 shows the progression maps for the two determine-
control-structure tasks that involved counting program state-

(a) Linear interface (b) Fisheye interface
Figure 5. Progression maps, determine-field-encapsula-
tion tasks.

(a) Linear (b) Fisheye
Figure 6. Progression maps for determine-delocalization
tasks involving variables.

ments enclosing a given line. In the first task, all participants
using the Linear interface scrolled down to the specified line,
and were then able to answer the task without scrolling fur-
ther, Figure 8(a). Six out of eight participants using the Fish-
eye interface continued to scroll the focus area to determine
the control structure and answer the task, Figure 8(b). The
Fisheye interface thus makes the task of finding the enclos-
ing statements harder for participants. The second task, Fig-
ure 8(c) and 8(d), shows a different result. All participants
using the Linear interface, once they had found the specified
line, had to scroll back at least once to determine the con-
trol structure. Seven of eight participants using the Fisheye
interface, however, could determining the control structure
using the context area without scrolling any further. These
interaction patterns confirm our hypothesis that the Fisheye
interface helps to determine large control structures faster.

For determine-control-structure tasks where participants had
to find the closing brace of a loop-structure, the progression
maps did not show any apparent differences in how partici-
pants interacted with the Fisheye interface compared to the
Linear interface. The inferior performance with the Fish-
eye interface in these tasks, with respect to task completion
times, could be caused by the smaller focus area.

DISCUSSION
The results from our experiment show an overall improve-
ment in task completion times with the fisheye interface for
representative program navigation and understanding tasks.
Yet, strong differences in task completion times were found
among tasks. Participants were equally accurate in answer-
ing the tasks. They much preferred the Fisheye interface and
scored it significantly higher on 6 of 14 satisfaction ques-
tions, for example concerning whether the interface was eas-
ier or more pleasant to use. By analyzing progression maps,
we identified great variation in how the participants inter-
acted with the Fisheye interface. In spite of the short time
the participants used the interface, several of them displayed
very effective use of the fisheye view. The context area was
frequently used for searching and navigating in the source
code. Many tasks were completed with sparse interaction
resulting in reduced physical effort compared to the interac-
tion with the Linear interface.

To discuss our design and empirical results, we return to the
questions raised in the section on related work. The first
question concerned how to use the display space in a fisheye

26

(a) Linear (b) Fisheye
Figure 7. Progression maps, determine-delocalization tasks involving methods.

(a) Linear, task 1 (b) Fisheye, task 1 (c) Linear, task 2 (d) Fisheye, task 2
Figure 8. Progression maps for determine-control-structure tasks concerned with counting enclosing statements. The
line numbered 1 indicates the program line given in the task, line 2 the farthest line needed to answer the task.

view. Many fisheye views of text [1, 3, 8] show mostly di-
minished text in the context area. We propose to have mainly
readable text displayed in the context area. This allows direct
use of the information in the context view, which is evident
in the tasks where users directly read source lines displayed
in the context area or when they click in the context area to
jump to a certain line. Further experimental work is needed
to understand the difference between these two approaches
to displaying content in the context views. Alternative ap-
proaches should be considered; for example, dispensing with
a static context area and displaying context information in
proximity to the focus point would make it clear to the user
why that context information is displayed.

A second question concerned how to establish the user’s fo-
cus point in the source code. Our solution to use a focus
area spanning many lines as the focus point gives the inter-
face stability, because the context view rarely needs updat-
ing. Some participants, however, were confused about what
semantic relation that caused program lines to be shown and
highlighted in the context area. How to make transparent to
users why lines are shown in the context view is not easy.
One solution could be to allow the user to control the fo-
cus point more accurately, for example by the position of the
caret. This would allow for an easily understandable relation
between focus point and context information, but would also
make the interface visually busy.

We succeeded in using richer information in establishing
the degree-of-interest, a challenge also raised in the section
on related work. Our data show that the Fisheye interface
helped participants to find and navigate to a method, if the
method is semantically related to the focus area. Partici-
pants also spent less time using the Fisheye interface to de-

termine which methods are called in the focus area. The
significant effect of showing lines in the context area that
are related to the focus area may have been influenced by
those lines being highlighted. Nevertheless, we argue that
fisheye views in source code editors should include program
lines which are referenced by the lines in the programmer’s
focus. In contrast, the results of our experiment leads us to
believe that the Fisheye interface is less useful for display-
ing lines containing declarations of methods and variables,
which are not directly related to the programmer’s point of
focus. In common programming environments, such lines
are typically displayed in outlines of the edited source file.
Considering the tradeoff between showing those lines in the
context area compared to having a larger focus area for edit-
ing source code, we think that the base interest assigned to
such lines as method headers in the Fisheye interface seems
too high (see Table 1). Future work could examine the rel-
ative utility of the various kinds of information that could
be shown in the context area, but also alternative ways of
creating the degree of interest function; automatically, for
example, by using eye tracking or logging of participants’
navigation.

The fourth question raised in the section on related work
concerned how to integrate fisheye views in a modern de-
velopment environment. Our plug-in works with Eclipse,
but some issues remain. In particular, our implementation
of how the fisheye view changes when scrolling is still un-
satisfactory: the information needed when scanning during
scrolling seems much different from that needed while read-
ing and editing source code.

At least three problems and limitations of the experiment
should be considered when interpreting the results. First,

27

participants were given relatively short time to practice with
the interfaces before the experiment. Informal observations
made during the experiment suggest that participants some-
times hesitated or expressed doubts, leading us to suspect
that they were given insufficient time to become confident
in using the Fisheye interface. Second, the realism of the
programming environment was reduced because we limited
the tools available to the participants during the experiment.
Modern source code editors often offer advanced features,
such as hyperlinking and advanced highlighting. Also, many
tools are usually available in addition to the editor, such as
the outline view mentioned earlier, which may affect how
programmers use the editor. Our results do therefore not
necessarily reflect the effect of the Fisheye interface in prac-
tice. Third, simple programming activity was investigated
in this paper. In particular, we investigated only navigation
and program understanding of static programs, not of pro-
grams that are created or modified by the user. We still face
the challenge of uncovering what long term effects fisheye
views in source code editors may have on programming.

CONCLUSION
We have presented a design and empirical evaluation of a
fisheye view applied to source code. The aim has been
to support programmers in navigating and understanding
source code by displaying those parts of the source code that
have the highest degree of interest given the programmer’s
current focus. In designing the interface, we have priori-
tized to retain a static division between the focus and the
context areas of the fisheye view, and to saturate the context
area with readable information. Further, we have introduced
semantic relations between parts of the source code in the
calculation of the degree of interest. The interface is fully
integrated with the Eclipse development environment.

In an experiment, we compared the usability of an interface
using the fisheye view with an interface using a linear view
of the source code. Sixteen participants performed nine tasks
with each of the two interfaces. Overall, the participants per-
formed the tasks significantly faster with the fisheye view,
although an effect of task type was present. The participants
generally preferred the interface with the fisheye view. The
experiment illustrates how participants interacted with the
fisheye view, thereby identifying information in the context
area that was useful to participants. Semantically related in-
formation seems important, while source code displayed be-
cause of a high a priori degree of interest was less useful.

In summary, fisheye views seem promising for displaying
source code. Our study suggests, however, that further work
should attempt to improve performance across all tasks, and
that the degree of interest function may be further refined.

ACKNOWLEDGEMENTS
We thank Tue Haste Andersen andMorten Hertzum for help-
ful comments on a draft of this paper. For providing us with
task material used in his study, we thank Andy Cockburn.
We would like to thank the persons that helped by participat-
ing in the experiment. Finally, we thank the CHI reviewers
for constructive comments.

REFERENCES
1. P. Baudisch, B. Lee, and L. Hanna. Fishnet, a fisheye web browser
with search term popouts: a comparative evaluation with overview
and linear view. In Proc. AVI 2004, 133–140. ACM Press, 2004.

2. J. P. Chin, A. Virginia, and K. L. Norman. Development of an
instrument measuring user satisfaction of the human-computer
interface. In Proc. CHI ’88, 213–218. ACM Press, 1988.

3. A. Cockburn and M. Smith. Hidden messages: evaluating the
efficiency of code elision in program navigation. Interacting with
Comp., 15:387–407, 2003.

4. A. Dunsmore, M. Roper, and M. Wood. Object-oriented inspection in
the face of delocalisation. In Proc. 22nd Int. Conf. on Software Eng.,
467–476. ACM Press, 2000.

5. G. W. Furnas. The fisheye view: A new look at structured files. In
S. K. Card, J. D. Mackinlay, and B. Shneiderman, editors, Readings
In Information Visualization: Using Vision To Think, 312–330.
Morgan-Kaufmann, 1999. Originally published as Bell Laboratories
Technical Memorandum #81-11221-9, October 12, 1981.

6. C. Gutwin. Improving focus targeting in interactive fisheye views. In
Proc. CHI 2002, 267–274. ACM Press, 2002.

7. D. Hendrix, J. H. Cross II, and S. Maghsoodloo. The effectiveness of
control structure diagrams in source code comprehension activities.
IEEE Trans. Software Eng., 28:463–477, 2002.

8. K. Hornbæk and E. Frøkjær. Reading patterns and usability in
visualizations of electronic documents. ACM Trans.
Computer-Human Interaction, 10(2):119–149, 2003.

9. H. Koike. Fractal views: a fractal-based method for controlling
information display. ACM Trans. Information Systems,
13(3):305–323, 1995.

10. J. I. Maletic, A. Marcus, and M. Collard. A task oriented view of
software visualization. In Proc. VISSOFT ’02, 32–42, 2002.

11. A. von Mayrhauser and A. M. Vans. From program comprehension to
tool requirements for an industrial environment. In Proc. 2nd
Workshop on Program Comprehension, 78–86, 1993.

12. A. von Mayrhauser and A. M. Vans. Program understanding behavior
during debugging of large scale software. In Proc. 7th Workshop on
Empirical Studies of Programmers, 157–179. ACM Press, 1997.

13. L. B. Páez, J. B. da Silva-Fh., and G. Marchionini. Disorientation in
electronic environments: A study of hypertext and continuous
zooming interfaces. In Proc. 59th Annual Meeting of the American
Society for Information Science, 58–66, 1996.

14. B. A. Price, I. S. Small, and R. M. Baecker. A taxonomy of software
visualization. In Proc. 25th Hawaii Int. Conf. on System Sciences,
597–606, 1992.

15. D. Schaffer, Z. Zuo, S. Greenberg, L. Bartram, J. Dill, S. Dubs, M.
Roseman. Navigating hierarchically clustered networks through
fisheye and full-zoom methods. ACM Trans. CHI, 3(2):162–188,
1996.

16. A. Skopik, C. Gutwin. Improving revisitation in fisheye views with
visit wear. Proc. CHI 2005, 771–780, 2005.

17. M.-A. D. Storey, F. D. Fracchia, and H. A. Müller. Cognitive design
elements to support the construction of a mental model during
software exploration. J. Software Systems, 44:171–185, 1999.

18. M.-A. D. Storey, K. Wong, and H. A. Müller. How do program
understanding tools affect how programmers understand programs?
Sci. Comput. Program., 36(2-3):183–207, 2000.

19. O. Turetken, D. Schuff, R. Sharda, and T. T. Ow. Supporting systems
analysis and design through fisheye views. Commun. ACM,
47(9):72–77, 2004.

20. M. Weiser. Programmers use slices when debugging. In Commun.
ACM, 446–452, 1982.

21. M. Weiser and J. Lyle. Experiments on slicing-based debugging aids.
Proc. 1st Workshop on Empirical Studies of Programmers, 187–197,
1986.

28

PAPER 2 – TRANSIENT VISUALIZATIONS
Jakobsen, M. R. and Hornbæk, K. (2007). Transient visualizations. In Proceedings of the 19th
Australasian Conference on Computer-Human interaction: Entertaining User interfaces
(Adelaide, Australia, November 28 - 30, 2007). OZCHI '07, vol. 251. ACM, New York, NY,
69-76.

OzCHI 2007, 28-30 November 2007, Adelaide, Australia. Copyright the author(s) and
CHISIG. Additional copies are available at the ACM Digital Library
(http://portal.acm.org/dl.cfm) or can be ordered from CHISIG(secretary@chisig.org)

OzCHI 2007 Proceedings, ISBN 978-1-59593-872-5

29

Transient Visualizations

Mikkel Rønne Jakobsen
Department of Computer Science

University of Copenhagen

Universitetsparken 1, DK-2100, Denmark

+45 35321451

mikkelrj@diku.dk

 Kasper Hornbæk
Department of Computer Science

University of Copenhagen

Universitetsparken 1, DK-2100, Denmark

+45 35321425

kash@diku.dk

ABSTRACT

Information visualizations often make permanent changes to the

user interface with the aim of supporting specific tasks. However,

a permanent visualization cannot support the variety of tasks

found in realistic work settings equally well. We explore

interaction techniques that transiently visualize information near

the user’s focus of attention. Transient visualizations support

specific contexts of use without permanently changing the user

interface, and aim to seamlessly integrate with existing tools and

to decrease distraction. Examples of transient visualizations for

document search, map zoom-outs, fisheye views of source code,

and thesaurus access are presented. We provide an initial

validation of transient visualizations by comparing a transient

overview for maps to a permanent visualization. Among 20 users

of these visualizations, all but four preferred the transient

visualization. However, differences in time and error rates were

insignificant. On this background, we discuss the potential of

transient visualizations and future directions.

Categories and Subject Descriptors

H.5.2 [Information Interfaces and Presentation (e.g., HCI)]:

User Interfaces, I.3.6 [Methodology and Techniques]:
Interaction Techniques

General Terms

Design, Human Factors

Keywords

Interaction techniques, visualization, transient, lightweight, fluid,
overview+detail, fisheye

1. INTRODUCTION
Many information visualizations make permanent changes to the

way the visual structure of information appears in the user

interface. Different mechanisms are used toward this change, such

as transforming the visual structure, adding features to the visual

structure, and using multiple views. For example, Fishnet [1]

permanently applies a bifocal display transformation and adds

search-term popouts to the visual structure of a web page, and

Popout Prism [15] permanently adds a zoomed-out overview to

the detail view of a web page.

Designing permanent visualizations that are suitable for realistic

work environments is complicated by the diversity of tasks that

OzCHI 2007, 28-30 November 2007, Adelaide, Australia. Copyright the

author(s) and CHISIG. Additional copies are available at the ACM

Digital Library (http://portal.acm.org/dl.cfm) or can be ordered from

CHISIG(secretary@chisig.org)

OzCHI 2007 Proceedings, ISBN 978-1-59593-872-5

need to be supported. For example, consider a fisheye view of

source code that presents context information relevant to the

current focus. Such as view may support navigation and

understanding, but the same fisheye view is inappropriate for

writing and editing code because programmers want a large view

of source code for those tasks [11]. Based on the observation that

a particular design of a permanent visualization may be suitable

only in some scenarios, Baudisch et al. [1] recommended that

users should be allowed to bring up visualizations on demand, for
example by using a keyboard shortcut.

We discuss transient visualizations, interaction techniques for

transient use of information visualizations close to the user’s

focus of attention. Many user interfaces successfully employ

techniques that provide users with transient information in the

context of their focus of attention, including tool tips and context

menus. Also, the HCI literature presents numerous techniques that

involve transiency, lightweight interaction, and visualization [e.g.,

4,9,10]. However, we are unaware of any attempts at generalizing

about using information visuali-zations transiently. Therefore, the

general benefits of transient visualizations and the factors that

advance and restrict their use are unclear. In this paper, we present

examples to probe potential benefits of transient visualizations,

and report an initial validation of one instance of a transient
visualization.

Contributions of our work are (a) to direct researchers’ awareness

toward transient uses of information visualizations that may help

avoid problems inherent in the design of permanent visualization

interfaces, (b) to provide a basis for practitioners to consider how

transient visualizations may be utilized in the work practices they

seek to support, and (c) to present encouraging initial data about
the usability of transient visualizations.

2. CHARACTERISTICS OF TRANSIENT

VISUALIZATIONS
Transient visualizations have four characteristics:

• Immediacy; to bring the user into direct and instant

involvement with the information representation.

• Transiency; information is only displayed tempo-rarily,

and is easily dismissed, which means that no display

space is used permanently.

• Closeness; the information is shown close to the region

of focus in the display (e.g., cursor or caret), resulting in

fast access to the information because of minimized

sensory-motor efforts of the user.

• Contextuality; the information is related to the user’s

current focus of attention, for example by adding context

for interpreting the information in focus.

30

We contrast transient visualizations with permanent information

visualization interfaces, such as overview+detail interfaces where

permanent display space is allocated to an overview window [15].

First, designers are challenged with deciding what information is

needed in various contexts of use and fitting the information into

the limited display space of a permanent visualization. In contrast,

using transient visualizations to facilitate infrequent and

unpredictable contexts of use, the original permanent view can be
dedicated to information used in frequent contexts of use.

Second, adopting permanent visualizations to improve an existing

tool may break established uses of the tool. However, the means

of invoking and interacting with transient visualizations can be

tailored to particular contexts of use, thus supplementing
established interaction habits.

Finally, rich and dynamic views in permanent visualizations may

visually disorient and annoy the user. In contrast, using transient

visualizations that appear only temporarily and under the user’s
control helps prevent visually complex and disorienting interfaces.

3. EXAMPLE APPLICATIONS
To provide concrete arguments for the potential of the idea of

transient visualizations, we present sketches of transient

visualizations that support tasks in three different domains, and

describe a prototype of a transient visualization in a programming
environment.

3.1 Searching in Documents
In conventional web browsers, ‘Find’ automatically jumps to the

first instance of words as they are typed. However, scrolling

between found instances may disorient the user [15]. Recent

studies have shown overview+detail visualizations [15] and

bifocal displays [1] to be efficient and preferred by users for

searching in documents. Among the advantages experienced by

participants using an overview+detail interface, Suh et al. [15]

report that the interface gives “a sense of context, density, and the

ability to see all occurrences of a keyword at once” and provides
orientation support for navigating in the document.

In the design mock-up in Figure 1, we show a transient

visualization to support in-document search; our approach extends

a conventional browser window by calling up a thumbnail

overview when the user invokes the ‘Find’-bar. As the user begins

to type keywords, instances of the words are highlighted in the

overview. The user can move between highlighted words using

the keyboard, or drag the field-of-view window using the mouse.

Behind the overview, the original view scrolls the document

accordingly, visually coupling the overview to the original view.

Finally, the overview can be dismissed to scroll back to the

original location in the document by suspending the ‘Find’ action
(e.g., with the Escape-key).

We believe that our suggested design provides the same support

for in-document search as a permanent overview by giving an

overall sense of the location, density and co-occurrences of

keywords. Additionally, in contrast to a permanent overview, (1)

the overview does not compete for permanent display space, and

(2) fluid keyboard interaction allows the user to complete their

task without having to switch to mouse. In reading tasks,

Hornbæk and Frøkjær [8] found overviews to support navigation

and help to get a structural overview of the document, yet the

overview may also distract the user. A study by Nekrasovski et al.

[13] showed no performance effects of overviews used for

navigating large hierarchical trees, but participants perceived them

as beneficial. These results indicate that a transient overview may

support particular uses such as searching or providing structural

overview for navigation with less risk of distracting the user
compared with a permanent overview.

3.2 Planning and Navigating Routes in Maps
Viewing and interacting with maps has received much attention in

HCI research, and have been addressed by different visualization

approaches including panning and zooming, overviews, and

distortion techniques such as fisheye views [7]. A common use of

maps is for planning and navigating a route to a destination. When

navigating toward a remote destination, travelers commonly use a

detailed map to orient themselves at their current location.

However, an overview of the route to the destination may

occasionally be needed to support a sense of direction and

awareness in travels ahead. Getting an overview using

conventional map applications may require considerable zooming

in and out and panning the map to find road names and landmarks

on the route ahead.

The mock-up presented in Figure 2 shows a way to extend a

conventional map view with a transient visualization to address

this problem. The user invokes the visualization by clicking on the

route, calling up a map of a higher scale, thus showing the route

farther toward the destination. In Figure 2, the user has further

clicked three times on the route, to call up maps of continually

higher scales, until the complete route is revealed. Finally, the

visualization can be dismissed by clicking on the original map.

The route provides fixing points for “stitching together” the maps

of different scales, and the selected route can also be used to

deduce contextual information, such as road names along the

route that should be highlighted.

Figure 1: Sketch of transient overview of document with

popout instances of words entered in the ‘Find’ bar.

31

This example shows how to extend the design space of

information visualizations to transient use in a particular context,

where permanent visualization techniques do not seem useful.

Fisheye interfaces that geometrically distort maps are useful only

to a limited degree of magnification and the distortion may inhibit

users from recognizing shapes of roads and locations of

landmarks [18]. Overview+detail interfaces may give an overview

of the route, but to discern landmarks and road names along the

route the user has to move the detail view. Zooming interfaces

require the user to pan or continually zoom out to get an overview

of the route, and then zoom in to see details of the route. In

summary, while these different techniques may be useful for

frequent contexts of use, it may be worthwhile to pursue transient

visualizations for particular tasks such as the focus of this

example.

3.3 Programming
Programming is a complex human activity that information

visualizations potentially can support [11]. However, as

mentioned earlier, applying a permanent visualization to source

code can be complicated. Figure 3 shows a transient fisheye view

of source code implemented as a plug-in for the Eclipse Java IDE.

The visualization is invoked using a keyboard shortcut; popup

views then appear above and below the editor window. The views

contain lines with references to the variable that the user has

currently selected with the caret. Arrow keys are used to select a

line and pressing ‘Enter’ centers the view on the selected line. The
visualization can be dismissed with the ‘Escape’ key.

