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Chapter 1

Introduction

What we call seeing a thing clearly, is

only seeing enough of it to make out

what it is; this point of intelligibility

varying in distance for different

magnitudes and kind of things, while

appointed quantity of mystery remains

nearly the same for all.

J. Ruskin

The concept of scales is applied everywhere, explicitly or implicitly.

Images of the same scene might look completely different when mea-

sured at different scales. A famous painting by Salvador Dali1 titled

1Salvador Dali (1904-1989) is considered as the greatest artist of the surrealist
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“Gala Contemplating the Mediterranean Sea which at Twenty Meters

becomes a Portrait of Abraham Lincoln”2, painted in 1976, vividly

demonstrates the significance of scales. The painting of a naked woman

gazing out the window suddenly becomes a portrait of Abraham Lin-

coln when it is placed at a certain distance from the viewer. Without

relevant prior knowledge, we do not know what scale is better than or

should be preferred to another, i.e. it is not possible to argue conclu-

sively that a naked woman is more likely, what Dali actually wanted

us to see, than the portrait of Abraham Lincoln. One might be able to

give plausible reasons why one is to be prefered. However, that is only

possible because he or she has already put some prior knowledge into

action. In fact, a naked woman or a portrait of Abraham Lincoln is

not any more nor less superior than every thing we perceive at scales

in between, and they should be equally and similarly treated. With-

out prior knowledge about the scene, all scales are equally important.

Pushing the discussion to the extreme, one can argue that we never

see anything clearly, ever! The striking fact is made obvious in an

Internet interactive movie “Secret Worlds: The Universe Within”3

In practice, the range of scales is limited by the field of view (the

outer scale) and the resolution of the measuring device (the inner

art movement and one of the greatest masters of art of the twentieth century.
2The painting is part of the permanent collection at the Salvador Dali Museum

in St. Petersburg and is one of the most reproduced painting by Salvador Dali.
3http://micro.magnet.fsu.edu/primer/java/scienceopticsu/powersof10/

3

scale). For digital images the outer scale is the size of the image and

the inner scale is the size of the pixel. In western literature, one of

the first systematic ways of dealing with multi-scale is the image pyra-

mids [40], which is a stack of images of the same scene with decreasing

resolutions. The idea was later formalized and became know as the

Gaussian scale-space [29, 98, 39, 84]4. Gaussian scale-space is a stack

of images where each image is a blurred version of the former. As

the name suggests, the blurring is done by convolving the original im-

age with Gaussian kernels of increasing widths. Several different sets

of basic constraints, the so-called scale-space axioms, have been pro-

posed and all suggested the Gaussian as the unique blurring kernel

family [95, 49]5. The Gaussian kernels and their derivatives have also

been found to resemble the receptive fields in the retina at the very

earliest stages of human visual system [51, 47, 50].

When an image is subjected to Gaussian smoothing, shapes in the

image change, and their distinct details merge and sometimes split.

The splitting of details in blurred images might at-first seem counter-

intuitive. However it does occur in daily life if one pays a little at-

tention. One classic example is the splitting of a leaf from the branch

4Because [29] was published in 1962 in Japanese, it was unknown to the western
literature until 1999 [96].

5Alternative scale-space representations including Poisson scale-space and α-
scale-space, which are related to Gaussian scale-space via a one-parameter class of
operationally well-defined intermediate representations generated by a fractional
power of (minus) the spatial Laplace operator. They are discussed in [14]
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of a tree when it is observed from a certain distance. The relation of

image structures at different scales is refereed to as the deep structure

of the image [39, 42], which will be discussed extensively in the the-

sis. Singular points in scale-space, where pairs of critical points merge

or split, are called catastrophe points. For one dimensional signals,

it has been proved that the original signals can be completely recon-

structed from the positions of these catastrophes [32, 31]. For images

of higher dimensionality e.g. 2, the problem is much more complicated

and perfect reconstruction has not yet been found [33, 34, 30].

A few methods for constructing image hierarchies representing the

deep structures of images in scale-space have been described in the lit-

eratures [98, 46, 42, 64, 60]. In this thesis, we propose and later exper-

imentally evaluate a novel scale-space image hierarchies called Multi-

Scale Singularity Trees (MSSTs). MSSTs are powerful and unique

because of their simple binary structure and straightforward construc-

tion method, and most importantly, their soft-linked nature, where all

connections in MSSTs are accompanied by their strengths. Using the

matching algorithm developed specifically for MSSTs to fully exploit

their unique properties, the usefulness and performance of MSSTs are

further shown experimentally.

1.1. The DSSCV Project 5

1.1 The DSSCV Project

The Deep Structures, Singularities, and Computer Vision (DSSCV)

project was a multi-organization project supported by the IST Pro-

gramme of the European Union (IST-2001-35443). The project was

started in October 2002 and ended in September 2005. Its main pur-

pose is to develop, both in theory and in practice, sophisticated image

and shape representations, and efficient algorithms for solving specific

computer vision tasks.

The members of the project consisted of several experts in the

fields, post-docs and Ph.D. students from four institutes located in

three European countries: Denmark, United Kingdom, and The Nether-

lands. Using singularity theory, scale-space theory, and algorithmics,

the project attacked the computer vision problems from different yet

related angles.

The author’s specific jobs in the DSSCV project has been to de-

velop a tree structure image representation called Multi-Scale Singu-

larity Trees (MSSTs) that represent the deep structures of images, a

matching algorithm based on the MSSTs, and to evaluate the per-

formance of the matching method on specific image databases. We

emphasize that the goal has not been to find a fast algorithm, but to

quantitatively study the accuracy and demonstrate the advantages of

MSSTs in image matching.
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1.2 A Guide to the Rest of the Thesis

This thesis consists of a collection of selected articles the author pub-

lished during his Ph.D. study. Published articles are updated with new

developments and corrections. Each article is rearranged according to

the format of the thesis, and is included in the thesis as a chapter.

The author decided to keep each chapter readable on its own. This

means that there might be some overlaps between each chapter, e.g.

multiple introductions to Gaussian scale-space. In this thesis, ther

term “scale-space” is used loosely to mean “Gaussian scale-space”.

The thesis is organized in two parts. The first part of the thesis

mainly concerns the theoretical aspects of the Gaussian scale-space

and the proposed Multi-Scale Singularity Trees. The second part of the

thesis exploits the concepts introduced in the first part in applications.

Part I contains two chapters where: Chapter 2 formally intro-

duces the Multi-Scale Singularity Trees (MSSTs) and explains in de-

tail the method that extracts and construct MSSTs from images. Two

kinds of MSSTs are presented namely the Extrema-Based MSSTs and

Saddle-Based MSSTs. Chapter 3 investigates the topological changes

of MSSTs under images perturbations. The changes or transitions of

the MSSTs are categorized into groups. The impact of each transition

is described and finally the discussion on the stability of Extrema-

Based MSSTs and Saddle-Based MSSTs is presented.

1.2. A Guide to the Rest of the Thesis 7

Part II contains two chapters where: Chapter 4 presents two ver-

sions of the image matching method that exploits the unique proper-

ties of MSSTs. The performance and various aspects of the match-

ing method are evaluated and presented using three publicly available

image databases. The performance comparison with state-of-the-art

methods is also presented. Chapter 5 demonstrates how MSSTs can

be used to constructed bounding volume hierarchies called Multi-Scale

Singularity Bounding Volume Hierarchies (MSS-BVHs) for collision

detection in physics-based computer animations.

Appendix A gives a mini tutorial on the software, implemented

using the methods described in the thesis, that extracts, visualizes,

and matches MSSTs.
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Theoretical Aspects



Chapter 2

Multi-Scale Singularity

Trees1

The challenge is to understand the image

really on all the levels simultaneously,

and not as an unrelated set of derived

images at different levels of blurring.

J.J. Koenderink

We consider images as manifolds embedded in a hybrid of a high di-

1An earlier version of this work titled “Multi-Scale Singularity Trees : Soft-
Linked Scale-Space Hierarchies” has been published in Proceedings of the 5th In-
ternational Conference on Scale-Space 2005 [80].
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mensional space of coordinates and image features. Using the energy

functional and mathematical landmarks proposed in this chapter, we

partition an image into segments. The nesting of image segments

occurring at catastrophes in scale-space is used to decide their rela-

tions and construct an image hierarchy called Multi-Scale Singularity

Tree (MSST). We propose two kinds of mathematical landmarks: ex-

trema and saddles. Unlike all other similar methods described hith-

erto, our method produces soft-linked image hierarchies in the sense

that all possible connections are suggested along with their energies.

The additional information makes possible for directly estimating the

stability or strength of each connection and hence the costs of pos-

sible transitions. Aimed applications of MSSTs include multi-scale

pre-segmentation, image matching, sub-object extraction, and hierar-

chical image indexing and retrieval.

2.1 Introduction

We are interested in the development of a multi-scale image represen-

tation which is expected to be invariant under certain image trans-

formations and small image perturbations. Images of objects of any

complexity, when observed at a certain distance or measured at a

certain scale, eventually reduce to an indistinguishable blob. Small

structures in the image are merged at low scales, larger structures at

2.1. Introduction 13

higher scales. The splitting also sometimes occurs. The collection of

these events happened at all scales in scale-space is commonly referred

to as the deep structure of images.

In this chapter, We propose a binary tree structure to represent

the deep structure of images, where small image structures at low

scales are represented by nodes located low in the tree and large image

structures at high scales are represented by high nodes in the tree.

Binary trees are of interest because their edit distances are possibly

convenient and fast distance measure for images they represent.

In [46], the isophotes of the intensity levels at catastrophes were

used to partition an image into regions called extremal regions. The

nesting of extremal regions were then used to construct an image hi-

erarchy. Scale-space saddles were first extensively discussed in [42]. It

has been shown that the iso-surfaces of the image intensity at those

points provide a scale-space hierarchy which may be used to nest ex-

trema in a tree. In [60], multi-scale image hierarchies built using the

nesting of gradient magnitude watershed in scale-space have been used

successfully for interactive segmentation.

All of the above mentioned multi-scale image hierarchy building

methods produce trees that we consider to called hard-linked. Our

method produces soft-linked trees where each connection in the trees

is accompanied by its strength.
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Using tree structures as image representations, image matching

problems can then be rephrased as tree matching problems. It re-

duces computer vision problems to tree manipulation problems and

transforms the relatively unfamiliar problems to the well-understood

and profoundly-investigated mathematical problems. In practice, us-

ing tree structures also give possibilities to naturally compromise be-

tween speed and accuracy.

Possible applications of Multi-Scale Singularity Trees (MSSTs) in-

clude multi-scale pre-segmentation, image matching using MSSTs, sub-

object extraction, hierarchical image retrieval in large image databases,

etc.

2.2 Gaussian Scale-Space

The N + 1 dimensional Gaussian scale-space, L : R
N+1 → R, of an N

dimensional image, I : R
N → R, is an ordered stack of images, where

each image is a blurred version of the former [29, 98, 39]. The blurring

is performed according to the diffusion equation,

∂tL = ∇2L , (2.1)

where ∂tL is the first partial-derivative of the image in the scale direc-

tion t, and ∇2 is the Laplacian operator, which in three dimensions

2.2. Gaussian Scale-Space 15

reads ∂2
x + ∂2

y + ∂2
z . Boundary condition: L(·, 0) = I(.). The Gaussian

kernel is the Green’s function of the heat diffusion equation, i.e.

L(·; t) = I(·) ⊗ g(·; t) , (2.2)

g(x; t) =
1

(4πt)N/2
e−xT x/(4t) , (2.3)

where L(·, t) is the image at scale t, I(·) is the original image, ⊗ is the

convolution operator, g(·; t) is the Gaussian kernel at scale t, N is the

image dimensionality, and t = σ2/2, using σ as the standard deviation

of the Gaussian kernel. The Gaussian scale-space is henceforth called

the scale-space in this article.

The information in scale-space is logarithmically degraded, the

scale parameter is therefore often sampled exponentially [51] using,

σ(m) = σ0b
m , (2.4)

for some base b. Since differentiation commutes with convolution and

the Gaussian kernel is infinitely differentiable, differentiation of images

in scale-space is conveniently computed as,

∂xnL(·; t) = ∂xn (I(·) ⊗ g(·; t)) = I(·) ⊗ ∂xng(·; t) . (2.5)

Alternative implementations of the scale-space are multiplication in
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the Fourier Domain, finite differencing schemes for solving the heat

diffusion equation, additive operator splitting [97], and recursive im-

plementation [12, 91].

Each method has different advantages and disadvantages. We pre-

fer the spatial convolution, since it guarantees not to introduce spu-

rious extrema in homogeneous regions at low scales. Typical border

conditions are Dirichlet, Cyclic repetition, and Neumann boundaries.

We use Dirichlet boundaries, where the image is extended with zero

values in all directions according to the size of the convolution kernel.

Although the dimensionality of the constructed scale-space is one

higher than the dimensionality of the original image, critical points, in

an image at each scale are always points. The critical points treated

in this chapter are extrema and saddles, ∂xL = ∂yL = 0, and the

critical points are classified by the eigenvalues of the Hessian matrix,

the matrix of all second derivatives, computed at the critical point.

Critical points with all positive eigenvalues are minima, critical points

with all negative eigenvalues are maxima, and critical points with a

mixture of both negative and positive eigenvalues are saddles. Zero

eigenvalues are non-generic.

As we increase the scale parameter, critical points move smoothly

forming critical paths. Along scale, critical points meet and annihilate

or are created at catastrophes. Such events are called catastrophic

2.3. Building Scale-Space Hierarchies 17

events, and the points where they occur in the scale-space are called

catastrophe points. The collection of catastrophic events at all scales

is called the deep structure of the images.

The notion of genericity is used to disregard events that are not

likely to occur for typical images, i.e. generic events are stable under

slight perturbations of the image. There are only two types of generic

catastrophic events in scale-space namely pairwise creations and pair-

wise annihilations [11]. It has further been shown that generic catas-

trophic events only involve pairs of critical points where one and only

one eigenvalue of the Hessian matrix changes its sign, e.g. the annihi-

lation of a minimum (+, +) and a saddle (+,−), a maximum (−,−)

and a saddle (+,−), etc. A detailed discussion of a method for detect-

ing critical paths and catastrophe points in scale-spaces can be found

in [77].

2.3 Building Scale-Space Hierarchies

There are already a few scale-space methods that construct image

hierarchies of two-dimensional images proposed in the literatures so

far [46, 42, 64]. An attempt to construct image hierarchies from the

deep structures of three-dimensional images was proposed in [60] fol-

lowed by [77, 79, 78]. The latter scheme, which will be described ex-

tensively here, produces rooted ordered binary trees called Multi-Scale
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Singularity Trees (MSSTs) with catastrophe points as nodes.

In order to guarantee that the produced structures are always trees,

our method only considers the linking of landmarks that exist at the

original image. Only annihilations are considered and creations are

systematically ignored. These creation events are generic however not

frequent. Creation events could actually be included in the structure

in the same manner but the method would inevitably produce graphs

rather than trees.

The method can be used to construct scale-space hierarchies of

images of any dimensionality, assuming that critical paths and catas-

trophe points can be correctly detected. Our current implementation

is capable of constructing MSSTs of two- and three-dimensional im-

ages.

2.3.1 Energy Functional and Energy Partitions

Given an image and a set of landmarks, we would like to partition the

image into segments so that each image segment contains exactly one

landmark.

Let Ω ⊂ R
N be a compact connected domain and define I : Ω →

R
+ to be an image, ~e ∈ Ω as a landmark, and ~x ∈ Ω as a point in

the domain. Consider a set of continuous functions γ : [0, P ] → Ω for

which γ(0) = ~e and γ(P ) = ~x, γ ∈ Γ~e~x, where Γ~e~x is the set of all

2.3. Building Scale-Space Hierarchies 19

possible paths in the domain from the landmark ~e to the point ~x, and

where γ is parameterized using Euclidean arc-length (See section 3.3).