Our design aims to support source code navigation and program

understanding by providing lightweight access to contextual

information relevant to the current focus in the source code.

Compared with a permanent fisheye view, our design allows a

large view of source code that programmers seem to prefer for

writing and editing code. Furthermore, we aim to support fluid

interaction with the transient fisheye view in programming by

extending existing uses of the keyboard. A recent user study of

programmers has shown extensive use of keyboard shortcuts for

navigating in source code [13], and transient views showing

outlines and type hierarchies are familiar in common

programming environments such as Eclipse. We thus believe

programmers may easily adopt transient visualizations that are

invoked using keyboard shortcuts.

3.4 Writing
A very common task in writing is to find the right word at some

point in a sentence. A thesaurus can be particularly effective for

this task when writing in a language different from your mother

tongue. In many word processors, finding the right word involves

selecting a word, looking it up in the dictionary or thesaurus,
browsing the definition and navigating links to synonyms.

Figure 4 shows a mock-up of a transient thesaurus visualization

overlapping a text that the user is editing. The visualization is

called up with a keyboard command to show words that are

related to the word at the caret position. The user can interact with

the visualization to explore more synonyms of a particular

meaning; the highlight box can be moved with the cursor keys or

mouse to one of the connected words, and selecting a word

animates the visualization to center around that word, thus

revealing more synonyms of that word. Also, the user can call up

a window with the definition of a selected word. Finally, the

visualization can be dismissed either to replace the original word

in the sentence with the selected word (e.g., by hitting Enter) or
without making changes to the text (by hitting Escape).

Our design utilizes the hierarchical organization of words in a

thesaurus. In contrast to a linear textual representation, users can

visually perceive from the visualization how synonyms of a word

are grouped by similar meanings. Also, synonyms are presented

close to the word and its surrounding text so that users can

imagine how other words fit into the text. Finally, by making the

visualization easy to invoke and dismiss, we aim for the use of the
transient thesaurus to become an effortless part of writing.

4. RELATED WORK
We have aimed to demonstrate alternative uses of information

visualizations by extracting and refining ideas from previous

Figure 2: Route visualization where transient zoom-outs at

progressively higher scales of a map have been called up by

clicking repeatedly on the route to show the way to the

destination.

Figure 3: Prototype of transient fisheye view of source code

that shows context information in popup windows above and

below the editor window.

32

work. This section overviews such related work in HCI research

that use transient representations of information and light-weight
interaction.

Excentric labeling provides labels for a neighborhood of objects

located around the cursor [5]. By showing labels temporarily

when the cursor stays over an area for more than a second, the

technique avoids information clutter and the need for extensive

navigation. Side Views uses transient views to provide dynamic

previews of multiple commands by visualizing the outcome of

commands on the current selection, for instance using bold, italic

or underline on selected text [16]. Zellweger et al. [19] studied the

impact of lightweight, animated glosses for link anchors on

hypertext browsing. Altogether, these transient preview

techniques help users to probe relevant information without

navigation and display switching, and to assess possible actions
without resorting to “trial-and-undo”.

Context menus that pop up near the mouse cursor or text caret

present commands related to the current focus (e.g., for changing

the font of selected text). Hotbox extends context menus with

multiple menu bars centered around the cursor and with access to

additional menus via mouse gestures [12]. See-through tools are

another technique that provides close and contextual access to
commands without requiring permanent display space [4].

Many information visualizations use brushing to highlight (or

affect) instances in other views of an object that the user brushes

over [2]. Highlighting techniques have been adopted, for example,

in the Eclipse Java source code editor, where the caret can be

placed in a variable to highlight all references in the code to that

variable. Similar ideas have been demonstrated in spreadsheets

[9]. These techniques provide immediate and non-intrusive
visualizations through lightweight interaction.

Large and small displays accentuate problems in human-computer

interaction, which have prompted HCI research to generate novel

interaction techniques to temporarily bring objects that are

otherwise hard to interact with closer to the user. The interaction

technique called Vacuum helps reach remote objects through

proxies that are transiently placed close to the cursor for easy

manipulation, reducing the physical demands of the user [3].

Similar challenges in small displays have brought about

techniques to visualize and navigate to off-screen targets with
halos and proxies [10].

5. EXPERIMENT
To provide initial data about the usability of transient

visualizations, we conducted a study comparing two interfaces for

viewing maps, shown in Figure 5. Both interfaces include a view

that can be panned to show different parts of a map; the user

clicks and drags the mouse opposite the panning direction (i.e.,

the map follows the mouse). The interfaces also contain a

semitransparent overview of the entire map. The overview partly

covers the detail view so that it is possible but hard to discern map

details in the detail view under the overview. However, it is not

possible to “click through” the overview to interact with map

details. Interaction with the overview differs between the

interfaces. In the Permanent interface (PI), the overview is

permanently shown in the upper right corner of the detail view.

The user can click and hold the left mouse button to drag a field-

of-view box in the overview in order to pan the detail view. In

contrast, the Transient interface (TI) does not permanently show

an overview, but a transient overview can be invoked at the

location of the mouse cursor by pressing and holding down the

right mouse button; the overview appears so that the mouse

cursor’s location in the field-of-view box corresponds to the

cursor’s location in the detail view. Moving the mouse pans the

detail view, and the overview disappears when the mouse button

is released. Our primary goal is to compare the Permanent

interface and the Transient interface. Therefore, we do not aim for

our study to be realistic, but try to tease out differences in how
users interact with the two interfaces.

5.1 Participants
20 students (4 female) at the authors’ department participated in

the experiment. The participants were between 21 and 50 years
old (M = 29.3, SD = 7.9).

5.2 Tasks
Two types of task were used in the experiment. Both tasks involve

maps of randomly placed circles with random names and

randomly connecting lines. Maps are generated to resemble social

networks. Colored circles are randomly scattered in the map,
requiring participants to move the detail view to see them.

The first task type involves selection of 10 red circles in the map

by finding and clicking on them. The selection task is designed to

make participants alternate between navigating and interacting

with objects in the map. Our hypothesis is that participants are

slower with the Permanent interface, because they must move the

mouse cursor between the overview for navigation and the detail

view for clicking on circles, whereas in the Transient interface,

the overview can be invoked and used immediately without first
moving the mouse cursor.

The second task type involves comparison of 5 blue circles in the

map and clicking on the smallest of them. The comparison task

makes participants navigate and compare the size of blue circles at

different locations in the map. We do not expect the Transient

interface to have an advantage over the Permanent interface in this

type of task. First, participants do not alternately navigate and

interact with objects in the map; participants can navigate

continually to the blue circles to compare them. Therefore the

closeness of the transient overview is not important. Second, the

overview may cover blue circles in the detail view that

Figure 4: Transient thesaurus called up to show synonyms for

the word “fresh” in a word processing application.

33

participants must see to compare their size. Although the

overview covers part of the detail view in both interfaces, the

fixed corner position of the permanent overview may help

participants learn to consistently move blue circles into the visible

part of the detail view. In contrast, invoking the transient

overview at different positions can make it harder for participants

to consistently move blue circles into view. However, participants

can simply dismiss the transient overview to get a clear view of a
blue circle when it has been located.

Since the overview used in this experiment shows the entire map,

large maps result in a higher zoom factor than small maps. We

varied the size of the maps used in the tasks to investigate the

effect of varying zoom factors and varying distances between

colored circles used in tasks. First, selection tasks with large maps

require more precision in mouse movement when interacting with

the overview. For example, the field-of-view box is smaller at

higher zoom factors, which makes it is harder to move the mouse

cursor from the detail view and target precisely in the permanent

overview. Thus, we expect participants to perform worse with the

Permanent interface compared with the Transient interface in

tasks with large maps. Second, multiple red circles may be visible

simultaneously in the detail view if the map is small, whereas

large maps require participants to move the detail view to show

each of the red circles in turn. As a result, the cost of targeting the

mouse pointer in the permanent overview increases.

Consequently, we expect participants to complete tasks faster with

the transient overview in selection tasks with large maps
compared with small maps.

5.3 Materials
Participants used a MacBook Pro laptop computer with an optical

wireless mouse for the experiment. The screen was set to a 1440 x

960 resolution, and the size of the window containing the map

interface was 700 x 700 pixels. Participants were guided through
the experiment by a task view to the left of the interface window.

Two sizes of maps were used in the experimental tasks: small

maps of 2000 x 2000 pixels (containing 200 circles) and large

maps of 5000 x 5000 pixels (containing 600 circles). In small

maps, two or three red circles may be visible simultaneously in

the detail view, whereas only one red circle may be visible in

large maps.

5.4 Design
We used a repeated measures design where four factors are varied

within-subjects: interface type (PI, TI), size of the overview

(Osmall, Olarge), task type (selection, comparison), and map size

(small, large). Participants performed a set of 16 tasks with each

interface. The order of interface and overview size was

systematically varied across participants. The order of task type

and map size for the eight tasks performed with each interface and

overview size was also systematically varied. Thus 32 tasks with

randomly generated maps were used; eight tasks for each
combination of task type and map size.

We used two sizes of overviews because the size of the overview

may affect the usability of the two interfaces. We expect

participants to prefer a small overview in the Permanent interface

because it covers a smaller part of the detail view compared to

large overview. In contrast, a large transient overview does not

permanently cover part of the detail view, so we expect

participants to prefer a larger overview to a small overview in the

Transient interface. The small overview used is 25% the width of

the detail view and the large overview is 40% of the width of the
detail view.

5.5 Procedure
Initially, participants were given an introduction lasting about ten

minutes. In the introduction, participants were explained how to

use the two interfaces and given a few minutes to try them. Next

in the introduction, participants performed 16 warm-up tasks; four

selection-tasks with PI, four selection-tasks with TI, four
comparison-tasks with PI, and four comparison-tasks with TI.

Permanent interface (PI)

Transient interface (TI)

Figure 5. The interfaces used in the experiment contain (left) a permanent overview in the upper-right corner and (right) a

transient overview that is only visible when the right mouse button is pressed.

34

Participants performed two sets of tasks, one with each of the two

interfaces. The participants were told to complete tasks correctly

as quickly as possible. Following each set of tasks, a questionnaire

about the interface just used was administered to the participants.

The questionnaire contained six questions from QUIS [5] and five

questions specific to the concerns of the experiment. A third

questionnaire was administered after all tasks had been

completed, asking the participants for their age and gender. The

questionnaire also included three questions asking participants to

compare the Transient interface with the Permanent interface on a

comparative scale: first participants were asked which interface

they preferred in general, then participants were asked which

interface they found most appropriate for each type of task.

Finally, participants were asked to write benefits and drawbacks

of each interface and other comments. The entire experiment
lasted between 30 and 45 minutes for each participant.

6. RESULTS
The results of the experiment consist of task completion times,

accuracy and participant satisfaction. Of the 640 tasks that were

completed across conditions, 13 tasks were discarded. First, due to

an error in the experimental setup, two participants performed

duplicate tasks and we discarded eight repeated tasks (two with

TI, six with PI) because of possible learning effects. Second, we

discarded three tasks (all with PI) where participants mistook a

compare task for a selection task and clicked on the first blue

circle that was visible. Third, two outlier tasks (both with TI),

which either took more than 60 seconds for selection tasks or 30
seconds for compare tasks, were discarded.

6.1 Task Completion Times
Average completion times for the tasks are summarized in Table

1. We expected that participants would complete selection tasks

faster using the Transient interface compared with the Permanent

interface. In contrast, we did not expect comparison tasks to be

performed faster with the Permanent interface. However, there

was no significant difference in task completion times with the
two interfaces for either type of task, F(1, 19) = .293, ns.

6.2 Accuracy
All of the selection tasks were completed correctly. In contrast,

273 of 310 comparison tasks were answered correctly. Accuracy

is summarized in Table 2. Participants answer more tasks

correctly with a large overview than a small overview, F(1, 19) =

6.32, p < .05. However, we find no influence of interface type on
accuracy, F(1, 19) = .812, ns.

6.3 Satisfaction
Overall, participants preferred the Transient interface compared

with the Permanent interface (t = 3.387, df = 19, p < .005), with

16 participants preferring the Transient interface and only four

participants preferring the Permanent interface. There was no

significant difference in what interface participants perceived to

be most appropriate for selection tasks (t = 2.070, df = 19, p > .05)

or comparison tasks (t = 1.761, df = 19, p > .05), although

participants tended to prefer the Transient interface for both task
types.

Average satisfaction scores for the two interfaces are summarized

in Figure 6 for the eleven questions that the participants answered.

Overall, participants scored the Transient interface higher as

assessed by multivariate analysis of variance, Wilk’s lambda =

.421, F(1, 19) = 3.00, p < .05. The results confirm our

expectations that a transient overview reduces mental and physical

efforts required of the user compared with a permanent overview.

We had hypothesized that participants would prefer a large

overview in the Transient interface and a small overview in the

Permanent interface, but there was no significant difference

between the interfaces in the size of overview that participants
preferred.

6.4 Interaction Patterns
We analyzed the interaction data logged during the experiment to

uncover differences in the use of the two interfaces. In selection

tasks, interaction alternated between using the overview to bring

circles into view and clicking on circles in the detail view. We

expected the Transient interface to help participants complete

these tasks with less mouse movement compared with the

Permanent interface. To investigate this, we summed the distances

that the mouse pointer traveled between mouse button events.

Distance was calculated as the diagonal between screen

coordinates of the mouse pointer. There was a substantial

difference in the average distance per task for the two interfaces; a

decrease of 60% from the Permanent interface to the Transient

interface. Thus, the Transient interface appears to have reduced

the sensory-motor efforts of the participants.

In comparison tasks, participants navigated between blue circles

in the map to compare their sizes. The overview covered part of

the detail view, especially in the large overview condition. Thus

participants had to move the detail view, or dismiss the overview

in the Transient interface, to get a clear view of the circles.

Table 1. Task completion times in seconds for different interfaces, overview sizes and task types.

 Permanent interface Transient interface

 Osmall Olarge Average Osmall Olarge Average

M 30.2 28.6 29.4 29.5 29.2 29.3
Selection tasks

SD 6.0 5.0 5.6 6.4 6.8 6.6

M 13.3 12.9 13.1 12.6 12.7 12.7
Comparison tasks

SD 5.3 3.5 4.5 4.2 4.5 4.3

M 21.8 21.0 21.4 21.0 21.2 21.1
Average

SD 10.2 9.0 9.6 10.0 10.0 10.0

Table 2. Accuracy in comparison tasks for different interfaces,
overview sizes and map sizes.

 Permanent interface Transient interface

 Osmall Olarge Avg. Osmall Olarge Avg.

Small map 82.5% 97.4% 89.7% 90.0% 91.9% 90.9%

Large map 84.6% 97.2% 90.7% 80.0% 86.8% 83.3%

Average 83.5% 97.3% 90.2% 85.0% 89.3% 87.1%

35

Interestingly, participants mostly completed the tasks using the

transient overview by continuously holding down the mouse

button while navigating between the blue circles to compare them

(in only 20 of 160 tasks, participants invoked the transient

overview more than once). However, informal observations

showed that participants using the Transient interface sometimes

had trouble moving the blue circles clear of the overview—they

did not dismiss the transient overview to get a clear view of the
circle.

In the Permanent interface, most participants mainly clicked in the

overview to move the detail view, a mode of interaction not

supported in the Transient interface. Only three out of 20

participants dragged the field of view box as the main way of

moving the detail view, which was the interaction mode also
supported by the Transient interface.

7. DISCUSSION
The study reported in this paper provides initial insight into the

general benefits of transient visualizations. We used tasks that

focus on navigation to tease out differences between the

interaction with the transient and with the permanent overview. In

all, the results of our study suggest that having immediate and

close access to the overview reduces sensory-motor efforts of the

user. Surprisingly, we did not find this to reduce task completion
times and error rates.

Even though participants preferred the Transient interface and

completed the tasks with less mouse movement by accessing the

overview immediately at the location of the cursor, they did not

complete selection tasks faster. It seems that whereas the

Transient interface helps moving red circles into the detail view, it

does not help in acquiring the circles with the mouse. It is hard to

move the map precisely using the overview in either interface:

participants must make fine adjustments to position a target close

to the overview if not move the mouse farther to acquire the

target. However, compared with the Permanent interface where

the overview is placed in a corner of the detail view, it is possible

that positioning part of the map into the detail view demands more

effort when the transient overview appears at different screen
locations.

Some limitations must be considered when interpreting the

results. Maps used were limited to sizes that allowed the entire

map to fit in the overview. Larger maps require overviews with

multiple levels of magnification. Furthermore, we focused on

simple navigation tasks and participants used the interfaces for

only a short period of time. Thus, our findings may not reflect

varied, long-term use of the overviews. Additionally, three

problems detracted from the usability of the Transient interface.

First, we saw participants struggle with the overview when

invoking the overview near the border of the detail view, making

the overview only partly visible. Four participants commented on

this problem in the questionnaire. Second, an implementation

problem caused the transient overview to “stick” to the mouse

cursor when dragging the field-of-view box out of the window,

requiring participants to click in the detail view to make the

overview disappear. Third, the data describing the interaction with

the Permanent interface suggests that participants preferred to

click in the overview to navigate in the map. However, the

Transient interface only allowed users to drag the field-of-view

box, because the overview was only visible while holding down

the mouse button. Support for both interaction modes might

improve the usability of the Transient interface. Toggling the

Part I: Overall reactions

Terrible – Wonderful**

Frustrating – Satisfying

Dull – Stimulating**

Difficult – Easy*

Inadequate power – Adequate power*

Rigid – Flexible*

1 2 3 4 5 6 7 8 9

Permanent

Transient

Part II: More detailed questions

Smoothness:

Mental effort required:

Physical effort required:

Accurate pointing:

Very rough – Very smooth**

Inappropriate – Appropriate*

Inappropriate – Appropriate**

Easy – Difficult

1 2 3 4 5

Part III: Overview size

Which size of overview did you prefer?

Small – Large

1 2 3 4 5 6 7

Figure 6: Average satisfaction scores (and standard error of the mean) for the eleven questions for the two interfaces. The anchor

points on a semantic differential scale are shown for each question. Asterisks denote questions where the Transient interface

scored significantly better (* = p < .05, ** = p < .01).

36

transient overview when the right mouse button is pushed is one
possible solution.

More work is needed to further understand the general benefits

and limitations of transient visualizations. Specifically, in the

examples of transient visualizations presented in this paper, we

have suggested the usefulness of transiently presenting contextual

information related to the user’s focus. Empirical evidence is

needed to support this claim.

In complex work activity, transient visualizations may be useful to

support sporadic tasks for which permanently changing the visual

structure of information in the interface can impede frequent

tasks. Studies are needed to understand what types of task that

transient visualizations are suitable for. Evaluation of our transient

fisheye view of source code may provide insights into the use of
transient visualizations in expert tools.

Finally, conditions that limit the use of transient visualizations

need to be examined. For example, transient visualizations that

give no hint about their use are not accessible to novice users.

Also, design and evaluation of transient visualizations must take

into account that users may need longer practice time to make

effective use of them compared to permanent visualizations that

more readily afford their use.

8. CONCLUSION
We have characterized transient visualizations as interaction

techniques that make immediate and transient use of information

visualization close to, and in the context of, the user’s focus of

attention. In summary, transient visualizations offer a way of

utilizing information visualizations to support specific contexts of

use without making a permanent change to the user interface. We

have presented examples of transient visualizations to support
tasks in different domains.

To uncover how immediacy, transiency and closeness translate to

actual and perceived improvements in the user experience, we

conducted an experiment with map interfaces containing

overviews. The results did not show significant improvements in

time and accuracy with a transient overview compared to a

permanent overview. However, our data suggest that tasks were

performed with less sensory-motor efforts of the user, and 16 of
the 20 participants preferred the transient overview.

Further studies are required to examine the general benefits and

limitations of transient visualizations, to understand what types of

task that transient visualizations are suitable for, and to provide

design guidelines. Our initial data, however, suggest that transient

visualizations may be useful, and that they are preferred by users
to give immediate and close access to overviews.

REFERENCES
[1] P. Baudisch, B. Lee, and L. Hanna. Fishnet, a fisheye web

browser with search term popouts: a comparative evaluation

with overview and linear view. Proc. AVI ’04, 133–140,
2004. ACM Press.

[2] R. A. Becker and W. S. Cleveland. Brushing Scatterplots.

Technometrics, volume 29, 127–142, 1987.

[3] A. Bezerianos and R. Balakrishnan. The vacuum: facilitating

the manipulation of distant objects. Proc. CHI ‘05, pages
361–370, 2005. ACM Press.

[4] E. A. Bier, M. C. Stone, K. Pier, W. Buxton, and T. D.

DeRose. Toolglass and magic lenses: the see-through
interface. Proc. SIGGRAPH ’93, 73–80, 1993. ACM Press.

[5] J. P. Chin, A. Virginia, and K. L. Norman. Development of

an instrument measuring user satisfaction of the human-

computer interface. In Proc. CHI ’88, 213–218, 1988. ACM
Press.

[6] J.-D. Fekete and C. Plaisant. Excentric labeling: dynamic

neighborhood labeling for data visualization. Proc. CHI ’99,
512–519, 1999. ACM Press.

[7] K. Hornbæk, B. B. Bederson, and C. Plaisant. Navigation

patterns and usability of zoomable user interfaces with and

without an overview. ACM Trans. Comput.-Hum. Interact.,

9(4):362–389, 2002.

[8] K. Hornbæk and E. Frøkjær. Reading of electronic

documents: the usability of linear, fisheye, and

overview+detail interfaces. Proc. CHI ’01, 293–300, 2001.
ACM Press.

[9] T. Igarashi, J. D. Mackinlay, B.-W. Chang, and P. T.

Zellweger. Fluid Visualization of Spreadsheet Structures.
Proc. VL ’98, 118-125, 1998. IEEE Computer Society.

[10] P. Irani, C. Gutwin, and X. D. Yang. Improving selection of

off-screen targets with hopping. Proc. CHI ’06, 299–308,
2006. ACM Press.

[11] M. R. Jakobsen and K. Hornbæk. Evaluating a fisheye view
of source code. Proc. CHI ’06, 377–386, 2006. ACM Press.

[12] G. Kurtenbach, G. W. Fitzmaurice, R. N. Owen, and

T. Baudel. The Hotbox: efficient access to a large number of
menu-items. Proc. CHI ’99, 231–237, 1999. ACM Press.

[13] G. C. Murphy, M. Kersten, and L. Findlater. How Are Java

Software Developers Using the Eclipse IDE? IEEE
Software, 23(4):76–83, 2006.

[14] D. Nekrasovski, A. Bodnar, J. McGrenere, F. Guimbretière,

and T. Munzner. An evaluation of pan & zoom and rubber

sheet navigation with and without an overview. Proc. CHI
’06, 11–20, 2006. ACM Press.

[15] B. Suh, A. Woodruff, R. Rosenholtz, and A. Glass. Popout

prism: adding perceptual principles to overview+detail

document interfaces. Proc. CHI ’02, 251–258, 2002. ACM
Press.

[16] M. Terry and E. D. Mynatt. Side views: persistent, on-

demand previews for open-ended tasks. Proc. UIST ’02, 71–
80, 2002. ACM Press.

[17] A. Woodruff, A. Faulring, R. Rosenholtz, J. Morrison, and

P. Pirolli. Using thumbnails to search the web. Proc. CHI
’01, 198–205, 2001. ACM Press.

[18] A. Zanella, M. S. T. Carpendale, and M. Rounding. On the

effects of viewing cues in comprehending distortions. Proc.
NordiCHI ’02, 119–128, 2002. ACM Press.

[19] P. T. Zellweger, S. H. Regli, J. D. Mackinlay, and B.-W.

Chang. The impact of fluid documents on reading and

browsing: an observational study. Proc. CHI ’00, 249–256,
2000. ACM Press.

37

PAPER 3 – TRANSIENT OR PERMANENT FISHEYE VIEWS:
A COMPARATIVE EVALUATION OF SOURCE CODE
INTERFACES
Jakobsen, M. R. and Hornbæk, K. (2009). Transient or Permanent Fisheye Views: A
Comparative Evaluation of Source Code Interfaces.

This paper has been submitted for publication. Copyright may be transferred without further
notice and the accepted version may then be made available by the publisher.

38

Transient or Permanent Fisheye Views:

A Comparative Evaluation of Source Code Interfaces

Mikkel R Jakobsen and Kasper Hornbæk

Abstract—Transient use of information visualization may support specific tasks without permanently changing the user interface.
Transient visualizations provide immediate and transient use of information visualization close to and in the context of the user’s
focus of attention. Little is known, however, about the benefits and limitations of transient visualizations. We describe an
experiment that compares the usability of a fisheye view that participants could call up temporarily, a permanent fisheye view, and
a linear view: all interfaces gave access to source code in the editor of a widespread programming environment. Fourteen
participants performed tasks of both high and low complexity so as to investigate varied programming activity. All participants
used each of the three interfaces for between four and six hours in all. Time and accuracy measures were inconclusive, but
subjective data showed a preference for the permanent fisheye view. We analyze interaction data to compare how participants
used the interfaces and to understand why the transient interface was not preferred. We conclude by discussing seamless
integration of fisheye views in existing user interfaces and future work on transient visualizations.

Index Terms—Information visualization, fisheye view, transient visualizations, user study, programming.

1 INTRODUCTION

A fundamental challenge in information visualization is to map data
to visual structures and to transform those visual structures into
views suitable for users’ tasks [5]. Seesoft, for example, maps source
code into a 1-dimensional representation aimed at helping users
understand changes to the code [8]. Document Lens uses a
focus+context transformation to allow users to inspect a particular
part of a document while being able to see the entire document to
stay in context [18].

The user’s control of the visual structures and view
transformations used is central to visualization [5]. However, often
visualizations are designed to support a specific task and make fixed
mappings and transformations that are effective in that task. In
contrast, real life applications often support a variety of tasks in
complex work settings. Integrating a visualization aimed at
supporting a specific task in existing applications results in
permanent changes to the user interface. Thus, it seems there is a gap
in our understanding of how users can control a visualization to
switch between visual structures or view transformations, which
make it difficult to integrate visualizations in established user
interfaces.

One alternative would be to use information visualization without
permanently changing the user interface. Transient visualizations
aim to do that by providing immediate and transient use of
information visualization close to, and in the context of, the user’s
focus of attention [15]. By using transient visualizations to support
infrequent and unpredictable contexts of use, the permanent view can
be dedicated to information used in frequent contexts of use.
However, empirical data on the relative benefits of transient and
permanent interfaces are lacking.

This paper studies fisheye views of source code – a visualization
that has been shown to help programmers in navigating and
understanding source code [14]. The fisheye view as originally
proposed by Furnas balances in a single view “the need for local
detail against the need for global context” [10]. A fisheye view of
source code does so by displaying only those parts of the code with
the highest degree of interest given the user’s current focus.
However, information shown because it has a high degree of interest
may not be equally important in all tasks. In some tasks, like for
instance reading or editing source code, a fisheye view may even be
unfavorable compared to a large “local detail” view of source code.
One solution is to allow users to call up a fisheye view on demand. A
transient fisheye view of source code that can be temporarily called

up may support navigation and understanding while still providing a
large view of code for reading and editing.

We describe an experiment designed to gain insight into the
benefits and limitations of permanent and transient versions of a
fisheye view. Compared to an earlier paper on transient visualization
[15], we present richer experimental data from a much more complex
domain. We use the study to discuss both how to advance research in
information visualization and to make concrete suggestions for using
fisheye interfaces and other information visualizations to support
complex domains.

2 RELATED WORK

The idea of transient visualizations was introduced in [15]. The idea
is motivated by the observation that information visualizations often
make permanent changes to a user interface with the aim of
supporting specific tasks. However, a permanent visualization cannot
support the variety of tasks found in realistic work settings equally
well. Thus, it may be more useful to display visualizations
transiently. According to [15], transient visualizations are immediate
(bring the user into direct and instant involvement with the
information representation), transient (information is only displayed
temporarily, and is easily dismissed), close to the users’ focus (the
information is shown close to the region of focus in the display), and
contextual (the information is related to the user’s current focus of
attention). Other researchers have supported this idea. For instance,
based on the observation that a particular design of a permanent
visualization may be suitable only in some scenarios, Baudisch et al.
[1] recommended that users should be allowed to bring up different
visualizations on demand depending on their particular needs.

Earlier work has applied related ideas of transient representations
of information and lightweight interaction. For instance, Excentric
labeling provides labels for a neighborhood of objects located around
the cursor [8]. By showing labels temporarily when the cursor stays
over an area for more than a second, the technique avoids
information clutter and the need for extensive navigation. Side
Views uses transient views to provide dynamic previews of multiple
commands by visualizing the outcome of commands on the current
selection, for instance using bold, italic or underline on selected text
[20]. Zellweger et al. [23] studied the impact of lightweight,
animated glosses for link anchors on hypertext browsing. Altogether,
these transient preview techniques help users to probe relevant
information without navigation and display switching, and to assess
possible actions without resorting to “trial-and-undo”.

39

Context menus that pop up near the mouse cursor or text caret
present commands related to the current focus (e.g., for changing the
font of selected text). Hotbox extends context menus with multiple
menu bars close to the cursor and with access to additional menus
via mouse gestures [16]. See-through tools are another technique that
provides close and contextual access to commands without requiring
permanent use of display space [4].

Many information visualizations use brushing to highlight (or
affect) instances in other views of an object that the user brushes
over [2]. Highlighting techniques have been adopted, for example, in
the Eclipse Java source code editor, where the caret can be placed in
a variable to highlight all references in the code to that variable.
Similar ideas have been demonstrated in spreadsheets [12]. These
techniques provide immediate and non-intrusive visualizations
through lightweight interaction.

Novel interaction techniques have been generated to temporarily
bring objects that are otherwise hard to interact with closer to the
user. The interaction technique for large displays called Vacuum
helps reach remote objects through proxies that are transiently placed
close to the cursor for easy manipulation, reducing the physical
demands of the user [3]. Similar challenges in small displays have
brought about techniques to visualize and navigate to off-screen
targets with halos and proxies [13].

Despite the above motivations for transient visualizations, the use
of transient visualizations has to our knowledge only been
empirically investigated in an experimental study of overview+detail
map interfaces [15]. That study showed how participants preferred a
transient overview, which appeared temporarily close to the mouse
cursor, compared to a fixed overview, which was shown permanently
in the corner of the display. Thus we proceed to experimentally
compare interfaces in the much more complex domain of

programming and in a much longer-term experiment than that
reported in [15].

3 COMPARING TRANSIENT AND PERMANENT FISHEYE VIEWS

To investigate how transient visualizations can be used to support
complex work settings such as programming, we implemented a
transient fisheye view of source code in Eclipse, a widespread
development environment (see Fig. 1). The fisheye view divides the
window of the Java editor into a focus area and a context view. The
focus area, the editable part of the window, is reduced to make room
for the context view. The context view uses a fixed amount of space
above and below the focus area. It contains a distorted view of
source code in which parts of the source code that are of less
relevance given the user’s focus in the code are elided. The transient
fisheye view is compared to a permanent fisheye view (using the
same method for producing the fisheye view as in the transient view)
and to a baseline linear view.

3.1 Fisheye View of Source Code
Before we present the experiment, we describe the fisheye views of
source code used in the experiment.

3.1.1 Degree of Interest
A degree of interest (DOI) is determined for each line in the source
code file. Lines in the context view are then elided if their DOI is
below a threshold k. The DOI of a program line x given the focus
point p (defined as the lines in the focus area) is calculated as:

DOI(x | p) = enclosing(x, p) + occurrences(x) – dline(x, p)

Fig. 1. Transient fisheye view called up in Eclipse to divide the Java editor window into a focus area and a context view. Lines containing
occurrences of a selected variable are shown in the context view and in the overview ruler to the right of the scrollbar (as white rectangles).

Context view

Focus area

Overview ruler

40

First, lines are interesting if they contain declarations or statements
that structurally enclose the code that is visible in the focus area.
Such lines contain a package, class, interface or method declaration,
or one of the keywords for, if, while, switch, etc. If line x is such a
line and it defines a block that encloses the code in the focus area p
then enclosing(x, p) = k.

Second, lines that are semantically related to the code in focus
may be interesting to the user. The Java editor in Eclipse allows
programmers to highlight occurrences of a variable, method, or type
to better see where it is referenced. For instance, a variable can be
selected by placing the caret in the variable name whereby all
references to that variable are highlighted in the source code. Lines
containing such highlighted occurrences of a selected element are
interesting. Further, lines that contain declarations of methods that
enclose these occurrences are also of interest since they provide
context for the occurrences. Thus, occurrences(x) = k adds to the
DOI of line x that contains an annotation or declares a method that
enclose an annotation.

Third, a distance dline(x, p) ∈ [0; k] proportional to the number of
program lines from line x to focus area p detracts from that line’s
DOI.

3.1.2 Source Code Elision in the Context View
Lines are included in the context view if they have a degree of
interest above the threshold k. If there are not enough lines with DOI
> k to use all the space available in the context view, lines with DOI
<= k are added to the context view in descending order of DOI. This
includes lines that are directly adjacent to the focus area.

Placing the caret in a variable may cause many lines to have DOI
> k because they contain highlighted occurrences of the selected
variable. Similarly, in code that is heavily indented, many lines may
have a high DOI because they contain declarations or statements that
structurally enclose the code in the focus area. However, all lines
cannot be shown simultaneously in the fixed amount of space of the
context view. Clipping or magnifying lines in the context view may
result in some lines becoming unreadable, yet all lines may be
important to the user. Thus, to guarantee users that the context view
contains all lines that are important, the windows containing the
upper and lower context view can be scrolled. The context view
automatically scrolls to show lines closest to the focus area when its
contents change.

3.2 Interfaces
Three interfaces to a Java editor were used in the experiment (see
Fig. 2). The three interfaces all contain syntax highlighting, line
numbers, and the highlighting of occurrences, which was described
above. The interfaces also include an overview ruler next to the
editor’s scrollbar, in which highlighted occurrences are shown as
white rectangles. Clicking on a white rectangle jumps to the line
containing the occurrence and places the caret at that line. All
features except those described above are disabled in the Java editor.
Below we describe each of the three interfaces in turn.

The Permanent interface contains a fisheye view of source code.
The editor window is permanently divided into a focus area and a
context view—permanently transforming the view of the visual
structure of information is the typical implementation of fisheye and
focus+context interfaces. The user can interact with the focus area
like a normal editor. The caret can be moved within the bounds of
the focus area, scrolling the view contents when moving the caret
against the upper or lower bound. The context area uses one third of
the display space in the editor window. However, the context view
automatically reduces in size near the top and bottom of the
document. When near the top of the document, for example, when
the user scrolls by holding an arrow key to move the caret past the
upper edge of the focus area, the upper part of the context view
retracts. Clicking on a line in the context view jumps to that line and
places the caret at the line.

The Transient interface contains a linear view of source code,
but allows the user to call up a transient fisheye view. The user calls
up the context view with a keyboard shortcut. The context view
remains visible until the user either hits Esc, clicks outside the
context view, or clicks on a line in the context view. Clicking on a
line in the context view jumps to that line and places the caret at the
line. Alternatively, the user can use the arrow keys to select a line in
the context view and jump to that line by hitting return.

One general characteristic of transient visualizations is that they
involve no permanent use of display space, because information is
only shown temporarily and is easily dismissed [15]. When the user
calls up the context view in the Transient interface, we hypothesize
that information in the focus area is less important because the user
shifts their attention to the context view. We therefore think that it is

Fig. 2. The three Java editor interfaces used in the experiment: (a) Permanent interface in which permanently context view is permanently
shown, (b) Transient interface in which the context view has been temporarily called up – otherwise it looks like the Baseline interface – and
(c) Baseline interface that shows a linear representation of code. Dashed rectangles are added to emphasize the difference between the
context view used in the interfaces.

(a) (b) (c)

41

useful to show a larger context view in the Transient interface that
uses more display space than in the Permanent interface, so as to
allow more lines to be visible simultaneously in the context view of
the Transient interface than in the Permanent interface. The ratio of
focus area size to context view size is therefore 2 to 3 in the
Transient interface, whereas the ratio is 3 to 2 in the Permanent
interface (compare Fig. 2 (a) and (b)). While this confounds context
view size with transience, we think it is the best implementation of
the Transient interface.

The Baseline interface contains a linear view of source code
similar to the normal Java editor in Eclipse.

3.3 Participants
The 14 participants (one female) were computer science students
enrolled at the authors’ department. They were between 24 and 44
years of age (M = 30.1). All had at least one year of experience
programming in an object-oriented language and all but two
participants had experience with Java. Half of the participants had
used Eclipse before, but only one had used Eclipse within the last
month.

3.4 Tasks
Two sets of tasks were used in the experiment. High-complexity
tasks involved investigating the source code of a program. Low-
complexity tasks involved five types of understanding and navigation
task. Tasks of high complexity vary in the degree of structure,
concreteness of the answer, number of paths to the answer, and the
amount of information needed to answer the task. Tasks of low
complexity are well structured, have a single path to a single precise
answer, and limited information is needed to answer the task.

High-complexity tasks were included to see how participants
used the interfaces during varied program investigation activity that
includes reading code and switching between different files. Because
these tasks are ambiguous, containing several paths to an answer,
they give rise to individual approaches of participants to seek the
information they need to answer the tasks. In contrast, low-
complexity tasks focus specifically on navigation and understanding,
that is, programming activity for which fisheye interfaces may be
particularly useful. Because these tasks focus on specific aspects of
source code navigation and understanding in obtaining a single
answer, they allowed us to compare in detail how participants
interacted with the interfaces to provide the answer.

Participants performed high-complexity tasks before low-
complexity tasks in the experiment. Participants thus had time to
learn to use the interfaces before performing low-complexity tasks,
which may increase the reliability of the results in those tasks. Below
we describe each set of tasks in detail.

3.4.1 High-complexity tasks

The high-complexity tasks required participants to investigate the
source code of an open source graphics program. Participants could
browse all files comprising the source code of the program, but since
we focus on the interaction with the editor, we provided names of
particular source files in the tasks as a starting point.

These tasks used source code from three open source programs:
11 tasks used TinyUML (tinyuml-0.13_02-src.zip downloaded from
http://sourceforge.net/projects/tinyuml/ contained 18 thousand lines
of code), 11 tasks used JDraw (jdraw_v1.1.5.src.zip downloaded
from http://jdraw.sourceforge.net/ contained 23K-LOC) and 10 tasks
used Magelan (magelan-1-3.zip downloaded from
http://sourceforge.net/projects/magelan/ contained 39K-LOC). Some
tasks involved more than one file, for example: “Classes
‘AbstractNode’ and ‘AbstractConnection’ (in org.tinyuml.draw) are
diagram elements. What is the field ‘parent’ used for in the two
classes?”

The difficulty of high-complexity tasks was aimed at making
participants spend about an hour to complete as many tasks as
possible; we did not intend for all participants to complete all the

tasks. We expected that participants would complete more of the
tasks, coming up with equally good or better answers using either of
the fisheye interfaces than using the baseline interface.

3.4.2 Low-complexity tasks

Five types of low-complexity task were used. These tasks involved
navigating and understanding source code. The order in which these
types of task were used in the experiment was systematically varied.
Tasks were taken from previous studies of programming activity
[7][14]. The five types of task were:

• Navigate-method tasks, for instance: ”In the method
’hasGreen’, find the return type of the method that is called
last.” Only the method name in the task text was varied between
tasks of this type.

• Determine-control-structure tasks that required finding a
control structure within a single method, for instance: ”In the
method ’mergeTermInfos’ (line 201–238), how many for, while
and if/else statements enclose line 233?”

• Determine-dependencies tasks, for instance determining calls
to a particular method: “How many methods in this file contain
calls to 'computeProposals' declared on line 470?”

• Determine-field-encapsulation tasks involved determining
whether or not two variables in a class have corresponding get-
and set-methods defined, for instance: ”How many of the fields
’fText’ and fFont’ have both a get-method and a set-method
implemented?”

• Determine-delocalization tasks involved determining
delocalization in the source code, for example: ”The method
’update’ (line 207–214) contains 6 method calls. How many of
the methods called are declared in this file (that is, excluding
inherited methods)?”

Overall, we expected participants to complete low-complexity tasks
faster using the Permanent interface or the Transient interface than
using the Baseline interface.

3.5 Materials
The experiment was conducted in a laboratory with six identical
computers with 19” CRT monitors at a resolution of 1280 x 1024.
On each computer, Eclipse was set up with its window using all
available screen space. Tasks were presented in a task view to the
left of the editor in Eclipse (see Fig. 1). Participants typed their
answer to the tasks in the task view and clicked a button to continue.
In the set of high-complexity tasks, the Eclipse window was
configured to contain a Package Explorer view above the task view
to the left of the editor. In the set of low-complexity tasks, the
Eclipse-window was configured to contain only the editor window
and the task view. In all interfaces, the editor window contained 50
lines of text and was 100 characters wide.

3.6 Design
Two factors were varied in a within-subjects design: interface
(Permanent, Transient, Baseline) and task complexity (High-
complexity, Low-complexity). We wanted each participant to use all
three interfaces for at least one hour each. To avoid tiring out
participants, the experiment was divided into three blocks to take
place on separate days (see Fig. 3). In each block, participants used
one of the three interfaces. The order of interface was systematically
varied across participants.

3.7 Procedure
In each block of the experiment, participants were first given an
introduction to the interface they were about to use. The introduction
included a written explanation of the interface and exercises to try
the interface. Then, participants performed a set of high-complexity
tasks. If participants had not finished in 55 minutes, a message dialog
informed participants they had five minutes to complete the current
task. After the first set of tasks, participants were allowed a break
and then continued to perform low-complexity tasks. For these tasks,

42

participants were instructed to give correct answers as quickly as
possible. Participants completed eight training tasks and eight test
tasks, and were then administered a questionnaire about the interface
just used. The questionnaire included six questions from QUIS [5]
and two questions asking about strengths and drawbacks of the
interface. After completing the third block of the experiment,
participants received a questionnaire asking them to compare the
three interfaces and rank them in the order of their preference. The
questionnaire also asked the participants for their age, gender and
programming experience.

Participants met in the laboratory on three days for each of the
three blocks of the experiment, except one participant completed two
blocks in one day. The experiment lasted between four and six hours
per participant. The experiment was conducted over a period of one
week. Hence up to six participants were present in the laboratory at a
time. The experimenter was present in the laboratory to answer
questions during the introduction, but otherwise participants
completed the experiment unsupervised.

Participants’ interactions with the interfaces and answers to tasks
were logged. Time used to complete the tasks is derived from the
logged data; answers to the tasks were also logged and from the logs
accuracy could thus be inferred.