We define the energy E~e(~x) with respect to an extremum ~e evaluated

at ~x as,

E~e(x) = inf
γ∈Γ~e~x

∫ P

0

√

(α − 1) |
dγ(p)

dp
|2 +α |

dI(γ(p))

dp
|2dp , (2.6)

for some 0 ≤ α ≤ 1. Consider images as manifolds embedded in a

high dimensional space, an N dimensional intensity image becomes an

N dimensional manifold embedded in the hybrid N + 1 dimensional

space of coordinates and image intensity, the “space-feature” [36]. In

this case the only feature is the intensity or the zeroth jet space. The

energy functional can be defined for higher order jet space images,

color images, or locally orderless images with scale-space histograms

to handle texture [90], if a metric in the feature space is given.

For two-dimensional images, an image may be considered a height

plot, and the energy at any point in the image with respect to a

landmark can be thought of as the minimum weighted distance in

3-dimensional space, traveling up and down, from the landmark to

that point.

The parameter α can be set to alter the emphasis of the energy

functional between image space and image intensity. When α = 1,

the energy functional also known as the path variation [1], which is
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a generalization of the total variation. The path variation depends

solely on the image intensity and is invariant to affine transforma-

tion of the underlying space. Moreover, the energy is co-variant with

scaling of the image intensity. When α → 0, the energy functional

will increasingly depend on the spatial distance, and therefore become

increasingly localized in space.

Let E ⊂ Ω be the set of all landmarks in the image: An image

segment or an energy partition Si associated with a landmark ~ei ∈ E

is defined as the set of all points in the images, where the energy E~ei
(~x)

is minimal, i.e.

Si = {~x ∈ Ω|E~ei
(~x) < E~ei

(~x), ∀~ej ∈ E , i 6= j}. (2.7)

An approximation of the energy map E~ei
: Ω → R

+, which gives

the energy computed at every point in the image with respect to the

landmark ~ei, can be efficiently calculated using the Fast Marching

Method [87, 70, 71, 72, 73, 74] to be discussed in section 2.3.2.

The tessellation of the image segments obtained depends on the

selection of the landmarks and the energy functional. Mathematical

landmarks such as extrema seem to be a natural choice, since they

are directly linked to the image content, i.e. significant features in

the image usually contain at least one such points. Moreover, they

can be easily and automatically detected, and the behavior of these
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critical points in scale-space is well studied. If extrema are used as

landmarks, the produced image hierarchies are called Extrema-Based

MSSTs. Another candidate for landmarks are the saddles, and the

produced image hierarchies are called Saddle-Based MSSTs. Both

versions of the MSSTs will be discussed in section 2.3.3.

2.3.2 The Fast Marching Method

One of the typical problems in graph theory is the minimum-cost path

problem, which is to find the least expensive path connecting two

specific vertices of a directed or undirected graph. The minimum-

cost path problem can be formulated as the solution to the non-linear

Eikonal equation

| ∇u(x) |= F (x), F (x) > 0 , (2.8)

where cost function F (x) is typically given and can be interpreted as

the delay, while the accumulated cost u(x) can be thought of as the

arrival time. If the cost function F (x) is set to a constant, the solution

to the Eikonal equation is also known as the distance transform.

The Fast Marching Method [87, 70, 71, 72, 73, 74] is a highly

efficient numerical technique that solves the Eikonal equation robustly.

The method is based on the causality condition that the arrival time

at any point depends only on the neighbors that have smaller arrival
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times.

For the energy map generation problem, the accumulated cost u(x)

is the energy and the cost function F (x) is given by

F (x) =
√

(α − 1) + α | ∇I |2 , (2.9)

where I is the image, and α is the weighting parameter of the energy

functional (2.6). The Fast Marching Method categorize the grid points

into 3 sets namely, Accepted, Trial, and Far. Initially, the starting

point is added to Accepted, its 4-neighbors are added to Trial, and all

other points are added to Far. Secondly, the energy of points in Far

are set to ∞, and the energy of the starting point is set to 0. Next,

given the cost function, compute the energy for points in Trial. Then

the loop begins:

1. Find the point in Trial that has the smallest energy and move

it to Accepted.

2. For each of its 4-neighbors that is not in Accepted :

(a) Compute and update its energy if the computed energy is

less than its current energy.

(b) If the point is in Far, move it to Trial.

3. Repeat 1, 2, and 3, until all points are in Accepted.
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The Fast Marching Method continually expands the Accepted outward

with the narrow band of Trial and diminishes Far until all points are

in Accepted and their energy are known.

The efficiency of the Fast Marching Method lies in the fast way

of finding the grid point in Trial that has the smallest energy. The

min-heap data structure [69], is used to store points in Trial keeping

the cost of locating the grid point with minimum energy minimal.

2.3.3 Multi-Scale Singularity Trees

MSSTs are constructed by connecting annihilating catastrophe points

based on the nesting of image segments in the scale-space. Because

of the only generic catastrophes are the pairwise interactions between

critical points in scale-space and two catastrophes never occur at the

same scale, MSSTs are always rooted ordered binary tree.

MSSTs consist of nodes and their relations. Each MSST node

consists of three important components: The image segment that im-

mediately covers the area of the image segment disappearing at the

catastrophe. For algorithmically convenience we denote the covering

image segment the leftport, the catastrophe for the body, and the disap-

pearing image segment for the rightport. Because there is exactly one

image segment associated with a landmark, and we choose the land-

marks such that exactly one landmark disappears at an annihilation
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catastrophe point, then exactly one image segment also disappears.

A node SleftCbodySright is generated if an image segment Sright

disappears at the catastrophe Cbody inside an image segment Sleft.

The inclusion is easily determined by calculating the energy map with

respect to the catastrophe Cbody: the image segment Sright is nested

inside the image segment Sleft, if the energy evaluated at the landmark

of Sleft is minimal among all landmarks existing at that scale.

As briefly mentioned above, MSSTs are rooted ordered trees. This

implies that connecting a node to another node as the leftchild or as

the rightchild are semantically different events.

MSSTs are built top-down starting from the highest catastrophe

at the coarsest scale. A new node Nnew : Snew,leftCnew,bodySnew,right

is connected as the leftchild of a node Ni : Si,leftCi,bodySi,right in the

MSST, if the node Ni does not have its leftchild and Snew,left = Si,left,

or as the rightchild, if the node Ni does not have its rightchild and

Snew,left = Si,right. Connecting a new node to the MSST closes one

port and open two ports. It can easily be seen that this process is

deterministic. We will now describe the algorithms for creating the

Extrema- and the Saddle-Based MSSTs.
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Extrema-Based MSSTs

Assuming that critical paths and catastrophe points in the scale-space

are correctly detected, then the tree building algorithm is as follows:

1. Set the root of the tree as BC∞Elast, where B denotes the border

of the image, Elast denotes the last extremum in scale, and C∞

denotes the virtual catastrophe at scale infinity, where the border

and the last extremum virtually annihilate.

2. At the highest unprocessed catastrophe Cnext in scale, calculate

the energy map with respect to the catastrophe and create a node

EcoverCnextEann, where Eann is the extremum that disappears

at Cnext, and the energy evaluated at the extremum Ecover is

minimal among all extrema existing at that scale.

3. Link the new created node as the leftchild of a node in the tree

that does not have its leftchild and where Ecover equals its left-

port, or as the rightchild of a node in the tree that does not have

its rightchild and where Ecover equals its rightport.

4. Repeat 2, 3, and 4, until all catastrophe points in the scale-space

are processed.

An example of Extrema-Based MSSTs, together with the schematic

drawing of the deep structure it represents, are shown in the left panel

of Fig. 2.1.
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Saddle-Based MSSTs

With slight modifications, a similar procedure is applied for construct-

ing Saddle-Based MSSTs, however now we consider saddles as land-

marks instead of extrema. The algorithm is as follows:

1. Set the root of the tree as CtopStop, where the leftport is set

to null, Ctop denotes the highest catastrophe in scale, and Stop

denotes the saddle that annihilates at the catastrophe Ctop.

2. At the highest unprocessed catastrophe Cnext in scale, calculate

the energy map with respect to the catastrophe and create a node

ScoverCnextSann, where Sann is the saddle that disappears at

Cnext, and the energy evaluated at the saddle Scover is minimal

among all saddles existing at that scale.

3. Link the newly created node as the leftchild of a node in the

tree that does not have its leftchild and Scover equals its leftport

or as the rightchild of a node in the tree that does not have its

rightchild and Scover equals its rightport.

4. Repeat 2, 3, and 4, until all catastrophe points in the scale-space

are processed.

Notice that because all saddles in an image merge with all but one

extremum and disappear at catastrophes, Saddle-Based MSSTs always
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have one node less than that of Extrema-Based MSSTs of the same

image. The awkward border B is also eliminated. An example of

Saddle-Based MSSTs, together with the schematic drawing of the deep

structure it represents, are shown in the right panel of Fig. 2.1,

2.3.4 Energy Matrices

The energy matrix is a crucial part of an MSST. It is responsible for

the soft-linked property of an MSST. The connections between catas-

trophes in an MSST are decided based on the energies computed at

all landmarks existing at the scale of the catastrophes. To make the

MSSTs “soft-linked”, not only the most probable connection with the

lowest energy is selected, but also all possible connections accompa-

nied by their energies are recorded in the so-called energy matrix.

Landmarks are sorted according to the scales of their corresponding

catastrophes and their energies are stored in the energy matrix such

that the element Mij of the energy matrix M is the energy of the

landmarks ej associated with the catastrophe Ci.

It’s the energy matrix that makes possible for the estimation of each

MSST connection stability and the derivation of appropriate costs of

MSST transitions. Examples of energy matrices of Extrema-Based

MSSTs and Saddle-Base MSSTs are shown on the top-left of Fig. 2.2

and Fig. 2.3, respectively.
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Figure 2.1: The top-left panel shows the schematic drawing of the
deep structure of an image containing four extrema, Ea, Eb, Ec, and
Ed and three saddles, Sa, Sb, and Sc. Consequently, assuming that
there is no creations, there are four catastrophe points, Ca, Cb, Cc,
and Cd in the scale-space. The horizontal lines denote the connections
between the catastrophe points and the extrema with minimal energy.
The Extrema-Based MSSTs corresponding to the deep structure is
shown on the bottom-left panel. The top-right panel shows the deep
structure of the same image but now with the horizontal lines showing
the linking connections between the catastrophe points and the saddles
with minimal energy. The corresponding Saddle-Based MSST is shown
on the bottom-right panel.
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2.3.5 MSST Examples of Real Images

The MSST building algorithm described above was implemented in

C/C++ and a publicly available image database of human faces [68]

was chosen to test our implementation. An example of Extrema-Based

MSSTs of a man face is shown in Fig. 2.2. The Saddle-Based MSST

of the same image is shown in Fig. 2.3. The scale-space is sampled

exponentially using (A.1) defined in Appendix A with σ0 = 2.0, T = 0,

and dT = 0.05.

2.4 Discussion

It is important to mention the differences between two related stabili-

ties: the stability of the catastrophe positions and the stability of the

relations between them, which are represented by the connections in

the MSSTs. Both entities effect the stability of the constructed hier-

archy as a whole. Under small image perturbations, it can be shown

experimentally that some catastrophes are more stable than others. In

general, catastrophes located in image areas with a lot of structures

tend to be more stable [65]. Using an appropriate stability norm,

unstable catastrophe points can be eliminated before the hierarchy is

constructed. On the other hand, the instability of their relations can-

not and must not be discarded. They have to be carefully measured,
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Figure 2.2: An example of Extrema-Based MSSTs. The energy matrix
is shown on the top-left panel. On the top-right panel is shown the
deep structure viewed horizontally to the image plane. The bottom
panel shows a three-dimensional view of the deep structure with the
first-scale image overlaid. The ∂xL = 0 and ∂yL = 0 curves are shown
on top of the first-scale image in blue and in yellow, respectively. The
extremal paths, minimal paths, and saddle paths are shown in red,
green, and blue, respectively. The MSST connections are denoted by
yellow horizontal lines.
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Figure 2.3: An example of Saddle-Based MSSTs. The energy matrix
is shown on the top-left panel. On the top-right panel is shown the
deep structure viewed horizontally to the image plane. The bottom
panel shows a three-dimensional view of the deep structure with the
first-scale image overlaid. The ∂xL = 0 and ∂yL = 0 curves are shown
on top of the first-scale image in blue and in yellow, respectively. The
extremal paths, minimal paths, and saddle paths are shown in red,
green, and blue, respectively. The MSST connections are denoted by
yellow horizontal lines.
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if one wants to estimate the costs of possible topological changes in

the hierarchies.

For example, one might want to know how stable a particular con-

nection is in the produced hierarchy under slight perturbations of the

original image. Consider an image that is similar or close to non-

generic ones, e.g. having near-symmetrical structures, only slight per-

turbations of the original image could change the topology or structure

of the produced hierarchy completely. For soft-linked hierarchies, the

stability of each connection in the hierarchies can be directly estimated

by looking at the distribution of the energies of all possible connec-

tions. If the energy of the best connection is much lower than all

others, the connection is stable and not likely to change easily. On the

other hand, if the energies of all connections are about the same, the

connection is not stable and will easily switch even by slight pertur-

bations. Because hard-linked hierarchy building methods described

e.g. in [46, 60, 42, 64] naturally suggest only one best connection,

there is no direct way of estimating the stability of connections of the

produced hierarchies.

The soft-linked scale-space hierachy building method of MSSTs de-

scribed here is theoretical extensible to produce trees of N -dimensional

images. An example of MSSTs constructed from a simple 3D image is

presented in section 5.3.
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2.5 Conclusion

We prefer our scale-space hierarchy building scheme because in con-

trast to hard-linked hierarchies produced by all other scale-space meth-

ods described hitherto, where only one best connection in the hierar-

chy is suggested, our method produces soft-linked image hierarchies in

the sense that all possible connections are suggested along with their

strengths or energies. The connection with the lowest energy can be

later selected in order to produce the best tree that represents the

image for the presentation purpose. The information concerning the

stability of each connection in an MSST is stored in the energy matrix.

The stability of each connection in MSSTs can be directly esti-

mated, and the cost of topological changes or MSST transitions can

be derived for further processing in applications e.g. image matching,

image retrieval and indexing in a large image database.



Chapter 3

Transitions of

Multi-Scale Singularity

Trees1

Everything should be made as simple as

possible, but not one bit simpler.

A. Einstein

Multi-Scale Singularity Trees (MSSTs) [80] are multi-scale image de-

1An earlier version of this work titled “Transition of Multi-Scale Singularity
Trees” has been published in Proceedings of the International Workshop on Deep
Structure, Singularity, and Computer Vision 2005 [83].
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scriptors aimed at representing the deep structures of images. Changes

in images are directly translated to changes in the deep structures;

therefore transitions or topological changes in MSSTs. Because MSSTs

can be used to represent the deep structure of images efficiently and are

potentially useful for many applications, it is theoretically interesting

and algorithmically important to carefully investigate and understand

each of the transitions and their impacts. In this chapter, we present

four kinds of MSST transitions and discuss the potential advantages

of Saddle-Based MSSTs over Extrema-Based MSSTs. The study of

MSST transitions presented in this paper is an important step toward

the development of the image matching and indexing algorithms based

on MSSTs.