4 RESULTS

Results from the experiment include the objective measures of task
completion times and accuracy; the subjective measures of
preference, satisfaction scores, and comments from participants. We
also describe data on participants’ interaction with the interfaces.

4.1 High-Complexity Tasks
In the first task set comprising high-complexity tasks, participants
provided 384 answers. Every answer was assigned a score based on
an assessment of how correct and complete the answer was. Judged

by the first author, 100 answers were accurate in that participants
provided a correct answer that covered all aspects of the task, 151
answers were correct, but missed at least one aspect of the task, and
35 answers were incorrect in at least one aspect but were otherwise
correct. Scores 3, 2, and 1 were given to these answers. All other
tasks were given a score of 0, including 39 tasks answered
incorrectly, 59 tasks that participants abstained from answering (e.g.,
they did not understand the task), and 64 tasks that participants did
not have time to complete within the 55 minutes. Table 2
summarizes the answers given by participants using the three
interfaces. In average, participants spent 49 minutes solving high-
complexity tasks with each interface. Because of the 55-minute limit
for solving the high-complexity tasks in a block, participants only
completed all tasks in 23 blocks (55%).

There was no difference in the total score of participants’ answers
with the interfaces, F1,13 = .243, ns. If anything, participants
appeared to complete fewer tasks using the Transient interface than
Permanent or Baseline.

Table 1 shows average completion times for high-complexity
tasks where participants completed all tasks within the time limit.
For tasks where participants completed all tasks within the time
limit, completion times with the interfaces differed significantly,
F2,243 = 4.34, p < .05. Although participants appeared to complete
fewer tasks using the Transient interface, participants who completed
all tasks spent less time with Transient compared with Permanent (p
< .05 in Bonferroni adjusted post-hoc tests). Completion times did
not differ significantly between Transient and Baseline.

4.2 Low-Complexity Tasks
Data from 25 low-complexity tasks (out of 336) were discarded from
our analysis because participants did not appear to understand the
question (7), wrote ambiguous answers (5), or wrote verbose answers
(12). Finally, an outlier that was more than three times above the
inter-quartile range was discarded.

Fig. 3. The experimental design in which interface was varied between the three blocks.

< 11 tasks 8 + 8 tasks Satisfaction

< 11 tasks 8 + 8 tasks

< 11 tasks 8 + 8 tasks

Introduction High-complexity Low-complexity Questionnaires

Block 1

Block 2

Block 3

Satisfaction

Satisfaction Preference

Table 2. Summary of Answers Given to High-Complexity Tasks Using the Three Interfaces

 Score Permanent Transient Baseline Total
Accurate 3 32 34 34 100
Correct, but incomplete 2 55 43 53 151
Partly incorrect 1 11 11 13 35
Incorrect 0 12 16 11 39
Abstained 0 22 16 21 59
Tasks not completed (no time) 0 17 29 18 64

Participants completing all tasks (number of tasks) 10 (106) 6 (64) 7 (74) 23 (244)

Table 1. Average Task Completion Times in Seconds for Different Interfaces and Task Complexity

 Permanent Transient Baseline
 N

M
SD N M SD N M SD

High-complexity tasks
(participants completing all tasks)

106 267 132 64 210 111 74 248 118

Low-complexity tasks 112 47.1 20.1 112 49.4 24.3 112 49.1 24.9

43

Overall, 85% of the low-complexity tasks were an
correctly. There was no difference in accuracy with the three
interfaces, F1,13 = .089, ns. Nor were task completion times
between interfaces, F1,13 = .310, ns. Average task completion times
are summarized in Table 1. While interface was found to interact
with task type, F1,13 = 2.19, p < .05, there were no significant
differences in completion times with the interfaces for any type of
task.

4.3 Satisfaction
After having used all three interfaces, participants completed a
questionnaire to rank the interfaces. Participants’ ranking of the
interfaces differed significantly, F1,13 = .035, p
participants’ preferences. All but two participants preferred
Permanent or Transient which is a strong indication that they found
the fisheye view useful. Also, two thirds of the participants ranked
the Permanent interface first.

Participants rated their satisfaction with the interfaces on six
questions. Overall, participants’ ratings varied for the three
interfaces, though not significantly at the .05 level as found by a
multivariate analysis of variance, Wilk’s Lambda = .027,
1.78, p = .069. The main reason for this trend was that participants
rated the interfaces differently only on a scale from boring to fun
(F1,13 = 4.63, p < .05), finding both Permanent and Transient more
fun to use than Baseline (p < .05 in Bonferroni adjusted post
tests).

Five participants commented that they liked the Transient
interface because the fisheye view could be called up temporarily
contrast, three participants said about Permanent that it was good that
the fisheye view was there all the time. However,
commented that the fisheye view in Transient “disappears too easily
– has to call it up several times to get all the needed information” and
that it was “confusing when it disappears.” One p
ranked Baseline as first choice noted in his preference questionnaire
that “if the fisheye view [in Transient] wouldn't disappear all the
time, then [Transient] would be ranked 1
comments suggest that users may find it useful to be able to switch
the fisheye view on and off on demand, so they can use it for longer
periods of time than is possible with the short-
the Transient interface.

4.4 Interaction with the Interfaces
We analyzed the data logged during the experiment to understand
how participants used the interfaces. We summarized interaction
data from high-complexity tasks to measure how participa
adopted and used the context view in the fisheye interfaces.
visualized the interaction data from low-complexity tasks
progression maps (similar to [11][14]) and analyzed these maps to
understand how participants used each interface
The progression maps show which part of the file was visible in the
focus area at a given time during the task (see
horizontal lines indicate program lines that hold part of the answer
to the task, and symbols in the progression maps annotate certain
types of interaction (e.g., a hand symbol when the user dragged the
scrollbar thumb; a text caret when the user placed the caret in the
focus area, for instance to highlight a method). Other interaction
forms are directly discernable from the map, such as scrolling by

Fig. 4. Number of participants ranking each interface as 1st, 2nd
choice (from left to right). For example, nine participants ranked
Permanent as their first choice.

2

3

9

5

7

Baseline

Transient

Permanent

1st 2nd

complexity tasks were answered
correctly. There was no difference in accuracy with the three

= .089, ns. Nor were task completion times different
= .310, ns. Average task completion times

While interface was found to interact
< .05, there were no significant

differences in completion times with the interfaces for any type of

After having used all three interfaces, participants completed a
questionnaire to rank the interfaces. Participants’ ranking of the

p < .05. Fig. 4 shows
participants’ preferences. All but two participants preferred
Permanent or Transient which is a strong indication that they found
the fisheye view useful. Also, two thirds of the participants ranked

Participants rated their satisfaction with the interfaces on six
questions. Overall, participants’ ratings varied for the three
interfaces, though not significantly at the .05 level as found by a

lk’s Lambda = .027, F1,13 =
. The main reason for this trend was that participants

rated the interfaces differently only on a scale from boring to fun
< .05), finding both Permanent and Transient more

< .05 in Bonferroni adjusted post-hoc

Five participants commented that they liked the Transient
called up temporarily. In

contrast, three participants said about Permanent that it was good that
the fisheye view was there all the time. However, some participants

that the fisheye view in Transient “disappears too easily
has to call it up several times to get all the needed information” and

that it was “confusing when it disappears.” One participant who
n his preference questionnaire

wouldn't disappear all the
would be ranked 1”. Together, these

comments suggest that users may find it useful to be able to switch
, so they can use it for longer

-lived fisheye view in

We analyzed the data logged during the experiment to understand
e summarized interaction

to measure how participants
adopted and used the context view in the fisheye interfaces. We

complexity tasks in
) and analyzed these maps to

each interface to solve the tasks.
e progression maps show which part of the file was visible in the

the task (see Fig. 5). Dashed
nes that hold part of the answer

to the task, and symbols in the progression maps annotate certain
when the user dragged the

a text caret when the user placed the caret in the
nce to highlight a method). Other interaction

forms are directly discernable from the map, such as scrolling by

page up/down keys. Interpreting the progression maps is not always
straightforward. For instance, the task shown in
finding calls to a particular method.
after 12 seconds and then two more times, presumably in the method,
before scrolling to see the highlighted o
this task, however, why the user places the caret three times.
high-complexity tasks varied in structure, and in some cases
involved multiple files, we did not use progression maps to analyze
those tasks.
4.4.1 High-Complexity Tasks
In average, participants interacted with the context view in 64% of
the high-complexity tasks they completed using the Permanent
interface and 70% of the tasks using the Transient interface. In all,
participants used the context view an average o
navigate in the code, equally often with the Permanent interface and
the Transient interface. While the context view was always shown in
the Permanent interface, participants had to explicitly call up the
context view to use it in the Tra
times in average in all tasks.

Using the Permanent interface, ten participants interacted with
the context view in more than half the tasks. Participants may also
have looked at information in the context view without inte
with it, but we were unable to determine such use from the data
logged in high-complexity tasks. Using the Transient interface, two
participants did not once use the context view, whereas the other 12
participants used the context view in more than

4.4.2 Low-Complexity Tasks
Analysis of progression maps for low
patterns in the participants’ interaction with the interfaces.
complexity tasks except for Determine
participants most often selected a method or variable
highlighted occurrences to either navigate more quickly or to
navigating. Fig. 6 shows progression maps th
this type of interaction using each of
Permanent interface or the Transient interface, participants could
often find the lines in the context view that contained the

participants ranking each interface as 1st, 2nd or 3rd
choice (from left to right). For example, nine participants ranked

2

7

4

3

3rd

Fig. 5. Progression map for a Determine
Permanent interface.

Permanent Transient

(a) (b)

(d) (e

Fig. 6. Progression maps representative of participants’ navigation
when using the three interfaces in (a
task involving method calls and (d-

up/down keys. Interpreting the progression maps is not always
. For instance, the task shown in Fig. 5 involves

finding calls to a particular method. The user places the text caret
after 12 seconds and then two more times, presumably in the method,
before scrolling to see the highlighted occurrences. It is not clear in
this task, however, why the user places the caret three times. Because

complexity tasks varied in structure, and in some cases
involved multiple files, we did not use progression maps to analyze

ity Tasks
In average, participants interacted with the context view in 64% of

complexity tasks they completed using the Permanent
interface and 70% of the tasks using the Transient interface. In all,
participants used the context view an average of eleven times to
navigate in the code, equally often with the Permanent interface and
the Transient interface. While the context view was always shown in
the Permanent interface, participants had to explicitly call up the
context view to use it in the Transient interface – they did so 27

Using the Permanent interface, ten participants interacted with
the context view in more than half the tasks. Participants may also
have looked at information in the context view without interacting
with it, but we were unable to determine such use from the data

complexity tasks. Using the Transient interface, two
participants did not once use the context view, whereas the other 12
participants used the context view in more than half of the tasks.

Complexity Tasks
Analysis of progression maps for low-complexity tasks revealed
patterns in the participants’ interaction with the interfaces. In all low-
complexity tasks except for Determine-control-structure tasks,

a method or variable and used its
to either navigate more quickly or to avoid

rogression maps that are representative of
this type of interaction using each of the interfaces. Using the
Permanent interface or the Transient interface, participants could

lines in the context view that contained the answer to

Progression map for a Determine-dependencies task using

Transient Baseline

(b) (c)

e) (f)

. Progression maps representative of participants’ navigation
when using the three interfaces in (a-c) a Determine-dependencies

-f) a Determine-delocalization task.

44

the task without navigating further. Using the Baseline interface,
participants often seemed to navigate to lines
occurrences, which might contain the answer to the task
describe the different interactions used to solve the tasks
frequently they were used by participants.

Using the Permanent interface, participants were able to find the
answer to 54 of 84 tasks directly in the context view with minimal
navigation (see Fig. 6 (a) and (d)). Participants navigated to
occurrences in the context view to find the answer in six tasks. In
contrast, in 24 tasks participants navigated to occurrences by
scrolling or by clicking in the overview, or they manually searched
the file. Using the Transient interface, participants called up the
context view in 55 of 84 tasks and found the answer there with
minimal navigation (see Fig. 6 (b) and (e)). In 28 tasks participants
navigated to occurrences by scrolling or by clicking in the overview,
or they scrolled to manually search through the file. Using the
Baseline interface, participants completed 68 of 84 tasks by finding
occurrences in the overview ruler instead of manually searching
through the file. Often participants then navigated to occurrences
either by scrolling like in Fig. 6 (c) (39 tasks
overview ruler like in Fig. 6 (f) (27 tasks).
Determine-delocalization tasks without scrolling or navigating to
occurrences, but seemingly by examining the white rectangles
showing occurrences in the overview ruler.

In all interfaces, participants made effective use of highlighted
occurrences for navigating. However, in Determine
tasks where participants should determine which met
value assignments to a particular variable (shown in
participants using the Baseline interface ended up scrolling to search
manually through the entire file. Similarly,
Permanent and four using Transient scrolled through the entire file to
solve the task. This was surprising because all participants navigated
effectively using occurrences to solve Determine
where they should determine which methods contained calls to a
particular method (see Fig. 6 (a-c)).

Determine-control-structure tasks asked participants to find the
‘}’-brace that closes a given block, or asked participants
for-, if- and while-statements that enclose a given line
Baseline, participants had to scroll to find the closing brace or
enclosing statements. Using Permanent, six participants found the
line number of the closing brace in the context view whereas two
navigated to the closing brace; seven participants read enclosing
statements in the context view. Using Transient, five participa
called up the context view, and three of these read the line number
whereas two navigated to the closing brace;
up the context view and read the enclosing statements.

Two participants did not once call up the fisheye view
Transient interface, and using the Permanent interface, they seemed
to use the fisheye view only in high-complexity tasks
participants were the only ones with no Java experience.
participants who preferred the Transient interface used the fisheye
view in all low-complexity tasks. In high-complexity
these participants used it frequently, whereas
occasionally.

Permanent Transient

(a) (b)

Fig. 7. Example progression maps where participants scrolled
through the entire file to solve a Determine-dependencies task
involving variable assignments.

Using the Baseline interface,
to lines with highlighted

might contain the answer to the task. Below we
to solve the tasks and how

Using the Permanent interface, participants were able to find the
answer to 54 of 84 tasks directly in the context view with minimal

. Participants navigated to
occurrences in the context view to find the answer in six tasks. In
contrast, in 24 tasks participants navigated to occurrences by
scrolling or by clicking in the overview, or they manually searched

file. Using the Transient interface, participants called up the
context view in 55 of 84 tasks and found the answer there with

. In 28 tasks participants
navigated to occurrences by scrolling or by clicking in the overview,
or they scrolled to manually search through the file. Using the
Baseline interface, participants completed 68 of 84 tasks by finding

view ruler instead of manually searching
through the file. Often participants then navigated to occurrences

(39 tasks), or by clicking in the
. Participants solved two

delocalization tasks without scrolling or navigating to
nces, but seemingly by examining the white rectangles

In all interfaces, participants made effective use of highlighted
Determine-dependencies

where participants should determine which methods contained
value assignments to a particular variable (shown in Fig. 7), all
participants using the Baseline interface ended up scrolling to search
manually through the entire file. Similarly, six participants using
Permanent and four using Transient scrolled through the entire file to

use all participants navigated
using occurrences to solve Determine-dependencies tasks

where they should determine which methods contained calls to a

structure tasks asked participants to find the
asked participants to count the

statements that enclose a given line. Using
had to scroll to find the closing brace or

enclosing statements. Using Permanent, six participants found the
line number of the closing brace in the context view whereas two
navigated to the closing brace; seven participants read enclosing

he context view. Using Transient, five participants
of these read the line number

; nine participants called
up the context view and read the enclosing statements.

the fisheye view using the
, and using the Permanent interface, they seemed

complexity tasks. Those two
participants were the only ones with no Java experience. The three

ransient interface used the fisheye
complexity tasks, two of

used it frequently, whereas one used it only

5 DISCUSSION

We now relate the findings from
focus+context interfaces of source code.
the transient use of fisheye interfaces in programming
results.

5.1 Focus+Context Interfaces for Source Code
Results from the study confirm earl
of fisheye views of source code
two participants preferred either the Permanent or Transient
interface, which contained a fisheye view of code, compared with
the Baseline interface, which contained a linear view. In contrast to
[14], however, time and accuracy measures were inconclusive.
logged during the experiment
semantic highlighting of related code.
Transient interface, participants could often find the answer directly
in the context view with minimal navigation
Baseline interface, participants had to navigate to find the answer in
many of the tasks. Highlighting might have helped
navigate faster also in the Baseline interface, especially by use of the
overview ruler. In interpreting our results, it is
note that highlighting was not included in previous studies of
focus+context views of source cod
common feature in code editors and therefore perhaps well known to
participants. In contrast, the fisheye view
Participants in our study may not have had time in the study to learn
to use it effectively. Even longer
fisheye views are used when fully learned and adopted by users.

5.2 Transient Use of a Fisheye
We compared the usability of a
participants could call up temporarily
The transient fisheye view
understanding while still providing a large view of source code for
other tasks such as reading and editing.
interaction with the interfaces showed
view in both the Permanent interface and the Transient interface
Also, some participants’ comments
view that can be called up temporarily
participants preferred the Transient
feedback, we learned about issues
usability of the transient fisheye interface.
issues and other factors that might have influenced participants’ use
of the transient fisheye view.

First, results from the present study
empirical findings of [15]. That study
transient overview, which appeared temporarily close to the mouse
cursor, compared to a fixed overview, which was shown permanently
in the display. In contrast to the tasks used in
narrowly on navigation, participants in the present study performed
more varied tasks in a more complex domain
participants used the fisheye view for navigating, but also for
understanding relationships in the co

Some participants mentioned that the
Transient interface disappeared too easily.
been a problem in tasks that involved determining enclosing
statements. These types of task involved aligning indentation of
in the context view to lines in the focus area. In contrast, we think it
is appropriate that the context view disappears after having c
up the context view to navigate in the code
alternative, which was hinted at by som
to allow users to switch the fisheye view on and off on demand.

We hypothesized that the Transient interface would benefit from
a large context view that allowed more important lines to be visible
simultaneously. We had expecte
context view to use the information contained therein, and
not pay much attention to the focus area.
participants commented that the context view used too much space in

Baseline

(c)

. Example progression maps where participants scrolled
dependencies task

from our study to previous research in
focus+context interfaces of source code. We then discuss issues with

use of fisheye interfaces in programming based on our

Focus+Context Interfaces for Source Code
Results from the study confirm earlier empirical findings in support
of fisheye views of source code [14] and code elision [7]. All but
two participants preferred either the Permanent or Transient
interface, which contained a fisheye view of code, compared with
the Baseline interface, which contained a linear view. In contrast to

, however, time and accuracy measures were inconclusive. Data
logged during the experiment show that participants often used
semantic highlighting of related code. Using either Permanent or

ient interface, participants could often find the answer directly
in the context view with minimal navigation, whereas using the

participants had to navigate to find the answer in
ighlighting might have helped participants

also in the Baseline interface, especially by use of the
In interpreting our results, it is therefore important to

that highlighting was not included in previous studies of
focus+context views of source code. However, highlighting is a

in code editors and therefore perhaps well known to
In contrast, the fisheye view is not well known.

may not have had time in the study to learn
n longer-term studies may uncover how

fisheye views are used when fully learned and adopted by users.

Fisheye View
We compared the usability of a transient fisheye view, which
participants could call up temporarily, to a permanent fisheye view.

he transient fisheye view aimed to support navigation and
understanding while still providing a large view of source code for

reading and editing. Analysis of participants’
interaction with the interfaces showed effective use of the fisheye

interface and the Transient interface.
participants’ comments confirm the idea of a fisheye

called up temporarily. However, only two
Transient interface. From participants’

feedback, we learned about issues that might have detracted from the
transient fisheye interface. Below we discuss these

issues and other factors that might have influenced participants’ use

from the present study may be contrasted to the
That study showed preference for a

ich appeared temporarily close to the mouse
compared to a fixed overview, which was shown permanently

In contrast to the tasks used in [15], which focused
participants in the present study performed

more varied tasks in a more complex domain. For instance,
used the fisheye view for navigating, but also for

ding relationships in the code.
articipants mentioned that the context view in the

disappeared too easily. We suspect this may have
been a problem in tasks that involved determining enclosing
statements. These types of task involved aligning indentation of lines
in the context view to lines in the focus area. In contrast, we think it
is appropriate that the context view disappears after having calling

to navigate in the code. However, an interesting
, which was hinted at by some participants’ comments, is

to allow users to switch the fisheye view on and off on demand.
that the Transient interface would benefit from
that allowed more important lines to be visible

expected that users would call up the
context view to use the information contained therein, and therefore

attention to the focus area. However, several
participants commented that the context view used too much space in

45

the transient fisheye view. In the experiment, participants may have
needed to relate information in the context view to information
located in a part of the editor window that became hidden by the
context view. One way to minimize the risk of covering code in the
editor with the context view is to place the context view outside the
bounds of the editor window as far there is display space above and
below the editor window.

We suggest that a transient visualization may support a specific
task more effectively by allowing users to call up a representation of
only the types of information useful to that task. The fisheye view in
the Transient interface was based on the same degree-of-interest
function as in the Permanent interface and thus the fisheye views in
the two interfaces included the same types of information. In
practice, a transient fisheye view of source code could prove more
effective if aimed at helping programmers to understand only certain
relationships in the code, and include only lines that show those
relationships in the context view. However, more work is needed to
determine how users can more directly control the focus used in the
degree-of-interest function underlying the fisheye view.

Although we included varied programming tasks, the tasks
involved only reading and navigating in source code, and are thus
not representative of real life programming activity. Participants did
not write code or have all the tools available in modern programming
environments at their disposal. Consequently, our study may have
emphasized tasks for which the fisheye view is particularly useful
and therefore favoured the Permanent interface.