3.1 Introduction

In scale-space theory [29, 98, 39], the relations between image struc-

tures at different scales is referred to as the deep structure of im-

ages [39, 48]. Based on the scale-space theory and the singularity

theory [95, 11], the Extrema-Based and Saddle-Based Multi-Scale Sin-

gularity Trees (MSSTs) [80] representing the deep structure of images

are constructed. Since MSSTs can be used to efficiently represent

the deep structures of images, the investigation of their transitions,

as the images are smoothly changed, is both theoretically interesting
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and crucially important for the development of algorithms based on

MSSTs. We will focus on developing an image matching algorithm.

In that way, different images can be related to each other through the

shortest series of transitions.

In this Chapter, we investigate the transitions of MSSTs by ob-

serving the movements and structural changes of critical paths and

catastrophe points in scale-space images, as the images are smoothly

changed. We begin by giving a short introduction to Gaussian scale-

space in Sec. 3.2, introducing energy functional and energy parti-

tions in Sec. 3.3, and presenting shortly the method of constructing

MSSTs in Sec. 3.4. Transitions of MSSTs are then carefully cate-

gorized and presented using illustrative examples in Sec. 3.5. Four

kinds of MSST transitions are presented, i.e. changes of catastrophe-

extremum/saddle positions, changes of catastrophe-catastrophe rela-

tions, changes of catastrophe ordering, and changes of extremum-

catastrophe connections. We present each transition and discuss its

impacts using a simple example. In Sec. 3.6, the potential advantages

of the Saddle-Based MSSTs over the Extrema-Based MSSTs are dis-

cussed and illustratively presented. Similar study of the transitions

of the Pre-Symmetry Set has also been done by one of our European

Project partners [43].
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3.2 Gaussian Scale-Space

The N + 1 dimensional Gaussian scale-space, L : R
N+1 → R, of an N

dimensional image, I : R
N → R, is an ordered stack of images, where

each image is a blurred version of the former [29, 98, 39]. The blurring

is performed according to the diffusion equation,

∂tL = ∇2L , (3.1)

where ∂tL is the first partial-derivative of the image in the scale di-

rection t, and ∇2 is the spatial Laplacian operator, which in two di-

mensions reads ∂2
x + ∂2

y . The Gaussian kernel is the Green’s function

of the heat diffusion equation, i.e.

L(·; t) = I(·) ⊗ g(·; t) , (3.2)

g(x; t) =
1

(4πt)N/2
e−xT x/(4t) , (3.3)

where L(·, t) is the image at scale t, I(·) is the original image, ⊗ is the

convolution operator, g(·; t) is the Gaussian kernel at scale t, N is the

dimensionality of the image I, and t = σ2/2, using σ as the standard

deviation of the Gaussian kernel.
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3.3 Energy Functional and Energy Parti-

tions

Given an image and a set of landmarks in the image, we would like

to partition the image into segments so that each segment contains

exactly one landmark. Let Ω ⊂ R
N be a compact connected domain.

We define I : Ω → R
+ as an intensity image, ~e as a landmark, and

~x ∈ Ω as a point in the domain. Consider a set of continuous functions

γ : [0, P ] → Ω for which γ(0) = ~e and γ(P ) = ~x. Write γ ∈ Γ~e~x, where

Γ~e~x is the set of all possible paths in the domain connecting landmark

~e to point ~x, and where γ is parameterized using Euclidean arc-length.

We define the energy E~e(~x) with respect to a landmark ~e evaluated at

~x as,

E~e(x) = inf
γ∈Γ~e~x

∫ P

0

√

(1 − α) |
dγ(p)

dp
|2 +α |

dI(γ(p))

dp
|2 dp , (3.4)

where α ∈ [0, 1] is a tunable weighting parameter between image inten-

sity and space. Note that (3.4) is independent of the parameterization,
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e.g. integrating with respect to q : [0, P ] → [0, P ] we find:

E~e(x) = inf
γ∈Γ~e~x

∫ p−1(x)

p−1(0)

√

(1 − α) |
dγ(p(q))

dp
|2 +α |

∂I(γ(p(q)))

∂p
|2 dq

= inf
γ∈Γ~e~x

∫ p−1(x)

p−1(0)

√

(1 − α) |
dγ(p)

dp
·
dp

dq
|2 +α | ∇I ·

dγ(p)

dp
·
dp

dq
|2 dq

= inf
γ∈Γ~e~x

∫ p−1(x)

p−1(0)

√

(1 − α) |
dγ(p)

dp
|2 +α |

dI(γ(p))

dp
|2

dp

dq
· dq

= inf
γ∈Γ~e~x

∫ P

0

√

(1 − α) |
dγ(p)

dp
|2 +α |

dI(γ(p))

dp
|2 dp .

(3.5)

Let E ⊂ Ω be the set of all landmarks in the image. An image segment

which we called an energy partition Si associated with landmark ~ei ∈ E

is defined as the set of all points in the image, where the energy E~ei
(~x)

is minimal,

Si = {~x ∈ Ω|E~ei
(~x) < E~ej

(~x), ∀~ej ∈ E , i 6= j}. (3.6)

An approximation of the energy map E~ei
: Ω → R

+, which gives the

energy with respect to landmark ~ei at every point in the image, can

be efficiently calculated using the Fast Marching Methods [87, 70, 71,

72, 73, 74]. The resulting energy map is an approximation because

isophotes in images generally do not coincide with the rectangular

sampling grids in digital images. We are currently developing an en-

ergy map calculating algorithm that is specifically designed according
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to this insight.

3.4 Multi-Scale Singularity Trees

Multi-Scale Singularity Trees (MSSTs) are constructed by connect-

ing annihilation catastrophes in the scale-space images based on the

nesting of energy partitions briefly described above [80].

It has been shown that creations and annihilations are the only

generic events in two and higher dimensional scale-space images [11].

Loops of critical paths in scale-space formed by creations immediately

followed by annihilations can also be observed in practice [42]. In

order to preserve the preferable tree structure of the produced MSSTs,

creations and loops in scale-space images are systematically removed:

1. Creations occurring on a critical path that can be traced back

down to the original image together with their corresponding

annihilations are pairwise removed and the whole critical path is

considered as the critical path that originates from the original

image and ends at the top-most annihilation.

2. Creations that are immediately followed by annihilations creat-

ing loops in scale-space and the critical paths involved in the

loops are removed.

The connections between catastrophes are decided from the nesting
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of image segments or energy partitions defined by the energy func-

tional and selected mathematical landmarks. Because of the natural

pairwise interactions between critical points in the generic scale-space

images [11] and the tree building scheme to be presented in the fol-

lowing, resulting MSSTs are always rooted ordered binary trees [80].

An MSST consists of nodes and their relations and each MSST node

has three components: (i) the rightport denoting the disappearing im-

age segment, (ii) the body denoting the annihilation catastrophe where

the nesting is decided, and (iii) the leftport denoting the image seg-

ment which immediately covers over the disappearing one. Because

we choose landmarks such that exactly one landmark disappears at an

annihilation catastrophe, and because there is exactly one landmark

associated with each energy partition, then exactly one energy parti-

tion disappears at an annihilation catastrophe. The collection of these

events creates nesting of image segments in scale-space and the linking

in MSSTs.

A node SleftCbodySright is generated when an image segment Sright

disappears at the catastrophe Cbody inside an image segment Sleft

. The inclusion is easily determined by calculating the energy map

with respect to the catastrophe Cbody: the image segment Sright is

nested inside the image segment Sleft, if the energy evaluated at

the landmark of Sleft is minimal among all other landmarks exist-
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ing at that scale. MSSTs are built top-down starting from the top

annihilation catastrophe at the coarsest scale. A new node Nnew :

Snew,leftCnew,bodySnew,right is connected as the leftchild of a node

Ni : Si,leftCi,bodySi,right, if the node Ni does not have its leftchild

and Snew,left = Si,left, or as the rightchild, if the node Ni does not

have its rightchild and Snew,left = Si,right.

It can easily be seen that this process is deterministic. When a

node is added, one connection point is closed while two new connection

points are opened, and free ports are always unique. Two versions

of MSSTs were proposed in [80] namely Extrema-Based MSSTs and

Saddle-Based MSSTs.

3.4.1 Extrema-Based MSSTs

Assuming that all critical paths and catastrophes in scale-space have

already been detected, the Extrema-Based MSST building algorithm

is as follows:

1. Set the root of the tree as BC∞Elast , where B denotes the

border of the image, Elast denotes the last extremum in scale,

and C∞ denotes the virtual catastrophe at scale infinity, where

the last extremum virtually disappears inside the image segment

of the border.

2. At the highest unprocessed catastrophe Cnext, calculate the en-
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ergy map with respect to that catastrophe and create a node

EcoverCnextEann, where Eann is the extremum that disappears

at catastrophe Cnext, and the energy evaluated at extremum

Ecover is minimal among all extrema existing at that scale.

3. Link the new created node as the leftchild of a node in the tree

that does not have its leftchild and where Ecover equals its left-

port, or as the rightchild of a node in the tree that does not have

its rightchild and where Ecover equals its rightport.

4. Repeat 2, 3, and 4, until all catastrophe points are processed.

The schematic drawing of the deep structure and its constructed Extrema-

Based MSSTs are shown together in the left column of Fig. 3.1.

3.4.2 Saddle-Based MSSTs

A similar procedure is applied to construct Saddle-Based MSSTs, how-

ever now we consider saddles for landmarks instead of extrema. The

algorithm is as follows:

1. Set the root of the tree as CtopStop, where the leftport is set

to null, Ctop denotes the highest catastrophe in scale, and Stop

denotes the saddle that annihilates at catastrophe Ctop.

2. At the highest unprocessed catastrophe Cnext in scale, calculate

the energy map with respect to that catastrophe and create a
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node ScoverCnextSann, where Sann is the saddle that disappears

at catastrophe Cnext and the energy evaluated at saddle Scover

is minimal among all saddles existing at that scale.

3. Link the new created node as the leftchild of a node in the tree

that does not have its leftchild and Scover equals its leftport or

as the rightchild of a node in the tree that does not have its

rightchild and Scover equals its rightport.

4. Repeat 2, 3, and 4, until all catastrophes are processed.

The schematic drawing of the deep structure and its constructed Saddle-

Based MSST are shown together in the right column of Fig. 3.1. Notice

that since in Saddle-Based MSSTs, the virtual catastrophe Cinf is not

relevant, Saddle-Based MSSTs always have one node less than those

of Extrema-Based MSSTs representing the same images.

3.5 Transitions of MSSTS

To illustrate the possible topological changes or transitions of MSSTs

an experiment was carried out. A series of generated images of three

stationary and one moving Gaussian blobs is used in the experiment.

A few samples of images selected from the series are shown in Fig. 3.2
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Figure 3.1: The schematic drawing of the deep structures and their cor-
responding Extrema-Based MSST and Saddle-Based MSST are shown
in the first and the second row of the left and right column, respec-
tively. Es denote extrema, Ss denote saddles, and Cs denote catas-
trophes. Horizontal lines indicate the connections or that paths con-
necting catastrophes and landmarks with minimal energies. The last
row of the figure shows trees of extrema and saddles, presented here
only for better interpretation of the MSSTs.
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Figure 3.2: Images of three stationary and one moving Gaussian blobs.
A few images taken from the series of generated images used in the
experiment.

Smooth changes of the generated images are forced by smoothly

changing the parameters used for generating those images. For each

test image, a scale-space is computed, the critical paths and catastro-

phes are detected and, finally, the Extrema-Based and Saddle-Based

MSST are constructed. Changes in the constructed MSSTs obtained

from neighboring test images are observed and carefully classified into

categories.

Four kinds of transitions can be observed, i.e. changes of catastrophe-

extremum/saddle positions, changes of catastrophe-catastrophe rela-

tions, changes of catastrophe ordering, and changes of extremum-

catastrophe connections. More complicated changes of MSSTs can

be described as a combination of these basic transitions.
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3.5.1 Changes of Catastrophe-Extremum/Saddle

Positions

The changes of catastrophe-extremum/saddle positions are simple tran-

sitions and do not effect the topology of the MSSTs. They are caused

by the movements of catastrophes in scale-space due to the displace-

ments of extrema/saddles and/or changes in their intensity values in

the original image. In this transition, catastrophes may change their

positions as long as their ordering in scale is undisturbed. Since the

catastrophe ordering is fixed, this transition produces no topologi-

cal changes of the MSSTs but only effects the contents stored in the

corresponding nodes. The changes of catastrophe-extremum/saddle

positions transition is illustrated in Fig. 3.3.

3.5.2 Changes of Catastrophe-Catastrophe

Relations

When the image is smoothly changed, some connections in the MSSTs

are getting more stable, while others getting more unstable, and at

some points the switching of connections will occur. When the nest-

ing of image segments in scale changes, the parent-child relations in

the Extrema-Based and Saddle-Based MSSTs will change accordingly.

The transition results in the change of the leftport of the correspond-

ing node and the movement of that node and its right-subtree to a

3.5. Transitions of MSSTS 49

Ea Eb Ec Ed EeSa Sb Sc Sd

Ca

Cb

Cc

Cd

B
o
rd

e
r

S
c
a
le

Space

BC∞Eb

BCdEe

suba subb

EbCaEa

EbCcEd

subc subd

EaCbEc

sube subf

Ea EbEc Ed EeSa Sb Sc Sd

Ca

Cb

Cc

Cd

B
o
rd

e
r

S
c
a
le

Space

CaSa

SaCcSc

SaCbSb

suba subb

ScCdSd

subc subd

Figure 3.3: Changes of catastrophe-extremum/saddle positions. The
original schematic drawings of the deep structures and their corre-
sponding Extrema-Based and Saddle-Based MSSTs before and after
the change of position transition are shown in the top and bottom row
respectively. No topological change of the MSSTs.
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new location in the MSST defined by its new leftport.

First, insert that node together with its right-subtree at the new

location defined by the ordering of the catastrophes and its updated

leftport, replacing the subtree that previously occupies the port. Sec-

ondly, The left-subtree of that node is then moved up and replaces the

position of the moved away node. Finally, the replaced subtree is then

reconnected as the left-subtree of the inserted node.

The situation is illustrated as the transition from the MSSTs in

Fig. 3.3 to the MSSTs in Fig. 3.4, where the node of Cb is changed

from being nested inside Ea to being nested inside Eb in the Extrema-

Based MSST and the node of Cb is changed from being nested inside

Sa to being nested inside Sc in the Saddle-Based MSST. Note that

the changes of catastrophe-catastrophe relations transition usually oc-

curs simultaneously with the changes of catastrophe-extremum/saddle

positions transition.

3.5.3 Change of Catastrophe Ordering

The positions of catastrophes change smoothly both spatially and in

scale as the image is smoothly changed and at some point a pair of

catastrophes will switch their ordering in scale.

The topology of MSSTs depends strongly on the ordering of the

catastrophes in scale. If the ordering changes the structure of Extrema-
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Figure 3.4: Changes of catastrophe-Catastrophe Relations. The
schematic drawings of the deep structures and the correspond-
ing Extrema-Based and Saddle-Based MSSTs after the changes of
catastrophe-catastrophe relations transition are shown in the top and
bottom row, respectively.
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Based and Saddle-Based MSSTs will change. If we only consider local

reordering between two neighboring catastrophes in scale or nodes in

MSSTs–larger changes of the ordering can be arrived by multiple local

reordering, the situation is quite simple. Either:

1. The two nodes do not hold parent-child relations:

The structure of the MSST is intact.

2. The two nodes hold parent-leftchild relation:

Swap the locations of the two nodes thereby swap their parent-

leftchild relations. Exchange the content of their leftports and

finally reconnect the left-subtree of the moved-up leftchild (new

parent) as the left-subtree of the moved-down parent (new left-

child). Their right-subtrees are left untouched.