6 CONCLUSION

Transient visualizations promise to support specific contexts of use
without making permanent changes to the user interface. To further
understand how transient visualization can be used to support
complex work, we have designed and evaluated an interface with a
transient fisheye view of source code that users can call up
temporarily. In a user study we compared the transient fisheye
interface with a permanent fisheye interface and a baseline interface.
Fourteen participants performed tasks of both high and low
complexity.

Results from the user study showed that all but two participants
preferred either of the interfaces containing a fisheye view compared
to the baseline interface. This supports results from earlier studies of
source code views [14][7]. The transient fisheye view aimed at
supporting navigation and understanding tasks while still providing a
large view of source code for reading and editing. However,
participants preferred a permanent fisheye view over the transient
fisheye view. No clear differences in task completion times and
accuracy were found, and analysis of participants’ interaction
showed that the fisheye view was used equally often in permanent
and transient conditions. Participants’ comments indicate subtle
issues with the transient fisheye interface that might have detracted
from its usability.

We have concluded by proposing ideas to improve transient use
of fisheye views in existing user interfaces. For instance, when
temporarily called up, the context view may be extended to use
display space adjacent to the existing view so as to avoid hiding
information in the user’s focus of attention. Also, we propose using a
degree-of-interest function that focuses narrowly on information
important in a specific task; a transient fisheye view tailored for a
specific task may increase its effectiveness.

REFERENCES

[1] P. Baudisch, B. Lee, and L. Hanna. Fishnet, a fisheye web
browser with search term popouts: a comparative evaluation
with overview and linear view. Proc. AVI ‘04, 133–140, 2004.
ACM Press.

[2] R. A. Becker and W. S. Cleveland. Brushing Scatterplots.
Technometrics, volume 29, 127–142, 1987.

[3] A. Bezerianos and R. Balakrishnan. The vacuum: facilitating
the manipulation of distant objects. Proc. CHI ‘05, 361–370,
2005. ACM Press.

[4] E. A. Bier, M. C. Stone, K. Pier, W. Buxton, and T. D. DeRose.
Toolglass and magic lenses: the see-through interface. Proc.
SIGGRAPH ’93, 73–80, 1993. ACM Press.

[5] S. K. Card, J. D. Mackinlay, and B. Shneiderman. Readings In
Information Visualization: Using Vision To Think. Academic
Press, 1999.

[6] J. P. Chin, A. Virginia, and K. L. Norman. Development of an
instrument measuring user satisfaction of the human-computer
interface. Proc. CHI ’88, 213–218, 1988. ACM.

[7] A. Cockburn and M. Smith. Hidden messages: evaluating the
efficiency of code elision in program navigation. Interacting
with Comp., 15:387–407, 2003.

[8] S. G. Eick, J. L. Steffen, and E. E. Sumner. SeeSoft - A Tool for
Visualizing Line Oriented Statistics Software. IEEE
Transactions on Software Engineering, 18, 957-968, 1992.

[9] J.-D. Fekete and C. Plaisant. Excentric labeling: dynamic
neighborhood labeling for data visualization. Proc. CHI ’99,
512–519, 1999. ACM Press.

[10] Furnas, G. W. The Fisheye View: A New Look at Structured
Files, Bell Laboratories Technical Memorandum #81-11221-9,
1981.

[11] K. Hornbæk and E. Frøkjær. Reading of electronic documents:
the usability of linear, fisheye, and overview+detail interfaces.
Proc. CHI ’01, 293–300, 2001. ACM Press.

[12] T. Igarashi, J. D. Mackinlay, B.-W. Chang, and P. T. Zellweger.
Fluid Visualization of Spreadsheet Structures. Proc. VL ’98,
118-125, 1998. IEEE Computer Society.

[13] P. Irani, C. Gutwin, and X. D. Yang. Improving selection of off-
screen targets with hopping. Proc. CHI ’06, 299–308, 2006.
ACM Press.

[14] M. R. Jakobsen and K. Hornbæk. Evaluating a Fisheye View of
Source Code, Proc. CHI ‘06, 377–386, 2006. ACM Press.

[15] M. R. Jakobsen and Hornbæk. Transient Visualizations, Proc.
OZCHI ‘07, 69–76, 2007. ACM.

[16] G. Kurtenbach, G. W. Fitzmaurice, R. N. Owen, and T. Baudel.
The Hotbox: efficient access to a large number of menu-items.
Proc. CHI ’99, 231–237, 1999. ACM Press.

[17] D. Nekrasovski, A. Bodnar, J. McGrenere, F. Guimbretière, and
T. Munzner. An evaluation of pan & zoom and rubber sheet
navigation with and without an overview. Proc. CHI ’06, 11-20,
2006. ACM Press.

[18] G. G. Robertson and J. D. Mackinlay. The document lens. In
UIST '93: Proc. UIST ‘93, 101–108, 1993. ACM.

[19] B. Suh, A. Woodruff, R. Rosenholtz, and A. Glass. Popout
prism: adding perceptual principles to overview+detail
document interfaces. Proc. CHI ’02, 251–258, 2002. ACM.

[20] M. Terry and E. D. Mynatt. Side views: persistent, on-demand
previews for open-ended tasks. Proc. UIST ’02, 71–80, 2002.
ACM Press.

[21] A. Woodruff, A. Faulring, R. Rosenholtz, J. Morrison, and P.
Pirolli. Using thumbnails to search the web. Proc. CHI ’01,
198–205, 2001. ACM Press.

[22] A. Zanella, M. S. T. Carpendale, and M. Rounding. On the
effects of viewing cues in comprehending distortions. Proc.
NordiCHI ’02, 119–128, 2002. ACM Press.

[23] P. T. Zellweger, S. H. Regli, J. D. Mackinlay, and B.-W. Chang.
The impact of fluid documents on reading and browsing: an
observational study. Proc. CHI ’00, 249–256, 2000. ACM
Press.

46

PAPER 4 – FISHEYES IN THE FIELD: USING METHOD
TRIANGULATION TO STUDY THE ADOPTION AND USE OF
A SOURCE CODE VISUALIZATION
Jakobsen, M. R. and Hornbæk, K. (2009). Fisheyes in the field: using method triangulation to
study the adoption and use of a source code visualization. In Proceedings of the 27th
international Conference on Human Factors in Computing Systems (Boston, MA, USA, April
04 - 09, 2009). CHI '09. ACM, New York, NY, 1579-1588.

Permission to make digital or hard copies of all or part of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

CHI 2009, April 4–9, 2009, Boston, Massachusetts, USA.
Copyright 2009 ACM 978-1-60558-246-7/09/04...$5.00.

47

Fisheyes in the Field: Using Method Triangulation to Study
the Adoption and Use of a Source Code Visualization

Mikkel Rønne Jakobsen, Kasper Hornbæk
Department of Computer Science, University of Copenhagen
Njalsgade 128, Building 24, DK-2300 Copenhagen, Denmark

{mikkelrj,kash}@diku.dk

ABSTRACT
Information visualizations have been shown useful in
numerous laboratory studies, but their adoption and use in
real-life tasks are curiously under-researched. We present a
field study of ten programmers who work with an editor
extended with a fisheye view of source code. The study
triangulates multiple methods (experience sampling,
logging, thinking aloud, and interviews) to describe how the
visualization is adopted and used. At the concrete level, our
results suggest that the visualization was used as frequently
as other tools in the programming environment. We also
propose extensions to the interface and discuss features that
were not used in practice. At the methodological level, the
study identifies contributions distinct to individual methods
and to their combination, and discusses the relative benefits
of laboratory studies and field studies for the evaluation of
information visualizations.
Author Keywords
Information visualization, evaluation methodology, field
study, programming, fisheye view, experience sampling,
logging, thinking aloud, interviews.

ACM Classification Keywords
H5.2. Information interfaces and presentation (e.g., HCI):
User Interfaces (Evaluation/Methodology).

INTRODUCTION
An abundance of techniques and tools have emerged in the
field of information visualization. In the past ten years, it
has become increasingly common to see proposals for new
techniques or tools accompanied by empirical evaluations
of the usability and usefulness of the technique or tool. Not
only do these evaluations provide useful information, they
also testify to the maturation of the field.

The evaluation of information visualizations are mostly
done as laboratory experiments [21]. Typically, participants
spend an hour or two completing predefined tasks with a

limited set of tools and data. Laboratory experiments allow
precise measurement of the usability of a technique or tool,
and extensive control of the extraneous factors that may
influence use of the visualization.

However, laboratory experiments have general limitations
[e.g., 3,26] and issues specific to information visualization
also restrict their usefulness [e.g., 22,23,31,36]. Let us give
just three examples; many others may be found in recent
work on evaluation of information visualizations [e.g.,
2,4,29]. First, the tasks used in a laboratory experiment
greatly influence the results, but are often simpler than real
life tasks [8,31]. Second, in real-life use visualizations have
to be integrated with other tools and may not fit all
activities or work habits equally well [11,17]; laboratory
experiments rarely focus on integration with other tools.
Third, laboratory studies often do not go beyond initial use
of an interface [31]. An often-suggested answer to these
issues is long-term studies that employ multiple methods
[4,33,36]. While such studies exist, they are rare and advice
about their design and benefits lacking.

The present paper studies a fisheye visualization of source
code by deploying it among professional programmers for
several weeks. While deployed, we collected data using
experience sampling and logging; after participants gained
proficiency, we interviewed them and analyzed videos of
their use of the visualization. These data are used for
method triangulation [7,25] so as to understand adoption
and use, and are also contrasted to an earlier laboratory
evaluation of the visualization [16]. The aim is twofold: (a)
to advance our understanding of fisheye interfaces by
studying their adoption and use in a real-life setting; to our
knowledge this is the first long-term field study of a fisheye
interface and (b) to discuss the methodology of evaluating
information visualizations based on our use of method
triangulation. The results will inform practical work on
fisheye and other distortion interfaces, while advancing the
discussion of how to evaluate information visualizations.
RELATED WORK
This paper aims to combine and make contributions within
two themes: the methodology of information visualization
evaluation and fisheye views for supporting programmers.
Next we summarize the relevant literature for each theme.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2009, April 4–9, 2009, Boston, Massachusetts, USA.
Copyright 2009 ACM 978-1-60558-246-7/09/04...$5.00.

48

Evaluating Information Visualization
During the past ten years, evaluation of proposals for tools
and techniques in information visualization has become
commonplace [5]. For example, out of 16 papers at CHI
2008 with the keyword visualization or information
visualization, 14 contained empirical evaluations (9 of
which were laboratory studies). At the same time, however,
methodology papers [4,36] and workshops [2] argue that
solid evaluation of information visualizations is difficult.

The difficulties of evaluation of information visualizations
may be illustrated with reference to laboratory experiments.
Laboratory experiments are the most widely applied
evaluation method [6,8,21] and perhaps therefore also the
method with which the most difficulties have been
identified. Difficulties include the use of experimental tasks
that are markedly simpler than real life tasks. Also,
durations of laboratory studies are often short. Perer and
Shneiderman [30] reviewed a collection of information
visualization papers and mentioned how only 39 out of 132
papers reported evaluations, and that all evaluations
included less than 2 hours of tool use. Because participants
need time to adopt novel interaction techniques [1],
laboratory studies often do not address gaining proficiency
beyond initial use of an interface [31]. In real-life,
visualization techniques have to be integrated with other
tools and may not fit all activities or work habits equally
well [11,17]; such concerns are ignored in laboratory tasks.
Other aspects of the setting in a laboratory and in realistic
use contexts may impact performance and adoption. Reilly
and Inkpen [32], for instance, studied the effectiveness of
map morphing. They found differences in for instance
recall when running a study in the lab and in a noisy public
space. A final difficulty with laboratory experiments is that
while the choice of participants are crucial to a laboratory
experiment [8], non-professionals are often participants in
such experiments. Taken together these difficulties limit the
validity and generality of findings from laboratory studies.

One answer to the difficulty of laboratory experiments is
new approaches to the evaluation of information
visualizations. For instance, long-term studies of the use of
information visualizations have been suggested
[4,33,35,36]. Shneiderman and Plaisant [36] described
multi-dimensional, in-depth long-term case studies,
shortened to MILCs. Their proposal was used by Perer and
Shneiderman [30], who developed a visualization for
analyzing social networks. Perer and Shneiderman had
domain experts use the visualization on their own problems,
and followed a methodology that included training and
changing the software in response to experts’ needs. Other
researchers have used variants of the MILCs approach
[27,39]. While long-term studies may give unique insights,
they are resource demanding and are, as an evaluation
method, often more formative than summative.

Another answer has been methodologies based on self-
reporting, such as diary studies and experience sampling
[24]. One prominent example of this is insight-based

evaluation [29,33], which aims to quantify the number and
types of insights that analysts get using a visualization.
Saraiya et al. [33] asked two biologists to use five visual
tools to conduct exploratory analysis of microarray data
sets, an actual work task for the biologists. For three
months, the biologists were asked to keep a diary of their
work process, the insights they gained from the data, and
how the tools led to those insights. Saraiya et al. concluded
that their study “indicates the viability and importance of a
longitudinal, motivated, domain embedded, self-reporting
approach to evaluating visualizations.” A general problem
with this methodology, however, is that it is hard to couple
insights and the actual use of information visualizations.

Still another approach has been to systematically apply
qualitative research methods, including systematic
observation [15] and grounded theory [37]. For instance,
Faisal et al. [9] used grounded theory to study a tool for
visualizing academic literature. They argued that grounded
theory helped them characterize users’ experience of using
visualizations.
Fisheye Interfaces as a Case
The specific focus of this paper is on fisheye interfaces
[10]. We focus on this technique for two reasons. First,
Lam and Munzner [23] remarked that “even though
focus+context visualizations have been around for over 20
years, we do not know when, how, or even if they are
useful”; the inconclusiveness of research on focus+context
techniques includes fisheye interfaces. Second, while many
evaluations have been conducted on fisheye interfaces [e.g.,
1,13,14,34], we are unaware of any long-term studies. Also,
most studies of fisheye interfaces use laboratory studies
only [e.g., 1,16]. Thus, the benefits of the methodologies
reviewed above have yet to bear on fisheye research.

We focus on fisheye use in programming. Programming is a
challenging activity to support with a fisheye interface, but
also to evaluate. It is cognitively complex and any insights
from visualizations are likely to be secondary in relation to
higher-level programming objectives. Two earlier studies
presented relevant empirical insights. Jakobsen and
Hornbæk [16] compared a fisheye view with a linear view
of source code in a controlled experiment where 16
participants performed tasks involving navigation and
understanding of source code. Results from the study
suggest that a fisheye view can help programmers to
navigate and understand source code. Kersten and Murphy
[18] used diaries to investigate the utility of Mylar, an
extension for the programming environment Eclipse, that
allows the assignment of a degree of interest to interface
elements. The diaries identified a range of changes to
Mylar. Kersten and Murphy [19] later used logging to
investigate if Mylar improved programmers’ productivity.

In conclusion, a variety of methods are available to assist
evaluation of fisheye interfaces. In particular, it seems that
combinations of the evaluation methods proposed have not
been tried in relation to fisheye interfaces.

49

FISHEYE JAVA EDITOR
Navigating and understanding the source code
are highly challenging activities. The aim of our work is to
support programmers in those activities using information
visualization, specifically, fisheye interfaces
work has used laboratory experiments to sh
interfaces may help navigation tasks [16].
the related work section, such experiments
satisfactory. Before we describe our evaluation approach,
this section introduces the fisheye editor that we evaluate.

Based on three years of development and experimentation,
our current prototype looks like Figure 1
useful for real programming tasks, we have
Java editor provided in Eclipse, a widespread development
environment, with a fisheye view. In the Fisheye Java
editor1, the editor window is divided into a focus area and a
context view (see Figure 1). The focus area, the editable
part of the window, is reduced to make room for the context
view. The context view uses a fixed amount of spac
and below the focus area. It contains a distorted view of
source code in which parts of the source code that are of
less relevance given the user’s focus in the code, are elided.

The Fisheye Java editor contains all the features of the
normal Java editor in Eclipse. For instance, the editor
highlights annotations of different types, such as search
results and compilation errors in the source
of annotation called occurrences allows programmers to see
where a variable, method, or type is referenced. For
instance, a variable can be selected by placing the caret in

1 A Fisheye Java editor plug-in for Eclipse is available at
http://mikkelrj.dk/projects/fisheye2009

Figure

Navigating and understanding the source code of a program
The aim of our work is to

using information
fisheye interfaces [10]. Previous

show that fisheye
. As discussed in

the related work section, such experiments are not entirely
Before we describe our evaluation approach,

that we evaluate.

and experimentation,
1. To be easily

have extended the
a widespread development

In the Fisheye Java
the editor window is divided into a focus area and a

. The focus area, the editable
part of the window, is reduced to make room for the context

uses a fixed amount of space above
and below the focus area. It contains a distorted view of
source code in which parts of the source code that are of
less relevance given the user’s focus in the code, are elided.

The Fisheye Java editor contains all the features of the
For instance, the editor

highlights annotations of different types, such as search
source code. One type

allows programmers to see
s referenced. For

instance, a variable can be selected by placing the caret in

in for Eclipse is available at

the variable name whereby all references to that variable
are highlighted in the source code. In an overview ruler
shown to the right of the editor
indicate lines in the file that contain
Fisheye Java editor takes these annotations
when selecting which lines to show in the context view.

Degree of Interest
In the Fisheye Java editor, a degree of interest (DOI) is
determined for each program line in the file. Lines in the
context view are then elided if their DOI is below a
threshold k.

The DOI of a program line x given the focus point
(defined as the lines in the focus area

DOI(x | p) = enclosing(x, p)
+ annotated(x)
+ cursor(x)
+ siblingAST(x, p)
– dline(x, p)

First, lines are interesting if they
statements that enclose the code visible in the focus area.
Such lines contain a package, class, interface or method
declarations, or one of the keywords for, if, while, switch,
etc. If line x is such a line and
encloses the code in the focus area
k. Second, lines containing annotations, such as errors,
search results, or occurrences of a selected element
interesting. To provide context for annotations, lines that
contain declarations of methods that enclose annotations are
also of interest. Thus, annotated(x) = k
line x that contains an annotation or declares a
enclose an annotation. Third, cursor

Figure 1: The Fisheye Java editor in Eclipse.

 ll references to that variable
are highlighted in the source code. In an overview ruler

editor’s scrollbar, rectangles
ate lines in the file that contain annotations. The

these annotations into account
which lines to show in the context view.

In the Fisheye Java editor, a degree of interest (DOI) is
line in the file. Lines in the

context view are then elided if their DOI is below a

given the focus point p
lines in the focus area) is calculated as:

First, lines are interesting if they contain declarations or
statements that enclose the code visible in the focus area.
Such lines contain a package, class, interface or method

or one of the keywords for, if, while, switch,
 it defines a block that

encloses the code in the focus area p then enclosing(x, p) =
Second, lines containing annotations, such as errors,

f a selected element, are
o provide context for annotations, lines that

contain declarations of methods that enclose annotations are
annotated(x) = k adds to the DOI of

an annotation or declares a method that
cursor(x) = k adds to the DOI

50

of line x containing the editor caret, which may for instance
be important for returning to the position of the caret.
Fourth, lines that contain declarations of methods, fields or
types that are close to the focus area may support
orientation in the code. Thus, if line x declares a member of
a class or interface that can be reached by moving upwards
in the abstract syntax tree from a line in the focus area p
then siblingAST(x, p) = k/2. Fifth, a distance dline(x, p) ∈ [0;
k/2] proportional to the number of program lines from line x
to focus area p detracts from that line’s DOI.

Source code elision in the context view
Lines are always included in the context view if they have a
degree of interest above the threshold k. If there are not
enough lines with DOI > k to use all the space available in
the context view, lines with DOI <= k are added to the
context view in descending order of DOI. This includes first
declarations of methods or fields immediately above or
below the code that is currently visible in the focus area,
and then other lines directly adjacent to the focus area.

Placing the caret in a variable may cause many lines to have
DOI > k because they contain highlighted occurrences of
the selected variable. All lines cannot be shown
simultaneously in the fixed amount of space of the context
view. Clipping or magnifying lines in the context view may
result in some lines becoming unreadable, yet all lines may
be important to the user. Thus, to guarantee users that the
context view contains all highlighted occurrences, the
windows containing the upper and lower context view can
be scrolled. The context view automatically scrolls to show
lines closest to the focus area when its contents change.
Interacting with the Fisheye Java editor
The user can interact with the focus area like a normal
editor. The caret can be moved within the bounds of the
focus area, scrolling the view contents when moving the
caret against the upper or lower bound. The context view
automatically reduces in size to fit the content; near the top
of the document, for example, when the user scrolls by
holding an arrow key to move the caret past the upper edge
of the focus area, the upper part of the context view retracts.
The context view can be switched on and off. When
switched off, the context view can be call up temporarily
with a keyboard shortcut, and it can be dismissed by hitting
Esc or by clicking outside the context view. Clicking on a
line in the context view jumps to that line and places the
caret at the clicked position. Also, the context view can be
resized, either by clicking on a button in the toolbar or by
using a keyboard shortcut.
Filtering and customizing the context view
The user can change whether annotations or enclosing
statements are included in the context view. Also, the user
can select which annotations to show among all the
annotation types available in Eclipse including bookmarks,
errors, occurrences, search results, and tasks. In the
example shown in Figure 1, errors and tasks are enabled,
causing one line with an error and one line with a TODO
task annotation to be shown in the context view. More

customization options are available in a preference dialog
page, for instance, whether to include the cursor line when
it is scrolled out of view or whether to include all lines that
contain method or variable declarations.
FIELD STUDY WITH PROFESSIONAL PROGRAMMERS
We conducted a field study of the Fisheye Java editor with
professional Java programmers. Our aim was in part to
understand how programmers will adopt a fisheye view of
source code over two weeks and use it in their own work, in
part to investigate the use of multiple methods in
combination in a way not previously tried in evaluations of
fisheye interfaces.
Participants
Ten professional Java programmers from three software
companies participated in the study. Participants had
between 1 and 20 (M = 9) years of programming
experience. Eight participants had IT-related education
whereas two participants had a business-oriented
background. Participants used Mac OS X (2 participants) or
Windows (7 participants) or both (1 participant), and they
all used Eclipse 3.2 or later. All ten participants were male.
Method
We studied the programming activities of participants at
their work place. Our aim was to study each participant
using Eclipse for at least ten workdays; the actual period of
study varied from two to five weeks. To provide a rich basis
for analyzing the use of the Fisheye Java editor in the daily
programming activities of participants, multiple data
collection methods were used (see Figure 2). We were
particularly inspired by Denzin’s [7] definition of
triangulation as "the combination of methodologies in the
study of the same phenomenon" (p. 291) and by the lack of
work that integrates the new evaluation approaches
mentioned in the section on related work.

Two meetings were arranged to interview participants and
observe them while thinking aloud during their daily work.
In the period between the two meetings, data were
automatically logged to describe participants’ interaction
with Eclipse. We probed participants during work using an
adaptation of the experience sampling method [24].
Interviews, thinking aloud, logging, and probes
complement each other to collect quantitative and
qualitative, subjective and objective data; in the Discussion
we return to how this worked in practice. Next, we describe
in turn how each method was used.

Figure 2: Use of methods to gather data about participants’
programming activity and their experience using the Fisheye

Java editor.









 

51

Thinking Aloud
We observed participants at their work place while they
were thinking aloud, working with programming tasks that
involved use of a Java editor. Because programming is a
cognitively complex task – and because participants were
working on real tasks – we only reminded participants to
think aloud infrequently. To support a detailed analysis of
how participants interacted with the Fisheye Java editor, we
used screen recordings to capture participants’ interactions
with their computers, combined with a web camera that
recorded participants’ utterances. Screen recordings may be
less obtrusive than using physical video equipment in
participants’ work environment and have been previously
been used to record participants without an observer present
[38], thus allowing a broad sample of the daily work of
participants. In our case, however, we wanted participants
to think aloud, so as to provide insights in their intent and
experience of use. Thus, we wanted an author to be present
and only recorded a couple of hours for each participant.

We analyzed the video recordings of participants thinking
using grounded theory [37]. The first author found
segments of recordings where participants either interacted
with the context view using keyboard or mouse, or made
utterances or gestures that indicated they were looking at
information in the context view. We coded each segment
where participants were (1) looking at the lines in the
context view (and possibly scrolling the context view) or
(2) clicking on a line in the context view to navigate to that
line. In all, we recorded 10:41 hours of participants thinking
aloud using Eclipse with the Fisheye Java editor installed.
Technical problems with the recording software caused one
thinking aloud session to yield no usable data.

Activity Logging
In the period of ten work days between the two thinking
aloud sessions, data were automatically collected about (a)
how participants used menus, toolbars, keyboard shortcuts
and views in Eclipse, as in [28], and (b) how participants
interacted with the Fisheye Java editor. We used these data
to characterize participants’ use of the programming
environment, and in particular to describe how they
interacted with the context view and how often they did so.

Probes
We collected data obtained using an adaptation of the
experience sampling method [24], in which we randomly
probed participants with a survey delivered in a dialog
window from within the programming environment.
Participants were probed during periods where user activity
was registered in Eclipse and a Java editor was active.
Interruptions were more than 90 minutes apart. Because we
were interested in situations where participants used the
context view, we delayed probes for up to 15 minutes to be
delivered to participants the moment after they had
interacted with the context view. The probe dialog window
contained five pages asking participants (1) what they were
doing when interrupted (using categories from [20]), (2) if
they used the context view and if so, what they used it for,

(3) how well they knew the source code they were working
with, (4) what type of task they were working on (e.g.,
correcting a bug or restructuring the source code), and (5)
how long they had been working on the task (ranging from
“less than 10 minutes” to “more than a month”).

Interviews
We interviewed participants before the first thinking aloud
session to gather information about their background and
programming experience, the project they are working on,
and the types of task that they spend time on during their
workday. After the second thinking aloud session, another
interview was conducted to investigate the participants’
experience of using the Fisheye Java editor. Also, the
interview allowed for discussion of benefits and drawbacks
of the editor and possible improvements. Recordings of the
second interviews were transcribed and analyzed, using
open coding and comparison of the coded interview
segments to find common themes in participants’
experiences of using the Fisheye Java editor.
Procedure
The experimenter met with participants at their workplace.
First, participants were interviewed for about ten minutes.
Next, the participant’s computer was set up to capture the
screen of the monitor showing the Eclipse window and a
web camera was set up to record the participant while
thinking aloud. Participants were then instructed to think
aloud while they were working. Having observed the
participant for approximately one hour of programming, the
participant was allowed a break. A plug-in with the Fisheye
Java editor was installed in Eclipse together with a plug-in
for logging participants’ interaction with Eclipse. The
participant was instructed in the use of the Fisheye Java
editor, and then supervised while trying the editor to allow
for questions and clarifications. During the first five days of
the study period, a window with instructions on how to use
the Fisheye Java editor opened twice a day to remind
participants about how to use the editor. Also, the first
author visited or contacted participants to answer any
questions participants might have about the Fisheye Java
editor. Participants were not paid as an incentive for using
the editor and they could at any time switch it off.

At the second visit about ten workdays after the first visit,
participants were observed for an hour using Eclipse with
the Fisheye Java editor installed. Participants were
instructed to think aloud, and the session was recorded
similarly to the first meeting. Finally, participants were
interviewed about the work they had been doing after the
first visit and about their experience with the editor.
RESULTS
Our results consist of recordings of participants’ thinking
aloud, logged data describing participants’ activity in
Eclipse, answers to probes, and interview transcriptions.

Thinking Aloud
Our analysis of participants’ thinking aloud identified 55
incidents where the context view was used. We

52

characterized what was going on in each incident using
open coding, and we compared incidents to develop
categories for different uses of the context view and the
situations where these uses occurred. Table 1 shows the
most common situations of use with the number of
incidents of each situation.
Most incidents involved the use of highlighted occurrences
of a variable, method, or class. Often participants selected a
method or variable to highlight its occurrences that would
show up in the context view. Typically, participants found
an occurrence and navigated there quickly or looked in the
context view to investigate its dependencies, possibly
clicking on an occurrence to investigate further. For
instance, one participant had to move a set of buttons from
one part of an application window to another. This task
required navigating between at least four files, moving
variables from one file to another. The participants used the
context view, making sure all the dependencies either were
moved along or dealt with in a more appropriate manner.
The second most common use of the context view involved
looking for or navigating to the declaration of a method. In
one situation, participants searched for the right method to
use or investigate further. In another situation, participants
navigated to a method they had recently investigated. Also,
we found three incidents that resembled the situation of
navigating to errors as part of manually refactoring code:
after using the “quick-fix” tool in Eclipse to automatically
add a required method to a class, participants looked in the
context view to find the added method and navigate there.
The third most frequent use of the context view we saw
involved navigating to compilation errors. In five incidents,
participants made a change that caused errors in related
code elsewhere and then immediately navigated to the error
to correct it. A participant later explained that it was
sometimes faster for him to add a parameter to a method
and navigate to errors in calls to the method and fix them,
than it was to use the refactoring tool in Eclipse. Also, in
three incidents participants inspected an error that they had
caused earlier without noticing.

We did not see participants use package declaration or
enclosing statements in the context view, which surprised
us because such higher-level information has been
conjectured to provide important context [10]. A possible
explanation is that participants were simply not working in
long and complex blocks of code with heavy indentations,
but mainly smaller methods or methods with many lines but
no deep indentation.

In conclusion, we saw eight participants use the context
view during thinking aloud. One participant had disabled
the Java Fisheye editor because he experienced problems
with it. Use of the context view varied greatly between
participants; one participant mainly used the context view
to inspect highlighted occurrences of variables, whereas
another participant mainly used the context view for
navigating to errors. This is not surprising, since the use
situations we saw for each participant very likely were
influenced by the tasks and the code that participants were
working on in the small sample of each participant’s work.
Activity Logging
The data that were logged in Eclipse comprise 114 days of
Eclipse use. Each participant used Eclipse for at least ten
days. However, no usable log file was produced for one of
the participants due to technical problems.

From the logged interaction events, we determined periods
where participants used Eclipse. A period was determined
as at least two interaction events with less than five minutes
in between, adding half a minute to the beginning and end
of each period. In all, participants used Eclipse for around
370 hours. Using the method of determining periods of use,
we determined and summarized the length of periods where
participants made changes to the source code. Participants
were editing Java source code for around 207 hours (56%),
and each participant was editing code between 26% and
72% of the time they were working in Eclipse.

We visualized the participants’ interaction with Eclipse by
creating for each participant a series of timelines (one per
day), indicating when the user was interacting with Eclipse

    







  


   




   



  





  


 


  





  


Table 1: Common situations involving use of the context view in the Fisheye Java editor identified in recordings of participants
thinking aloud. N refers to the number of incidents of each situation and C refers to the number of those incidents where

participants clicked on a line in the context view to navigate to that line.

53

and with the context view. Figure 3 shows an example of
seven days of interaction for one user. The timeline
visualizations gave three insights into the adoption and use
of the context view. First, the use of the context view is
evenly distributed over days. Only in 10% of the days, do
participants not interact with the context view and then
typically little interaction with Eclipse occurs in the day.
Also, interaction with the context view typically happens
several times during the day (in about 90% of the days).
Second, we do not see a decline of use over time. Across
participants, a comparable number of uses of the context
view are found on the first and last day of logging. Third,
some participants have long durations of activity where
they do not use the context view (in Figure 3 this happens at
the middle part of day 7 and the beginning of day 8). This
typically happens when the participant is not editing.
Overall, the time lines show that participants have very
different work patterns. For instance, one participant who
was filling in for the project leader during the study had
many short periods of interacting with Eclipse during his
workday and only few long periods of programming.

As a measure of how frequently participants used the
context view, we grouped the times where participants
scrolled or clicked in the context view into periods so that
repeated interaction with the context view within a five-
minute window counted as a single period of use. In
average, participants interacted with the context view 1.7
times per hour. For comparison, we determined how often
common tools in Eclipse for searching and navigating in the
current file were used. In average, participants used ‘Find’
0.7 times per hour, an outline of the file 2.3 times per hour,
and a search for references 1.4 times per hour.
Probes
In all, participants were probed 332 times (out of which 193
were postponed and not analyzed further). We discarded six
probes that participants completed more than five minutes
after the interruption, because we did not think those
answers reliably reflected a participant’s experience at the
time of interruption. Of the resulting 133 probes, 36 were
conditional probes (that were made because participants
had just interacted with the context view) and 14 were
unconditional probes where participants reported that they

had used the context view. Thus, 50 probes were answered
after participants had used the context view.

Table 2 shows the activities that participants reported they
were doing when probed. The most frequent activities
participants mentioned doing when probed were editing
(54%), reading code (20%), or testing (17%). Other
activities that participants reported doing when probed
mainly included forward porting (8%), just starting or
resuming work in Eclipse (6%), or synchronizing (4%).
Participants report more often that they navigated
dependencies in the code when they had used the context
view, than when they had not used the context view, and
participants reported navigating when they had used the
context view only in conditional probes. This suggests that
participants used the context view to navigate, but also that
navigating dependencies is a brief activity that only few
unconditional probes interrupted.

The tasks that participant most frequently reported working
on when probed were extending the program with new
functionality (27%), modifying the program’s existing
functionality (23%), or fixing a bug (23%). When using the
context view, participants reported slightly more often that
they were fixing bugs (28% vs. 20%) or extending the
program (54% vs. 40%) compared to when they were not
using the context view. In contrast, they reported less often
optimization (0% vs. 10%) or restructuring (4% vs. 16%)
when using the context view.

When probed after using the context view, participants had
used it to find highlighted occurrences (18), navigated to a
particular line (9), see the declaration of the current class
and method (8), and see enclosing statements (6).
Interviews
Table 3 summarizes the main findings from analysis of our
interviews with participants after they had used Eclipse
with the Fisheye Java editor installed. Concerning adoption
of the fisheye view, eight participants said they would
continue to use the Fisheye Java editor. One participant
explicitly said that it was “a better editor with the fisheye
view than it is without”. We think this is a strong indication
that participants found the benefits of the fisheye view to
outweigh the drawbacks. Furthermore, six participants felt
  

   
   
   
   
   
   
   
   
   

Table 2: Frequency of activities participants answered they
were doing when probed (1) conditionally when context view

was used, (2) unconditionally when context view was used, and
(3) unconditionally when context view was not used. Multiple
activities could be specified, so columns do not sum to 100%.

Figure 3: Example of timeline visualization of seven days (y-
axis) of interaction with Eclipse and the Fisheye Java editor.

Periods of editing are yellow; periods of interaction with
Eclipse are gray; gray circles indicate use of the context view.

54

they had not fully learned and adopted the fisheye view
after the few weeks of having it installed. Altogether, we
took this to mean that some participants would at least keep
the fisheye view installed so as to try to learn using it.

Concerning the overall experience of using the fisheye
view, six participants found it was confusing at times,
because it was hard to know what was shown in the context
view. Three reasons were mentioned: (1) adjacent lines that
filled unused space in the context view made it difficult to
determine where blocks of code were left out, (2) not all
methods declared in the file were shown, and (3) different
types of lines were shown at different times. Five
participants said they disabled or did not care about the
fisheye view when working in tasks where it was not
useful. Also, four participants said they had reduced the
size of the context area. Some comments suggest that it is
not so much the context area that is too large as it is the
focus area that is too small to get an overview of the code in
focus. Some participants mentioned that they would have
liked a taller display, and one participant had in fact pivoted
his widescreen display to use the Fisheye Java editor in a
tall window. Three participants made comments suggesting
that they sometimes would forget that the context view was
there but the visually distinct appearance of an error or an
occurrence could draw their attention to it.

Seven participants said they liked that errors and
occurrences were shown in the context view. One reason
mentioned was: “you learn 400 different shortcuts for
example to navigate between different compiler errors, so I
think it’s a good thing that you actually have something
visual”. In particular, comments of two participants seem to
hint that being able to see in the context view the errors –
noting that some errors follow from others – helps them
determine what code to actually fix to correct the errors.
Participants did not agree about the usefulness of
class/method declarations or of enclosing statements. While
some participants found enclosing statements useful to form
a context for the code in focus, others said that they made
no use of them. One participant, who liked the enclosing

statements, admitted that he once experienced losing
overview of a large method anyway. Finally, three
participants said they used the context view to see methods
that were near the code in focus.
DISCUSSION
Findings on Fisheye Interface in Programming
The main finding is that the fisheye interface was adopted
by participants and integrated in their work. The activity
logging showed that most participants used the context
view regularly throughout the study and that the frequency
of use was comparable to core tools in Eclipse. Most
participants said they would continue to use the Fisheye
Java editor after the study had finished. Compared to some
other studies of workplace adoption of information
visualization [e.g., 11], this is a strong and encouraging
result; in relation to fisheye research [e.g., 1,13,14,34], the
adoption suggest that some ideas in fisheye interfaces may
be useful in real-life tools for tasks as complex as
programming.

While adoption is thus confirmed by several types of data,
some programming tasks were not supported by the Fisheye
Java editor. In interviews, participants said that the fisheye
interface did not support tasks like debugging or composing
new code. The activity logging also shows long episodes of
non-use of the context view. While our notion of focus
point was tied to one editor window, participants’ focus
could easily change between windows or other parts of the
editor. We contend that extending the notion of focus in
fisheye interfaces to encompass different parts of the
interface (similarly to Mylar [18]) could be interesting for
real-life fisheye interfaces. On the other hand, the thinking
aloud sessions showed use of the fisheye interface across a
range of tasks, including some surprising ad-hoc uses.

The usefulness of the Fisheye Java editor was linked to the
highlighted occurrences of variables and methods. Most
incidents of use of the context view in thinking aloud
sessions involved highlighted occurrences; a third of the
probes following use of the context view also mention

   




  


  




  

  

  


  






  


  


  

Table 3: Main findings from analysis of interviews. N refers to the number of interviews in which a finding was made.

55

highlighted occurrences. While the DOI function
underlying the fisheye editor integrates different kinds of
interest, it appears that the direct and transparent
relatedness of highlighted occurrences in the editor and in
the context view matters the most to users.
the a priori determined components of the DOI function
may matter relatively less in real-life use. This speculation
brings into doubt a defining characteristic o
interfaces, and is an important focus for future work.

The last finding we want to emphasize is a
and predictability in the fisheye interface.
mentioned in interviews that they were confused about
when methods and lines were shown and when they were
not (e.g., “it should be more predictable so that you can
guess what you get or understand better what inform
you get from the fisheye”). These remarks warrant further
investigation, because they conflict with anot
characteristic of fisheye interfaces [10], namely that the
view changes based on changes in the focus point.
considering how to make it clearer which lines are shown in
the fisheye interface and which lines are elided
improvement is to allow users to control directly in the
fisheye interface how different types of information
context view are shown or elided, perhaps using
unfold mechanisms (e.g., and) used in widespread
code editors.
Strengths of Methods in Combination
We found individual methods contributing insights into
adoption, use of specific functions, and participants’
to varying degrees. In combination, the methods provide
stronger evidence of participants’ adoption and use of the
Fisheye Java editor than any method alone, making up for
limitations of individual methods. We give three

First, interviews provide subjective data where participants
explain their full experience and intent, but explanations are
retrospective and hard to connect to concrete situations in
their work and specific functions in the Fisheye
In contrast, thinking aloud provides rich
participants’ programming activity based on
situations.
Second, participants’ assessments in interviews of their
adoption of the fisheye interface are retrospective and thus
ambiguous. Also, observing each participant a few hours
provides only a small sample of their work and it is difficult
to tell if participants have adopted and use
Java editor in all their work activities based on thinking
aloud data. To compensate for these limitations, activity
logging provides quantitative, fine-grained data about
hundreds of hours of work that show that participants used
the fisheye interface regularly. Also, p
subjective data about many hours of participants’ work that
show how participants used the fisheye interface in
different types of activity. These data allow us to
extrapolate on our observations of participants’
fisheye interface in their work across tasks.

he DOI function
the fisheye editor integrates different kinds of

interest, it appears that the direct and transparent
occurrences in the editor and in

the context view matters the most to users. More generally,
the a priori determined components of the DOI function

This speculation
brings into doubt a defining characteristic of fisheye

for future work.

is a lack of clarity
. Six participants

mentioned in interviews that they were confused about
lines were shown and when they were

“it should be more predictable so that you can
guess what you get or understand better what information

These remarks warrant further
another defining

, namely that the
view changes based on changes in the focus point. We are

how to make it clearer which lines are shown in
the fisheye interface and which lines are elided. A possible

control directly in the
different types of information in the

perhaps using fold and
used in widespread

We found individual methods contributing insights into
, and participants’ intent

In combination, the methods provide
stronger evidence of participants’ adoption and use of the
Fisheye Java editor than any method alone, making up for

We give three examples.

nterviews provide subjective data where participants
, but explanations are

d hard to connect to concrete situations in
and specific functions in the Fisheye Java editor.

In contrast, thinking aloud provides rich insight into
based on concrete use

essments in interviews of their
retrospective and thus

ambiguous. Also, observing each participant a few hours
provides only a small sample of their work and it is difficult
to tell if participants have adopted and used the Fisheye
Java editor in all their work activities based on thinking
aloud data. To compensate for these limitations, activity

grained data about
hundreds of hours of work that show that participants used

interface regularly. Also, probes provide
subjective data about many hours of participants’ work that
show how participants used the fisheye interface in
different types of activity. These data allow us to
extrapolate on our observations of participants’ use of the

Third, determining participants’ intent during uses of the
fisheye interface solely from activity logging and probes is
difficult, if not impossible: activity logging
the context of participants’ work, nor their intent with the
logged activity; interruptions by probes
and only limited data can be gathered.
complements logging and probes by situating
fisheye interface in observations of pa

Laboratory Experiment vs. Field Study
We find four comparisons between
experiment [16] and the present field study of interest
our focus on adoption is not possible in a laboratory
experiment [12]. The data provided by activity logging is
much more convincing than our earlier collected
preferences. Second, while realism of tasks is often
a hallmark of field studies, we were mostly surprised by the
variability and ad hoc use of the fisheye view
in the thinking aloud sessions. Because tasks were fixed
relatively simple in the laboratory study,
such behavior. Third, as mentioned earlier, a common
criticism of laboratory studies is that they do not allow
participants to gain proficiency [31]
is not a panacea in that respect. Participants
pressure and being busy as barriers to using the fisheye
editor. Perhaps proficiency with tools need other forms of
collaboration between researchers and participants,
instance, the long-term collaborations
Fourth, the field study required full integration of
in participants’ programming environment, causing a
number of practical problems.