3. The two nodes hold parent-rightchild relation:

Swap the locations of the two nodes thereby swap their parent-

rightchild relations. Set the leftport of the moved-down par-

ent (new rightchild) to that of the rightport of the moved-up

rightchild (new parent). Reconnect the right-subtree and the

left-subtree of the new parent as the left-subtree and the right-

subtree of the new rightchild, respectively. Finally, update the

leftport of the new parent and reconnect it at the new loca-

tion defined by its new leftport, following the procedure of the

changes of catastrophe-catastrophe relations transition.
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The first case of the changes of catastrophe ordering transition is sim-

ply the extension of the changes of catastrophe-extremum/saddle po-

sitions transition, where local reordering of catastrophes is allowed.

The second case can be thought of as a combination of the changes

of catastrophe-extremum/saddle positions and the changes of catas-

trophe ordering, while the third case is a combination of changes of

catastrophe-extremum/saddle positions, changes of catastrophe-catas-

trophe relations, and change of catastrophe ordering that occurs simul-

taneously.

The change of ordering transition is illustrated as the transition

from the MSSTs in Fig. 3.3 to the MSSTs in Fig. 3.5, where the

neighboring nodes of Ca and Cc swap their ordering positions in scale.

3.5.4 Changes of Extremum-Catastrophe Connec-

tions

Sometimes, structural changes of critical paths in scale-space occur.

The most familiar example of these changes is the transition through a

non-generic catastrophe where two extrema and one saddle meet at a

catastrophe and later one extremum survive. The catastrophe, before,

is connected to one extremum and, later, is connected to the others,

while its position is almost fixed.
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Figure 3.5: Changes of catastrophe ordering. The schematic draw-
ings of the deep structures and their corresponding Extrema-Based
and Saddle-Based MSSTs after the changes of catastrophe ordering
transition are shown in the top and bottom row, respectively.
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Figure 3.6: Changes of extremum-catastrophe connections. The
schematic drawing of the deep structure and the Extrema-Based MSST
after the changes of extremum-catastrophe connections transition.

The changes of extremum-catastrophe connections can be thought

of as the swapping of extremal path connecting between extrema and

their corresponding catastrophes. Since it does not effect the saddle

paths, this transition is only relevant to Extrema-Based MSSTs. In

MSSTs, the transition is translated to the swapping of the right-ports

and the right-subtrees of the two nodes.

The changes of extremum-catastrophe connections transition is il-

lustrated as the transition from the Extrema-Based MSST in the top

row of Fig. 3.3 to the Extrema-Based MSST in Fig. 3.6, where the

catastrophe-extremum connections between Ec and Cb and between

Ed and Cc swap.
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3.6 Extrema- VS. Saddle-Based MSSTs

Critical points in generic images can be categorized into maxima, min-

ima, and saddles by the signs of the eigenvalues of the Hessian ma-

trix.2 With proper boundary conditions, e.g. zero-padding, the image

in scale-space at scale infinity will hold only one extremum and no

saddle [52].

Frequently, the positions of extrema can change significantly, when

are traced back from the catastrophes in scale-space to the original

image at scale zero, even if only slight perturbation is imposed to the

image. These jumps of extrema positions are actually caused by the

swapping of extremal paths connecting extrema and their correspond-

ing catastrophes, and extremal paths that extends to higher scales.

The situation is illustrated in Fig. 3.7, where the swapping of extremal

paths occurs after slight perturbation is imposed.

The swapping of extremal paths result in complicated transitions

of Extrema-Based MSSTs as described above. On the other hand,

the swapping of extremal paths does not disturb the topology nor the

contents stored in nodes of Saddle-Based MSSTs at all.

Nevertheless, Saddle-Based MSSTs essentially do not fail to cap-

ture the changes of the original image due to these slight perturbations.

The swapping of extremal paths, that is translated to complicated

2The matrix of all second-ordered derivatives.
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Figure 3.7: The schematic drawings of the deep structures of an im-
age before and after imposing slight perturbation. Frequently, the
extremal paths connecting extrema and catastrophes can be easily
disturbed but the saddle paths can be considered stable.

transitions in Extrema-Based MSSTs, is simply transformed to simple

movements of saddles and catastrophes in Saddle-Based MSSTs.

The selection of Extrema-Based MSSTs or Saddle-Based MSSTs

should based on the aimed applications. However, the smaller number

of possible transitions for Saddle-Based MSSTs and their simplicity

are of interest. They may ease the development of algorithms based

on MSSTs and lead to simpler, faster, and better implementations.

3.7 Summary and Conclusions

This Chapter presents the set of possible transitions of the Extrema-

Based and Saddle-Based Multi-Scale Singularity Trees. The transi-

tions presented in this Chapter is a minimal set of MSST transitions

in a sense that all possible trees of the same number of nodes can be
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related to each other through series of transitions found in this set.

However, we have not proved conclusively that the set is complete,

since there might be other complex combinations of those transitions

in the set that, generically, occur simultaneously.

The simplicity of Saddle-Based MSST transitions, in comparison

with those of Extrema-Based MSSTs, is favorable. Because they are

simpler, they are easier to be understood. It will allow us to be able

to derive good estimations of the cost for each transitions and will

simplify further developments of the algorithms based on MSSTs.

The study of the transitions of Extrema-Based and Saddle-Based

MSSTs presented in this Chapter is an important step toward the

development of an image matching and indexing algorithm based on

MSSTs and the Tree Edit Distance (TED) algorithms [5], where the

distance or difference between two images is found as the minimum

cost of a series of edit operations that transforms the MSST of one

image into another.

Potential applications of MSSTs include image matching using

MSSTs, multi-scale image pre-segmentation, sub-object extraction,

hierarchical image retrieval in large image databases, etc. Recently,

MSSTs also found its applications in computer graphics [76].

Part II

Applications



Chapter 4

Image Matching using

MSSTs1

No great discovery was ever made

without a bold guess.

I. Newton

In scale-space theory, the relation of image features at different scales is

referred to as the deep structure of the image. Multi-Scale Singularity

Trees (MSSTs) represent the deep structures of images using binary

1An earlier version of this work has been published as a DSSCV project technical
report titled “Performance Evaluation of Tree Object Matching” [81] and “Report
on Matching 3D Image Structures by their MSSTs in a Given Application” [82].
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trees. Unlike all other similar multi-scale image descriptors previously

described in the literatures [46, 42, 64, 60], where only the connec-

tions between image features are suggested, MSSTs provide both the

connections and their strengths. In this chapter we describe and later

evaluate an image matching algorithm that exploits the properties of

MSSTs. Two versions of the algorithm are presented: an exact and an

approximation. Several experiments are conducted to empirically eval-

uate the performance of the matching algorithm under various kinds

of image distortions and noise levels. Further, the performance of the

matching algorithm is measured on three databases: the ORL face

database [68], magazine covers, and the COIL database [58]. Finally

the performance is compared with matching algorithms based on the

Scale Invariant Feature Transform (SIFT) [54], and the Positions of

Catastrophes (CAT) [35].

4.1 Introduction

The quantification of the differences or distances between images, and

choosing the two closest images is called image matching. Image

matching is a fundamental task in content-based image retrieval sys-

tems. The typical application of the system is that the user presents

the system with an image, and the system returns a ranked list of

some images obtained from a database that are similar. Such an ap-
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plication is becoming increasingly popular. Examples of its usages

are: large paper and television news archives, security systems, and

home/business image databases.

In this chapter, we only discuss Gaussian scale-space, which we

just call scale-space. The history of Gaussian scale-space can be found

in [95]. We have chosen to focus on two related works, matching

algorithms based on the Position of Catastrophes (CAT) [35] and on

the Scale Invariant Feature Transform (SIFT) [54], augmented with

the Earth Mover Distance (EMD) [67]. These methods are all based

on scale invariant features, where SIFT is the most developed and

successful.

In [35], a set of catastrophes in scale-space and their reconstruc-

tion coefficients were used as an image representation for matching.

The image matching problem was then translated into comparing sets

of points in high dimensional space. The distances between point

sets were calculated using the Earth Mover Distance (EMD) [67]. As

the authors realized, some catastrophes are more stable than others,

hence in [65] unstable catastrophes were discarded from the image rep-

resentations. They argued that catastrophes in an area with a lot of

structure are more stable. The amount of structure contained in a

spatial area around catastrophes can be estimated by the total vari-

ation norm. More in depth discussion of the stability of catastrophes
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based on perturbation theory and noise propagation was presented in

[2]. Such stability measures are an integral part of the EMD algo-

rithm. The subset of this method, where only the positions of the

catastrophes are used, is referred to as CAT in this chapter.

In [53, 54] and accompanying articles, a set of Scale Invariant Fea-

ture Transform (SIFT) were presented for image matching. The SIFT

features are calculated in scale-space as extremal points of differences

of Gaussian blurs. These are approximations of the scale normal-

ized (spatial) Laplacian, and their extremal points correspond to the

points of blob-detection [48]. Out of all detected points, the SIFT

algorithm selects robust points by eliminating low-contrast points and

edge points. Then local histogram of the gradient vector is sampled

non-linearly in a small number of orientation and magnitude bins. The

SIFT is a set of features for which an accompanying matching algo-

rithm has been proposed [3]: Best-Bin-First (BBF). In this chapter, we

use the Earth Movers Distance (EMD) [67] instead since the algorithm

is publicly available and it appears to have comparable performance

on the SIFT features.

None of the above mentioned image matching algorithms includes

the information on relations or linking between catastrophes or their

features in their image representations as opposed to the Multi-Scale

Singularity Trees (MSSTs) introduced in [80]. These novel trees and
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powerful multi-scale image descriptors represent the deep structures

of images and the relations of image features at different scales. Two

kinds of MSSTs have been proposed: Extrema-Based MSSTs and

Saddle-Based MSSTs. The difference between the two MSSTs is that

in the Extrema-Based, the catastrophes are linked with extrema, while

in the Saddle-Based, the catastrophes are connected to saddles. A

study of the transitions of MSSTs under image perturbations [83]

suggested that Saddle-Based MSSTs are potentially more stable and

preferable as image descriptors for matching.

In this chapter we will experimentally evaluate the usefulness of

Saddle-Based MSSTs as descriptors for image matching. The image

matching algorithm, which will be described in detail, calculates the

image distances using only the energy matrices of MSSTs. The topol-

ogy of MSSTs are decided from the information stored in the energy

matrices, and they are where the strengths of the connections can

be derived. Therefore, the quality of matching results may indicate

the amount of image information that is captured by the connections

between catastrophes in MSSTs.

4.2 Multi-Scale Singularity Trees

A Saddle-Based MSST is fully described by the saddles at the first-

scale image, the catastrophes in scale-space, and the invariant energy
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Figure 4.1: The original half energy matrix and the proposed full
energy matrix of Saddle-Based MSSTs extracted from the same image.

matrix. In this chapter, each element in an energy matrix is the en-

ergy calculated between a pair of saddles at the first-scale image as

opposed to the original Saddle-Based MSSTs described in [80] where

the energies are calculated at the scales of catastrophes. Examples of

the original half energy matrix and the proposed full energy matrix

of Saddle-Based MSSTs extracted from the same image are shown in

Fig. 4.1. Both versions of the energy matrices suggest approximately

the same connections in MSSTs. The energy matrix of a Saddle-Based

MSST then contains the energies between all pairs of saddles in the

image.

In scale-space, increasing the scale parameter simplifies the original

image. Saddles and extrema disappear or appear at annihilation and

creation catastrophes, respectively, and the only generic catastrophe

is pairwise annihilation or creation [11]. Since all saddles and extrema
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except one extremum in the original image eventually disappear at

annihilation catastrophes, saddles may all be uniquely associated with

annihilation catastrophes in scale-space.

Generically, the probability of two annihilations occurring at the

same scale is zero, and we may thus rank saddles according to the scales

of their associated annihilation catastrophes. The building of MSSTs

is done in a coarse to fine manner. The linking for each catastrophe

ci in an MSST can be decided by looking for the saddle sj , which

is present at the scale of the catastrophe ci, and calculate an energy

measure at the first scale image. The catastrophe ci is then linked to

the catastrophe cj that is associated with the saddle sj with the lowest

energy.

The energy between a pair of saddle si and saddle sj at the first

scale image, ranked according to the scales of their associated catas-

trophes, is the element Eij of the energy matrix.

Eij = inf
γ∈Γsisj

∫ P

0

√

(1 − α) |
dγ(p)

dp
|2 +α |

dI(γ(p))

dp
|2 dp , (4.1)

where I : Ω → R+ is an intensity image, γ : [0, P ] → Ω is a path in the

image parameterized by p, such that γ(0) = si and γ(P ) = sj , Γsisj

is the set of all possible paths the two saddles si and sj , and α is a

weighting factor between space and image intensity. Note that (4.1)

is independent of the parameterization, e.g. integrating with respect
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to q : [0, P ] → [0, P ] we find:

Eij = inf
γ∈Γsisj

∫ p−1(x)

p−1(0)

√

(1 − α) |
dγ(p(q))

dp
|2 +α |

∂I(γ(p(q)))

∂p
|2 dq

= inf
γ∈Γsisj

∫ p−1(x)

p−1(0)

√

(1 − α) |
dγ(p)

dp
·
dp

dq
|2 +α | ∇I ·

dγ(p)

dp
·
dp

dq
|2 dq

= inf
γ∈Γsisj

∫ p−1(x)

p−1(0)

√

(1 − α) |
dγ(p)

dp
|2 +α |

dI(γ(p))

dp
|2

dp

dq
· dq

= inf
γ∈Γsisj

∫ P

0

√

(1 − α) |
dγ(p)

dp
|2 +α |

dI(γ(p))

dp
|2 dp .

(4.2)

In this report the α = 1 is set so that the energy only depends on the

intensity of the image and is theoretically invariant under all image

transformations that act only on image space, but not on the intensity

of I. Substituting α = 1 in (4.1) one gets

Eij = inf
γ∈Γsisj

∫ P

0

∣

∣

∣

∣

dI(γ(p))

dp

∣

∣

∣

∣

dp . (4.3)

In plain English, the energy Eij , where α = 1 is the minimum sum

of image intensity differences along any possible paths from si to sj .

This is demonstrated in Fig. 4.2, which shows a magazine cover, the

zero-crossings of the first derivatives overlaid on top of the first scale

image, the deep structure, and the energy matrix. The first scale

image appears flipped because it is viewed from behind so that the

coordinate axises agree with the right hand rule. The energy matrix
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Figure 4.2: A magazine cover, its deep structure, and it’s energy ma-
trix. Maximal-paths, minimal-paths, and saddle-paths are displayed
in red, green, and blue, respectively. The zero-crossings of the first
derivatives Ix and Iy at the first-scale image are shown in light blue
and yellow, respectively.
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is symmetric with zeroes along its diagonal, and all its elements are

non-negative.

4.3 Coping with Creations

In 2 dimensions and higher, creations in scale-space are generic but the

tree building method as discussed above assumes that only annihila-

tions occur. In order to preserve the tree structure of the MSSTs and

to simplify the matching algorithm, creations and loops in scale-space

images are systematically removed.

It has been shown in [42] that although creations are generic, they

might not be easily detected. Creations that form loops are short-

lived, hence if we do not sample scale-space fine enough along scale,

then they may pass undetected. On the other hand, most creations

that do not form loops are followed closely by annihilations and slight

perturbations will merge them. Therefore we propose to handle cre-

ations as follows:

1. Creations that occurs in critical-paths, where those paths can be

traced down to the first-scale image, are pairwisely removed with

the next annihilations on that path in the direction that moves

to the first-scale image. The top-most annihilations catastrophes

on those paths are the catastrophes associated with the saddles
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Figure 4.3: Creations are systematically ignored. Critical-paths that
originate from creations are indicated by yellow. Left and right panels
show part of a deep structure before and after the removal of creations.
Pairwise removals of creation-annihilation pairs are indicated by color
changes of the paths from yellow to blue.

at the first-scale image.