CONCLUSION
Fisheye interfaces for source code
programmers in navigating and understanding code.
interfaces, however, have only been evaluated in
experiments, leaving it uncertain if they would be adopted
and used in real-life programming.
a general lack of multi-method longitudinal studies
information visualizations. We have conducted a field study
of ten professional programmers solving their normal work
tasks using a fisheye editor. Data
experience sampling, activity logging, thinking aloud, and
interviews.

The results suggest that participants
fisheye interface as extensively as other common tools in
their programming environment
predictability was an integral part of using the interface,
certain activities were not supported
assumptions in the design of fisheye interface (which had
not been challenged in a previous laboratory study) did not
hold in the field. Methodologically,
triangulation of data helps reach closure about benefits and
limitations of the visualization. Future work could couple
more tightly the data collection methods so as to
both on adoption, specific episodes of use, and on users’
intent.

Third, determining participants’ intent during uses of the
fisheye interface solely from activity logging and probes is

ctivity logging does not give
, nor their intent with the

by probes annoy participants
and only limited data can be gathered. Thinking aloud thus
complements logging and probes by situating use of the

in observations of participants.

Study
between the previous laboratory

and the present field study of interest. First,
our focus on adoption is not possible in a laboratory

The data provided by activity logging is
much more convincing than our earlier collected

, while realism of tasks is often claimed
of field studies, we were mostly surprised by the

variability and ad hoc use of the fisheye view, as captured
Because tasks were fixed and

in the laboratory study, we did not see
ntioned earlier, a common

criticism of laboratory studies is that they do not allow
1]. The present field study
articipants mention time-

pressure and being busy as barriers to using the fisheye
Perhaps proficiency with tools need other forms of

collaboration between researchers and participants, for
term collaborations in MILCs [36].

the field study required full integration of the editor
environment, causing a

Fisheye interfaces for source code promise to support
programmers in navigating and understanding code. Such

only been evaluated in laboratory
if they would be adopted
 This uncertainty reflects

method longitudinal studies of
have conducted a field study

solving their normal work
Data were collected using

logging, thinking aloud, and

nts adopted and used the
as extensively as other common tools in

their programming environment. However, lack of
was an integral part of using the interface,

certain activities were not supported well, and core
tions in the design of fisheye interface (which had

not been challenged in a previous laboratory study) did not
ly, we have shown how

reach closure about benefits and
Future work could couple

more tightly the data collection methods so as to obtain data
both on adoption, specific episodes of use, and on users’

56

REFERENCES
1. Baudisch, P., Lee, B., & Hanna, L. Fishnet, a Fisheye Web

Browser With Search Term Popouts: a Comparative
Evaluation With Overview and Linear View, Proc. AVI 2004,
ACM Press (2004), 133-140.

2. Bertini, C., Plaisant, C., & Santucci, G. Rewind: BELIV'06:
Beyond Time and Errors; Novel Evaluation Methods for
Information Visualization., Interactions, 14, 3 (2007), 59-60.

3. Bracht, G. H. & Glass, G. V. The External Validity of
Experiments, American Educational Research Journal, 5, 4
(1968), 437-474.

4. Carpendale, S., Evaluating Information Visualizations, in
Kerren, A., Stasko, J. T., Fekete, J.-D., & North, C. (eds.)
Information Visualization: Human-Centered Issues and
Perspectives, Springer, 2008, 19-45.

5. Chen, C. & Czerwinski, M. P. Special Issue on Empirical
Evaluation of Information Visualizations, International
Journal of Human-Computer Studies, 53, 5 (2000).

6. Chen, C. & Yu, Y. Empirical Studies of Information
Visualization: A Meta-Analysis, International Journal of
Human-Computer Studies, 53, 5 (2000), 851-866.

7. Denzin, N. Sociological Methods: A Sourcebook, McGraw
Hill, New York, 1978.

8. Ellis, G. & Dix, A. An Explorative Analysis of User
Evaluation Studies, Proc. BELIV'06 - Beyond Time and
Errors: Novel Evaluation Methods for Information
Visualization - Workshop of AVI'06, (2006), 15-20.

9. Faisal, S., Craft, B., Cairns, P., & Blandford, A.
Internalization, Qualitative Methods, and Evaluation, Proc.
BELIV'08, ACM Press (2008), 45-52.

10. Furnas, G. W. The Fisheye View: A New Look at Structured
Files.,Bell Laboratories Technical Memorandum #81-11221-
9, Morgan Kaufmann, (1981). 312-330.

11. González, V. & Kobsa, A. A Workplace Study of the
Adoption of Information Visualization Systems, Proc. I-
KNOW 03, (2003), 96-102.

12. Greenberg, S. & Buxton, B. Usability Evaluation Considered
Harmful (Some of the Time), Proc. CHI'2008, ACM Press
(2008), 111-120.

13. Gutwin, C. Improving Focus Targeting in Interactive Fisheye
Views, Proc. CHI'2002, ACM Press (2002), 267-274.

14. Hornbæk, K. & Hertzum, M. Untangling the Usability of
Fisheye Menus, ACM Transactions on Computer-Human
Interaction, 14, 2 (2007).

15. Isenberg, P., Tang, A., & Carpendale, S. An Exploratory
Study of Visual Information Analysis, Proc. CHI 2008, ACM
Press (2008), 1217-1226.

16. Jakobsen, M. R. & Hornbæk, K. Evaluating a Fisheye View
of Source Code, Proc. CHI 2006, (2006), 377-386.

17. Jakobsen, M. R. & Hornbæk, K. Transient Visualizations,
Proc. OZCHI 2007, ACM (2007), 69-76.

18. Kersten, M. & Murphy, G. Mylar: a Degree-of-Interest Model
for IDEs, Proc. AOSD, (2005), 159-168.

19. Kersten, M. & Murphy, G. Using Task Context to Improve
Programmer Productivity, Proc. SIGSOFT 2006, ACM Press
(2006), 1-11.

20. Ko, A. J., Aung, H., & Myers, B. A. Eliciting Design
Requirements for Maintenance-Oriented IDEs: a Detailed
Study of Corrective and Perfective Maintenance Tasks, Proc.
ICSE'05, ACM Press (2005), 126-135.

21. Komlodi, A., Sears, A., & Stanziola, E. Information
Visualization Evaluation Review, SRC Tech. Report, Dept.of
Information Systems, UMBC. UMBC-ISRC-2004-1 (2004).

22. Kosara, R., Healet, V., Interrante, V., Laidlaw, D. H., & Ware,
C. Thoughts on User Studies: Why, How, and When,
Computer Graphics and Applications, 23, 4 (2003), 20-25.

23. Lam, H. & Munzer, T. Increasing the Utility of Quantitative
Empirical Studies for Meta-Analysis, Proc. BELIV'08, ACM
Press (2008)

24. Larson, R. & Csikszentmihalyi, M. The Experience Sampling
Method, New Directions for Methodology of Social and
Behavioral Science, 15 (1983), 41-56.

25. Mackay, W. E. Triangulation Within and Across HCI
Disciplines, Human-Computer Interaction, 13, 3 (1998), 310-
315.

26. McGrath, J. E., Methodology Matters: Doing Research in the
Behavioral and Social Sciences, in Baecker, R. M., Grudin, J.,
& Buxton, W. A. (eds.) Human-Computer Interaction:
Toward the Year 2000, Morgan Kaufmann, 1995, 152-169.

27. McLachlan, P., Munzer, T., Koutsofios, E., & North, S.
LiveRAC - Interactive Visual Exploration of System
Management Time-Series Data., Proc. CHI 2008, ACM Press
(2008), 1483-1492.

28. Murphy, G., Kersten, M., & Findlater, L. How Are Java
Software Developers Using the Eclipse IDE?, IEEE Software,
23, 5 (2006), 76-83.

29. North, C. Visualization Viewpoints: Toward Measuring
Visualization Insight, IEEE Computer Graphics and
Applications, 26, 3 (2006), 6-9.

30. Perer, A. & Shneiderman, B. Integrating Statistics and
Visualization: Case Studies of Gaining Clarity During
Exploratory Data Analysis, Proc. CHI 2008, ACM Press
(2008), 265-274.

31. Plaisant, C. The Challenge of Information Visualization
Evaluation, Proc. AVI 2004, (2004), 109-116.

32. Reilly, D. F. & Inkpen, K. M. White Rooms and Morphing
Don't Mix: Setting and the Evaluation of Visualization
Techniques, Proc. CHI 2007, ACM Press (2007), 111-120.

33. Saraiya, P., North, C., Lam, V., & Duca, K. An Insight-Based
Longitudinal Study of Visual Analytics, IEEE Transactions on
Visualization and Computer Graphics, 12, 6 (2006), 1511-
1522.

34. Schaffer, D., Zuo, Z., Greenberg, S., Bartram, L., Dill, J.,
Dubs, S., & Roseman, M. Navigating Hierarchically Clustered
Networks Through Fisheye and Full-Zoom Methods, ACM
Trans. on Computer-Human Interaction, 3, 2 (1996), 162-188.

35. Seo, J. & Shneiderman, B. Knowledge Discovery in High-
Dimensional Data: Case Studies and a User Survey for the
Rank-by-Feature Framework, IEEE Transactions on
Visualization and Computer Graphics, 12, 311 (2006), 322.

36. Shneiderman, B. & Plaisant, C. Strategies for Evaluating
Information Visualization Tools: Multi-Dimensional In-Depth
Long-Term Case Studies, Proc. BELIV'06, (2006), 1-7.

37. Straus, A. & Corbett, J. Basics of Qualitative Research.
Techniques and Procedures for Developing Grounded Theory,
Sage., Thousand Oaks, CA, 1998.

38. Tang, J. C., Liu, S. B., Muller, M., Lin, J., & Drews, C.
Unobtrusive but Invasive: Using Screen Recording to Collect
Field Data on Computer-Mediated Interaction, Proc.
CSCW'06, ACM Press (2006), 479-482.

39. Valiati, E. R., Freitas, C. M., & Pimenta, M. S. Using Multi-
Dimensional In-Depth Long-Term Case Studies for
Information Visualization Evaluation, Proc. BELIV'08, ACM
Press (2008), 1-7.

The columns on the last page should be of approximately equal length.

57

PAPER 5 – WIPDASH: WORK ITEM AND PEOPLE
DASHBOARD FOR SOFTWARE DEVELOPMENT TEAMS
Jakobsen, M. R., Fernandez, R., Czerwinski, M., Inkpen, K., Kulyk, O., and Robertson, G.
(2009). WIPDash: Work Item and People Dashboard for Software Development Teams. 14
pages to appear in Proceedings of INTERACT 2009 - 12th IFIP TC13 Conference in Human-
Computer Interaction (Uppsala, Sweden, August 24-28, 2009).

The copyright to the paper has been transferred to Springer-Verlag GmbH Berlin Heidelberg.
The copyright transfer covers the sole right to print, publish, distribute and sell throughout the
world the said Contribution and parts thereof, including all revisions or versions and future
editions thereof and in any medium, such as in its electronic form (offline, online), as well as
to translate, print, publish, distribute and sell the Contribution in any foreign languages and
throughout the world (for U.S. government employees: to the extent transferable). Springer
has given the author the right to self-archive an author-created version of his article on his/her
personal website.

Permission to reprint granted by Springer.

58

WIPDash: Work Item and People Dashboard for
Software Development Teams

Mikkel R. Jakobsen1, Roland Fernandez2, Mary Czerwinski2, Kori Inkpen2,
Olga Kulyk3, and George G. Robertson2

1 Department of Computer Science, University of Copenhagen, Denmark

mikkelrj@diku.dk
2 Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA

{rfernand, marycz, kori, ggr}@microsoft.com
3 Human Media Interaction, University of Twente, 7500 AE, Enschede, The Netherlands

okulyk@utwente.nl

Abstract. We present WIPDash, a visualization for software development
teams designed to increase group awareness of work items and code base
activity. WIPDash was iteratively designed by working with two development
teams, using interviews, observations, and focus groups, as well as sketches of
the prototype. Based on those observations and feedback, we prototyped
WIPDash and deployed it with two software teams for a one week field study.
We summarize the lessons learned, and include suggestions for a future version.

Keywords: Information visualization, software development, large display,
cooperative work, CSCW, situational awareness, field study.

1 Introduction

Team collaboration and coordination in software development is difficult [14]. First,
it may require frequent coordination to plan and review progress of a team. Second,
completing a task often involves team collaboration because knowledge is divided
between team members who have different roles or own different parts of the system.
Team members may work on multiple task items at a time, or belong to more than one
team, adding to the challenge of coordination. Thus, team members need to be aware
of what others on the team are doing [10,14].

In this paper, we present WIPDash (Work Item and People Dashboard), a
visualization of work items in a team’s software repository. Our goal is to help
software teams be aware of the overall status of a project, and understand ongoing
activities related to the team. Initially, we conducted interviews and field observations
within a software development organization in order to understand the needs of
collocated software teams. We then discussed these results in a series of focus group
to iteratively design WIPDash. Finally, we deployed WIPDash with two software
teams in an attempt to observe which features and functions the team actually used,
and how they used those features. Our findings led us to a number of design lessons,
and yet another design iteration, which we introduce at the end of the paper.

This is the author’s version of a paper published by Springer.

The copyright to the paper has been transferred to Springer-Verlag GmbH Berlin Heidelberg. The copyright
transfer covers the sole right to print, publish, distribute and sell throughout the world the said Contribution
and parts thereof, including all revisions or versions and future editions thereof and in any medium, such as
in its electronic form (offline, online), as well as to translate, print, publish, distribute and sell the Contribu-
tion in any foreign languages and throughout the world (for U.S. government employees: to the extent
transferable). Springer has given the author the right to self-archive an author-created version of his article
on his/her personal website.

59

The main contributions of this work include (1) detailed findings about how
developers maintain team awareness using existing techniques and tools, (2) a novel
awareness visualization based on developers’ needs, and (3) lessons learned from a
deployment with two teams along with a conceptual overview of new design ideas
based on that deployment.

2 Supporting Software Team Awareness

Many organizations adopt Agile Software Development methodologies that promote
shorter iterations and daily stand-up meetings to improve coordination [15]. Also,
collocation of a team in a shared team space may improve productivity [19]. Yet,
software teams are still challenged with maintaining awareness of ongoing activity
[10], and find collaborative tools that support their development work useful [14].

Software teams typically store information about work items (e.g., tasks and bugs)
in software repositories, such as Microsoft Team Foundation Server (TFS), to support
team coordination. However, such repository systems are not designed to give an
overview of the state of a project or to keep team members aware of the team’s
current activities. In addition, it is not easy to see changes to work items in a software
repository. Developers may not feel that they get a proper return on the time they
invest on updating work items and often the status of work items is not up to date.

One way to improve team awareness is to show data from a team’s repository on a
large display in a shared workspace [e.g., 1,8]. FASTDash [1] showed developers’
current activities in a code base. A field study showed that FASTDash increased
communication within the team by 200%, and helped participants know who had
which files checked out, who was blocked and needed assistance, and helped resolve
conflicts with checked out code. Improvements were suggested based on the study,
such as using metrics other than file size to allocate screen space, and to add support
for people to track work items that are assigned to them. Still, it was not clear which
types of information were most useful or how visualizations could be best designed to
get awareness information at a glance. O’Reilly et al. [12] visualized checked-in code
changes on a multi-monitor display. The authors concluded that the visualization
helped to inform developers about progress and overall effort of the team. However, it
is not clear how participants used the display. De Souza, Froelich and Dourish [16]
have shown that source code could be mined to visualize both social and technical
relationships of projects. We were inspired by these findings and focused our
visualization on support for work item awareness.

Fitzpatrick et al. [6] described a long-term study of a software team using a
tickertape tool where messages from CVS, a revision control system, were displayed.
The authors found that the tickertape tool stimulated more focused discussion about
source code changes, reduced the number of empty check-in messages, and helped
coordinate and negotiate work within the team. The authors mentioned the modest
screen real estate requirements of the tickertape tool as an important benefit.

Hill and Holland [9] describe the concept of showing the history of a user’s
interactions with files as part of the representation of the files. Recent research has
empirically studied use of interaction history to help software development teams

60

[3,7]. TeamTracks [3] directs the attention of a programmer to important parts of the
source code based on the history of programmers’ interactions with the code. Augur
[7] combines information about code activity with a line-oriented source code
visualization similar to SeeSoft [4]. Froehlich and Dourish [7] present case studies of
four developers who used Augur to gain insight into their code and their development
activities. Their findings support the idea of combining information about activity and
code in one view that is based on spatial organization of the code. However, Augur’s
potential usefulness as an awareness tool for a collocated team remains unknown.

The research efforts mentioned so far involved representations of source code,
check-ins, and the use of code files. In contrast, Ellis et al. [5] aimed at helping large
distributed software teams to coordinate their work on change requests by visualizing
bugs. They presented SHO, a visualization with bugs shown as circles ordered,
colored, and sized by different importance metrics. Participants in an experiment were
more successful at completing tasks using SHO than using Bugzilla. Another recent
study by Sarma et al. [14] presented a desktop awareness system based on code
activity and check-ins. Their Palantír tool addressed mainly artifact changes in order
to prevent potential conflicts. The visualizations were useful for exploring databases
of bugs to identify areas of concern. However, it is not clear how useful these types of
visualizations are for maintaining awareness of work items activity and project
progress in collocated software teams, which is the focus of this paper.

3 User-Centered Design

The research presented in this paper follows a user-center design approach. We began
by gathering observations and conducting semi-structured interviews with software
developers to gain insight into their work practices and needs in collocated team
workspaces. Our goal was to understand how collocated teams coordinate their work
and to get input on what visualization features and views would be most useful for
them. We then sketched an initial design of a visualization to support team awareness,
which we presented to a focus group for feedback.

3.1 Interviews and Field Observations

In situ observations were performed with two Agile teams (see Figure 1). The teams
were observed for five hours during one week. Observations were carried out at
different times of the day and included morning stand-up meetings and iteration
planning meetings. One team typically had five to ten members present, while the
other team typically had eight to fifteen members present. We also carried out semi-
structured interviews with ten individuals from these teams (eight males). Each
interview lasted 35-40 minutes and was audio recorded with the participants’
permission. Interviewees received a free lunch coupon as gratuity for their
participation. Each interviewee had two to fifteen years of experience in software
development and ranged in age from 20 to 46. Based on questions from related

61

Fig. 1. Shared team rooms for the two software teams we observed.

studies [10,17] and questions motivated by our in situ observations, the interviews
focused on the following aspects:
• experiences working in a collocated team workspace;
• what tools and alerts are currently used to keep track of what other team

members are working on and what is missing in existing tools;
• how work items and tasks are currently managed;
• types of meetings and the use of a projector in the team room;
• how progress and project health in general is monitored;
• wishes on what to display on the large shared screen and how to support work

flow.

3.2 Interview and Field Observation Results

The interviews and observations showed that the teams work in iterations, which are
blocks of time typically one to two weeks long. Daily stand-up meetings in the
morning help the team to keep track of who works on what, and they are considered
an important time for team bonding. Work items are created in a repository.

The teams used many software tools to coordinate their activities including Team
Foundation Server (TFS), email, instant messaging, Live Meeting, and SharePoint.
The teams varied in work style, size, and physical workspace arrangement. Both
teams adopted a seating arrangement that corresponded to individual roles on the
team: developers, testers, writers, and support (including program managers).

In addition to regular stand-up meetings, iteration planning, and bug triages (where
resolved bugs are discussed and new bugs are assigned to team members), ad-hoc
conversations frequently occurred in the team rooms. Some team members used chat
or email, but often team members just shouted out a question or rolled their chairs
over to talk to each other. Moreover, other people came in and out of the team spaces.

Although shared team rooms can be noisy and distracting, and offer less privacy
than private offices, most team members felt that the team room was more effective
for team work. An exception to this is documentation writers (two out of ten
interviewees) who said that they preferred to work in a private office or from home;
they needed to concentrate and only came to the team room for meetings or when they

62

needed to speak to a team member. Since they were frequently absent from the team
room they tended to be less aware of activities that were going on within the team.

Both teams used shared whiteboards and sticky notes on the walls. Team members
defined, categorized, and prioritized work items during iteration planning meetings
and used sticky notes to represent tasks or work items. The teams also used a
projector on the wall to display information for various tasks such as work items
during iteration planning, when assigning new tasks, or for code reviews.

The dynamic nature of stand-up meetings requires a quick, glanceable overview of
recent activity. Teams currently do not have a suitable tool for displaying important
information. TFS gives no overview of unassigned tasks, and does not allow more
than one person to be assigned to a task. Also, team members have to make a burn
down chart or a task list for each meeting, which is time consuming. It is possible to
export charts and work items from TFS, but this often results in a long Excel table
with no way of synchronizing changes back with work items in TFS.

3.3 Focus Group Feedback

Based on what we learned from the interviews and observations, we sketched an
initial design for a team awareness visualization. This initial design sketch, based on
the current iteration of one of the team’s work items repository, was presented to a
focus group on a large projection screen in a meeting room to help participants
imagine how the visualization would look when deployed in their own team room.
Eight participants from two Agile development teams took part, including an
architect, program managers, developers, lead developers and testers ranging in age
from 30-48. The focus group session was video recorded with the teams’ permissions.

Participants found that the awareness display presented information in a new
perspective they had not seen before and they liked being able to see an overview of
the whole project in one view. Team members expressed the need for different filters
and view modes, since some work items might be irrelevant for their role.

We derived three key requirements for our design based on this feedback. The
awareness visualization should (1) give an overview of iteration progress, with the
ability to summarize over the last day, week, month, or version, (2) give details on
individual work items and the people these are assigned to, and (3) list current and
recent activities, either of people or on work items.

4 Work Item and People Visualization

Based on all of these results, we developed WIPDash, a visualization suitable for a
large shared display in a collocated software team space. The visualization was
implemented as a Windows application that reads data about work items from TFS.
Our intention was that team members could glance at the shared display to see the
overall status of the project and the recent changes made (especially from the past 24
hours). We also wanted team members to be able to use WIPDash on their individual

63

machines, where they could switch between different views and filters, and get details
on demand.

The WIPDash window consists of two parts (see Figure 2). The left part of the
window contains a spatial representation of areas of the project and the work items in
those areas. For instance, the area labeled ‘Docs’ contains items related to project
documentation. The right part of the window consists of a list of view modes, a team
panel, and drop-down lists of iterations, work item states and types. These lists can be
used to filter and highlight work items in the left view.

Fig. 2. WIPDash showing the iteration overview for the current iteration of a project.

4.1 Work Item Treemap

WIPDash uses a squarified treemap for laying out project areas as rectangles [2]. The
treemap is a scalable approach to spatially organizing hierarchically structured data
such as a hierarchy of project areas. Each rectangle is sized proportionally to the
number of open work items in the area. A minimum threshold is used to ensure that
areas that do not contain any open items are shown in the map. Rectangles are labeled
with the name of the project area.

We wanted to preserve the spatial layout of project areas and work items to make it
easier for users to remember where areas are located in the visualization. However,
treemap algorithms can cause the spatial layout to change considerably when the data
changes. Since WIPDash would be shown on both a large display and on individual
team members’ displays (which may have different screen dimensions), the layout
had to vary across instances of WIPDash. In order to keep the layout consistent for
the purpose of the field study, the treemap was fixed and then shared by all instances

64

of WIPDash. This layout could be explicitly updated and the treemap would render
again. Since the relative size of an area does not change dynamically to reflect the
number of open work items, we color a rectangle darker as more open work items are
associated with the area.

Each rectangle in the treemap contains icons that represent the work items
associated with that area. The icons in a rectangle are evenly spaced in a grid, placed
in the order they were created starting from the top-left corner. Space between icons is
reduced to fit all icons within the rectangle, and if there is enough space between
icons, the ID number of the item is shown below the icon. The color of an icon
indicates the state of the work item (e.g., proposed, active, resolved, or closed) and
the shape of an icon indicates the type of the work item (e.g., feature, bug, or task).
Icon size represents either priority level or estimated hours of the work item, with
larger sized icons representing items of higher priority or higher estimate of work
hours, as designated by the user or team.

Moving the mouse cursor over a work item icon shows a tooltip with details about
the item. Clicking on an icon shows a popup window with details about the work
item. An ‘Add note’ section in the detail window can be expand to add a sticky note
to the work item. A small yellow sticky note symbol is displayed on the work item to
indicate that it has a note attached.

4.2 Iteration Filtering and Highlighting

Selecting an iteration in the “iteration list” shows all work items that are assigned to
that iteration and highlights them on the treemap. Since teams are usually only
interested in closed items for the current iteration, we removed closed items that were
not assigned to the selected iteration in order to avoid clutter.

4.3 Team Panel

The team panel (see Figure 3a) contains the names and pictures of the team members.
Clicking on a team member shows the icons for all work items assigned to or closed

(a) (b)

Fig. 3. (a) Team panel showing names and pictures of team members, and (b) a graphical
representation of the amount of work each member has assigned, completed and remaining.

65

by the selected team member. The team panel contains two options in addition to the
team members: (1) “all” which is used to select all items regardless of whom they are
assigned to, and (2) “unassigned”, which is used to select all unassigned work items.

For each person, WIPDash shows horizontal lines that represent the total amount
of work, the amount of completed work, and the work remaining in the iteration that
is assigned to that person (Figure 3b). The x-axis measures work hours and a dotted
vertical line represents the end of the iteration, corresponding to the total number of
work hours in the iteration. The remaining work line is colored red if the estimated
hours of remaining work exceeds the time left in the iteration.

4.4 View Modes

One goal of our design was to make the information on the display glanceable. Thus,
to avoid cluttering the display by showing too much information in one view, users
can choose between four different view modes.

The Iteration overview mode highlights all work items in the current iteration. This
view aims to provide an overview of the iteration status. Team members can see how
much work has been done and how many work items remain in the iteration. Details
are automatically displayed for work items that are currently being working on,
including who is working on the item. More details about an item can be shown by
clicking on ‘More’ (see Figure 2).

The Opened in last 24 hours view is designed to keep the team aware of incoming
tasks and issues. Work items opened within the last 24 hours are highlighted with a
yellow border and background. The opacity of the border and background varies to
distinguish recently opened items from items that were opened less recently. Also,
similar to the iteration overview, details are shown for recently opened items,
including when an item was opened and by whom.

The Changed in last 24 hours view aims to keep the team aware of recent changes
to work items. Similar to the Opened view mode, a yellow border and background is
shown around icons of work items that changed within the last 24 hours. Again,
details are automatically displayed for recently changed work items, including the
change made and who made the change. For simplicity, the same color coding is used
for both Opened and Changed view modes in order to draw users' attention to work
items with any recent activity.

The Notes view calls up the sticky notes for all work items with a note attached.
The Notes view allows users to spot work items that need attention, for example if a
team member makes a request to pair up on a specific task.

In order to provide continuous awareness and to allow passive use, WIPDash
allows cycling through view modes and through team members within each view
mode. A person remains selected for ten seconds before the next person on the team
panel is selected. The next view mode is selected after cycling through all team panel
selections. We were interested to see if this cycling behavior was useful or distracting
to the teams we studied. The visualization updates with new or changed work items
by querying Team Foundation Server (TFS) once per minute. All of the information
used in our visualization came from the teams’ data entries in TFS.

66

5 In Situ Deployment

We deployed WIPDash with two collocated Agile software teams and observed its
use for one week. Our aim was to understand the usefulness of the WIPDash and the
effect it had on team members’ situational awareness and on group processes. Team
A had eight members (seven male), with an age range of 22-46. Team B had 16
members (14 male), with an age range of 27-48. Individual roles on both teams
included lead developer, developer, tester, test lead, program manager, writer and
group manager. WIPDash was installed on a large display in the team rooms and on
team members’ individual workstations. Data were automatically collected in
WIPDash in order to describe how participants interacted with the visualization
throughout the study. WIPDash was installed on a Thursday and an orientation
session was given the following day. We observed the teams the following week
(Monday through Friday). Afterwards, we met with each team for post-usage
discussions. Each participant received a $50 gratuity coupon for their participation. In
the Team A room, the awareness visualization ran on a projected wall display on the
most accessible wall to the whole team. In the Team B room, the awareness display
was installed on a 52-inch plasma touch screen toward the front and right side of the
team room. Some members of Team B had their backs to this display.

5.1 Supporting Daily Stand-Up Meetings

Team A used WIPDash daily on their large display during stand-up meetings to
coordinate meetings. Specifically, they found the Iteration overview useful, both in
terms of status and also to jog their memories about work items from the previous
day. During stand-up meetings, one of the team members selected each person from
the team panel to display his information, and that person then talked about his work.
The team considered details about the active items assigned to a person especially
useful. Team members said they would have found it beneficial to have team
members displayed in a random order during stand-up meetings—just to make it more
fun. They also referred to the display to view the status of a remote team member
when she called in for the standup meeting. This suggests that WIPDash could be
useful for supporting collaboration with distant team members. Some team members
commented that they liked to look at the awareness display first thing in the morning
to see what team members in Argentina had been doing for the last ten hours. Some
team members who were on vacation for most of the time during our study also said
that they used the awareness visualization when they got back to get a sense of what
the team had been doing for the past week and “Where are we now?” in the iteration.

We observed that the available information in WIPDash was not completely
sufficient for reviewing what had been worked on during the previous day.
Specifically, if a developer had completed his work on a work item and then
reassigned the item to somebody else for testing, that item no longer showed in the
Changed view for that developer. This was discussed during a stand-up meeting, and
the team suggested a view where all work items that a person had worked on would
be highlighted, even if they had been reassigned. The team further elaborated on an
idea of one, concise overview containing all the information they would need for their

67

standup meetings, including recently resolved items that were reassigned to other
members and items that members had worked on yesterday. Finally, the team
expressed a wish for extending the shared wall display with an additional projector to
show project information like spreadsheets or code next to WIPDash.

5.2 Automatic Cycling

The automatic cycling between views was found to be problematic. WIPDash cycled
between all members in the team panel, including people with no items assigned or
without any recent activity. Thus, nothing of interest is shown in parts of the cycle.
Members of Team A suggested that cycling would make sense if done only between
views that contain recent changes. Team B had only one work item assigned per
person at a time and therefore cycling through each view for each team member was
not useful.

Team members commented that notifications needed to be more assertive when a
change or an update happened, such as an audio herald combined with a fisheye
notification message about the change on the awareness display. Also, team members
wanted to configure which views were displayed on their personal displays and when
notifications should appear. An RSS-style feed would probably be a useful option for
the personal workstations. We are pursuing that idea in the next iteration.

5.3 Use on Large Display and Individual Displays

We analyzed data logged by WIPDash to see how the two teams used WIPDash on
the large display and on their individual machines. In all, we collected log data from
ten personal machines, five members on Team B and five members on Team A, in
addition to the two machines running the large shared displays. When a user started
interacting with WIPDash, the default cycling between views was suspended. The log
data showed that Team A used the large display (showing the iteration overview)
during their stand-up meeting every morning around 9:30 am. Apart from the stand-
up meetings, Team A physically interacted with the large display only twice during
the study. In contrast, Team B interacted with the large display on average five times
per day. In Team B some of the participants did not have WIPDash installed on their
own machines. For this team WIPDash was running on a new touch screen display,
which had a lot of appeal. One possible reason why Team A did not interact much
with the large display was that it was projected high up on one of the walls, making
personal display interaction more reasonable than going to the laptop in the corner of
the room that controlled the view in order to interact with the group view.

5.4 Types of Interaction

In all, 596 selections were made in the right panel of WIPDash. Selections were
primarily made in the team panel (66%). The view mode panel (17%), and iteration
panel (15%) were also used to change the view. Iteration overview was the most

68

frequently selected view mode, selected more than 50% of the time. The Changes
view and the Opened view were each selected between three and eight times, whereas
the Notes view was only selected once.

Participants from Team A clicked on items to call up details 21 times while
participants from Team B brought up additional details 22 times. Only two sticky
notes were created in WIPDash, both by a lead developer on Team A. Follow-up
discussions related to sticky notes revealed that users would rather use the existing
‘comments’ data structure in TFS to view and add notes to work items in WIPDash.

5.5 Questionnaires

Satisfaction with WIPDash was assessed using a questionnaire administered to team
members at the post-usage meeting. The questionnaire contained nine questions from
[13] and eight questions to address distraction and awareness, using five-point Likert-
scale with lower scores reflecting negative responses. We balanced the valence of our
satisfaction questions. For negatively phrased questions (marked with an asterisk in
Table 1), we reversed the rating so that higher was always positive.

Ratings on usefulness and satisfaction with the system were mostly neutral to
positive (see Table 1) and there were no significant differences between the two teams
(paired t-test). Team members said that they had confidence that the information was
displayed correctly and on time. From the ratings, it was clear that the notifications of
changes were not grabbing attention well enough, and that WIPDash was seen as less
reliable than we would have liked. However, the teams were not embarrassed to show
their personal work item information and they leaned towards using a future version
of WIPDash.

Table 1. User Satisfaction

Question Average Rating (SD)
1. I have difficulty understanding WIPDash.* 4.10 (0.7)
2. WIPDash is easy to use. 3.63 (0.8)
3. WIPDash is reliable. 2.63 (1.1)
4. I have confidence in the information provided by WIPDash. 3.90 (0.7)
5. I need more training to understand WIPDash.* 4.05 (0.9)
6. WIPDash is informative. 3.32 (0.9)
7. WIPDash is comprehensible. 3.37 (0.8)
8. Overall, I am satisfied with WIPDash. 3.00 (1.1)
9. I would be happy to use WIPDash in the future. 3.11 (1.1)
10. I find WIPDash distracting.* 3.95 (0.9)
11. WIPDash grabs my attention at the right time. 2.84 (0.9)
12. It’s worth giving up the screen space to run WIPDash on my PC. 2.74 (0.9)
13. WIPDash helps me stay aware of information that’s critical. 2.72 (1.0)
14. I like being notified when a work item gets reassigned. 3.22 (1.2)
15. WIPDash’s notifications often distract me.* 3.83 (0.8)
16. Having WIPDash displayed in front of the team is embarrassing.* 4.17 (1.0)
17. I would rather have WIPDash displayed only privately.* 4.18 (1.1)

69

A questionnaire on situational awareness and group satisfaction was administered to
team members before in situ deployment and at the post-usage meeting. The
questionnaire included questions from [11,18] and used five-point Likert-scale with
lower scores reflecting negative responses. Paired t-tests showed no significant
differences between the Before and After conditions. The results could be affected by
a particular iteration stage or the day of the week the questionnaire was completed.

6 Discussion, Lessons Learned and Conceptual Redesign

Several factors may have affected the use and adoption of WIPDash. First, size and
location of the shared display affected how team members made use of the display by
glancing at it or physically interacting with it. During observations of Team A, we
saw that team members often looked at the display when entering or leaving the room.
This was not the case in the Team B room. One reason may be that the Team A room
had a large display, projected high up on a wall, that was visible to everyone in the
room. In contrast, Team B’s shared display was smaller, located in a corner of the
room, and was not directly visible to all team members.

Second, the two teams in our study organized their work differently. Team A
assigned work items to team members during an iteration planning meeting, and had
daily stand-up meetings to follow up on progress of the team. Using the shared
display during stand-up meetings may have influenced Team A’s familiarity with the
display, and consequently increased their use of the display. In contrast, Team B did
not have daily stand-up meetings; instead, they talked with each other about progress
and status throughout the day. Also, Team B assigned only one work item to each
person and viewed work in terms of releases that span several iterations, not single
iterations. This suggests that Team B could make even better use of an overview of
activities, but using different time spans.

Third, Team B had many proposed items in their repository, but most items were
not scheduled to be worked on. Also, many of the project areas, which were shown in
WIPDash because they contained proposed work items, were simply not considered
relevant by the team at the time of our observations. Thus, as Team B had many more
items to track than did Team A, and since WIPDash showed all work items in
‘proposed’ state, the display for Team B was more cluttered.

Our study has limitations that should be considered when interpreting the results.
Although very different work styles were observed, the two teams were from the
same organization. Therefore, our results may not be generalizable to software teams
everywhere. Also, we only observed the teams for one week. While we learned much
from the initial feedback, it would be interesting to see the long term effects of
WIPDash. Another concern is that we do not know how the collocated Agile teams
that we have focused on compare with larger, distributed teams. It could be that a
focus on collocated, Agile software teams may reveal some issues in team
coordination that also apply to distributed software teams. For example, Gutwin et al.
[8] suggest a need for awareness of areas of expertise within a distributed open source
project team because developers work on all parts of the code. This might relate to the
information needs we seek to provide with our visualization (e.g., what people are

70

working on and have been working on). For example, a glance at WIPDash first thing
in the morning to see what team members in Argentina have been doing for the last
ten hours could be very useful in terms of setting daily priorities or offering more
timely assistance. We intend to extend our focus to distributed team awareness in our
future work.

Informed by the insights we have gained from our study of WIPDash, the design of
the next version of the dashboard will include the following:
• A more glanceable display;
• sound cues for users to look at the dashboard when information changes;
• on a user’s display, it will only show notifications (e.g., ‘toaster’ type alerts in

the system tray) as information changes;
• a wide diversity of project data field definitions and usages;
• support for add-on visualizations developed by a dashboard community;
• data caching to reduce the load on the repositories from dashboard clients.

Conclusion and Future Work

This study on WIPDash suggests benefits from providing awareness of work item
status. Earlier work on FASTDash [1] showed benefits from providing a team
situation awareness display based on code activity. An interesting perspective for
future work is to combine information about work items with information about code
activity in one visualization [14]. A potential disadvantage of such an approach is that
the display gets too busy. However, linking code activity and the state of work items
could give the team a solid shared context if it focused simply on what is or has just
recently changed. That is the main goal for our next iteration. We intend to create a
simple list of recently changed work items, and the people who are actively related to
them. In addition, the new WIPDash will have integrated chat and RSS feeds for
notifications to the desktop. The ethnographic study of Souza and Redmiles [17]
confirms our observations: (a) a need for awareness of who made the changes; (b) a
need to peripherally integrate awareness notifications into an existing work items
repository, and to link them to code changes in order to keep work items’ status better
up to date and thus coordinate work more proactively.

In this paper, we have reported on a human-centered design approach to
developing a situational awareness dashboard visualization to help software
development teams track people and work items. From observations and interviews of
development teams we learned about their current work practice and what might be
provided to improve situation awareness. We then developed a dashboard for
supporting awareness in teams, called WIPDash (Work Item and People Dashboard).
We gathered feedback on an initial design from a focus group, which drove the
detailed design and the implementation of WIPDash. Finally, we have studied the use
of WIPDash in situ with two development teams, and reflected on the observations
and data we gathered. While questions remain to be answered, the results from our
study provide initial insights about use of a shared display to support team awareness
of work item data in software repositories.

71

References

1. J. T. Biehl, M. Czerwinski, G. Smith, and G. G. Robertson (2007). FASTDash: a visual
dashboard for fostering awareness in software teams. In Proc. CHI ’07, 1313–1322, ACM.

2. M. Bruls, K. Huizing, and J.J. van Wijk (2000). Squarified Treemaps. In Proc. TCVG ’00,
33-42. IEEE Press.

3. R. DeLine, M. Czerwinski, and G. Robertson (2005). Easing program comprehension by
sharing navigation data. In Proc. VL/HCC ’05, 241-248. IEEE Computer Society.

4. S. C. Eick, J. L. Steffen, E. E. Sumner Jr. (1992). Seesoft - A Tool for Visualizing Line
Oriented Software Statistics. In IEEE Trans. on Software Engineering, 18 (11), 957-968.

5. J. B. Ellis, S. Wahid, C. Danis, and W. A. Kellogg (2007). Task and social visualization in
software development: evaluation of a prototype. In Proc. CHI ’07, 577–586, ACM.

6. G. Fitzpatrick, P. Marshall, and A. Phillips (2006). CVS integration with notification and
chat: lightweight software team collaboration. In Proc. CSCW '06, 49-58, ACM.

7. J. Froehlich and P. Dourish (2004). Unifying artifacts and activities in a visual tool for
distributed software development teams. In Proc. ICSE ’04, 387–396, IEEE.

8. C. Gutwin, R. Penner, and K. Schneider (2004). Group Awareness in Distributed Software
Development, Proc. CSCW ’04, 72-81. ACM.

9. C. W. Hill, J. D. Hollan, D. Wroblewski, and T. McCandless (1992). Edit wear and read
wear. In Proc. CHI '92, 3-9, ACM, New York, NY, USA.

10. A. J. Ko, R. DeLine, and G. Venolia (2007). Information Needs in Collocated Software
Development Teams. In Proc. ICSE ’07, 344-353. IEEE Computer Society.

11. B. A. Olaniran (1996) A Model of Group Satisfaction in Computer Mediated
Communication and Face-to-Face Meetings, Behaviour and Information Technology, 15
(1), 24-36. Taylor and Francis.

12. C. O'Reilly, D. Bustard, and P. Morrow (2005). The war room command console: shared
visualizations for inclusive team coordination. In Proc. SoftVis '05, 57-65, ACM.

13. S. Paul, P. Seetharaman, and K. Ramamurthy (2004) User Satisfaction with System,
Decision Process, and Outcome in GDSS Based Meeting: An Experimental Investigation.
In Proc. HICSS ’04, vol. 1. IEEE Press.

14. A. Sarma, D. Redmiles, and A. van der Hoek (2008). Empirical evidence of the benefits of
workspace awareness in software configuration management. In Proc. SIGSOFT '08/FSE-
16, 113-123.

15. K. Schwaber and M. Beedle (2002). Agile Software Development with Scrum. Prentice
Hall.

16. C. de Souza, J. Froehlich, and P. Dourish (2005). Seeking the source: Software source code
as a social and technical artifact. In Proc. GROUP ’05, 197-206, ACM.

17. C. R. de Souza and D. F. Redmiles (2008). An empirical study of software developers'
management of dependencies and changes. In Proc. ICSE '08, 241-250, ACM.

18. R. M. Taylor (1989). Situational Awareness Rating Technique (SART) The Development
of a Tool for Aircrew System Design. Proceedings of the Symposium on Situational
Awareness in Aerospace Operations, AGARD-CP-478.

19. S. Teasley, L. Covi, M. S. Krishnan, and J. S. Olson (2000). How does radical collocation
help a team succeed? In Proc. CSCW ’00, 339-346. ACM.

72

	Part 1
	Abstract
	Dansk resumé
	Preface
	Contents
	List of papers
	Introduction
	Background
	Contributions
	Abstracts of papers
	Fisheye interfaces
	Transient visualizations
	Visualizations to support team coordination
	Evaluation of visualization techniques in complex work

	Conclusion
	References

	Part 2
	Paper 1 - Evaluating a fisheye view of source code
	Paper 2 - Transient Visualizations
	Paper 3 - Transient or Permanent Fisheye Views: A Comparative Evaluation of Source Code Interfaces
	Paper 4 - Fisheyes in the field: using method triangulation to study the adoption and use of a source code visualization
	Paper 5 - WIPDash: Work Item and People Dashboard for Software Development Teams