2. Creations that eventually end at annihilations and form loops in

scale-space with no connecting path to saddles at the first-scale

image are ignored.

In Fig. 4.3 is shown an example of loop removals and pairwise removals

of creations and annihilations on critical paths that can tracked back to

the first-scale image. The figure shows examples of pairwise removals

of multiple creations and annihilations in critical-paths such that the

highest annihilation in each saddle-path is kept as the catastrophe
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associated with the saddle at the first-scale image. Likewise the figure

shows that creations resulting in loops are ignored.

4.4 Matching Algorithm

The distance between two images is calculated as a sum of the squared

differences of the corresponding elements in the normalized MSSTs’

energy matrices,

D(I, J) =
∑

i,j





EI(i, j)
√

∑

i,j EI(i, j)2
−

EJ (i, j)
√

∑

i,j EJ(i, j)2





2

, (4.4)

where I and J are two images to be matched, and EI and EJ are

the corresponding energy matrices. In order to remove the distortion

of the energy caused by possible different dynamic range of images,

the energy matrices are normalized by dividing each element with the

squared root of the sum of the element squared. Since D is a quadratic

combination of E, then D observes the same invariance as E, i.e. D

is invariant under all transformation of image space, such as scaling,

translation, and rotation.

The ordering of catastrophes in scale effects the location of rows

and columns of energy matrices: a swap of ordering between catastro-

phe ci and catastrophe cj in scale-space, corresponds to a swap of row
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Figure 4.4: The schematic diagram of the exact matching algorithm.
s denotes the total number of catastrophes, q denotes the number of
catastrophes used in the permutation, and p denotes the number of
catastrophes used in the calculation of the distance, where p ≤ q ≤ s.

i and row j, and column i and column j in the energy matrix. In or-

der to compute the minimal differences of the energy matrices taking

into account also the possible catastrophe reordering, the matching

algorithm is based on the minimum under possible swapping. In the

following we will present two versions of the algorithm: the exact and

the approximate matching.

4.4.1 Exact Matching

The exact matching algorithm, shown schematically in Fig. 4.4, searches,

among all permutations of the catastrophe ordering, for the ordering

that minimizes the distance in (4.4). Catastrophes corresponding to
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large scale structures in images are usually located high in scale. Be-

cause the saddles are ranked according to the scales of their associated

catastrophes, part of the energy matrix that corresponds to large scale

image structures are located on the top-left part of the energy matrix.

We cannot assume that all catastrophes in one image will exist in

another image to be matched. Hence, it is important that the matching

algorithm is able to discard or delete catastrophes that do not fit well

during the matching process. This is achieved in the exact matching

algorithm by permuting a slightly larger sub-matrix than that is used

in the distance calculation. For an energy matrix with s catastrophes,

the exact matching algorithm permutes the top-left part of the energy

matrix with q catastrophes, q ≤ s. Then, the computation of the

distance is performed only on the sub-matrix with p catastrophes,

p ≤ q, allowing catastrophes that are not fit very well to be discarded.

Because the searching space, sequentially processed by the algo-

rithm, grows factorically in q, only a small numbers of top catastro-

phes can be used. The experiment in the next section shows that

using 6 catastrophes is the most appropriate trade-off between speed

and accuracy and using 8 catastrophes sets a practical limit for the

10 × 10 database.

Catastrophes, which are far apart in scale are less likely to have

come form compatible image structure. However, the scale-space of
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a flat image with i.i.d. noise will show a rich catastrophe structure,

which is completely unstable, in the sense that drawing another noise

example from the i.i.d. noise will result in a completely different set of

catastrophes. Luckily, given a noise-level of the image, the statistical

variance of the catastrophe localization may be estimated [65, 2] and

this may be used as a weighted penalty in the catastrophe swapping.

We thus propose a matching cost based on Bayes’ Maximum A

Posteriori,

P (I|J) =
P (J |I)P (I)

P (J)
(4.5)

where P denotes the a posteriori, the error, the prior, and the evidence

probability distributions. When only interested in the maximum of

(4.5), then the evidence may be ignored to give,

I∗ = arg max
J

P (J |I)P (I). (4.6)

Further, since the logarithm is a strictly monotonic function, the max-

imum of (4.6) is equivalent to minimum of

I∗ = argmin
J

− log P (J |I) − log P (I) (4.7)

Since the distance measure between energy matrices is a squared mea-
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sure, we may rewrite it as a logarithm of a Gibbs distribution,

− logP (J |I) =
D(I, J)

2τ
+ log k, (4.8)

where k =
∑

K exp D(I,K)
2τ is the normalization factor calculated from

all possible images K, and τ is some temperature variable. The vari-

able k is constant for constant τ . In a similar manner we will design

a prior probability distribution. One possibility is to use

− log P (I) =
∑

i,j∈S

wi| log σi − log σj |

µ
+ log c (4.9)

where we constantly keep track of the original scale σi of every ca-

tastrophe, and relate this to the scale of the catastrophe, it has been

swapped with, σj . The weighting factor wi may be used to control

the movement of catastrophes, such that setting wi high will imply

that a catastrophe is unlikely to move. Finally the constant c is a

normalizing constant. Writing the cost of swapping catastrophe i and

j as,

F (i ↔ j) = 2| logσi − log σj |, (4.10)

we find that F has two nice properties. Firstly it is scale invariant,

i.e. scaling σ with some constant η implies that

F (i ↔ j) = 2| log ησi − log ησj | = 2| log σi − log σj |. (4.11)
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Secondly, we need not use the sequence of swapping performed for

catastrophe i to have reached place of catastrophe j, we need only

the absolute logarithmic difference to its starting point. This is an

advantage algorithmically.

4.4.2 Approximate Matching

To increase the number of catastrophes used in the distance calcu-

lations and improve its accuracy while keeping computational time

practical, we have devised the approximate matching algorithm, which

is shown schematically in Fig. 4.5.

The approximate matching algorithm uses the moving window

strategy: starting from the top-left part of the energy matrix, the

approximate algorithm places the moving window on top of q catas-

trophes. The approximate matching algorithm then searches for the

best catastrophe ordering among all possible permutations within the

window using the exact matching algorithm locally. Once the best

local ordering has been found, the moving window is moved one step

to the right and one step down to the next position. The top most

catastrophe in the previous window is assumed to be located at the

correct position globally. The approximate matching algorithm con-

tinues in the same manner until all or a given number of catastrophes

are processed.
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Figure 4.5: The schematic diagram of the approximate matching al-
gorithm. s denotes the total number of catastrophes, qi denotes the
number and position of catastrophes used in the permutation window
at step i, pi denotes the number and position of catastrophes used
in the calculation of the distance within the window at step i, and r
denotes the number of catastrophes used in the final calculation of the
distance, where pi ≤ qi ≤ r ≤ s and 0 ≤ i ≤ n.
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By keeping the window size small, more catastrophes can be used

in the distance calculation than that used in the exact matching algo-

rithm using the same computational time.

4.5 Experiments

Several experiments are performed on three image databases in order

to investigate various aspects of the proposed matching algorithm and

to compare its performance with selected state-of-the-art matching al-

gorithms from the literature. The image databases used in the exper-

iments are the ORL face database [68], the magazine cover database,

and the Columbia Object Image Library (COIL) database [58]. The

experiments may be classified into groups based on the databases used

as follows:

1. The matching of face images in the ORL face database. We in-

vestigate the effect of each tunable algorithm parameters namely

the number of catastrophes and the number of deletion (q −

p). We present the performance comparison between the exact

matching algorithm and the approximate algorithm using differ-

ent number of catastrophes. The matching results using randoms

points instead of the saddles are also presented to demonstrate

the richness of saddles. Finally, the performance comparison of
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the matching method and the methods based on CAT and SIFT

on the ORL face database is presented.

2. The magazine cover database is used in the experiments to inves-

tigate the effects of various image transformations and different

noise levels on the matching distance. A magazine cover is in-

creasingly scaled, rotated, and added with random noise then

the distances between the distorted images and the original im-

age are computed. Finally, the performance comparison of the

matching method and the methods based on CAT and SIFT on

the magazine database is presented.

3. The result of the matching algorithm on the images selected

from the COIL database is presented. Images of real-life objects

viewed at different angles are used in the experiment. The exper-

iment demonstrates the robustness of the MSSTs and the match-

ing method against mixed scaling and 3D view point changes.

Similarly, the performance comparison of the matching method

and the methods based on CAT and SIFT on the COIL database

is presented.

4.5.1 ORL Face Database

ORL face database is publicly available. It consists of 400 face images

of 40 individuals with 10 images each. A subset of 10 × 10 images is
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randomly chosen from the database and used in the experiments. In

Fig. 4.6 is shown images of 10 individuals selected from the ORL face

database. For each person, 10 face images are provided as shown in

Fig. 4.7 for the person number four in the selected group.

The matching results of the exact matching algorithm using dif-

ferent number of catastrophe are shown in Fig. 4.8. The performance

of the matching method increases as the number of catastrophes used

in the calculation increases. For this particular image database the

matching performance starts to level out when 8 catastrophes are used.

The matching results using random points instead of saddles is also

presented here for comparison. The deletion number of 1 was used in

the experiment.

In Fig. 4.9 is shown the impacts of the number of deletions on the

matching results. The positive effects of deletions only start to be vis-

ible when at least 6 catastrophes are used in the distance calculation.

With lower number of catastrophes, the deletions might even worsen

the matching result. This is due to the fact that for a very small

number of catastrophes, the amount of image information contained

in each catastrophe is proportionally large and it offsets the positive

effects of letting go unfitted catastrophes.

When more than 6 catastrophes are used in the distance calcu-

lation, the exact matching algorithm becomes very slow. Using the
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Figure 4.8: Matching results of the exact matching algorithm on the
ORL face database using different number of catastrophes and random
points.
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approximate matching algorithm, more catastrophes can be included

in the distance calculation while spending less computational time. In

Fig. 4.10 is shown the matching performance of the exact matching

algorithm compared with the approximate matching algorithm using

different number of catastrophes. The approximate matching algo-

rithm uses the window size of 6 and 1 deletion.

In Fig. 4.11 is shown the computational time used in second, plot-

ted in logarithmic scale, for the exact and the approximate matching

algorithms in order to complete the distance calculations on the se-

lected 10 × 10 ORL face database and produce the results shown in

Fig. 4.10. The computational time used for exact matching algorithm

increases significantly when more than 6 catastrophes are used in the

calculation. The computational time used for the approximate algo-

rithm, on the other hands, grows almost linearly with the number of

catastrophes. The approximate matching algorithm used the window

size of 6 and 1 deletion. Interestingly, using in total 10 catastrophes,

the performance of the approximate matching algorithm already beat

that of the exact matching algorithm using 8 catastrophes, and spent

less than 1/20 of the computational time used by the exact matching

algorithm. Finally, The matching results of our matching algorithm

(MSST) compared with those of the methods based on SIFT key-

points (SIFT) and the positions of catastrophes (CAT) are shown in
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Figure 4.10: Matching results of the approximate matching algorithm
compared with that of the exact matching algorithm using different
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rithm compared with that used by the approximate matching algo-
rithm in order to produce the results shown in Fig. 4.10.
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Fig. 4.12. The distance between sets of SIFT key-points and catastro-

phe positions are calculated using the Earth Mover Distance (EMD).

For each image, the mass of each feature point is set equally to 1/n,

where n is the number of feature points in the scale-space. In this par-

ticular experiment, our algorithm performs relatively poor compared

with the other two methods.

The matching results plotted against the number of raw data used

for our matching method (MSST), the method based on SIFT key-

points (SIFT), and the method based on positions of catastrophes

(CAT), are shown in Fig. 4.13, Fig. 4.14, and Fig. 4.15, respectively.

The results of the three methods are shown together for comparison

in Fig. 4.16.

Note that because the energy matrices of MSSTs are symmetric

with zeroes along their diagonals, the numbers of raw data contained

in energy matrices with e.g. 2, 3, and 4 catastrophes are 1, 3, and 6

numbers, respectively. The position of each catastrophe can be spec-

ified using 3 numbers and each SIFT key-point is represented using

128 numbers.

The CAT method performs relatively well using less numbers of

raw data while our method (MSST) needs a little more numbers of

raw data to start performing well. The SIFT method needs much

more raw data as it must use between 256 and 384 numbers in order
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to produce matching results comparable to CAT and MSST using only

about 30 data.

4.5.2 Magazine Cover Database

In Fig. 4.17 is shown the 11 magazine covers in the Magazine cover

database. Various kinds of objects can be found including computer

typed letters, man-made and natural objects, natural scenes, and arti-

ficial graphics, etc. In this section, we will use these images to evaluate

the behaviors of our algorithm under various image distortions and dif-

ferent levels of noise. Three important kinds of image distortions will

be included in the experiments: planar rotation, uniform scaling, and

random noise.

In Fig. 4.18 is shown the Piggy magazine cover scaled at different

scaling factor starting from 0.5 to 1.0. In Fig. 4.19 is shown the Piggy

magazine cover rotated at different in plane rotational angles starting

from 0◦ to 90◦ counterclockwise. Fig. 4.20 shows the Piggy magazine

cover with random noise added at different levels starting from 1% to

10%. Note that 1% noise means that each pixel in the image is added

with random number drawn from [−0.01, 0.01], when the pixels in the

image are valued between [0, 1]

The results of matching distorted images by uniform scaling, planar

rotation, and levels of random noise to their original images are shown
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Figure 4.13: Matching results plotted against the number of raw data
used for our matching algorithm (MSST) on the ORL face database.
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Figure 4.14: Matching results plotted against the number of raw data
used for the CAT method on the ORL face database.

4.5. Experiments 91

0

20

40

60

80

100

128 256 384 512 640 768 896 1024 1152 1280

C
o
rr

e
c
t

F
ir

st
M

a
tc

h
%

Number

SIFT

Figure 4.15: Matching results plotted against the number of raw data
used for the SIFT method on the ORL face database.
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Figure 4.16: Matching results against the number of raw data used for
MSST, CAT, and SIFT on the ORL face database.
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Figure 4.17: The original 11 magazine covers in the magazine cover database. Various kinds of objects
can be found including typed letters, man-made objects, natural scenes, and artificial graphics.

Figure 4.18: The Piggy magazine cover at various levels of scaling from 0.5 to 1.0. The original image
is indicated by its red border.
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Figure 4.22: The effect of uniform scaling. The distances between
scaled images at different scaling factors and the original image.

in Fig. 4.22, Fig. 4.23, and Fig. 4.24, respectively. It is noteworthy

to mention that the impact of image rotation is periodic. The error

is at the highest point, when the image is rotated at approximately

45◦. In contrast, the error is very small, when the image is rotated at

multiples of right angles. This is due to the fact that digital images are

sampled on a rectangular grid, and because the energy map calculation

using the Fast Marching Method [87, 70, 71, 72, 73] is implemented on

rectangular grids. The resulting energy maps inevitably will be most

inaccurately at rotational angles near 45◦.

The total of 10 images are produced from each of every magazine

cover in the Magazine cover database by performing the mixed uni-
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2 3 4 5 6 7 8 9 10 Key

8-6-1 98.18% 97.73% 96.36% 92.5% 90% 85.91% 81.56% 77.05% 72.42% 76.36%

10-6-1 100% 99.55% 98.18% 96.82% 95.09% 93.18% 90.13% 85.9% 80.51% 81.82%

CAT 57.27% 49.09% 39.09% 31.82% 28.73% 27.12% 24.81% 22.61% 20.71% 24.55%

SIFT 100% 100% 99.70% 99.77% 99.45% 99.24% 99.22% 97.05% 95.15% 100%

Figure 4.25: Matching results of three different methods on the transformed magazine cover database.
Our method (MSST) uses 8, and 10 top catastrophes, 1 deletion, with the window size of 6 catastrophes.
The first column are the percentages of the second image being matched correctly, the second column
are the percentages of the second and the third images being matched correctly, etc. The first image
is the inquiry image and is always matched correctly. The last column gives the results of matching all
distorted magazine covers only to the key image of each set (the original image). The matching results
of SIFT and CAT using comparable computation time are also provided for comparison.
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Figure 4.26: Matching results plotted against the number of raw
data used for our matching algorithm (MSST) on the magazine cover
database.
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Figure 4.27: Matching results plotted against the number of raw data
used for the CAT method on the magazine cover database.
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Figure 4.28: Matching results plotted against the number of raw data
used for the SIFT method on the magazine cover database.
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Figure 4.29: Matching results against the number of raw data used for
MSST, CAT, and SIFT on the magazine cover database
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form scaling and planar rotation. The original image is rotated at

various rotational angles then the rotated images are scaled so that

the widths of the images remain constant. In Fig. 4.21 is shown an

example of images produced using the procedure from the Archeology

magazine cover. The set of 11 × 10 transformed magazine covers are

then used in the experiments. The Matching results of our method

using different number of top catastrophes compared with the other

two methods (CAT and SIFT) are shown in Fig. 4.25. SIFT and our

method perform very well with SIFT performing slightly better. CAT

performs poorly because positions of catastrophes are not invariant to

severe translation, rotation, and scaling.

The matching results plotted against the number of raw data used

for our matching method (MSST), the method based on SIFT key-

points (SIFT), and the method based on positions of catastrophes

(CAT), are shown in Fig. 4.26, Fig. 4.27, and Fig. 4.28, respectively.

The results of the three methods are shown together for comparison

in Fig. 4.29.

Our method performs the best in this experiment. Using only 9

data, our method produced almost perfect result while SIFT must

use up to 384 data in order to produce a comparable result. It is

interesting to mention that the CAT method performs better using

low numbers of catastrophes, compared to its matching results shown
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in Fig. 4.25 using all catastrophes in the images, because the positions

of catastrophes located high in scale are more invariant to rotation and

scaling than those located low in scale. Please note that no attempt

has been made on making CAT rotational invariant.

4.5.3 COIL database

The Columbia Object Image Library (COIL) database [58] consists

of images of various real-life objects captured at different 3D view

points. The objects are rotated at intervals of 5◦. The images are also

subjected to different degrees of scaling.

Fig. 4.30 shows the 10 selected objects obtained from the COIL

database. For each object, 10 images of different 3D view points be-

tween 0◦ and 45◦ are drawn from the database. In Fig. 4.31 is shown

the 10 selected views of an object in the selected group from the COIL

database. The key image, which is the middle sample, is indicated by

its red border.

In total, 10× 10 images selected from the COIL database are used

in the experiment. The matching results of our algorithm (MSST),

the method based on SIFT key-points (SIFT) and the method based

on positions of catastrophes (CAT) are shown together for comparison

in Fig. 4.32. All three methods performs very well especially SIFT,

with our method slightly lagging behind.
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Figure4.30:Theselected10objectsfromtheCOILdatabase.

Figure4.31:The10selectedviewsofanobjectfromtheCOILdatabase.Thekeyviewistheviewof
20

◦
andisindicatedbyitsredborder.
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8-6-1 96% 92.5% 90% 84% 78.8% 72.67% 68.14% 62.38% 58.56% 70%

10-6-1 96% 92% 88.67% 83.25% 77.2% 70.83% 64.28% 59.38% 55.11% 72%

10-8-1 97% 93% 87% 83.25% 78% 73.17% 67.71% 63.25% 58.33% 76%

CAT 100% 99% 97% 95% 90.6% 85.67% 81.29% 76.13% 71.78% 89%

SIFT 100% 100% 100% 100% 100% 99.83% 99% 98.13% 96.33% 100%

Figure 4.32: Matching results of different methods on the COIL database. Our method (MSST) uses
8, 10, and 10 top catastrophes with window size of 6, 6 and 8 catastrophes, respectively. All of which
use 1 deletion. The first column are the percentages of the second image being matched correctly, the
second column are the percentages of the second and the third images being matched correctly, etc.
The first image is the inquiry image and is always matched correctly. The last column gives the results
of matching all views of all objects only to the key view of each object. The matching results of SIFT
and CAT using comparable computation time are also provided for comparison.
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The matching results plotted against the number of raw data used

for our matching method (MSST), the method based on SIFT key-

points (SIFT), and the method based on positions of catastrophes

(CAT), are shown in Fig. 4.33, Fig. 4.34, and Fig. 4.35, respectively.

The results of the three methods are shown together for comparison

in Fig. 4.36.

The CAT method perform very well using less number of data. The

performances of our method (MSST) and CAT method are comparable

when 15 or more data are used while SIFT must used up to 256 data

to produce a similar performance.

4.6 Discussions and Conclusions

For our method, the matching of ORL face database is slightly harder

than the matching of the Magazine cover database and the COIL

database. This is due to the high similarity between sets of objects.

Faces all look quite similar, and they become even more similar, when

they are blurred.

Important features in the images are usually associated with catas-

trophes located relatively high in scale. Low catastrophes are fre-

quently associated with noise and insignificant features. The possi-

bility of trading accuracy for performance is naturally provided for

our method. Catastrophe located at lower scales can be simply dis-
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carded, if response time is the most critical factor with the price of

lower recognition rates.

For small database, using only a few top catastrophes are enough

for our matching method to produce good matching results. As the

number of catastrophes used in the calculation of the distance in-

creases, the method will have a better chance of discriminate in a

large database, but it will also be more sensitive to image distortions

and occlusions.

Our matching algorithm is considered currently in its very first

steps. There are many possibilities for improvements. One possibility

is the adaptive approximate algorithm, where the window size can grow

or shrink adaptively, while keeping the scale difference between the

highest and the lowest catastrophes in the window under a tunable

level. The adaptive approximate algorithm will not only reduce the

computational time but also likely to improve the matching results,

since it will give also options to the algorithm to discarded catastrophes

located high in scale, when appropriate.

The accuracy of the energy map generation is a very crucial part for

good matching results. As Fig. 4.23 and Fig. 4.22 show, the accuracy

of the current implementation, can still be largely improved, and we

expect this to substantially improve the matching results.

It is interesting to note that the performance comparisons of the
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Figure 4.33: Matching results plotted against the number of raw data
used for our matching algorithm (MSST) on COIL database.
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Figure 4.34: Matching results plotted against the number of raw data
used for the CAT method on the COIL database.
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Figure 4.35: Matching results plotted against the number of raw data
used for the SIFT method on the COIL database.

0

20

40

60

80

100

3 6 9 12 15 18 21 24 27 30 · · · 128 256 384 512

C
o
rr

e
c
t

F
ir

st
M

a
tc

h
%

Number

MSST

CAT

SIFT

Figure 4.36: Matching results against the number of raw data used for
MSST, CAT, and SIFT on the COIL database.
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three method presented in Fig. 4.12, Fig. 4.25, and Fig. 4.32, SIFT

and CAT use every piece of information they can collect form the

images for their calculation of the matching distances. SIFT uses in

general more than 75× 128 numbers to represent an image. CAT uses

in general more than than 50 × 3 numbers. Due to the limitations of

our relatively naive searching in a large space, our method uses only

up to 45 numbers (10 catastrophes) in the experiments. In spite of

that, we find that the matching results are comparable.

Earth Mover Distance (EMD) [67] is a very powerful and flexi-

ble method for point-set matching, as we hopefully demonstrated by

applying it for the matching of SIFT key-points and the positions

of catastrophes (CAT). Using Multidimensional Scaling (MDS) [100],

it is possible to embedded the MSSTs’ energy matrices into sets of

points in a high-dimensional euclidean space, where the distances be-

tween those points approximates the energies. We then can use EMD

to compute the distance just like what we did on SIFT key-points and

catastrophes’ positions. This will allow the utilization of the whole en-

ergy matrix and the matching results should be improved considerably.

However we will have to manage rotation and scaling explicitly.

For image matching and similar applications, the knowledge of only

the connections of image features at different scales is insignificant.

What significant is the knowledge of the strength of these connec-
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tions. In some scenarios e.g. matching closed to non-generic images,

without the knowledge of strengths of those connections, knowing the

connections themselves is useless. Fortunately, MSSTs provide us with

both. With their unique advantages, we believe that MSSTs will also

be found useful for many other applications.



Chapter 5

Multi-Scale Singularity

Bounding Volume

Hierarchies1

Just because something doesn’t do what

you planned it to do doesn’t mean it’s

useless.

T.A. Edison

1An earlier version of this work titled “A Multi-Scale Singularity Bounding
Volume Hierarchy” has been published as a technical report [75] and in Proceedings
of the 13th International Conference in Central Europe 2005 (WSCG’05) [76].
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A scale space approach is taken for building Bounding Volume Hierar-

chies (BVHs) for collision detection. A spherical bounding volume is

generated at each node of the BVH using estimates of the mass distri-

bution. Traditional top-down methods approximates the surface of an

object in a coarse to fine manner, by recursively increasing resolution

by some factor, e.g. 2. The method presented in this article analyzes

the mass distribution of a solid object using a well founded scale-

space based on the Diffusion Equation: the Gaussian Scale-Space. In

the Gaussian scale-space, the deep structure of extremal mass points

is naturally binary, and the linking process is therefore simple. The

main contribution of this article is a novel approach for construct-

ing BVHs using Multi-Scale Singularity Trees (MSSTs) for collision

detection. The BVH-building algorithm extends the field with a new

method based on volumetric shape rather than statistics of the surface

geometry or geometrical constructs such as medial surfaces.

5.1 Introduction

In physics-based animation, collision detection often becomes the bot-

tleneck, since a collision query needs to be performed in every sim-

ulation step in order to determine contacting and colliding objects.

Animations can have many objects, all of which may have a complex

geometry, such as polygonal soups of several thousands facets, and
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it is therefore a computationally heavy burden to perform collision

detection especially for real-time interaction.

Bounding Volume Hierarchies (BVHs) are widely used in computer

graphics, e.g. for ray tracing [19], and they are quite popular in an-

imation (e.g. [9] uses them for cloth animation), since they are ap-

plicable of handling more general shapes than most feature-based and

simplex-based algorithms, they tend to generate smaller hierarchies

than spatial subdivision algorithms, and they offer a graceful degrada-

tion of objects, which is highly useful when accuracy is to be traded for

performance. New performance improvements of BVHs is therefore of

great practical and theoretical interest to the computer graphics and

animation community.

The main contribution of this paper is a novel algorithm for bottom-

up construction of spherical approximating BVHs. We prefer our hi-

erarchies, firstly because they save memory, and therefore increases

simulation performance, when compared to traditional BVH, and sec-

ondly because they are a direct implementation of the mass of objects

rather than their boundary representation.

In this article we will restrain ourselves from the n-body problem

and only consider narrow phase [27] collision detection of solid non-

deformable objects.
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5.1.1 Previous Work

There is a wealth of literature on collision detection, and many differ-

ent approaches have been investigated. Spatial subdivision algorithms

like Binary Space-Partitioning (BSP) tree [55], octree [88, 17, 16], k-

d trees and grids [17, 16], feature-based algorithms like polygonal in-

tersection [57], Lin-Can [66], VClip [56], SWIFT [15], recursive search

methods [86], simplex-based such as GJK [18, 89], generalized Voronoi

diagrams [26], and signed distance maps [23, 9, 25]. Finally there are

algorithms based on BVHs such as ours.

BVHs have been around for a long time. Consequently there is a

huge wealth of literature about BVHs. Most of the literature addresses

homogeneous BVHs and top-down construction methods. A great

variety of different types of bounding volumes have been reported:

Spheres [28, 62, 13], axed aligned bounding boxes (AABBs) [4, 45],

oriented bounding boxes (OBBs) [21, 20], discrete orientation poly-

types (k-DOPs) [38, 101], Quantized Orientation Slabs with Primary

Orientations (QuOSPOs) [24], Spherical shell [41], and swept sphere

volumes (SSVs) [44]. In general, it has been discovered that there is a

trade-off between the complexity of the geometry of a bounding vol-

ume and the speed of its overlap test and the number of overlap tests

in a query.

In contrast to bounding volumes types, there has only been written

5.1. Introduction 115

little on approximating BVHs. To our knowledge [27] pioneered the

field, where octrees combined with simulated annealing were used to

construct a sphere tree, followed by [63, 62], cumulating with a supe-

rior bottom-up construction method based on medial surface (M-reps)

[28]. More recently [61, 13] used approximating sphere-trees built in a

top down fashion based on an octree for time critical collision detec-

tion, and [7] used an adaptive M-rep approximation-based top-down

construction algorithm.

There have been written even less about heterogeneous bounding

volume hierarchies, although object hierarchies of different primitive

volume types are a widely used concept in most of todays simulators

[59, 94]. The SSVs [44] are one of the most recent publications. The

general belief is, however, that heterogeneous bounding volumes does

not change the fundamental algorithms, but merely introduces a raft

of other problems. It is also believed that heterogeneous bounding vol-

umes could provide better and more tightly fitting bounding volumes

resulting in higher convergence toward the true shape volume of the

objects. This could mean an increase in the pruning capabilities and

a corresponding increase in performance.

Most of the work with BVHs has addressed objects that are rep-

resented by polygonal models. Many experiments also indicate that

OBBs (and other rectangular volumes) provide the best convergence
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for polygonal models [21, 20, 101, 44], while spherical volumes are

believed to converge best toward the volume. The underlying query

algorithms for penetration detection, separation distance and contact

determination of BVHs have not changed much. In its basic form,

these algorithms are nothing more than simple traversals.

To our knowledge, the trees based on the deep structure of Gaus-

sian Scale-Space has not been used previously for generating BVHs

in collision detection. An alternative to Gaussian scale-space is cur-

vature scale-spaces, from which M-reps are derived. M-reps based

methods are state of the art for bottom-up construction method [28]

and top-down construction [7]. For deformable objects such as cloth,

bottom-up construction based on mesh topology [93, 92, 8] are the pre-

ferred choice. In [4] a median based top-down method was proposed

for building an AABB tree. [45] suggested using a mesh connectivity-

tree in a top-down construction method.

5.2 Gaussian Scale-Space

The N + 1 dimensional Gaussian scale-space, L : R
N+1 → R, of an N

dimensional image, I : R
N → R, is an ordered stack of images, where

each image is a blurred version of the former [29, 98, 39]. The blurring
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is performed according to the diffusion equation,

∂tL = ∇2L , (5.1)

where ∂tL is the first partial-derivative of the image in the scale direc-

tion t, and ∇2 is the Laplacian operator, which in 3 dimensions reads

∂2
x + ∂2

y + ∂2
z .

An example of the scale-space of a three-dimensional solid cow is

shown in Fig. 5.1. The continuous scale parameter enables smooth

degradation of the object detail.

The Gaussian kernel is the Green’s function of the heat diffusion

equation, i.e.

L(·; t) = I(·) ⊗ g(·; t) , (5.2)

g(x; t) =
1

(4πt)N/2
e−xT x/(4t) , (5.3)

where L(·, t) is the image at scale t, I(·) is the original image, ⊗ is

the convolution operator, g(·; t) is the Gaussian kernel at scale t, N

is the dimensionality of the problem, and t = σ2/2, using σ as the

standard deviation of the Gaussian kernel. The Gaussian scale-space

is henceforth called the scale-space in this article. The information in

scale-space is logarithmically degraded, the scale-parameter is there-

fore often sampled exponentially using σ = σ0e
T . Since differentia-

tion commutes with convolution and the Gaussian kernel is infinitely
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differentiable, differentiation of images in scale-spaces is conveniently

computed,

∂xnL(·; t) = ∂xn (I(·) ⊗ g(·; t)) = I(·) ⊗ ∂xng(·; t) . (5.4)

Alternative implementations of the scale-space are multiplication in

the Fourier Domain, finite differencing schemes for solving the heat dif-

fusion equation, additive operator splitting, and recursive implemen-

tation [12]. We prefer the spatial convolution, since it is guaranteed

not to introduce new extrema in homogeneous regions. Typical border

conditions are Dirichlet, Cyclic repetition, and Neumann boundaries.

We use Dirichlet boundaries, where the image is extended with zero

values in all directions.

Although the dimensionality of the constructed scale-space is one

higher than the dimensionality of the original image, critical points, in

the image at each scale are always points. A critical point is e.g. an

extremum, ∂xL = ∂yL = ∂zL = 0. Critical points are classified by the

eigenvalues of the Hessian matrix, the matrix of all second derivatives,

computed at that point. As we increase the scale parameter, the crit-

ical points move smoothly forming critical paths. Along scale, critical

points meet and annihilate or are created. Such events are called catas-

trophe events, and the points where they occur are called catastrophe

points. The collection of events is called the deep structure of the im-
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age. The notion of genericity is used to disregard events that are not

likely to occur for typical images, i.e. generic events are stable under

slight perturbation of the image. There are only two types of generic

catastrophe events in scale-space namely pairwise creation events and

annihilation events [11], and it has further been shown that generic

catastrophe events only involves pairs of critical points where one and

only one eigenvalue of the Hessian matrix changes its sign, e.g. the

annihilation of a minimum (+, +, +) and a saddle (+, +, -), or of a

saddle (+, -, -) and a saddle (+, -, +), etc. The implementation detail

of the method for extracting critical paths and catastrophe points in

3+1D scale-space can be found in [77].

5.3 Multi-Scale Singularity Trees

Multi-Scale Singularity Trees (MSSTs) are scale-space based multi-

scale image representation. They are constructed based on the nest-

ing of image features in the scale-space to represent the deep struc-

ture of the original image. Two kinds of MSSTs are introduced in

[80]: Extrema-Based MSSTs and Saddle-Based MSSTs. Extrema-

Based MSSTs will be discussed in this article. The method produces

rooted ordered binary trees with catastrophe points as nodes. In 3+1D

scale-space, catastrophes are also possibly caused by creations or anni-

hilation of saddle points, e.g. between critical points with eigenvalues
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E0C1E1

E0C2E2 E1C3E3

Figure 5.2: The Extrema-Based MSST of a three-dimensional image
of four Gaussian blobs. The 2.0 iso-surfaces of the image at scale σ = 3
is shown in blue, on the left panel. The small red and blue spheres are
the maxima and saddles respectively. The blue lines are the critical
paths (the scale axis is projected away) and the small black spheres
are the catastrophe points. The black line and the red line denote the
leftchild linking and the rightchild linking in the tree. A schematic
drawing of the extracted MSST is shown on the right panel. Note
that, in this particular example, there is a saddle-saddle catastrophe
which is ignored.
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of the Hessian matrix (+, +, -) and (+, -, -). These saddle-saddle

annihilation catastrophes together with all creation catastrophes are

ignored.

Other scale-space based methods that produce tree structure but

only for up to 2+1D scale-space can be found in [46, 42].

5.3.1 Extrema Partitions

Given an image an any scale, we would like to partition the image

at one scale into segments so that each segment contains only and

exactly one extremum. Let Ω ⊂ R
N be a compact connected domain

and define I : Ω → R
+ to be an image, ~e ∈ Ω as an extremum, and

~x ∈ Ω as an image point in the domain. Consider a set of continuous

functions γ : [0, P ] → Ω for which γ(0) = ~e and γ(P ) = ~x, γ ∈ Γ~e~x,

where Γ~e~x is the set of all paths in the domain from the extremum ~e

to the point ~x, and γ is parameterized using Euclidean arc-length. We

define the energy E~e(~x) with respect to an extremum ~e evaluated at

~x as

E~e(x) = inf
γ∈Γ~e~x

∫ P

0

√

(α − 1) |
dγ(p)

dp
|2 +α |

dI(γ(p))

dp
|2 dp . (5.5)

Note that the energy functional is independent of parameterization.

When α = 1, the energy functional is also known as the path vari-

ation, a generalization of the total variation [1]. The path variation
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depends solely on the image intensity and is invariant to affine trans-

formation of the underlying space. Moreover, it is co-variant with

scaling of the image intensity. If α → 0, the energy functional will

increasingly depend on the spatial distance, and therefore become in-

creasingly localized in space.

Let E ⊂ Ω be the set of all extrema in the image. The extrema

partition [1]., Zi, associated with an extrema ~ei ∈ E is defined as the

set of all points in the domain, where the energy E~ei
(~x) is minimal,

Zi =
{

~x ∈ Ω
∣

∣E~ei
(~x) < E~ei

(~x), ∀~ej ∈ E , i 6= j
}

. (5.6)

An approximation of the energy map Mi : Ω → R
+, which defines the

energy at every point in the image associated with an extremum ~ei,

can be efficiently calculated using the Fast Marching Methods [87, 70,

71, 72, 73, 74].

5.3.2 Constructing MSSTs

MSSTs are defined by nodes and their relations. Each MSST node

consists of three components: The image segment(i) that immediately

covers the area of the image segment(ii) disappearing at the catas-

trophe(iii). For algorithmically convenience we denote the ‘surviving’

image segment the leftport, the catastrophe for the body, and the dis-

appearing image segment for the rightport. Because there is exactly
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one image segment associated with an extremum and exactly one ex-

tremum disappears at an annihilation catastrophe, then exactly one

image segment also disappears.

A node EleftCbodyEright is generated if an image segment of Eright

disappears at the catastrophe Cbody inside an image segment of Eleft.

The inclusion is easily determined by calculating the energy map with

respect to the catastrophe Cbody: the image segment of Eright is nested

in side the image segment of Eleft if the energy evaluated at Eleft is

minimal among all extrema existing at that scale.

Assuming that critical paths and catastrophe points in the scale-

space are already and correctly detected, then the MSST building

algorithm is as follows:

1. Set the root of the tree as ElastCtopEann, where Elast denotes

the last extremum that remains in the scale-space, Ctop denotes

the highest catastrophe in scale, and Eann denotes the extremum

that annihilates at the catastrophe.

2. At the highest unprocessed catastrophe Cnext in scale, calculate

the energy map with respect to the catastrophe and create a node

EcoverCnext Eann, where Eann is the extremum that disappears

at Cnext, and the energy evaluated at the extremum Ecover is

minimal among all extrema existing at that scale.

3. Link the new created node as the leftchild of a node in the tree
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that does not have its leftchild and where Ecover equals its left-

port, or as the rightchild of a node in the tree that does not have

its rightchild and where Ecover equals its rightport.

4. Repeat 2, 3, and 4, until all catastrophe points are processed.

An example of the Extrema-Based MSST constructed from a simple

three-dimensional image of four Gaussian blobs is shown in Fig. 5.2.

The constructed MSST has three nodes corresponding to the three

relevant catastrophes in the scale-space. An annihilation catastrophe

of a pair of saddles is ignored.

5.4 BVHs from MSSTs

Given a MSST, we produce a BVH as follows. The MSST is extended

with a set of leaves according to the leftport and the rightport repre-

senting each extremum in the original image. The newly added leaves

represent the finest scale for the BVH. All free ports are extended

with a leaf for the corresponding extremum, and then all ports are

removed. The result is that the MSST is extended with one leaf for

each extremum. All the extrema will appear in the extended MSST

one and only one time. The original Extrema-Based MSST and the

extended Extrema-Based MSST of the image in Fig. 5.2 is shown on

the left and the right panel of the Fig. 5.3. We can denote the catastro-
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E0C1E1

E0C2E2 E1C3E3

C1

C2

E0 E2

C3

E1 E3

Figure 5.3: The original Extrema-Based MSST (left) and its extended
Extrema-Based MSST (right).

phe scale as a size measure of the corresponding extremum. That is,

at the catastrophe scale, the corresponding Gaussian will have a size

that dominates the underlying image structures. We may also give a

statistical interpretations using Tchebycheff’s inequality [10]. It states

that for a random variable X with standard deviation σ, the proba-

bility of finding values outsize a bound proportional to its standard

deviation is inversely small:

P (|X − µ| ≥ kσ) ≤
1

k2
(5.7)

We take this as a guide to set the size of the leaf bounding volumes, i.e.

a leaf will be given a sphere, who’s radius is proportional to the catas-

trophe scale. There will be one extremum, which does not disappear

in a catastrophe, which is the last extremum in the scale-space. We

set the bounding volume of the final extremum to be proportional to

the distance to its only sibling in the MSST minus the already known

sibling’s radius in the BVH.
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©

©

Body Head

©

Leg I ©

Leg II ©

Leg III Leg IV

Figure 5.4: A schematic drawing of the extracted BVH of a solid cow.

Since the BVH is binary, we find bounding volume for the non-

leaf nodes in the tree as the smallest sphere that encloses the two

child spheres. Although tighter bounds may be found, this is left for

further development.

5.5 Results

Currently, our algorithm is capable of producing trees from objects

that are sampled on a 2563 grid, for a reasonable computation time,

we only use 643 grids. We demonstrate our algorithm on the cow

polygonal mesh [6]. Figure 5.4 shows a schematic drawing of the ex-

tracted BVH of a solid cow and Fig. 5.5 shows a solid cow together

with the spherical bounding volume at each level in the hierarchy.

In the scale-space of the cow, the legs of the cow appears in a sequen-
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tial manner from coarse to fine. This makes the tree building process

simple, however, in this particular example, it would possibly be more

natural to let the leg-nodes appear at the same time in a 4-ary tree

node. In our tree, such decisions can be enforced by post-processing,

and a useful indication in this case would be that the catastrophes

occur within a very narrow scale-band.

There are many properties which are interesting when evaluating

the quality of a BVH. Unfortunately some of them are contradicting

each other.

• Smallest possible bounding volumes

• Smallest possible overlap between volumes at the same depth in

the hierarchy

• Small sized BVH, i.e. as few nodes as possible

• Complete coverage versus sampling based coverage

• “balanced” trees

The last property is one we challenge, although it has been proved

that balanced trees provide best worst case queries, a balanced tree

do not represent the scale of the object. Working with time critical

or approximating queries this become an important property. We

suggest that the tree should be balanced with respect to the density

of the object.
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5.6 Discussion

Most recent work with BVHs has focused on: Trying out new kinds

of bounding volumes, figuring out better methods for fitting a bound-

ing volume to a subset of an object’s underlying geometry, finding

faster and better overlap test methods, and comparing homogeneous

BVHs of different bounding volume types. In order to improve the

performance of traversal algorithms, depth control, layered bounding

volumes, caching bounding volumes, and shared bounding volumes

have been studied. We have chosen to classify our method as being

a mixed bottom-up and top-down method, because the scale-space

is built bottom-up, and the MSST are found in a top-down manner.

The corresponding BVH is then built in a straightforward incremental

way, by doing an order traversal of the MSST, and creating bounding

volume nodes as catastrophes are encountered.

The computational complexity for our algorithm is currently high.

Using N3 as the number of pixels in the image, S as the number

of scales to be evaluated, σ as the largest scale, K as the number of

critical line-pieces found, and E as the number of extrema at the lowest

scale, the computational complexity for each part of our algorithm is

as follows:

Computation of the Scale-Space: O(Sσ3N3)

It may be possible to improve the calculation time for the Gaus-
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sian scale-space, e.g. using sub-sampled image for approximating

scaled image at high scales or using faster alternatives to spatial

convolution. However, we have not yet found alternatives that

does not introduces spurious extrema in homogeneous regions.

Storage of the Scale-Space: O(2N3)

The most memory intensive part of our algorithm is the storage

of the scale-space. We only require the storage of two neigh-

boring scales in order to find the critical paths in our current

implementation.

Extracting Critical Paths: O(SN3 + K2)

The critical paths can be extracted considerably faster by track-

ing each extremum from the finest scale, however this would

require either to store the full Scale-Space or perform local cal-

culations during the tracking process. Since this is by far not

the slowest part of our algorithm, we have left this for further

research.

Finding a Euclidean Tree, α = 0 in (5.5): O(E2)

It is fastest to use the Euclidean metric in (5.5), for 0 < α ≤ 1

see below.

Finding a General Tree: O(EN3 log N3)

This is the most computationally expensive part of our algo-
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rithm. However, we expect that the speed of the Fast Marching

Method can be improved by a narrow band implementation.

Gaussian scale space provides us with a continuous degradation of an

object, other algorithms fail completely on this point, they typical

control their scale by saying that at the next level of the BVH should

have 50% less number of volumes, or at the next level the volumes

should fit 20% better. A direct study of scales seems to be a more

proper representation.

Medial surface (M-reps) based methods for building BVHs have

been the approach to use for bottom-up construction. Our method

differs from M-reps significantly by being a density based method,

whereas M-reps is more a surface-based method. Furthermore our

method provides us with a natural scale that is easily used to determine

both bounding volumes and the topology of the hierarchy. M-reps do

not provide this scale information nor can they tell one about the

density of an object.

The well-established foundation on scale-space theory provides us

with a well-defined concept of scale, shape, and detail of an object.

These concepts are valuable tools as our work hopefully demonstrates.

The main contribution of our work is a new method for building

bounding volume hierarchy, however, there is still much need to be

done. So far our work has been a feasibility study showing that the
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construction of BVHs from MSSTs actually can be done. We have

not yet made any attempt toward comparing the quality of the multi-

scale singularity BVH with other algorithms. Future research will be

on the tightening of the bounding volumes utilizing information in

scale-space.



Chapter 6

Summary

Students take a ferocious pride in

showing how many details they can find.

Ironically, the most difficult problem in

drawing and painting is to see and render

the subject in its totality

T.S. Jacobs

The main contributions of this thesis are the introduction and detailed

studies of a novel multi-scale image descriptor called Multi-Scale Sin-

gularity Trees (MSSTs) and the matching algorithms based on them.

This thesis introduced and described in detail MSSTs and the
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method that constructs MSSTs from images in scale-spaces. Rooted

binary ordered tress of catastrophes and their connections representing

the deep structures of images are produced. The connections in MSSTs

are decided based on the invariant energies calculated on images at the

scales of the catastrophes. Unlike all other similar multi-scale image

descriptors previously described in the literatures [46, 42, 64, 60] where

only the best connections between vertices are suggested or “hard-

linked”, MSSTs provide both the connections and their strengths. The

most probable connection for each vertex or catastrophe in an MSST

can be found as the connection with the lowest energy. The proba-

bilities of all possible connections for each catastrophe in MSSTs may

be estimated from their corresponding energies. This “soft-linked”

properties of MSSTs make them unique and allow for the develop-

ments of algorithms that exploit this unique advantages on poten-

tially many applications especially on image matching. Various as-

pects of the MSSTs are explored both in theory and practice. The

usefulness of MSSTs and the performances of algorithms based on

MSSTs are experimentally demonstrated in two applications namely

image matching using MSSTs and Multi-Scale Singularity Bounding

Volume Hierarchies (MSS-BVHs) from MSSTs for collision detection

in physics-based computer animation.

Two different kinds of MSSTs were described namely Extrema-
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Based MSSTs and Saddle-Based MSSTs. The key difference between

the two kinds of MSSTs is that catastrophes are linked to extrema

for Extrema-Based MSSTs and are linked to saddles for Saddle-Based

MSSTs. The estimation of the energy map associated with each catas-

trophe can be efficiently computed using the Fast Marching Method [70,

71, 72, 73, 74]. Creations in two and higher dimensional images are

generic events. In order to preserve the tree structure and simplify fur-

ther developments of the algorithms based on MSSTs, creations are

systematically removed and ignored.

The study of the transitions of MSSTs suggested that Saddle-Based

MSSTs are better as image descriptors for image matching. Because

the transitions of Saddle-Based MSSTs are simpler and easier to be

understood, their transition costs are easier to be estimated. The sim-

plicity of Saddle-Based MSSTs transitions do not only simplify the

matching algorithm but will also possibly accelerate further develop-

ments.

An image matching algorithm that exploits the advantages of MSSTs

was proposed. One of the most crucial and unique part of MSSTs is

the energy matrix. The energy matrix, which contains the energies be-

tween catastrophes at different scales in scale-space, defines the topol-

ogy of an MSST. The distance between two MSSTs can be found as

a sum of the squared differences of the corresponding elements in the
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normalized energy matrices, taking into account all possible permu-

tations of the ordering of catastrophes. Because the searching space

grows factorically fast on the number of catastrophes, only a few can

be used in the exact distance calculation. An approximate matching

algorithm was proposed to reduce the computation time and allow for

more catastrophes to be included in the distance calculation. Approx-

imate matching algorithm finds the best local ordering in a window

of a few catastrophes using the exact algorithm, then the chosen lo-

cal ordering is used to guide the searching of the ordering on a larger

number of catastrophes. The performance of the approximate variant

of the matching algorithm beats that of the exact calculation while

spends less computation time.

Because only the energy matrices, which define the topology of

MSSTs, are used in the image distance calculation, the performance

of the image matching method is a good approximation of how much

image information is represented in the topology of MSSTs. Intrinsi-

cally and naturally, the topology of MSSTs is invariant to translation,

rotation, and scaling of images, however it is obviously not invariant

to changing of 3D view point of objects.

Three image databases namely the ORL face database [68], the

magazine cover database, and the Columbia Object Image Library

(COIL) database [58] were used in several experiments to investi-
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gate various aspects and demonstrate the performance of the proposed

matching method based on MSSTs. Then, the performance compar-

ison of the matching method based on MSSTs, on the positions of

catastrophes (CAT) [35], and on the Scale Invariance Feature Trans-

form (SIFT) [53, 54], all augmented with the Earth Mover Distance

(EMD) [67], was presented. All three methods are based on scale-

space, and their current implementation differ in the number of feature

points that are practical. The MSST and the CAT method are similar

in performance, but they are both surpassed by the SIFT method. We

attribute this superior performance of the SIFT method to the many

more features included.

The performance of the current image matching algorithm based on

MSSTs is not yet comparable to state-of-the-art algorithms, however

this appears to be an algorithmic problem, since the search algorithm is

so far only practical for a small number of features. Further researches

should focus on improving the accuracy of the energy map calculation

and the developments of more sophisticated matching algorithms.

The second application of MSSTs, the Multi-Scale Singularity Bound-

ing Volume Hierarchies (MSS-BVHs), was presented. A scale space ap-

proach is taken for building Bounding Volume Hierarchies (BVHs) for

collision detection in physics-based simulation. MSSTs are convert to

MSS-BVHs by generating a spherical bounding volume for each node
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of an MSST using estimates of the mass distribution. MSS-BVHs ex-

tend the field with a new method based on volumetric shape rather

than statistics of the surface geometry or geometrical constructs such

as medial surfaces.

The following are topics relating to the work described in the thesis

that the author believes should be further investigated.

• The accuracy of the energy map calculation:

The accuracy of the generated energy maps can be significantly

improved if the grid of the accumulated cost u(x) and the cost

function F (x) used in the Fast Marching Method are initially

fitted to the underlying image structures. This can be archived

by the triangulated grid. If α = 1, energy along isophotes must

be of the same value and hence can be updated simultaneously.

Using fitted triangulated grid will not only improve the accuracy

of the generated energy maps but also likely to perform faster.

• The synergy of positions of catastrophes and the energy map:

The current matching method based on MSSTs described in this

thesis calculates distances between images using only the energy

matrices of MSSTs. Calculating the distances using both the

positions of catastrophes and their relations (defined by MSSTs’

energy matrices) should improve the matching results. This can

be archived in the following ways:
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– The positions of catastrophes and saddles in MSSTs can

be additionally used to discard catastrophes that do not

satisfy the view point constraint of the whole scene.

– The image distance can be possibly calculated as the weighted

sum of the position and energy discrepancies between catas-

trophes in MSSTs. The weighting factors will have to be

determined statistically in experiments using a large cali-

brated image database.

• Matching algorithm performance:

The bottleneck of the current matching algorithm is the prac-

tical number of catastrophes that can be used in the distance

calculation. This problem might be levied in the following ways:

– The approximate matching algorithm can be modified so

that the size of its moving window can grow or shrink adap-

tively, while keeping the scale difference between the highest

and the lowest catastrophes in the window under a tunable

level. Using the same number of catastrophes, the adaptive

approximate algorithm is likely to produce a better match-

ing results, since it also allows the algorithm to discard

catastrophes located high in scale, when appropriate.

– It is possible to embed an energy matrix to a set of points

in Euclidean space, where the Euclidean distances between
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points in the set approximate the energies. This can be

done using the Multidimensional Scaling (MDS) [100]. The

point sets then can be matched using the Earth Mover Dis-

tance (EMD) [67]. It will speed up the matching algorithm

significantly and allow for more catastrophes to be included

in the distance calculation with the price of losing the in-

trinsic invariant properties of MSSTs.

• Image reconstruction from MSSTs

It is obvious that the most direct way of demonstrating the power

of MSSTs and its richness in capturing information of images

they represent is to reconstruct the original images from their

MSSTs. It is also interesting to investigate the metameric class

of images where their positions of catastrophes and the energy

matrices are the same. This is indeed a very hard and challenging

problem.

Relations or connections between singular points in scale-space must

be treated relatively and quantitatively. Without the knowledge of

how strong the connection is, compared to all other possible connec-

tions in the domain, knowing such a connection itself is almost useless.

The soft-linked nature of MSSTs makes them unique as image descrip-

tors and they are likely to be found useful for many applications in

the future.

Appendix A

MSST Mini Tutorial1

The more original a discovery, the more

obvious it seems afterwards.

A. Koestler

A.1 Introduction

MSST is a little graphical software that extracts, visualizes, and per-

forms matching of MSSTs. It was originally implemented as part of the

deliverable No.8 [77] of the DSSCV project (See Sec. 1.1) submitted

1An earlier version of this tutorial has been published as part of a DSSCV
project technical report titled “Software for Extracting 3D MSSTs” [77].
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in September 2003. Since then, the software has been actively up-

dated with corrections and new functionalities and maintained by the

author. It is designed to be platform independent and implemented

in C/C++ with STL [85] and OpenGL [99]. The source code package

and the pre-compiled binaries for GNU/Linux and MS Windows is

publicly available and can be freely obtained from the author.

The current implementation is considered an experimental one. It

has not been extensively tested and bugs may be expected. We also

did not give any effort to optimize its performance in time nor space.

The following tutorial has been tested on the MS Windows version

but most of the tutorial will also be applicable for the GNU/Linux

version.

A.2 Mini Tutorial

MSST can be started by double clicking the icon MSST1024 on a ma-

chine with 1024× 768 screen or double clicking the icon MSST1280 on

a machine with 1280× 1024 screen. To exit press ’ESC’. The software

can also be started using the command line.

>msst

The screen resolution parameter i.e. 1024 for a machine with 1024×768

screen, and 1280 for a machine with 1280 × 1024 screen can also be
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supplied.

>msst s 1024

The interface of MSST consists of two windows i.e. the graphical win-

dow and the text window. The text window is where the software

prints its text output. The graphic window is where the user inter-

actively communicate with the software. The user should make the

graphic window active at all time including when typing requested

input e.g. filename, command parameters, etc. The text window is

solely for text output printed by the software.

By default, the scale-space is shown from the top with the scale

direction pointing toward the user, the x-axis pointing to the right

and the y-axis pointing to the top of the screen. The user can use the

mouse to navigate the scale-space volume. The left button is used for

turning the scale-scale volume, the middle button is for zooming, and

the right button is for translating the volume. The view point can be

reset to the default by pressing ’0’. There are in total 6 preset view

points associated with number ’1’ to ’6’. In Fig. A.1 to Fig. A.3 is

the complete list of the available commands and their definitions. The

same list can also be obtained by pressing ’?’ for help.

To load an image press ’R’. The software will print out a command

prompt waiting for the image filename to be entered. Keeping the

graphic window active, type in the path and filename of the image.
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R : Read Image

Filename [string]:01-01.pgm

The image will be loaded to the software and shown at the bottom of

the scale-space volume. Currently, the software only accept images in

.PGM file format. Images of other formats must be converted to .PGM

before being loaded to MSST.

To compute the scale-space of the image press ’Ctrl+b’. The soft-

ware will compute the complete scale-space of the image using the

default parameters. The scale-space is sampled exponentially using

the following equation.

σ = σoe
T (A.1)

The constant σ0, the initial T , and the scale step dT can be cus-

tomized before building the scale-space with the command ’s’, ’t’, and

’d’ respectively. The default values are σ0 = 2, T = 0, and dT = 0.05.

To activate the detection of zero-crossings of the Ix and Iy press

’x’ and ’y’, respectively. The Ix = 0 curves are shown in light blue and

the Iy = 0 curves are shown in yellow. The labels for all the critical

points can be printed out using the command ’.’. Maxima are denoted

by ’H’, minima are denoted by ’L’, and saddles are denoted by ’S’. The

image plane can be move up and down in scale using the commands

’L’ and ’l’. Notice the movements of the zero-crossings, and the labels

of critical points.
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Command Key Definition

Basic Commands
? Help
/ List the Parameters

Ctrl+n Clear All Variables
# Toggle Volume Box
g Toggle Grid
, Toggle Background Color
∧ Toggle Projective Transformation

Ctrl+d Toggle Problem Dimensionality
Ctrl+l Redraw the Graphic Window
Ctrl+x Cancel Input

! Toggle the Coordinate Systems
ESC Exit

File Commands
R Read an Image
W Export the extracted MSST

Ctrl+o Load Scale-Space
Ctrl+s Save Scale-Space
Ctrl+a Load Database
Ctrl+v Save Distance Matrix
Ctrl+y Load Distance Matrix
Ctrl+w Save MSST
Ctrl+e Save Energy Map (PGM)

Navigation
Mouse1 Rotate
Mouse2 Zoom
Mouse3 Translate

0 Reset View
1-6 Preset View 1-6

Figure A.1: Summary of the important command keys and their defi-
nitions (1/3).
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Command Key Definition

Drawing Commands
r Set the Iso-Surface Value
S Toggle the Iso-Surfaces
X Toggle the ∂xI = 0 Surfaces
Y Toggle the ∂yI = 0 Surfaces
Z Toggle the ∂zI = 0 Surfaces
x Toggle Ix = 0 Line
y Toggle Iy = 0 Line
; Toggle Navigation Cube
U Toggle Slice-X
I Toggle Slice-Y
O Toggle Slice-Z
J/j Move Up/Down Slice
K/k Move Up/Down Slice-Y
L/l Move Up/Down Slice-Z
* Toggle MSST Links

Toggle Critical Paths
& Toggle Extended Critical Paths
. Toggle Labels

Scale-Space Commands
Ctrl+b Build Scale-Space

s Set the σ0

t Set the T
d Set the dT
C Toggle the 3D Critical Point Detection
+ Increase the 3+1D Scale T by dT
- Decrease the 3+1D Scale T by dT

Figure A.2: Summary of the important command keys and their defi-
nitions (2/3).
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Command Key Definition

MSST Commands
Ctrl+f Extract Saddle-Based MSST (Full)
Ctrl+g Extract Saddle-Based MSST
Ctrl+h Extract Extrema-Based MSST
Ctrl+h Extract Extrema-Based MSST-BVH
Ctrl+u Extract Euclidean MSST-BVH

Database Commands
} Next Set in Database
{ Previous Set in Database
] Next Scale-Space in Current Set
[ Previous Scale-Space in Current Set

Matching Commands
= Calculate Database Distance Matrix
i Interpret Matching Result

Figure A.3: Summary of the important command keys and their defi-
nitions (3/3).
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The critical paths can be made visible by pressing ’ ’. Maximal

paths are shown in red, minimal paths are shown in green and saddle

paths are shown in blue. Created paths, if any, are shown in yellow.

Move the image plane up and down again with the command ’L’ and

’l’ and observe the movements of the critical points and the positions

of the critical paths at that scale.

The scale-space can be saved using the command ’Ctrl+s’ and

supplying the file name.

To compute the Saddle-Based MSST with a full energy matrix, use

the command ’Ctrl+f’. When complete, the linkings of the MSSTs

can be visualized by pressing ’*’. The linkings are shown by yellow

horizontal lines and are best visualized using the orthogonal projection

of the scale-space volume with the scale direction pointing up. The

projective transformation can be changed using the command ’̂’ and

the command ’3’ sets the desired view point. The computed MSST

can be saved using the command ’Ctrl+w’ followed by the filename.

An image database with their pre-computed scale-spaces can be

loaded to the software using the command ’Ctrl+a’. The scale-spaces

of the images in a large database are best computed using the batch

processing (See Sec. A.3). The format of the database file is very

simple. It starts with the number of image sets followed by the number

of images in each set, and finally the list of the image files. The
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software will print out a command prompt waiting for the database

filename to be entered.

Ctrl+a : Load Database

Filename [string]:faces0505.dat

To navigate among the images in the current set, use the command ’[’

and ’]’ to move to the previous image and to the next image respec-

tively. The commands ’{’ and ’}’ will set the current image set to the

previous set and to the next set of images in the database, respectively.

The distance between all pairs of images in the database can be

computed by pressing ’=’. The software will print out a command

prompt waiting for the matching parameters to be specified.

= : Perform Matching

Matching Parameters

[NumberOfCat WindowSize NumberOfDeletion]:10 6 1

The software will compute the confusion distance matrix using the

approximate matching algorithm with 10 top catastrophes, the window

size of 6 catastrophes, and 1 deletion. The exact matching algorithm is

used if the window size is set to 0. The matching result can be printed

out using the command ’i’. A snapshot of the software at work is

shown in Fig. A.4.
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Figure A.4: A snapshot of the MSST software.
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A.3 Batch Processing

Processing a large image database consisting of several hundreds im-

ages may take a long time. The software can also be used to process

multiple image files in a batch processing manner by passing param-

eters to the program at the command prompt. The complete list of

the available command-line parameters and their definitions can be

obtained by passing the option h to MSST.

>msst h

To compute and save scale-space and extract Saddle-Based MSSTs

from all images in the current directory, type the following command.

>msst a *.pgm

The software will produce 2 text files and 3 binary files for each im-

age file. To only extract Saddle-Based MSSTs from all images in the

current directory, type the following command.

>msst t *.pgm

To compute the distance between two Saddle-Based MSSTs, e.g. be-

tween 0101.pgm.msst and 0201.pgm.msst, using the approximate

matching algorithm on the first 10 top catastrophes using the window

size of 6 catastrophes and 1 deletion, type the following command.

>msst m 10 6 1 01-01.pgm.msst 02-01.pgm.msst
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If the exact matching algorithm should be used, specify 0 for the size

of the window, i.e.

>msst m 10 0 1 01-01.pgm.msst 02-01.pgm.msst

Finally, the following command computes the confusion distance ma-

trix containing the distances between all images in the database file

face0505.dat.

>msst d faces0505.dat 10 6 1

The software will produce a text file faces0505.dat.dis containing

the confusion distance matrix which can be interpreted using the fol-

lowing command.

>msst i faces0505.dat.dis
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